Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 8 Issue 2

Frequency method for determination self oscillations in control systems with a piezo actuator for astrophysical research

Afonin SM

National Research University of Electronic Technology, Russia

Correspondence: Afonin SM, National Research University of Electronic Technology MIET, Moscow, Russia

Received: June 20, 2024 | Published: July 2, 2024

Citation: Afonin SM. Frequency method for determination self-oscillations in control systems with a piezo actuator for astrophysical research. Aeron Aero Open Access J. 2024;8(2):115-117. DOI: 10.15406/aaoaj.2024.08.00198

Download PDF

Abstract

For the control system with a piezo actuator in astrophysical research the condition for the existence of self-oscillations is determined. Frequency method for determination self-oscillations in control systems is applied. By using the harmonious linearization of hysteresis and Nyquist stability criterion the condition of the existence of self-oscillations is obtained.

Keywords: frequency method, control system, piezoactuator, hysteresis, self-oscillations, astrophysical research

Introduction

A piezo actuator is used in astrophysics for image stabilization and scan system.1–19 Frequency method for determination self-oscillations in scan system is applied.20–46 for Nyquist stability criterion of self-oscillations at harmonious linearization of hysteresis characteristic of a piezo actuator.

Condition of self-oscillations

The scan system with a piezo actuator is used for astrophysical research in system adaptive optics. Nyquist stability criterion of self-oscillations at harmonious linearization of hysteresis characteristic2,20–40 of a piezo actuator has the form

W l ( αΩ ) W g ( E mmax )=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaWGSbaabeaakmaabmaabaGaeqySdeMaeyyQdCfacaGLOaGa ayzkaaGaaGjbVlaadEfalmaaBaaabaGaam4zaaqabaGcdaqadaqaai aadweadaWgaaWcbaGaamyBaiaaysW7caqGTbGaaeyyaiaabIhaaOqa baaacaGLOaGaayzkaaGaeyypa0JaeyOeI0IaaGymaaaa@4AC1@

where α is the imaginary unit, Ω - the frequency of self-oscillations, W l ( αΩ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaSWaaS baaeaacaWGSbaabeaakmaabmaabaGaeqySdeMaeuyQdCfacaGLOaGa ayzkaaaaaa@3CB0@  - the frequency transfer function of the linear part, W g ( E mmax ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaSWaaS baaeaacaWGNbaabeaakmaabmaabaGaamyramaaBaaaleaacaWGTbGa aGjbVlaab2gacaqGHbGaaeiEaaGcbeaaaiaawIcacaGLPaaaaaa@3FCC@  - the transfer function of the hysteresis part, E mmax MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGTbGaaGjbVlaab2gacaqGHbGaaeiEaaGcbeaaaaa@3C45@  - amplitude of the electric field strength for m axis.

For the scan system with a piezo actuator for astrophysical research the condition of self-oscillations is written

1+ W l ( αΩ ) W g ( E mmax )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgU caRiaadEfadaWgaaWcbaGaamiBaaqabaGcdaqadaqaaiabeg7aHjab gM6axbGaayjkaiaawMcaaiaaysW7caWGxbWcdaWgaaqaaiaadEgaae qaaOWaaeWaaeaacaWGfbWaaSbaaSqaaiaad2gacaaMe8UaaeyBaiaa bggacaqG4baakeqaaaGaayjkaiaawMcaaiabg2da9iaaicdaaaa@4B70@

The condition of self-oscillations is determined in the form

W l ( αΩ )= 1 W g ( E mmax ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaSWaaS baaeaacaWGSbaabeaakmaabmaabaGaeqySdeMaeuyQdCfacaGLOaGa ayzkaaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaam4vaSWaaS baaeaacaWGNbaabeaakmaabmaabaGaamyramaaBaaaleaacaWGTbGa aGjbVlaab2gacaqGHbGaaeiEaaGcbeaaaiaawIcacaGLPaaaaaaaaa@4943@

here the left side of this equation has the form of the amplitude-phase characteristic of the linear part of the system, and the right side of the equation has the form of the inverse amplitude-phase characteristic of the hysteresis link of the piezo actuator with the inverse sign  minus.

Preisach hysteresis function a piezo actuator has the form22-40

S i =F [ E m | 0 t ,t, S i ( 0 ),sign E ˙ m ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGPbaakeqaaiabg2da9iaadAeadaWadaqaamaaeiaabaGa amyramaaBaaaleaacaWGTbaakeqaaaGaayjcSdWcdaqhaaqaaiaaic daaeaacaWG0baaaOGaaiilaiaadshacaGGSaGaam4uamaaBaaaleaa caWGPbaakeqaamaabmaabaGaaGimaaGaayjkaiaawMcaaiaacYcaca qGZbGaaeyAaiaabEgacaqGUbGabmyrayaacaWaaSbaaSqaaiaad2ga aeqaaaGccaGLBbGaayzxaaWaa0baaSqaaaqaaaaaaaa@4E55@

here t, S i , S i ( 0 ), E m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaacY cacaWGtbWcdaWgaaqaaiaadMgaaeqaaiaacYcakiaadofalmaaBaaa baGaamyAaaqabaGcdaqadaqaaiaaicdaaSGaayjkaiaawMcaaOGaai ilaiaadweadaWgaaWcbaGaamyBaaGcbeaaaaa@4142@  and sign E ˙ m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGNbGaaeOBaiqadweagaGaamaaBaaaleaacaWGTbaabeaaaaa@3BA5@  - the time, the deformation, the initial deformation,, the strength of electric field and the sign velocity.

The symmetric hysteresis the deformation22-40 a piezo actuator has the form

S i = d mi E m γ mi E mmax ( 1 E m 2 E mmax 2 ) n sign E ˙ m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaWGPbaabeaakiabg2da9iaadsgalmaaBaaabaGaamyBaiaa dMgaaeqaaOGaamyraSWaaSbaaeaacaWGTbaabeaakiabgkHiTiabeo 7aNTWaaSbaaeaacaWGTbGaamyAaaqabaGccaWGfbWcdaWgaaqaaiaa d2gacaaMe8UaaeyBaiaabggacaqG4baabeaakmaabmaabaGaaGymai abgkHiTmaalaaabaGaamyraSWaa0baaeaacaWGTbaabaGaaGOmaaaa aOqaaiaadwealmaaDaaabaGaamyBaiaaysW7caqGTbGaaeyyaiaabI haaeaacaaIYaaaaaaaaOGaayjkaiaawMcaamaaCaaabeWcbaGaamOB aaaakiaabohacaqGPbGaae4zaiaab6gaceWGfbGbaiaadaWgaaWcba GaamyBaaqabaaaaa@5CB5@

d mi = d mi 0 + a mi E m 2 , γ mi = S i 0 / E mmax MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaS baaeaacaWGTbGaamyAaaqabaGccqGH9aqpcaWGKbWcdaqhaeqaaiaa d2gacaWGPbaabaGaaGimaaaakiabgUcaRiaadggadaWgaaWcbaGaam yBaiaadMgaaeqaaOGaamyraSWaa0baaeaacaWGTbaabaGaaGOmaaaa caGGSaGccqaHZoWzlmaaBaaabaGaamyBaiaadMgaaeqaaOGaeyypa0 ZaaSGbaeaacaWGtbWcdaqhaeqaaiaadMgaaeaacaaIWaaaaaGcbaGa amyraSWaaSbaaeaacaWGTbGaaGjbVlaab2gacaqGHbGaaeiEaaqaba aaaaaa@52C9@

here d mi , γ mi , S i 0 ,n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaS baaeaacaWGTbGaamyAaaqabaGaaiilaOGaeq4SdC2cdaWgaaqaaiaa d2gacaWGPbaabeaacaGGSaGccaWGtbWcdaqhaeqaaiaadMgaaeaaca aIWaaaaiaacYcakiaad6gaaaa@426E@ , - the piezo module, the hysteresis coefficient, the relative deformation for E m =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraWWaaS baaeaacaWGTbaabeaakiabg2da9iaaicdaaaa@39AA@ , and the power 1, 2, 3, ….

The transfer function of the linear part of the scan system with a piezo actuator for elastic-inertia load22,37-46 has the form

W l ( p )= k l T t 2 p 2 +2 T t ξ t p+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaSWaaS baaeaacaWGSbaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaiab g2da9maalaaabaGaam4AamaaBaaaleaacaWGSbaakeqaaaqaaiaads falmaaDaaabaGaamiDaaqaaiaaikdaaaGccaWGWbWcdaahaaqabeaa caaIYaaaaOGaey4kaSIaaGOmaiaadsfadaWgaaWcbaGaamiDaaGcbe aacqaH+oaEdaWgaaWcbaGaamiDaaGcbeaacaWGWbGaey4kaSIaaGym aaaaaaa@4B7C@

After transformations we have this condition for the scan system with the PZT actuator at the power  in the form

1 1 T t 2 Ω 2 k l +α 2 T t ξ t Ω k l = 1 ( d mi 0 + a mi E mmax 2 )+α 8 γ mi 3π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca aIXaaabaWaaSaaaeaacaaIXaGaeyOeI0IaamivaSWaa0baaeaacaWG 0baabaGaaGOmaaaakiabfM6axTWaaWbaaeqabaGaaGOmaaaaaOqaai aadUgalmaaBaaabaGaamiBaaqabaaaaOGaey4kaSIaeqySde2aaSaa aeaacaaIYaGaamivaSWaaSbaaeaacaWG0baabeaakiabe67a4TWaaS baaeaacaWG0baabeaakiabfM6axbqaaiaadUgadaWgaaWcbaGaamiB aaGcbeaaaaaaaiabg2da9maalaaabaGaaGymaaqaaiabgkHiTiaays W7daqadaqaaiaadsgalmaaDaaabaGaamyBaiaadMgaaeaacaaIWaaa aOGaey4kaSIaamyyaSWaaSbaaeaacaWGTbGaamyAaaqabaGccaWGfb Wcdaqhaaqaaiaad2gacaaMe8UaaeyBaiaabggacaqG4baabaGaaGOm aaaaaOGaayjkaiaawMcaaiabgUcaRiabeg7aHnaalaaabaGaaGioai abeo7aNnaaBaaaleaacaWGTbGaamyAaaGcbeaaaeaacaaIZaGaeqiW dahaaaaaaaa@69C4@

Ω= 4 γ mi k l 3π T t ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCLaey ypa0ZaaSaaaeaacaaI0aGaeq4SdC2aaSbaaSqaaiaad2gacaWGPbaa keqaaiaadUgadaWgaaWcbaGaamiBaaGcbeaaaeaacaaIZaGaeqiWda NaamivaSWaaSbaaeaacaWG0baabeaakiabe67a4TWaaSbaaeaacaWG 0baabeaaaaaaaa@4696@

For the the scan system with the PZT actuator  = 3.2×108 V/m, d 33 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaa0 baaeaacaaIZaGaaG4maaqaaiaaicdaaaaaaa@3941@  = 4×10-10 m/V, γ 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2cda WgaaqaaiaaiodacaaIZaaabeaaaaa@3944@  = 0.8×10-10 m/V, a 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaSWaaS baaeaacaaIZaGaaG4maaqabaaaaa@3883@  = 3.1×10-22 m3/V3, T t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaSWaaS baaeaacaWG0baabeaaaaa@37F5@  = 10-3 s, ξ t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cda Wgaaqaaiaadshaaeqaaaaa@38DF@  = 10-2 the frequency is determined Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdCfaaa@3785@  =1.1×103 s-1 with error of 10 %.

The frequency transfer function of the symmetric hysteresis the deformation of a piezo actuator is received in the form

W g ( E mmax )= S i ( E mmax )/ E m ( E mmax ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaSWaaS baaeaacaWGNbaabeaakmaabmaabaGaamyramaaBaaaleaacaWGTbGa aGjbVlaab2gacaqGHbGaaeiEaaGcbeaaaiaawIcacaGLPaaacqGH9a qpdaWcgaqaaiaadofalmaaBaaabaGaamyAaaqabaGcdaqadaqaaiaa dweadaWgaaWcbaGaamyBaiaaysW7caqGTbGaaeyyaiaabIhaaOqaba aacaGLOaGaayzkaaaabaGaamyraSWaaSbaaeaacaWGTbaabeaakmaa bmaabaGaamyramaaBaaaleaacaWGTbGaaGjbVlaab2gacaqGHbGaae iEaaGcbeaaaiaawIcacaGLPaaaaaaaaa@5484@

W g ( E mmax )= q mi ( E mmax )+α q mi ( E mmax ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaSWaaS baaeaacaWGNbaabeaakmaabmaabaGaamyramaaBaaaleaacaWGTbGa aGjbVlaab2gacaqGHbGaaeiEaaGcbeaaaiaawIcacaGLPaaacqGH9a qpcaWGXbWcdaWgaaqaaiaad2gacaWGPbaabeaakmaabmaabaGaamyr amaaBaaaleaacaWGTbGaaGjbVlaab2gacaqGHbGaaeiEaaGcbeaaai aawIcacaGLPaaacqGHRaWkcqaHXoqyceWGXbGbauaadaWgaaWcbaGa amyBaiaadMgaaOqabaWaaeWaaeaacaWGfbWaaSbaaSqaaiaad2gaca aMe8UaaeyBaiaabggacaqG4baakeqaaaGaayjkaiaawMcaaaaa@5925@

For n = 1

q mi ( E mmax )= d mi , q mi ( E mmax )= 42 γ mi π3 = 8 γ mi 3π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaSWaaS baaeaacaWGTbGaamyAaaqabaGcdaqadaqaaiaadweadaWgaaWcbaGa amyBaiaaysW7caqGTbGaaeyyaiaabIhaaOqabaaacaGLOaGaayzkaa Gaeyypa0JaamizaSWaaSbaaeaacaWGTbGaamyAaaqabaGaaiilaOGa bmyCayaafaWaaSbaaSqaaiaad2gacaWGPbaakeqaamaabmaabaGaam yramaaBaaaleaacaWGTbGaaGjbVlaab2gacaqGHbGaaeiEaaGcbeaa aiaawIcacaGLPaaacqGH9aqpcqGHsislcaaMe8+aaSaaaeaacaaI0a GaeyyXICTaaGOmaiabgwSixlabeo7aNTWaaSbaaeaacaWGTbGaamyA aaqabaaakeaacqaHapaCcqGHflY1caaIZaaaaiabg2da9iabgkHiTi aaysW7daWcaaqaaiaaiIdacqaHZoWzlmaaBaaabaGaamyBaiaadMga aeqaaaGcbaGaaG4maiabec8aWbaaaaa@6D26@

For n = 2

q mi ( E mmax )= d mi , q mi ( E mmax )= 424 γ mi π35 = 32 γ mi 15π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaSWaaS baaeaacaWGTbGaamyAaaqabaGcdaqadaqaaiaadweadaWgaaWcbaGa amyBaiaaysW7caqGTbGaaeyyaiaabIhaaOqabaaacaGLOaGaayzkaa Gaeyypa0JaamizaSWaaSbaaeaacaWGTbGaamyAaaqabaGaaiilaOGa bmyCayaafaWaaSbaaSqaaiaad2gacaWGPbaakeqaamaabmaabaGaam yramaaBaaaleaacaWGTbGaaGjbVlaab2gacaqGHbGaaeiEaaGcbeaa aiaawIcacaGLPaaacqGH9aqpcqGHsislcaaMe8+aaSaaaeaacaaI0a GaeyyXICTaaGOmaiabgwSixlaaisdacqGHflY1cqaHZoWzlmaaBaaa baGaamyBaiaadMgaaeqaaaGcbaGaeqiWdaNaeyyXICTaaG4maiabgw SixlaaiwdaaaGaeyypa0JaeyOeI0IaaGjbVpaalaaabaGaaG4maiaa ikdacqaHZoWzlmaaBaaabaGaamyBaiaadMgaaeqaaaGcbaGaaGymai aaiwdacqaHapaCaaaaaa@74AB@

For n = 2

q mi ( E mmax )= d mi , q mi ( E mmax )= 4246 γ mi π357 = 192 γ mi 105π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaSWaaS baaeaacaWGTbGaamyAaaqabaGcdaqadaqaaiaadweadaWgaaWcbaGa amyBaiaaysW7caqGTbGaaeyyaiaabIhaaOqabaaacaGLOaGaayzkaa Gaeyypa0JaamizaSWaaSbaaeaacaWGTbGaamyAaaqabaGaaiilaOGa bmyCayaafaWcdaWgaaqaaiaad2gacaWGPbaabeaakmaabmaabaGaam yramaaBaaaleaacaWGTbGaaGjbVlaab2gacaqGHbGaaeiEaaGcbeaa aiaawIcacaGLPaaacqGH9aqpcqGHsislcaaMe8+aaSaaaeaacaaI0a GaeyyXICTaaGOmaiabgwSixlaaisdacqGHflY1caaI2aGaeyyXICTa eq4SdC2cdaWgaaqaaiaad2gacaWGPbaabeaaaOqaaiabec8aWjabgw SixlaaiodacqGHflY1caaI1aGaeyyXICTaaG4naaaacqGH9aqpcqGH sislcaaMe8+aaSaaaeaacaaIXaGaaGyoaiaaikdacqaHZoWzlmaaBa aabaGaamyBaiaadMgaaeqaaaGcbaGaaGymaiaaicdacaaI1aGaeqiW dahaaaaa@7C3B@

For n to n + 1

q mi ( E mmax )= d mi , q mi(n) ( E mmax )= 2n 2n+1 q mi(n1) ( E mmax ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaSWaaS baaeaacaWGTbGaamyAaaqabaGcdaqadaqaaiaadweadaWgaaWcbaGa amyBaiaaysW7caqGTbGaaeyyaiaabIhaaOqabaaacaGLOaGaayzkaa Gaeyypa0JaamizaSWaaSbaaeaacaWGTbGaamyAaaqabaGaaiilaOGa bmyCayaafaWcdaWgaaqaaiaad2gacaWGPbGaaeikaiaad6gacaqGPa aabeaakmaabmaabaGaamyramaaBaaaleaacaWGTbGaaGjbVlaab2ga caqGHbGaaeiEaaGcbeaaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaai aaikdacaWGUbaabaGaaGOmaiaad6gacqGHRaWkcaaIXaaaaiqadgha gaqbaSWaaSbaaeaacaWGTbGaamyAaiaabIcacaWGUbGaeyOeI0IaaG ymaiaabMcaaeqaaOWaaeWaaeaacaWGfbWaaSbaaSqaaiaad2gacaaM e8UaaeyBaiaabggacaqG4baakeqaaaGaayjkaiaawMcaaaaa@67BA@

For n + 1

q mi ( E mmax )= d mi , q mi ( E mmax )= 4246...2n γ mi π357...( 2n+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCaSWaaS baaeaacaWGTbGaamyAaaqabaGcdaqadaqaaiaadweadaWgaaWcbaGa amyBaiaaysW7caqGTbGaaeyyaiaabIhaaOqabaaacaGLOaGaayzkaa Gaeyypa0JaamizaSWaaSbaaeaacaWGTbGaamyAaaqabaGaaiilaOGa bmyCayaafaWcdaWgaaqaaiaad2gacaWGPbaabeaakmaabmaabaGaam yramaaBaaaleaacaWGTbGaaGjbVlaab2gacaqGHbGaaeiEaaGcbeaa aiaawIcacaGLPaaacqGH9aqpcqGHsislcaaMe8+aaSaaaeaacaaI0a GaeyyXICTaaGOmaiabgwSixlaaisdacqGHflY1caaI2aGaeyyXICTa aiOlaiaac6cacaGGUaGaeyyXICTaaGOmaiaad6gacqGHflY1cqaHZo WzlmaaBaaabaGaamyBaiaadMgaaeqaaaGcbaGaeqiWdaNaeyyXICTa aG4maiabgwSixlaaiwdacqGHflY1caaI3aGaeyyXICTaaiOlaiaac6 cacaGGUaGaeyyXIC9aaeWaaeaacaaIYaGaamOBaiabgUcaRiaaigda aiaawIcacaGLPaaaaaaaaa@829B@

The stability criterion and frequency method are used.

Discussion

By using of frequency method the parameters of self-oscillations are obtained in the scan system. Nyquist stability criterion is used for calculation the self-oscillations in the control system with a piezo actuator at harmonious linearization of hysteresis characteristic of a piezo actuator.

Conclusion

For the scan system its condition of self-oscillations is determined. For calculation the self-oscillations frequency method is applied at harmonious linearization of hysteresis characteristic of a piezo actuator.

Acknowledgments

None.

Conflicts of interest

The authors declare that there is no conflict of interest.

References

  1. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher; 1997. 350 p.
  2. Besekersky VA, Popov EP. Theory of automatic control systems. St. Petersburg: Professiya; 2003. 752 p.
  3. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;74(3):943­­–948.
  4. Bhushan B. Springer Handbook of Nanotechnology. New York: Springer; 2004. 1222 p.
  5. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric actuators and generators for energy harvesting. Switzerland: Research and Development Springer; 2018. 182 p.
  6. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 2005;50(2):77–82.
  7. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  8. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;73(2):307–313.
  9. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation. 2020;3(4):1–7.
  10. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Applied System Innovation. 2021;4(3):1–11.
  11. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):1–9.
  12. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):1–14.
  13. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York, London: McGraw-Hill Book Company; 1946. 806 p.
  14. Mason W. Physical acoustics: principles and methods. New York: Academic Press; 1964. 515 p.
  15. Liu Y, Zeng A, Zhang S, et al. An experimental investigation on polarization process of a PZT-52 tube actuator with interdigitated electrodes. Micromachines. 2022;13(10):1760.
  16. Jang Seon-Min, Yang Su Chul. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials. Nanotechnology. 2018;29(23):235602.
  17. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. In:  Piezoelectrics and nanomaterials: fundamentals. developments and applications. New York: Nova Science; 2015. p. 225–242.
  18. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics. 2017;5(1):9–15.
  19. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics. 2019;7(2):50–57.
  20. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Transactions on Networks and Communications. 2020;8(1):8–15.
  21. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russian Engineering Research. 2021;41(4):285–288.
  22. Afonin SM. Structural scheme of an electromagnetoelastic actuator for nanotechnology research. In: Parinov IA, Chang SH, Putri EP, editors. Physics and mechanics of new materials and their applications. PHENMA 2023. Springer Proceedings in Materials. Springer; 2024. p. 486–501.
  23. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeronautics and Aerospace Open Access Journal. 2018;2(5): 270–272.
  24. Afonin SM. Piezoactuator of nanodisplacement for astrophysics. Aeronautics and Aerospace Open Access Journal. 2022;6(4): 155–158.
  25. Afonin SM. Condition absolute stability of system with nano piezoactuator for astrophysics research. Aeronautics and Aerospace Open Access Journal. 2023;7(3):99–102.
  26. Afonin SM. Piezoengine for nanomedicine and applied bionics. MOJ Applied Bionics and Biomechanics. 2022;6(1):30-33.
  27. Afonin SM. System with nano piezoengine under randomly influences for biomechanics.  MOJ Applied Bionics and Biomechanics. 2024;8(1):1–3.
  28. Afonin SM. DAC electro elastic engine for nanomedicine. MOJ Applied Bionics and Biomechanics. 2024;8(1):38-40.
  29. Afonin SM. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. In: Bartul Z, Trenor J, editors. Advances in Nanotechnology. New York: Nova Science; 2021. p. 251–266.
  30. Afonin SM. Absolute stability of system with nano piezoengine for biomechanics. MOJ Applied Bionics and Biomechanics. 2023;7(1):211–213.
  31. Afonin SM. Structural model of nano piezoengine for applied biomechanics and biosciencess. MOJ Applied Bionics and Biomechanics. 2023;7(1):21–25.
  32. Afonin SM. Multilayer piezo engine for nanomedicine research. MOJ Applied Bionics and Biomechanics. 2020;4(2):30–31.
  33. Afonin SM. Characteristics electroelastic engine for nanobiomechanics. MOJ Applied Bionics and Biomechanics. 2020;4(3):51–53.
  34. Afonin SM. Piezo actuators for nanomedicine research. MOJ Applied Bionics and Biomechanics. 2019;3(2):56–57.
  35. Afonin SM. Structural scheme of piezoactuator for astrophysics. Physics & Astronomy International Journal. 2024;8(1):32‒36.
  36. Afonin SM. Nanopiezoactuator for astrophysics equipment. Physics & Astronomy International Journal. 2023;7(2):153–155.
  37. Afonin SM. Electroelastic actuator of nanomechatronics systems for nanoscience. In: Min HS, editor. Recent progress in chemical science research. India, UK, London: BP International; 2023. p. 15–27.
  38. Afonin SM. Structural scheme of electroelastic actuator for nanomechatronics. In: Ivan A, Parinov, Shun-Hsyung Chang, Banh Tien Long, editors. Advanced Materials; Proceedings of the International Conference on “Physics and Mechanics of New Materials and Their Applications. PHENMA 2019. Switzerland: Springer Nature; 2019. p. 487–502.
  39. Afonin SM. Absolute stability of control system for deformation of electromagnetoelastic actuator under random impacts in nanoresearch. In: Parinov IA, Chang SH, Kim YH, editors. Physics and Mechanics of New Materials and Their Applications. PHENMA 2020. Springer Proceedings in Materials; Switzerland: Springer; 2021. p. 519–531.
  40. Afonin SM. Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. In: Parinov IA, Chang SH, Soloviev AN, editors. Physics and Mechanics of New Materials and Their Applications. Proceedings of the International Conference PHENMA 2021-2022. Springer Proceedings in Materials series; Springer; 2023. p. 419–428.
  41. Afonin SM. Structural parametric model and diagram of electromagnetoelastic actuator for nanodisplacement in chemistry and biochemistry research. In: Baena OJR, editor.  Current Topics on Chemistry and Biochemistry. India, UK: B P International; 2023. p. 77–95.
  42. Afonin SM. Structural-parametric models of electromagnetoelastic actuators of nano- and microdisplacement for robotics and mechatronics systems. St. Petersburg and Moscow, Russia: Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus); 2017. p. 769–773.
  43. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. Moscow and St. Petersburg, Russia: Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus); 2018. p. 1698–1701.
  44. Afonin SM. Digital analog electro elastic converter actuator for nanoresearch. St. Petersburg and Moscow, Russia: Proceedings of the 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus); 2020. p. 2332–2335.
  45. Schultz J, Ueda J, Asada H. Cellular actuators. Oxford: Butterworth-Heinemann Publisher; 2017. 382 p.
  46. Nalwa HS. Encyclopedia of nanoscience and nanotechnology. Los Angeles: American Scientific Publishers; 2004.
Creative Commons Attribution License

©2024 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.