The equations27–35 of the piezoeffects have form
(D)=(d)(T)+(εT)(E)
(S)=(sE)(T)+(d)t(E)
where (D),(d),(T),(εT),(E),(S),(sE),(d)t
are matrixes of electric induction, piezomodule, strength mechanical field, dielectric constant, strength electric field, relative displacement, elastic compliance, transposed piezomodule. The matrixes coefficients we have for a PZT piezoactuator.36–52
(d)=⎛⎜⎝0000d 150000d 1500d 31d 31d 33000⎞⎟⎠
(εT)=⎛⎜
⎜⎝εT 11000εT 22000εT 33⎞⎟
⎟⎠
(sE)=⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝sE 11sE 12sE 13000sE 12sE 11sE 13000sE 13sE 13sE 33000000sE 55000000sE 550000002(sE 11−sE 12)⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠
The equation of the mechanical characteristic is written for a piezoactuator
Δl=Δlmax(1−F/Fmax)
where Δlmax=dm iEml
for F=0
and Fmax=dm iEmS0/sEij
for Δl=0
, l
is the length, S0
is the area of a piezoactuator.
For the longitudinal piezoactuator the relative displacement8–21 is written
S3=d 33E3+sE 33T3
where d 33
is the longitudinal piezomodule.
In the mechanical characteristic of the longitudinal piezoactuator for astrophysics the maximums values of the displacement Δδmax
and the force Fmax
are determined
Δδmax=d 33δE3=d 33U,Fmax=d 33S0E3/sE 33
At E3
= 1.5∙105 V/m, d 33
= 4∙10-10 m/V, S0
= 1.5∙10-4 m2, δ
= 2.5∙10-3 m, s E33
= 15∙10-12 m2/N for the longitudinal piezoactuator are obtained Δδmax
= 150 nm, Fmax
= 600 N with error 10%.
Therefore, for the mechanical characteristic of the transverse piezoactuator we have its maximums values
Δhmax=d31E3h=d31Uh/δ,Fmax=d31E3S0/sE11
At E3
= 2.4×105 V/m, d 31
= 2∙10-10 m/V, h
= 1∙10-2 m,
δ
=0.5∙10-3 m, S0
= 1∙10-5 m2, s E11
= 12∙10-12 m2/N the parameters are received Δhmax
= 480 nm, Fmax
= 40 N.
The differential equation of a piezoactuator12–52 is written
d2Ξ(x,s)dx2−γ2Ξ(x,s)=0
here Ξ(x,s),s,x,γ
are the Laplace transform of the displacement, the parameter, the coordinate and the propagation factor.
The nanodisplacements are obtained for the longitudinal piezoactuator
Ξ(0,s)=Ξ1(s)
for x=0
Ξ(δ,s)=Ξ2(s)
for x=δ
The decision of the differential equation is determined
Ξ(x,s)={Ξ1(s)s h[(δ−x)γ]+Ξ2(s)s h(x γ)}/s h((δ)γ)
Taking into account the boundary conditions for two faces, we obtain the system of the equations for the structural model of the longitudinal piezoactuator
Ξ1(s)=(M1s2)−1{−F1(s)+(χ E33)−1[d33 E3(s)−[γ/s h(δ γ)]×[c h(δ γ)Ξ1(s)−Ξ2(s)]]}
Ξ2(s)=(M2s2)−1{−F2(s)+(χ E33)−1[d33 E3(s)−[γ/s h(δ γ)]×[c h(δ γ)Ξ2(s)−Ξ1(s)]]}
χ E33=s E33/S0
where Ξ1(s),Ξ2(s)
are the Laplace transforms of the displacements for two faces.
We have the system of the equations for the structural model of the transverse piezoactuator
Ξ1(s)=(M1s2)−1{−F1(s)+(χ E11)−1[d 31E3(s)−[γ/s h(h γ)]×[c h(h γ)Ξ1(s)−Ξ2(s)]]}
Ξ2(s)=(M2s2)−1{−F2(s)+(χE11)−1[d31E3(s)−[γ/sh(hγ)]×[ch(hγ)Ξ2(s)−Ξ1(s)]]}
χ E11=sE11/S0
Therefore, we have the system of the equations for the structural model of the shift piezoactuator in the form
Ξ1(s)=(M1s2)−1{−F1(s)+(χE55)−1[d 15E1(s)−[γ/s h(b γ)]×[c h(bγ)Ξ1(s)−Ξ2(s)]]}
Ξ2(s)=(M2s2)−1{−F2(s)+(χ E11)−1[d 31E3(s)−[γ/sh(hγ)]×[c h(h γ)Ξ2(s)−Ξ1(s)]]}
χE55=sE55/S0
The system of the equations for the structural model of a piezoactuator is determined for Figure 1
Ξ1(s)=(M1s2)−1{−F1(s)+(χΨi j)−1[νm iΨm(s)−[γ/s h(l γ)]×[c h(l γ)Ξ1(s)−Ξ2(s)]]}
Ξ2(s)=(M2s2)−1{−F2(s)+(χΨi j)−1[νm iΨm(s)−[γ/s h(l γ)]×[c h(l γ)Ξ2(s)−Ξ1(s)]]}
χΨi j=sΨi j/S0
where
vm i={d 33,d 31,d 15g 33,g 31,g 15
Ψm={E3,E3,E1D3,D3,D1
sΨi j={s E33,s E11,s E55s D33,s D11,s D55
l={δ,h,b
γ={γE,γD
cΨ={cE,cD
The structural scheme on Figure 1 is used for the decision of a piezoactuator in astrophysics. The matrix of the nanodisplacement of a piezoactuator has the form.
(Ξ1(s)Ξ2(s))=(W 11 (s)W 12 (s)W 13 (s)W 21 (s)W 22 (s)W 23 (s))⎛⎜⎝Ψm(s)F1(s)F2(s)⎞⎟⎠
Figure 1 Structural scheme of piezoactuator.
The steady-state nanodisplacements are written for two faces of a piezoactuator
ξ1=dm iΨm l M2/(M1+M2)ξ2=dm iΨm l M1/(M1+M2)
The steady-state nanodisplacements are obtained for two faces of the longitudinal piezoactuator
ξ1=d 33 U M2/(M1+M2)ξ2=d 33U M1/(M1+M2)
At U = 75 V, M1
= 1 kg, M2
= 4 kg, d 33
= 4×10-10 m/V the steady-state nanodisplacements are determined ξ1
= 24 nm, ξ2
= 6 nm and ξ1+ξ2
= 30 nm with error 10%.
The transfer equation of the transverse piezoactuator is determined at one the fixed face and the elastic-inertial load
W(s)=Ξ(s)U(s)=kE 31T2ts2+2Ttξts+1
kE 31=d 31(h/δ)/(1+Cl/CE 11)
Tt=√M/(Cl+CE 11),ωt=1/Tt
where kE 31
is the transfer coefficient, Cl
, CE 11
are the stiffness for the load and the transverse piezoactuator, Tt,ξt,ωt
are the time constant, the attenuation coefficient, the conjugate frequency.
At Cl
= 0.2×107 N/m, CE 11
= 1.4×107 N/m, M
= 2 kg the parameters are obtained Tt
= 0.354×10-3 s, ωt
= 2.8×103 s-1 with error 10%.
The steady-state nanodisplacement of the transverse piezoactuator is written for elastic-inertial load
Δh=d 31(h/δ)U1+Cl/CE 11=kE 31U
At h/δ
= 20, Cl/CE 11
= 0.14, d31
= 2∙10-10 m/V the transfer coefficient of the transverse piezoactuator is received kE 31
= 3.5 nm/V with error 10%.