Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 6 Issue 1

Piezoengine for nanomedicine and applied bionics

Afonin SM

National Research University of Electronic Technology, MIET, Moscow, Russia

Correspondence: Afonin SM, National Research University of Electronic Technology, MIET, 124498, Moscow, Russia

Received: October 28, 2022 | Published: November 11, 2022

Citation: Afonin SM. Piezoengine for nanomedicine and applied bionics. MOJ App Bio Biomech. 2022;6(1):30-33. DOI: 10.15406/mojabb.2022.06.00164

Download PDF

Abstract

The mathematical models of a piezoengine are determined for nanomedicine and applied bionics. The structural scheme of a piezoengine is constructed. The matrix equation is obtained for a piezoengine.

Keywords: piezoengine, structural scheme, nanomedicine and applied bionics

Introduction

A piezoengine is used for nano displacement in tunnel microscopy, for the nano alignment in adaptive optics, microscopy and interferometers in nanomedicine and applied bionics, for the automatic adjustment of the constant optical parameter of the ring quantum generators, for the actively dampen mechanical vibrations in the laser system, for the deform mirrors and operations with penetration in a cells and for the works with a genes.1–15 A piezoengine with a compact design provides positioning of elements of adaptive systems with an accuracy of up to a nanometer in the range of hundreds of nanometers. These precise parameters of a piezoengine are provided by the use of the reverse piezoelectric effect.16–48 To calculate the deformations of nano systems, it is required to build the structural scheme of a piezoengine. A piezoengine is used in adaptive optics systems for phase corrections, for example, in an interferometer to adjust maximum of the interference image. In scanning probe microscopy, an image of a surface is formed using a physical probe to scan an object. For example, a scanning tunneling microscope is used to visualize surfaces at the atomic level. Nano movements of the probe along three coordinates X, Y, Z are carried out using a piezoengines.14–23

Material and methods

A piezoengine works on basis of the reverse piezoelectric effect in the form3–52

Si=sEijTj+dmiEmSi=sEijTj+dmiEm

where SiSi , sEijsEij , TjTj , dmidmi , EmEm  are the relative deformation, elastic compliance, strength mechanical field, piezomodule, strength electric field, ij . m are indexes.

The differential equation is written4–52

d2Ξ(x,s)dx2γ2Ξ(x,s)=0d2Ξ(x,s)dx2γ2Ξ(x,s)=0

Here  Ξ(x,s)Ξ(x,s) , s, xx , γγ  are the transform of the deformation, the parameter of the Laplace transform, the coordinate, the propagation factor. For the transverse piezoengine we have at x=0x=0  the first deformation Ξ(0,s)=Ξ1(s)Ξ(0,s)=Ξ1(s)  and at x=hx=h  the second deformation Ξ(h,s)=Ξ2(s)Ξ(h,s)=Ξ2(s) .

The decision of the differential equation is obtained.

Ξ(x,s)={Ξ1(s)sh[(hx)γ]+Ξ2(s)sh(xγ)}/sh(hγ)Ξ(x,s)={Ξ1(s)sh[(hx)γ]+Ξ2(s)sh(xγ)}/sh(hγ)

Where Ξ1(s)Ξ1(s) , Ξ2(s)Ξ2(s)  are the transforms of the deformations.

At x=0x=0  and x=hx=h  we have the system for the transverse piezoengine

T1(0,s)=1sE11dΞ(x,s)dx|x=0d31sE11E3(s)T1(0,s)=1sE11dΞ(x,s)dxx=0d31sE11E3(s)

T1(h,s)=1sE11dΞ(x,s)dx|x=hd31sE11E3(s)T1(h,s)=1sE11dΞ(x,s)dxx=hd31sE11E3(s)

The mathematical model for the transverse piezoengine has the form.

Ξ1(s)=(M1s2)1{F1(s)+(χE11)1×[d31E3(s)[γ/sh(hγ)]×[ch(hγ)Ξ1(s)Ξ2(s)]]}

Ξ2(s)=(M2s2)1{F2(s)+(χE11)1×[d31E3(s)[γ/sh(hγ)]×[ch(hγ)Ξ2(s)Ξ1(s)]]}

χE11=sE11/S0

At x=0  and x=l  the system in general for a piezoengine is obtained.

Tj(0,s)=1sΨijdΞ(x,s)dx|x=0νmisΨijΨm(s)

Tj(l,s)=1sΨijdΞ(x,s)dx|x=lνmisΨijΨm(s)

Where l={δ,h,b  the length for the longitudinal, transverse or shift piezoengine.

Therefore, the mathematical model of a piezoengine is determined on Figure 1.

Ξ1(s)=(M1s2)1{F1(s)+(χΨij)1×[νmiΨm(s)[γ/sh(lγ)]×[ch(lγ)Ξ1(s)Ξ2(s)]]}

Ξ2(s)=(M2s2)1{F2(s)+(χΨij)1×[νmiΨm(s)[γ/sh(lγ)]×[ch(lγ)Ξ2(s)Ξ1(s)]]}

χΨij=sΨij/S0

Figure 1 Structural scheme in general of piezoengine.

Where

vmi={d33,d31,d15g33,g31,g15

Ψm={E3,E3,E1D3,D3,D1

sΨij={sE33,sE11,sE55sD33,sD11,sD55

γ={γE,γD

cΨ={cE,cD

The mathematical model and the structural scheme of a piezoengine on Figure 1 are used for the design of a precise control system in nanomedicine and applied bionics.

The matrix of the deformations is written

(Ξ1(s)Ξ2(s))=(W11(s)W12(s)W13(s)W21(s)W22(s)W23(s))(Ψm(s)F1(s)F2(s))

The settled longitudinal deformations are determined

ξ1=d33UM2/(M1+M2)

ξ2=d33UM1/(M1+M2)

For  d 33  = 4×10-10 m/V, U  = 125 V, M1  = 1 kg, M2  = 4 kg we have the settled deformations parameters ξ1  = 40 nm, ξ2  = 10 nm and ξ1+ξ2  = 50 nm at error 10%.

For the transverse piezoengine at one the fixed face the transfer expression is obtained

W(s)=Ξ(s)U(s)=kU31T2ts2+2Ttξts+1

kU31=d31(h/δ)/(1+Cl/CE11)

Tt=M/(Cl+CE11)ωt=1/Tt

For M  = 4 kg, Cl  = 0.2×107 N/m, CE11  = 1.4×107 N/m we have the parameters Tt  = 0.5×10-3 s, ωt  = 2×103 s-1 at error 10%.

The settled transverse deformation has the form

Δh=d31(h/δ)U1+Cl/CE11=kU31U

For d31  = 2∙10-10 m/V, h/δ  = 20, Cl/CE11  = 0.14 the coefficient is determined kU31  = 3.5 nm/V at error 10%.

Conclusion

The mathematical model and the structural scheme of a piezoengine are constructed. The matrix of the deformations of a piezoengine is obtained. The parameters of a piezoengine are determined for the development of a precise control system in nanomedicine and applied bionics.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Schultz J, Ueda J, Asada H. Cellular Actuators. Butterworth-Heinemann Publisher, Oxford, 2017:382 p.
  2. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;74(3):943–948.
  3. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher. 1997:350 p.
  4. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 2005;50(2):77–82.
  5. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  6. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;73(2):307–313.
  7. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. McGraw-Hill Book Company, New York, London. 1946:806 p.
  8. Mason P W (Editor). Physical Acoustics: Principles and Methods. Vol. 1. Part A. Methods and Devices. Academic Press, New York. 1964:515p.
  9. Yang Y, Tang L. Equivalent circuit modeling of piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures. 2009;20(18):2223–2235.
  10. Zwillinger D. Handbook of Differential Equations. Academic Press, Boston. 1989:673 p.
  11. Afonin SM. A generalized structural-parametric model of an elecromagnetoelastic converter for nano- and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano- and micrometric movement control systems. Journal of Computer and Systems Sciences International. 2006;45(2):317–325.
  12. Afonin SM. Generalized structural-parametric model of an electromagnetoelastic converter for control systems of nano-and micrometric movements: IV. Investigation and calculation of characteristics of step-piezodrive of nano-and micrometric movements. Journal of Computer and Systems Sciences International. 2006;45(6):1006–1013.
  13. Afonin SM. Decision wave equation and block diagram of electromagnetoelastic actuator nano- and microdisplacement for communications systems. International Journal of Information and Communication Sciences. 2016;1(2):22–29.
  14. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Ed. Parinov IA. Nova Science, New York. 2015:225–242.
  15. Afonin SM. A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Chapter 8 in Advances in Nanotechnology. Volume 19. Eds. Bartul Z, Trenor J, Nova Science, New York. 2017:259–284.
  16. Afonin SM. Electromagnetoelastic nano- and microactuators for mechatronic systems. Russian Engineering Research. 2018:38(12):938–944.
  17. Afonin SM. Nano- and micro-scale piezomotors. Russian Engineering Research. 2012;32(7–8):519–522.
  18. Afonin SM. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mechanics of Solids. 2007;42(1):43–49.
  19. Afonin SM. Stability of strain control systems of nano-and microdisplacement piezotransducers. Mechanics of Solids. 2014;49(2):196–207.
  20. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics. 2017;5(1): 9–15.
  21. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics. 2019;7(2): 50-57.
  22. Afonin SM. Calculation deformation of an engine for nano biomedical research. International Journal of Biomed Research. 2021;1(5):1–4.
  23. Afonin SM. Precision engine for nanobiomedical research. Biomedical Research and Clinical Reviews. 2021;3(4):1–5.
  24. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano- and microdisplacement. International Journal of Mathematical Analysis and Applications. 2016;3(4):31–38.
  25. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):6.
  26. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):52.
  27. Afonin SM. Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and microdisplacement for mechatronic systems. International Journal of Theoretical and Applied Mathematics. 2016;2(2):52–59.
  28. Afonin SM. Design static and dynamic characteristics of a piezoelectric nanomicrotransducers. Mechanics of Solids. 2010;45(1):123–132.
  29. Afonin SM. Electromagnetoelastic Actuator for Nanomechanics. Global Journal of Research in Engineering: A Mechanical and Mechanics Engineering. 2018;18(2):19–23.
  30. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology, Proceedings of the 2018 IEEE Conference EIConRus. Engineering. 2018: 1698–1701.
  31. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transactions on Networks and Communications. 2018;6(3):1–9.
  32. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems. Transactions on Networks and Communications. 2019;7(3):11–21.
  33. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Transactions on Networks and Communications. 2020;8(1):8–15.
  34. Afonin SM. A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Transactions on Machine Learning and Artificial Intelligence. 2020;8(4):23–33.
  35. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation. 2020;3(4):53.
  36. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Applied System Innovation. 2021;4(3):47.
  37. Afonin SM. Structural scheme actuator for nano research. COJ Reviews and Research. 2020;2(5):1–3.
  38.  Afonin SM. Structural–parametric model electroelastic actuator nano- and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Ecology and Environmental Sciences. 2018;3(5):306‒309.
  39. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeronautics and Aerospace Open Access Journal. 2018;2(5):270–272.
  40.  Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surgery & Case Studies Open Access Journal. 2019;3(3):307–309.
  41. Afonin SM. Piezo actuators for nanomedicine research. MOJ Applied Bionics and Biomechanics. 2019;3(2):56–57.
  42. Afonin SM. Frequency criterion absolute stability of electromagnetoelastic system for nano and micro displacement in biomechanics. MOJ Applied Bionics and Biomechanics. 2019;3(6):137–140.
  43. Afonin SM. Multilayer piezo engine for nanomedicine research. MOJ Applied Bionics and Biomechanics. 2020;4(2):30–31.
  44. Afonin SM. Structural scheme of electromagnetoelastic actuator for nano biomechanics. MOJ Applied Bionics and Biomechanics. 2021;5(2):36–39.
  45. Afonin SM. Multilayer engine for microsurgery and nano biomedicine. Surgery & Case Studies Open Access Journal. 2020;4(4):423–425.
  46. Afonin SM. A structural-parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology. Chapter 7 in Advances in Nanotechnology. Volume 22. Eds. Bartul Z, Trenor J, Nova Science, New York. 2019:169–186.
  47. Afonin SM. Electroelastic digital-to-analog converter actuator nano and microdisplacement for nanotechnology. Chapter 6 in Advances in Nanotechnology. Volume 24. Eds. Bartul Z, Trenor J, Nova Science, New York. 2020:205–218.
  48. Afonin SM. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. Chapter 8 in Advances in Nanotechnology. Volume 25. Eds. Bartul Z, Trenor J, Nova Science, New York. 2021:251–266.
  49. Afonin SM. An absolute stability of nanomechatronics system with electroelastic actuator. Chapter 9 in Advances in Nanotechnology. Volume 27. Eds. Bartul Z, Trenor J, Nova Science, New York 2022:183–198.
  50. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russian Engineering Research. 2021;41(4):285–288.
  51. Nalwa HS. Encyclopedia of Nanoscience and Nanotechnology. Los Angeles: American Scientific Publishers. Journal of Nanoscience and Nanotechnology. 2004;10:11–25.
  52. Bhushan B. Springer Handbook of Nanotechnology. New York: Springer. 2004:1222 p.
Creative Commons Attribution License

©2022 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.