Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 6 Issue 4

Piezoactuator of nanodisplacement for astrophysics

Afonin SM

National Research University of Electronic Technology, MIET, Moscow, Russia

Correspondence: Afonin SM, National Research University of Electronic Technology, MIET, 124498, Moscow, Russia

Received: September 13, 2022 | Published: September 27, 2022

Citation: Afonin SM. Piezoactuator of nanodisplacement for astrophysics. Aeron Aero Open Access J. 2022;6(4):155-158. DOI: 10.15406/aaoaj.2022.06.00155

Download PDF

Abstract

The structural scheme of a piezoactuator is obtained for astrophysics. The matrix equation is constructed for a piezoactuator. The characteristics of a piezoactuator are received for astrophysics.

Keywords: piezoactuator, structural scheme, nanodisplacement, characteristic, astrophysics

Introduction

For the control system in astrophysics a piezoactuator of the nanodisplacement is applied in very large telescope, interferometer and orbital telescope.1–9 The energy conversion is clearly for the structural scheme of a piezoactuator.10–16 A piezoactuator is used for the nanodisplacement in adaptive optics and telescopes.17–26

Structural scheme and characteristics

The equations27–35 of the piezoeffects have form

(D)=(d)(T)+(εT)(E)(D)=(d)(T)+(εT)(E)

(S)=(sE)(T)+(d)t(E)(S)=(sE)(T)+(d)t(E)

where (D),(d),(T),(εT),(E),(S),(sE),(d)t(D),(d),(T),(εT),(E),(S),(sE),(d)t  are matrixes of electric induction, piezomodule, strength mechanical field, dielectric constant, strength electric field, relative displacement, elastic compliance, transposed piezomodule. The matrixes coefficients we have for a PZT piezoactuator.36–52

(d)=(0000d 150000d 1500d 31d 31d 33000)

(εT)=(εT 11000εT 22000εT 33)

(sE)=(sE 11sE 12sE 13000sE 12sE 11sE 13000sE 13sE 13sE 33000000sE 55000000sE 550000002(sE 11sE 12))

The equation of the mechanical characteristic is written for a piezoactuator

Δl=Δlmax(1F/Fmax)

where Δlmax=dm iEml  for F=0  and Fmax=dm iEmS0/sEij  for Δl=0 , l  is the length, S0  is the area of a piezoactuator.

For the longitudinal piezoactuator the relative displacement8–21 is written

S3=d 33E3+sE 33T3

where d 33  is the longitudinal piezomodule.

In the mechanical characteristic of the longitudinal piezoactuator for astrophysics the maximums values of the displacement Δδmax  and the force Fmax  are determined

Δδmax=d 33δE3=d 33U,Fmax=d 33S0E3/sE 33

At E3  = 1.5∙105 V/m, d 33 = 4∙10-10 m/V, S0 = 1.5∙10-4 m2, δ = 2.5∙10-3 m, s E33 = 15∙10-12 m2/N for the longitudinal piezoactuator are obtained Δδmax  = 150 nm, Fmax  = 600 N with error 10%.

Therefore, for the mechanical characteristic of the transverse piezoactuator we have its maximums values

Δhmax=d31E3h=d31Uh/δ,Fmax=d31E3S0/sE11

At E3  = 2.4×105 V/m, d 31 = 2∙10-10 m/V, h  = 1∙10-2 m,

δ  =0.5∙10-3 m, S0  = 1∙10-5 m2, s E11 = 12∙10-12 m2/N the parameters are received Δhmax  = 480 nm, Fmax  = 40 N.

The differential equation of a piezoactuator12–52 is written

d2Ξ(x,s)dx2γ2Ξ(x,s)=0

here Ξ(x,s),s,x,γ  are the Laplace transform of the displacement, the parameter, the coordinate and the propagation factor.

The nanodisplacements are obtained for the longitudinal piezoactuator

Ξ(0,s)=Ξ1(s)  for x=0

Ξ(δ,s)=Ξ2(s)  for x=δ

The decision of the differential equation is determined

Ξ(x,s)={Ξ1(s)s h[(δx)γ]+Ξ2(s)s h(x γ)}/s h((δ)γ)

Taking into account the boundary conditions for two faces, we obtain the system of the equations for the structural model of the longitudinal piezoactuator

Ξ1(s)=(M1s2)1{F1(s)+(χ E33)1[d33 E3(s)[γ/s h(δ γ)]×[c h(δ γ)Ξ1(s)Ξ2(s)]]}

Ξ2(s)=(M2s2)1{F2(s)+(χ E33)1[d33 E3(s)[γ/s h(δ γ)]×[c h(δ γ)Ξ2(s)Ξ1(s)]]}

χ E33=s E33/S0

where Ξ1(s),Ξ2(s)  are the Laplace transforms of the displacements for two faces.

We have the system of the equations for the structural model of the transverse piezoactuator

Ξ1(s)=(M1s2)1{F1(s)+(χ E11)1[d 31E3(s)[γ/s h(h γ)]×[c h(h γ)Ξ1(s)Ξ2(s)]]}

Ξ2(s)=(M2s2)1{F2(s)+(χE11)1[d31E3(s)[γ/sh(hγ)]×[ch(hγ)Ξ2(s)Ξ1(s)]]}

χ E11=sE11/S0

Therefore, we have the system of the equations for the structural model of the shift piezoactuator in the form

Ξ1(s)=(M1s2)1{F1(s)+(χE55)1[d 15E1(s)[γ/s h(b γ)]×[c h(bγ)Ξ1(s)Ξ2(s)]]}

Ξ2(s)=(M2s2)1{F2(s)+(χ E11)1[d 31E3(s)[γ/sh(hγ)]×[c h(h γ)Ξ2(s)Ξ1(s)]]}

χE55=sE55/S0

The system of the equations for the structural model of a piezoactuator is determined for Figure 1

Ξ1(s)=(M1s2)1{F1(s)+(χΨi j)1[νm iΨm(s)[γ/s h(l γ)]×[c h(l γ)Ξ1(s)Ξ2(s)]]}

Ξ2(s)=(M2s2)1{F2(s)+(χΨi j)1[νm iΨm(s)[γ/s h(l γ)]×[c h(l γ)Ξ2(s)Ξ1(s)]]}

χΨi j=sΨi j/S0

where

vm i={d 33,d 31,d 15g 33,g 31,g 15

Ψm={E3,E3,E1D3,D3,D1

sΨi j={s E33,s E11,s E55s D33,s D11,s D55

l={δ,h,b

γ={γE,γD

cΨ={cE,cD

The structural scheme on Figure 1 is used for the decision of a piezoactuator in astrophysics. The matrix of the nanodisplacement of a piezoactuator has the form.

(Ξ1(s)Ξ2(s))=(W 11 (s)W 12 (s)W 13 (s)W 21 (s)W 22 (s)W 23 (s))(Ψm(s)F1(s)F2(s))

Figure 1 Structural scheme of piezoactuator.

The steady-state nanodisplacements are written for two faces of a piezoactuator

ξ1=dm iΨm l M2/(M1+M2)ξ2=dm iΨm l M1/(M1+M2)

The steady-state nanodisplacements are obtained for two faces of the longitudinal piezoactuator

ξ1=d 33 U M2/(M1+M2)ξ2=d 33U M1/(M1+M2)

At U = 75 V, M1  = 1 kg, M2  = 4 kg, d 33 = 4×10-10 m/V the steady-state nanodisplacements are determined ξ1  = 24 nm, ξ2  = 6 nm and ξ1+ξ2  = 30 nm with error 10%.

The transfer equation of the transverse piezoactuator is determined at one the fixed face and the elastic-inertial load

W(s)=Ξ(s)U(s)=kE 31T2ts2+2Ttξts+1

kE 31=d 31(h/δ)/(1+Cl/CE 11)

Tt=M/(Cl+CE 11),ωt=1/Tt

where kE 31  is the transfer coefficient, Cl , CE 11  are the stiffness for the load and the transverse piezoactuator, Tt,ξt,ωt  are the time constant, the attenuation coefficient, the conjugate frequency.

At Cl  = 0.2×107 N/m, CE 11 = 1.4×107 N/m, M  = 2 kg the parameters are obtained Tt  = 0.354×10-3 s, ωt  = 2.8×103 s-1 with error 10%.

The steady-state nanodisplacement of the transverse piezoactuator is written for elastic-inertial load

Δh=d 31(h/δ)U1+Cl/CE 11=kE 31U

At h/δ  = 20, Cl/CE 11 = 0.14, d31 = 2∙10-10 m/V the transfer coefficient of the transverse piezoactuator is received kE 31  = 3.5 nm/V with error 10%.

Conclusion

The structural scheme of a piezoactuator is constructed for astrophysics. The matrix of the nanodisplacement of a piezoactuator is obtained. The characteristics of a piezoactuator are determined.

Acknowledgments

None.

Conflicts of interest

The Authors declares that there is no Conflict of interest.

References

  1. Schultz J, Ueda J, Asada H. Cellular Actuators. Butterworth-Heinemann Publisher, Oxford; 2017. 382 p.
  2. Afonin SM. Absolute stability conditions for a system controlling the deformation of an electromagnetoelastic transducer. Dokl. Math. 2006;74:943–948.
  3. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher; 1997. 350 p.
  4. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Dokl Phys. 2005;50(2):77–82.
  5. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Dokl Phys. 2008;53(3):137–143.
  6. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Dokl Math. 2006;73(2):307–313.
  7. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York, London: McGraw-Hill Book Company; 1946. 806 p.
  8. Mason W. Physical Acoustics: Principles and Methods. Vol.1. Part A. Methods and Devices. New York: Academic Press; 1964. 515p.
  9. Yang Y, Tang L. Equivalent Circuit Modeling of Piezoelectric Energy Harvesters. J Int Mat Sys Str. 2009;20(18):2223–2235.
  10. Zwillinger D. Handbook of Differential Equations. Boston: Academic Press; 1989. 673 p.
  11. Afonin SM. A generalized structural-parametric model of an elecromagnetoelastic converter for nano- and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano- and micrometric movement control systems. J Comput Syst Sci Int. 2006;45(2):317–325.
  12. Afonin SM. Generalized structural-parametric model of an electromagnetoelastic converter for control systems of nano-and micrometric movements: IV. Investigation and calculation of characteristics of step-piezodrive of nano-and micrometric movements. J. Comput. Syst Sci Int. 2006;45(6):1006–1013.
  13. Afonin SM. Decision wave equation and block diagram of electromagnetoelastic actuator nano- and micro displacement for communications systems. Int J Inf Com Sci. 2016;1(2):22–29.
  14. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and micro displacement. Chapter 9 in Piezoelectric and Nanomaterials: Fundamentals, Developments and Applications. Parinov IA, editor. New York: Nova Science; 2015. p. 225–242.
  15. Afonin SM. A structural-parametric model of electroelastic actuator for nano- and micro displacement of mechatronic system. Chapter 8 in Advances in Nanotechnology. Bartul Z, Trenor J, editors. New York: Nova Science; 2017. p. 259–284.
  16. Afonin SM. Electromagnetoelastic nano- and microactuators for mechatronic systems. Russ. Engin. Res. 2018;38(12):938–944.
  17. Afonin SM. Nano- and micro-scale piezomotors. Russ Engin Res. 2012;32(7-8):519–522.
  18. Afonin SM. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mech Solids. 2007;42(1):43–49.
  19. Afonin SM. Stability of strain control systems of nano-and micro displacement piezotransducers. Mech Solids. 2014;49(2):196–207.
  20. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. Int J Physics. 2017;5(1):9–15.
  21. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. Int J Physics. 2019;7(2):50–57.
  22. Afonin SM. Calculation deformation of an engine for nano biomedical research. Int J Bio Res. 2021;1(5):1–4.
  23. Afonin SM. Precision engine for nanobiomedical research. Bio Res Clinical Rev. 2021;3(4):1–5.
  24. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano- and micro displacement. Int J Math Ana App. 2016;3(4):31–38.
  25. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):1–9.
  26. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):1–14.
  27. Afonin SM. Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and micro displacement for mechatronic systems. Int J Theo App Math. 2016;2(2):52–59.
  28. Afonin SM. Design static and dynamic characteristics of piezoelectric nanomicro transducers. Mech. Solids. 45(1):123–132.
  29. Afonin SM. Electromagnetoelastic Actuator for Nanomechanics. Mech Eng. 2018;18(2):19–23.
  30. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). 2018;1698–1701.
  31. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Tran Net Com. 2018;6(3):1–9.
  32. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems. Tran Net Com. 2019;7(3):11–21.
  33. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Tran Net Com. 2020;8(1):8–15.
  34. Afonin SM. A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Tran Mach Learn Art Int. 2020;8(4):23–33.
  35. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. ASI. 2020;3(4):1–7.
  36. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. ASI. 2021;4(3):1–11.
  37. Afonin SM. Structural scheme actuator for nano research. COJ Rev Res. 2020;2(5):1–3.
  38. Afonin SM. Structural–parametric model electroelastic actuator nano and micro displacement of mechatronics systems for nanotechnology and ecology research. MOJ Eco Environ Sci. 2018;3(5):306‒309.
  39. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeron Aero Open Access J. 2018;2(5):270–272.
  40. Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Sur Case Studies Open Access J. 2019;3(3):307–309.
  41. Afonin SM. Piezo actuators for nanomedicine research. MOJ App Bio Biomech. 2019;3(2):56–57.
  42. Afonin SM. Frequency criterion absolute stability of electromagnetoelastic system for nano and micro displacement in biomechanics. MOJ App Bio Biomech. 2019;3(6):137–140.
  43. Afonin SM. Multilayer piezo engine for nanomedicine research. MOJ App Bio Biomech. 2020;4(2):30–31.
  44. Afonin SM. Structural scheme of electromagnetoelastic actuator for nano biomechanics. MOJ App Bio Biomech. 2021;5(2):36–39.
  45. Afonin SM. Multilayer engine for microsurgery and nano biomedicine. Sur Case Studies Open Access J. 2020;4(4): 423–425.
  46. Afonin SM. A structural-parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology. Chapter 7 in Advances in Nanotechnology. Bartul Z, Trenor J, editors. New York: Nova Science; 2019. p. 169–186.
  47. Afonin SM. Electroelastic digital-to-analog converter actuator nano and micro displacement for nanotechnology. Chapter 6 in Advances in Nanotechnology. Bartul Z, Trenor J, editors. New York: Nova Science; 2020. p. 205–218.
  48. Afonin SM. Characteristics of an electroelastic actuator nano- and micro displacement for nanotechnology. Chapter 8 in Advances in Nanotechnology. Bartul Z, Trenor J, editors. New York: Nova Science; 2021. p. 251–266.
  49. Afonin SM. An absolute stability of nanomechatronics system with electroelastic actuator. Chapter 9 in Advances in Nanotechnology. In: Bartul Z, Trenor J, editors. New York: Nova Science; 2022. p. 183–198.
  50. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Rus Eng Res. 2021;41(4): 285–288.
  51. Encyclopedia of Nanoscience and Nanotechnology. Nalwa HS, editor. Los Angeles: American Scientific Publishers; 2004.
  52. Springer Handbook of Nanotechnology. Bhushan B, editor. New York: Springer; 2004. 1222 p.
Creative Commons Attribution License

©2022 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.