Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 7 Issue 1

Structural model of nano piezoengine for applied biomechanics and biosciences

SM Afonin

National Research University of Electronic Technology, MIET, Russia

Correspondence: Afonin SM, National Research University of Electronic Technology, MIET, 124498, Moscow, Russia

Received: April 17, 2023 | Published: April 26, 2023

Citation: Afonin SM. Structural model of nano piezoengine for applied biomechanics and biosciences. MOJ App Bio Biomech. 2023;7(1):21-25. DOI: 10.15406/mojabb.2023.07.00171

Download PDF

Abstract

The structural model of the nano piezoengine is determined for applied biomechanics and biosciences. The structural scheme of the nano piezoengine is obtained. For calculation nano systems the structural model and scheme of the nano piezoengine are used, which reflect the conversion of electrical energy into mechanical energy of the control object. The matrix equation is constructed for the nano piezoengine in applied biomechanics and biosciences.

Keywords: nano piezoengine, structural model, applied biomechanics and biosciences

Introduction

The nano piezoengine based on the inverse piezoeffect is used for applied biomechanics and biosciences, nanomedicine, nanobiology, microsurgery. The nano piezoengine is provided for applied biomechanics and biosciences in scanning probe microscopy, interferometers and adaptive optics, actively dampen vibrations, deform mirrors and the work with the genes.1–6

For calculation nano systems the structural model and scheme of the nano piezoengine are used, which reflect the conversion of electrical energy into mechanical energy of the control object.6–19

Structural model

For calculation the nano piezoengine on Figure 1 is determined the inverse piezoeffect.1–49

S i =   d  mi   E m + s  ij  E   T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa qcbauaaiaadMgaaeqaaOGaeyypa0deaaaaaaaaa8qacaGGGcGaaiiO a8aacaWGKbWaaSbaaKqaafaapeGaaiiOa8aacaWGTbGaamyAaaqaba GcpeGaaiiOa8aacaWGfbWaaSbaaKqaafaacaWGTbaabeaakiabgUca Riaadohadaqhaaqcbauaa8qacaGGGcWdaiaadMgacaWGQbaabaWdbi aacckapaGaamyraaaak8qacaGGGcWdaiaadsfadaWgaaqcbauaaiaa dQgaaSqabaaaaa@4FE9@

here d  mi , s  ij  E , E m , T j , S i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa qcbauaaabaaaaaaaaapeGaaiiOaKqaG8aacaWGTbGaamyAaaqcbaua baGccaGGSaGaam4CamaaDaaajeaqbaWdbiaacckapaGaamyAaiaadQ gaaeaapeGaaiiOa8aacaWGfbaaaOGaaiilaiaadweadaWgaaqcbaua aiaad2gaaSqabaGccaGGSaGaamivamaaBaaajeaqbaGaamOAaaWcbe aakiaacYcacaWGtbWaaSbaaKqaafaacaWGPbaaleqaaaaa@4C5E@  are piezomodule, elastic compliance, strength electric field, strength mechanical field, relative deformation.

Figure 1 Nano piezoengine.

For the nano piezoengine the differential equation is evaluated4–56

d 2   Ξ  ( x,s ) d x 2      γ 2   Ξ  ( x,s )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izamaaCaaabeqcbauaaiaaikdaaaGcqaaaaaaaaaWdbiaacckacaGG GcWdaiabf65ay9qacaGGGcGaaiiOa8aadaqadaqaaiaadIhacaGGSa Gaam4CaaGaayjkaiaawMcaaaqaaiaadsgacaWG4bWcdaahaaqabKqa afaacaaIYaaaaaaak8qacaGGGcGaaiiOa8aacqGHsislpeGaaiiOai aacckapaGaeq4SdC2aaWbaaKqaGfqajeaqbaGaaGOmaaaak8qacaGG GcGaaiiOa8aacqqHEoawpeGaaiiOaiaacckapaWaaeWaaeaacaWG4b GaaiilaiaadohaaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@5C5A@

here Ξ( x,s ),x,s,γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aae WaaeaacaWG4bGaaiilaiaadohaaiaawIcacaGLPaaacaGGSaGaamiE aiaacYcacaWGZbGaaiilaiabeo7aNbaa@4155@  are the transform of deformation, the coordinate, the parameter of transform, the factor of propagation.

For the longitudinal piezoengine at x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdaaaa@38B4@  the deformation Ξ( 0,s )= Ξ 1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaabm aabaGaaGimaiaacYcacaWGZbaacaGLOaGaayzkaaGaeyypa0JaeuON dG1cdaWgaaqcbauaaiaaigdaaSqabaGcdaqadaqaaiaadohaaiaawI cacaGLPaaaaaa@42FE@ , at x=δ,Ξ( δ,s )= Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iabes7aKjaacYcacqqHEoawdaqadaqaaiabes7aKjaacYcacaWG ZbaacaGLOaGaayzkaaGaeyypa0JaeuONdG1cdaWgaaqcbauaaiaaik daaSqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaaa@46FB@  are calculated.

Its solution is written4–36

Ξ  ( x,s )= {   Ξ 1   ( s ) sh  [  ( δx )  γ ]+ Ξ 2 ( s )sh( xγ ) }/ sh( δγ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aybbaaa aaaaaapeGaaiiOaiaacckapaWaaeWaaeaacaWG4bGaaiilaiaadoha aiaawIcacaGLPaaacqGH9aqpdaWcgaqaamaacmaabaWdbiaacckapa GaeuONdG1aaSbaaKqaafaacaaIXaaaleqaaOWdbiaacckacaGGGcWd amaabmaabaGaam4CaaGaayjkaiaawMcaa8qacaGGGcWdaiaabohaca qGObWdbiaacckacaGGGcWdamaadmaabaWdbiaacckapaWaaeWaaeaa cqaH0oazcqGHsislcaWG4baacaGLOaGaayzkaaWdbiaacckacaGGGc Wdaiabeo7aNbGaay5waiaaw2faaiabgUcaRiabf65aynaaBaaajeaq baGaaGOmaaWcbeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiaabo hacaqGObWaaeWaaeaacaWG4bGaeq4SdCgacaGLOaGaayzkaaaacaGL 7bGaayzFaaaabaGaae4CaiaabIgadaqadaqaaiabes7aKLaaGjabeo 7aNbGccaGLOaGaayzkaaaaaaaa@70DE@

For the nano longitudinal piezoengine in Figure 1 its relative displacement on 3 axes1–29 has the form

S 3 =   d 33    E 3 +s   33   E    T 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofalmaaBa aajeaqbaGaaG4maaqabaGccqGH9aqpqaaaaaaaaaWdbiaacckacaGG GcWdaiaadsgadaWgaaqcbauaaiaaiodacaaIZaaajaaqbeaak8qaca GGGcGaaiiOa8aacaWGfbWcdaWgaaqcbauaaiaaiodaaeqaaOGaey4k aSIaam4Ca8qacaGGGcWcpaWaa0baaKqaafaacaaIZaGaaG4ma8qaca GGGcaapaqaa8qacaGGGcWdaiaadweaaaGcpeGaaiiOaiaacckapaGa amivamaaBaaajeaqbaGaaG4maaGcbeaaaaa@5139@

The system for the nano longitudinal piezoengine is obtained11–31 for x=0,x=δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdacaGGSaGaamiEaiabg2da9iabes7aKbaa@3D0C@

T 3 ( 0,s )= 1 s   33  E   d Ξ ( x,s ) dx  | x=0 d  33 s   33  E E 3 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa qcbauaaiaaiodaaSqabaGcdaqadaqaaiaaicdacaGGSaGaam4CaaGa ayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaadohaqaaaaa aaaaWdbiaacckapaWaa0baaKqaafaacaaIZaGaaG4maaqaa8qacaGG GcWdaiaadweaaaaaaOWdbiaacckapaWaaqGaaeaadaWcaaqaaiaads gapeGaaiiOa8aacqqHEoawpeGaaiiOa8aadaqadaqaaiaadIhacaGG SaGaam4CaaGaayjkaiaawMcaaaqaaiaadsgacaWG4baaa8qacaGGGc aapaGaayjcSdWaaSbaaKqaafaacaWG4bGaeyypa0JaaGimaaWcbeaa kiabgkHiTmaalaaabaGaamizamaaBaaajeaqbaWdbiaacckapaGaaG 4maiaaiodaaSqabaaakeaacaWGZbWdbiaacckapaWaa0baaKqaafaa caaIZaGaaG4maaqaa8qacaGGGcWdaiaadweaaaaaaOGaamyramaaBa aajeaqbaGaaG4maaWcbeaakmaabmaabaGaam4CaaGaayjkaiaawMca aaaa@67AB@

T 3  ( δ,s ) =  1 s   33   E   d Ξ ( x,s ) dx  | x=δ    d 33 s   33   E   E 3  ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa qcbauaaiaaiodaaSqabaGcqaaaaaaaaaWdbiaacckapaWaaeWaaeaa cqaH0oazcaGGSaGaam4CaaGaayjkaiaawMcaa8qacaGGGcWdaiabg2 da98qacaGGGcWdamaalaaabaGaaGymaaqaaiaadohapeGaaiiOa8aa daqhaaqcbauaaiaaiodacaaIZaWdbiaacckaa8aabaWdbiaacckapa GaamyraaaaaaGcpeGaaiiOa8aadaabcaqaamaalaaabaGaamiza8qa caGGGcWdaiabf65ay9qacaGGGcWdamaabmaabaGaamiEaiaacYcaca WGZbaacaGLOaGaayzkaaaabaGaamizaiaadIhaaaWdbiaacckaa8aa caGLiWoadaWgaaqcbauaaiaadIhacqGH9aqpcqaH0oazaSqabaGccq GHsislpeGaaiiOaiaacckapaWaaSaaaeaacaWGKbWaaSbaaKqaafaa caaIZaGaaG4maaWcbeaaaOqaaiaadohapeGaaiiOa8aadaqhaaqcba uaaiaaiodacaaIZaWdbiaacckaa8aabaWdbiaacckapaGaamyraaaa aaGcpeGaaiiOa8aacaWGfbWaaSbaaKqaafaacaaIZaaaleqaaOWdbi aacckapaWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaa@737A@

The structural model is evaluated for applied biomechanics and biosciences

Ξ 1 ( s )= ( M 1 s 2 ) 1 {    F 1 ( s )+ (   χ 33 E   )  1  ×  [   d 33   E 3  ( s )[ γ /  sh (  δγ  )  ]  ×  [ ch(  δγ  ) Ξ 1 ( s ) Ξ 2 ( s ) ] ]  } Ξ 2  ( s )  =   ( M 2 s 2 ) 1  {    F 2  ( s ) +  ( χ   33  E   )   1  ×  [   d 33   E 3  ( s )   [  γ /  sh (  δγ  )  ]  × [  ch (  δγ  )  Ξ 2  (  s  )    Ξ 1  ( s )  ]  ]  } χ   33  E  =  s   33  E  /   S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeuONdG 1aaSbaaKqaafaacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaa wMcaaiabg2da9maabmaabaGaamytamaaBaaajeaqbaGaaGymaaqaba GccaWGZbWaaWbaaSqabKqaafaacaaIYaaaaaGccaGLOaGaayzkaaWa aWbaaSqabKqaafaacqGHsislcaaIXaaaaOWaaiWaaqaabeqaaabaaa aaaaaapeGaaiiOaiaacckapaGaeyOeI0IaamOraSWaaSbaaKqaafaa caaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUcaRm aabmaabaWdbiaacckapaGaeq4Xdm2cdaqhaaqcbasaaiaaiodacaaI ZaaabaGaamyraaaak8qacaGGGcaapaGaayjkaiaawMcaamaaCaaale qajeaqbaWdbiaacckapaGaeyOeI0IaaGymaaaaaOqaa8qacaGGGcWd aiabgEna0+qacaGGGcGaaiiOa8aadaWadaabaeqabaWdbiaacckapa GaamizaSWaaSbaaKqaGeaacaaIZaGaaG4maaqabaGcpeGaaiiOa8aa caWGfbWaaSbaaKqaafaacaaIZaaabeaak8qacaGGGcWdamaabmaaba Gaam4CaaGaayjkaiaawMcaaiabgkHiTmaadmaabaWaaSGbaeaacqaH ZoWzpeGaaiiOaaWdaeaapeGaaiiOa8aacaqGZbGaaeiAa8qacaGGGc WdamaabmaabaWdbiaacckapaGaeqiTdqMaeq4SdC2dbiaacckaa8aa caGLOaGaayzkaaWdbiaacckaaaaapaGaay5waiaaw2faa8qacaGGGc WdaiaaysW7aeaacqGHxdaTpeGaaiiOaiaacckapaWaamWaaeaacaqG JbGaaeiAamaabmaabaWdbiaacckapaGaeqiTdqMaeq4SdC2dbiaacc kaa8aacaGLOaGaayzkaaGaeuONdG1aaSbaaKqaafaacaaIXaaabeaa kmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgkHiTiabf65aynaaBa aajeaqbaGaaGOmaaWcbeaakmaabmaabaGaam4CaaGaayjkaiaawMca aaGaay5waiaaw2faaaaacaGLBbGaayzxaaWdbiaacckaaaWdaiaawU hacaGL9baaaeaacqqHEoawlmaaBaaajeaqbaGaaGOmaaqabaGcpeGa aiiOa8aadaqadaqaaiaadohaaiaawIcacaGLPaaapeGaaiiOaiaacc kapaGaeyypa0ZdbiaacckacaGGGcWdamaabmaabaGaamytamaaBaaa jeaqbaGaaGOmaaWcbeaakiaadohadaahaaWcbeqcbauaaiaaikdaaa aakiaawIcacaGLPaaadaahaaWcbeqcbauaaiabgkHiTiaaigdaaaGc peGaaiiOa8aadaGadaabaeqabaWdbiaacckapaGaeyOeI0Ydbiaacc kapaGaamOraSWaaSbaaKqaafaacaaIYaaaleqaaOWdbiaacckapaWa aeWaaeaacaWGZbaacaGLOaGaayzkaaWdbiaacckapaGaey4kaSYdbi aacckacaGGGcWdamaabmaabaGaeq4Xdm2dbiaacckapaWaa0baaKqa afGabaaH1laaiodacaaIZaaabaWdbiaacckapaGaamyraaaak8qaca GGGcaapaGaayjkaiaawMcaa8qacaGGGcWdamaaCaaaleqajeaqbaGa eyOeI0IaaGymaaaaaOqaa8qacaGGGcWdaiabgEna0+qacaGGGcGaai iOa8aadaWadaabaeqabaWdbiaacckapaGaamizamaaBaaajeaqbaGa aG4maiaaiodaaeqaaOWdbiaacckapaGaamyramaaBaaajeaqbaGaaG 4maaqabaGcpeGaaiiOa8aadaqadaqaaiaadohaaiaawIcacaGLPaaa peGaaiiOaiaacckapaGaeyOeI0YdbiaacckapaWaamWaaeaadaWcga qaa8qacaGGGcWdaiabeo7aN9qacaGGGcaapaqaa8qacaGGGcWdaiaa bohacaqGObWdbiaacckapaWaaeWaaeaapeGaaiiOa8aacqaH0oazcq aHZoWzpeGaaiiOaaWdaiaawIcacaGLPaaapeGaaiiOaaaaa8aacaGL BbGaayzxaaaabaWdbiaacckapaGaey41aq7dbiaacckapaWaamWaae aapeGaaiiOa8aacaqGJbGaaeiAa8qacaGGGcWdamaabmaabaWdbiaa cckapaGaeqiTdqMaeq4SdC2dbiaacckaa8aacaGLOaGaayzkaaWdbi aacckapaGaeuONdG1aaSbaaKqaafaacaaIYaaaleqaaOWdbiaaccka paWaaeWaaeaapeGaaiiOa8aacaWGZbWdbiaacckaa8aacaGLOaGaay zkaaWdbiaacckacaGGGcWdaiabgkHiT8qacaGGGcWdaiabf65aynaa BaaajeaqbaGaaGymaaWcbeaak8qacaGGGcWdamaabmaabaGaam4Caa GaayjkaiaawMcaa8qacaGGGcaapaGaay5waiaaw2faa8qacaGGGcaa a8aacaGLBbGaayzxaaWdbiaacckaaaWdaiaawUhacaGL9baaaeaacq aHhpWypeGaaiiOa8aadaqhaaqcbauaaiaaiodacaaIZaaabaWdbiaa cckapaGaamyraaaak8qacaGGGcWdaiabg2da9maalyaabaWdbiaacc kapaGaam4Ca8qacaGGGcWdamaaDaaajeaqbaGaaG4maiaaiodaaeaa peGaaiiOa8aacaWGfbaaaOWdbiaacckaa8aabaWdbiaacckapaGaam 4uamaaBaaajeaqbaGaaGimaaWcbeaaaaaaaaa@40C0@

here Ξ 1 ( s ), Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaaBa aajeaqbaGaaGymaaWcbeaakmaabmaabaGaam4CaaGaayjkaiaawMca aiaacYcacqqHEoawlmaaBaaajeaqbaGaaGOmaaWcbeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@427A@  - the transformations of displacements, S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaaIWaaabeaaaaa@37B5@  - the area.

For the nano transverse piezoengine the expression of the transverse inverse piezoeffect1–29

S 1 =   d 31   E 3 +  s   11 E   T 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofalmaaBa aajeaqbaGaaGymaaWcbeaakiabg2da9abaaaaaaaaapeGaaiiOaiaa cckapaGaamizamaaBaaajeaqbaGaaG4maiaaigdaaOqabaWdbiaacc kapaGaamyraSWaaSbaaKqaafaacaaIZaaabeaakiabgUcaR8qacaGG GcGaaiiOa8aacaWGZbWdbiaacckal8aadaqhaaqcbauaaiaaigdaca aIXaaabaGaamyraaaak8qacaGGGcWdaiaadsfadaWgaaqcbauaaiaa igdaaKaaafqaaaaa@4EC9@

The system for the nano transverse piezoengine is determined for x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdaaaa@38B4@  and x=h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIgaaaa@38E7@

T 1  ( 0,s )=   1 s   11 E   d Ξ ( x,s ) dx  | x=0    d  31 s 11  E   E 3   ( s ) T 1  ( h,s )  =   1 s 11 E    d Ξ ( x,s ) dx   | x=h    d 31 s 11 E    E 3  ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamivam aaBaaajeaqbaGaaGymaaWcbeaakabaaaaaaaaapeGaaiiOa8aadaqa daqaaiaaicdacaGGSaGaam4CaaGaayjkaiaawMcaaiabg2da98qaca GGGcGaaiiOa8aadaWcaaqaaiaaigdaaeaacaWGZbWdbiaacckapaWa a0baaKqaafaacaaIXaGaaGymaaqaaiaadweaaaaaaOWdbiaacckapa WaaqGaaeaadaWcaaqaaiaadsgapeGaaiiOa8aacqqHEoawpeGaaiiO a8aadaqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaawMcaaaqaai aadsgacaWG4baaa8qacaGGGcaapaGaayjcSdWaaSbaaKqaafaacaWG 4bGaeyypa0JaaGimaaWcbeaakiabgkHiT8qacaGGGcGaaiiOa8aada WcaaqaaiaadsgadaWgaaqcbasaa8qacaGGGcWdaiaaiodacaaIXaaa beaaaOqaaiaadohadaqhaaqcbauaaiaaigdacaaIXaaabaWdbiaacc kapaGaamyraaaaaaGcpeGaaiiOa8aacaWGfbWaaSbaaKqaafaacaaI Zaaabeaak8qacaGGGcGaaiiOa8aadaqadaqaaiaadohaaiaawIcaca GLPaaaaeaacaWGubWaaSbaaKqaafaacaaIXaaabeaak8qacaGGGcWd amaabmaabaGaamiAaiaacYcacaWGZbaacaGLOaGaayzkaaWdbiaacc kacaGGGcWdaiabg2da98qacaGGGcGaaiiOa8aadaWcaaqaaiaaigda aeaacaWGZbWaa0baaKqaafaacaaIXaGaaGymaaqaaiaadweaaaaaaO WaaqGaaeaapeGaaiiOaiaacckapaWaaSaaaeaacaWGKbWdbiaaccka paGaeuONdG1dbiaacckapaWaaeWaaeaacaWG4bGaaiilaiaadohaai aawIcacaGLPaaaaeaacaWGKbGaamiEaaaapeGaaiiOaiaacckaa8aa caGLiWoadaWgaaqcbauaaiaadIhacqGH9aqpcaWGObaabeaakiabgk HiT8qacaGGGcGaaiiOa8aadaWcaaqaaiaadsgadaWgaaqcbauaaiaa iodacaaIXaaabeaaaOqaaiaadohadaqhaaqcbauaaiaaigdacaaIXa aabaGaamyraaaaaaGcpeGaaiiOaiaacckapaGaamyramaaBaaajeaq baGaaG4maaWcbeaak8qacaGGGcWdamaabmaabaGaam4CaaGaayjkai aawMcaaaaaaa@A756@

The structural model of the nano transverse piezoengine is calculated

Ξ 1  ( s )  =   (   M 1 s 2   ) 1  {    F 1  ( s )+   (  χ   11  E   ) 1  × [   d 31   E 3 ( s )    [ γ /  sh (  hγ  )  ] × [ ch( hγ  )  Ξ 1 ( s )   Ξ 2 (  s  ) ] ]  } Ξ  2  ( s )  =   (   M 2   s 2   ) 1 {    F 2  ( s )  + (  χ   11  E   )   1  × [   d 31   E 3 ( s ) [  γ /  sh (  hγ  )  ]  × [ ch(  hγ  )  Ξ  2  (  s  )Ξ   1  (  s  )  ]  ]  } χ   11 E  =   s   11  E /   S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeuONdG 1aaSbaaKqaafaacaaIXaaabeaakabaaaaaaaaapeGaaiiOa8aadaqa daqaaiaadohaaiaawIcacaGLPaaapeGaaiiOaiaacckapaGaeyypa0 ZdbiaacckacaGGGcWdamaabmaabaWdbiaacckapaGaamytamaaBaaa jeaqbaGaaGymaaqabaGccaWGZbWaaWbaaSqabKqaafaacaaIYaaaaO Wdbiaacckaa8aacaGLOaGaayzkaaWaaWbaaKqaafqabaGaeyOeI0Ia aGymaaaak8qacaGGGcWdamaacmaaeaqabeaapeGaaiiOa8aacqGHsi slpeGaaiiOa8aacaWGgbWaaSbaaKqaafaacaaIXaaabeaak8qacaGG GcWdamaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUcaR8qacaGGGc GaaiiOa8aadaqadaqaa8qacaGGGcWdaiabeE8aJ9qacaGGGcWdamaa DaaajeaqbaGaaGymaiaaigdaaeaapeGaaiiOa8aacaWGfbaaaOWdbi aacckaa8aacaGLOaGaayzkaaWaaWbaaSqabKqaafaacqGHsislcaaI XaaaaaGcbaWdbiaacckapaGaey41aq7dbiaacckapaWaamWaaqaabe qaa8qacaGGGcWdaiaadsgadaWgaaqcbauaaiaaiodacaaIXaaabeaa k8qacaGGGcWdaiaadweadaWgaaqcbauaaiaaiodaaeqaaOWaaeWaae aacaWGZbaacaGLOaGaayzkaaWdbiaacckacaGGGcWdaiabgkHiT8qa caGGGcGaaiiOa8aadaWadaqaamaalyaabaGaeq4SdC2dbiaacckaa8 aabaWdbiaacckapaGaae4CaiaabIgapeGaaiiOa8aadaqadaqaa8qa caGGGcWdaiaadIgacqaHZoWzpeGaaiiOaaWdaiaawIcacaGLPaaape GaaiiOaaaaa8aacaGLBbGaayzxaaGaaGjbVdqaaiabgEna0+qacaGG GcWdamaadmaabaGaae4yaiaabIgadaqadaqaaiaadIgacqaHZoWzpe GaaiiOaaWdaiaawIcacaGLPaaapeGaaiiOa8aacqqHEoawdaWgaaqc bauaaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaey OeI0YdbiaacckacaGGGcWdaiabf65aynaaBaaajeaqbaGaaGOmaaqa baGcdaqadaqaa8qacaGGGcWdaiaadohapeGaaiiOaaWdaiaawIcaca GLPaaaaiaawUfacaGLDbaaaaGaay5waiaaw2faa8qacaGGGcaaa8aa caGL7bGaayzFaaaabaGaeuONdG1cdaWgaaqcbauaa8qacaGGGcWdai aaikdaaeqaaOWdbiaacckapaWaaeWaaeaacaWGZbaacaGLOaGaayzk aaWdbiaacckacaGGGcWdaiabg2da98qacaGGGcGaaiiOa8aadaqada qaa8qacaGGGcWdaiaad2eadaWgaaqcbauaaiaaikdaaeqaaOWdbiaa cckapaGaam4CamaaCaaaleqajeaqbaGaaGOmaaaak8qacaGGGcaapa GaayjkaiaawMcaamaaCaaajeaqbeqaaiabgkHiTiaaigdaaaGcdaGa daabaeqabaWdbiaacckapaGaeyOeI0YdbiaacckapaGaamOraSWaaS baaKqaafaacaaIYaaaleqaaOWdbiaacckapaWaaeWaaeaacaWGZbaa caGLOaGaayzkaaWdbiaacckacaGGGcWdaiabgUcaR8qacaGGGcWdam aabmaabaWdbiaacckapaGaeq4Xdm2dbiaacckapaWaa0baaKqaafaa caaIXaGaaGymaaqaa8qacaGGGcWdaiaadweaaaGcpeGaaiiOaaWdai aawIcacaGLPaaapeGaaiiOa8aadaahaaqcbauabeaacqGHsislcaaI XaaaaaGcbaWdbiaacckapaGaey41aq7dbiaacckapaWaamWaaqaabe qaa8qacaGGGcWdaiaadsgadaWgaaqcbauaaiaaiodacaaIXaaaleqa aOWdbiaacckapaGaamyramaaBaaajeaqbaGaaG4maaWcbeaakmaabm aabaGaam4CaaGaayjkaiaawMcaaiabgkHiT8qacaGGGcWdamaadmaa baWaaSGbaeaapeGaaiiOa8aacqaHZoWzpeGaaiiOaaWdaeaapeGaai iOa8aacaqGZbGaaeiAa8qacaGGGcWdamaabmaabaWdbiaacckapaGa amiAaiabeo7aN9qacaGGGcaapaGaayjkaiaawMcaa8qacaGGGcaaaa WdaiaawUfacaGLDbaaaeaapeGaaiiOa8aacqGHxdaTpeGaaiiOa8aa daWadaqaaiaabogacaqGObWaaeWaaeaapeGaaiiOa8aacaWGObGaeq 4SdC2dbiaacckaa8aacaGLOaGaayzkaaWdbiaacckapaGaeuONdG1a aSbaaKqaafaapeGaaiiOa8aacaaIYaaabeaak8qacaGGGcWdamaabm aabaWdbiaacckapaGaam4Ca8qacaGGGcaapaGaayjkaiaawMcaaiab gkHiTiabf65ay9qacaGGGcWdamaaBaaajeaqbaGaaGymaaqabaGcpe GaaiiOa8aadaqadaqaa8qacaGGGcWdaiaadohapeGaaiiOaaWdaiaa wIcacaGLPaaapeGaaiiOaaWdaiaawUfacaGLDbaapeGaaiiOaaaapa Gaay5waiaaw2faa8qacaGGGcaaa8aacaGL7bGaayzFaaaabaGaeq4X dm2dbiaacckapaWaa0baaKqaafaacaaIXaGaaGymaaqaaiaadweaaa GcpeGaaiiOa8aacqGH9aqppeGaaiiOaiaacckapaWaaSGbaeaacaWG ZbWdbiaacckapaWaa0baaKqaafaacaaIXaGaaGyma8qacaGGGcaapa qaaiaadweaaaaakeaapeGaaiiOa8aacaWGtbWaaSbaaKqaafaacaaI Waaabeaaaaaaaaa@4DB8@

For the nano shift piezoengine the expression of the shift inverse piezo effect1–29

S 5 = d 15   E 1 +s   55  E   T 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa qcbauaaiaaiwdaaeqaaOGaeyypa0JaamizamaaBaaajeaqbaGaaGym aiaaiwdaaeqaaOaeaaaaaaaaa8qacaGGGcWdaiaadweadaWgaaqcba uaaiaaigdaaeqaaOGaey4kaSIaam4Ca8qacaGGGcWdamaaDaaajeaq baGaaGynaiaaiwdaaeaapeGaaiiOa8aacaWGfbaaaOWdbiaacckapa GaamivamaaBaaajeaqbaGaaGynaaWcbeaaaaa@4AE4@

The system for the shift piezoengine is written at x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdaaaa@38B4@  and x=b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadkgaaaa@38E1@

T 5   ( 0, s )=   1 s   55  E    d Ξ ( x,s ) dx  |  x=0    d  15 s   55  E    E 1   ( s ) T 5  ( b,s )= 1 s   55  E d Ξ (  x,s  )  dx  |  x=b     d  15 s   55 E    E 1  ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamivam aaBaaajeaibaGaaGynaaqabaGcqaaaaaaaaaWdbiaacckacaGGGcWd amaabmaabaGaaGimaiaacYcapeGaaiiOa8aacaWGZbaacaGLOaGaay zkaaGaeyypa0ZdbiaacckacaGGGcWdamaalaaabaGaaGymaaqaaiaa dohapeGaaiiOa8aadaqhaaqcbasaaiaaiwdacaaI1aaabaWdbiaacc kapaGaamyraaaaaaGcpeGaaiiOaiaacckapaWaaqGaaeaadaWcaaqa aiaadsgapeGaaiiOa8aacqqHEoawpeGaaiiOa8aadaqadaqaaiaadI hacaGGSaGaam4CaaGaayjkaiaawMcaaaqaaiaadsgacaWG4baaa8qa caGGGcaapaGaayjcSdWaaSbaaSqaa8qacaGGGcWdaiaadIhacqGH9a qpjeaqcaaIWaaaleqaaOGaeyOeI0YdbiaacckacaGGGcWdamaalaaa baGaamizamaaBaaajeaibaWdbiaacckapaGaaGymaiaaiwdaaeqaaa GcbaGaam4Ca8qacaGGGcWdamaaDaaajeaibaGaaGynaiaaiwdaaeaa peGaaiiOa8aacaWGfbaaaaaak8qacaGGGcGaaiiOa8aacaWGfbWaaS baaKqaGeaacaaIXaaabeaak8qacaGGGcGaaiiOa8aadaqadaqaaiaa dohaaiaawIcacaGLPaaaaeaacaWGubWaaSbaaKqaGeaacaaI1aaabe aak8qacaGGGcWdamaabmaabaGaamOyaiaacYcacaWGZbaacaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4Ca8qacaGGGcWdam aaDaaajeaibaGaaGynaiaaiwdaaeaapeGaaiiOa8aacaWGfbaaaaaa kmaaeiaabaWaaSaaaeaacaWGKbWdbiaacckapaGaeuONdG1dbiaacc kapaWaaeWaaeaapeGaaiiOa8aacaWG4bGaaiilaiaadohapeGaaiiO aaWdaiaawIcacaGLPaaaaeaapeGaaiiOa8aacaWGKbGaamiEaaaape GaaiiOaaWdaiaawIa7amaaBaaajeaybaWdbiaacckapaGaamiEaiab g2da9iaadkgaaeqaaOWdbiaacckacaGGGcWdaiabgkHiT8qacaGGGc WdamaalaaabaGaamizamaaBaaajeaybaWdbiaacckajeaipaGaaGym aiaaiwdaaKqaGfqaaaGcbaGaam4Ca8qacaGGGcWdamaaDaaajeaiba GaaGynaiaaiwdaaeaacaWGfbaaaaaak8qacaGGGcGaaiiOa8aacaWG fbWaaSbaaKqaGeaacaaIXaaabeaajaaqpeGaaiiOaOWdamaabmaaba Gaam4CaaGaayjkaiaawMcaaaaaaa@B2FE@

The structural model is calculated

Ξ 1 (  s  )=   (   M 1   s 2   ) 1  {    F 1  (  s  )+  (  χ   55  E   )   1  × [ d   15  E   1 (  s  )  [  γ/  sh (  b γ  )  ]  ×[ ch( bγ ) Ξ 1 (  s  )  Ξ   2  (  s  )  ] ]  } Ξ   2  (  s  )=  (   M 2 s 2   )   1  {   F 2  (  s  )+  (  χ   55 E   )   1  ×  [  d   15  E   1  (  s  )  [  γ /  sh (  bγ  )  ] × [ ch(  bγ  ) Ξ 2 ( s )  Ξ   1  (  s  )  ]  ]  } χ   55  E  =   s   55  E  /   S  0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeuONdG 1aaSbaaKqaafaacaaIXaaabeaakmaabmaabaaeaaaaaaaaa8qacaGG GcWdaiaadohapeGaaiiOaaWdaiaawIcacaGLPaaacqGH9aqppeGaai iOaiaacckapaWaaeWaaeaapeGaaiiOa8aacaWGnbWaaSbaaKqaafaa caaIXaaaleqaaOWdbiaacckapaGaam4CamaaCaaajeaqbeqaaiaaik daaaGcpeGaaiiOaaWdaiaawIcacaGLPaaadaahaaqcbauabeaacqGH sislcaaIXaaaaOWdbiaacckapaWaaiWaaqaabeqaa8qacaGGGcWdai abgkHiT8qacaGGGcWdaiaadAeadaWgaaqcbauaaiaaigdapeGaaiiO aaWdaeqaaOWaaeWaaeaapeGaaiiOa8aacaWGZbWdbiaacckaa8aaca GLOaGaayzkaaGaey4kaSYdbiaacckacaGGGcWdamaabmaabaWdbiaa cckapaGaeq4Xdmwcaa0dbiaacckak8aadaqhaaqcbauaaiaaiwdaca aI1aaabaWdbiaacckapaGaamyraaaak8qacaGGGcaapaGaayjkaiaa wMcaa8qacaGGGcWdamaaCaaaleqajeaybaGaeyOeI0IaaGymaaaaaO qaa8qacaGGGcWdaiabgEna0+qacaGGGcWdamaadmaaeaqabeaacaWG KbWdbiaacckapaWaaSbaaKqaafaacaaIXaGaaGynaaWcbeaak8qaca GGGcWdaiaadweapeGaaiiOa8aadaWgaaqcbauaaiaaigdaaeqaaOWa aeWaaeaapeGaaiiOa8aacaWGZbWdbiaacckaa8aacaGLOaGaayzkaa GaeyOeI0YdbiaacckacaGGGcWdamaadmaabaWaaSGbaeaapeGaaiiO a8aacqaHZoWzaeaapeGaaiiOa8aacaqGZbGaaeiAa8qacaGGGcWdam aabmaabaWdbiaacckapaGaamOya8qacaGGGcWdaiabeo7aN9qacaGG GcaapaGaayjkaiaawMcaa8qacaGGGcaaaaWdaiaawUfacaGLDbaape GaaiiOa8aacaaMe8oabaGaey41aq7aamWaaeaacaqGJbGaaeiAamaa bmaabaGaamOyaiabeo7aNbGaayjkaiaawMcaaiabf65aynaaBaaaje aqbaGaaGymaaqabaGcdaqadaqaa8qacaGGGcWdaiaadohapeGaaiiO aaWdaiaawIcacaGLPaaacqGHsislpeGaaiiOaiaacckapaGaeuONdG 1dbiaacckapaWaaSbaaSqaaKqaajaaikdal8qacaGGGcaapaqabaGc daqadaqaa8qacaGGGcWdaiaadohapeGaaiiOaaWdaiaawIcacaGLPa aapeGaaiiOaaWdaiaawUfacaGLDbaaaaGaay5waiaaw2faa8qacaGG Gcaaa8aacaGL7bGaayzFaaaabaGaeuONdG1dbiaacckal8aadaWgaa qaaKqaajaaikdal8qacaGGGcaapaqabaGcdaqadaqaa8qacaGGGcWd aiaadohapeGaaiiOaaWdaiaawIcacaGLPaaacqGH9aqppeGaaiiOai aacckapaWaaeWaaeaapeGaaiiOa8aacaWGnbWaaSbaaKqaafaacaaI YaaabeaakiaadohadaahaaqcbauabeaacaaIYaaaaOWdbiaacckaa8 aacaGLOaGaayzkaaqcaa0dbiaacckak8aadaahaaqcbauabeaacqGH sislcaaIXaaaaKaaa9qacaGGGcGcpaWaaiWaaqaabeqaa8qacaGGGc WdaiabgkHiTiaadAealmaaBaaajeaqbaGaaGOmaaqabaGcpeGaaiiO a8aadaqadaqaa8qacaGGGcWdaiaadohapeGaaiiOaaWdaiaawIcaca GLPaaacqGHRaWkpeGaaiiOaiaacckapaWaaeWaaeaapeGaaiiOa8aa cqaHhpWypeGaaiiOa8aadaqhaaqcbauaaiaaiwdacaaI1aaabaGaam yraaaak8qacaGGGcaapaGaayjkaiaawMcaa8qacaGGGcWdamaaCaaa jeaqbeqaaiabgkHiTiaaigdaaaaakeaapeGaaiiOa8aacqGHxdaTpe GaaiiOaiaacckapaWaamWaaqaabeqaa8qacaGGGcWdaiaadsgapeGa aiiOa8aadaWgaaqcbauaaiaaigdacaaI1aaabeaak8qacaGGGcWdai aadweapeGaaiiOa8aadaWgaaqcbauaaiaaigdaaSqabaGcpeGaaiiO a8aadaqadaqaa8qacaGGGcWdaiaadohapeGaaiiOaaWdaiaawIcaca GLPaaacqGHsislpeGaaiiOaiaacckapaWaamWaaeaadaWcgaqaa8qa caGGGcWdaiabeo7aN9qacaGGGcaapaqaa8qacaGGGcWdaiaabohaca qGObWdbiaacckapaWaaeWaaeaapeGaaiiOa8aacaWGIbGaeq4SdC2d biaacckaa8aacaGLOaGaayzkaaWdbiaacckaaaaapaGaay5waiaaw2 faaaqaaiabgEna0+qacaGGGcWdamaadmaabaGaae4yaiaabIgadaqa daqaa8qacaGGGcWdaiaadkgacqaHZoWzpeGaaiiOaaWdaiaawIcaca GLPaaacqqHEoawdaWgaaqcbauaaiaaikdaaeqaaOWaaeWaaeaacaWG ZbaacaGLOaGaayzkaaGaeyOeI0YdbiaacckacaGGGcWdaiabf65ay9 qacaGGGcWdamaaBaaajeaqbaGaaGymaaWcbeaak8qacaGGGcWdamaa bmaabaWdbiaacckapaGaam4Ca8qacaGGGcaapaGaayjkaiaawMcaa8 qacaGGGcaapaGaay5waiaaw2faa8qacaGGGcaaa8aacaGLBbGaayzx aaWdbiaacckaaaWdaiaawUhacaGL9baaaeaacqaHhpWypeGaaiiOa8 aadaqhaaqcbasaaiaaiwdacaaI1aaabaWdbiaacckapaGaamyraaaa k8qacaGGGcWdaiabg2da98qacaGGGcGaaiiOa8aadaWcgaqaaiaado hapeGaaiiOa8aadaqhaaqcbasaaiaaiwdacaaI1aaabaWdbiaaccka paGaamyraaaak8qacaGGGcaapaqaa8qacaGGGcWdaiaadofadaWgaa WcbaWdbiaacckajeaipaGaaGimaaWcbeaaaaaaaaa@6045@

At x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdaaaa@38B4@  and x=l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadYgaaaa@38EB@  for l={ δ, h,b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabg2 da9maaceaabaGaaGjbVlabes7aKjaacYcaaiaawUhaaiaaysW7caWG ObGaaiilaiaaysW7caWGIbaaaa@4288@  the system in general is obtained

T j ( 0,s )=   1 s  ij  Ψ   d Ξ ( x,s ) dx  | x=0    ν  mi s  ij  Ψ   Ψ m  ( s ) T j ( l,s )=   1 s  ij  Ψ   d Ξ ( x,s )   dx    | x=l    ν  mi s  ij  Ψ    Ψ m  ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamivam aaBaaajeaqbaGaamOAaaqabaGcdaqadaqaaiaaicdacaGGSaGaam4C aaGaayjkaiaawMcaaiabg2da9abaaaaaaaaapeGaaiiOaiaacckapa WaaSaaaeaacaaIXaaabaGaam4CamaaDaaajeaqbaWdbiaacckapaGa amyAaiaadQgapeGaaiiOaaWdaeaacqqHOoqwaaaaaOWdbiaacckapa WaaqGaaeaadaWcaaqaaiaadsgapeGaaiiOa8aacqqHEoawpeGaaiiO a8aadaqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaawMcaaaqaai aadsgacaWG4baaa8qacaGGGcaapaGaayjcSdWaaSbaaKqaafaacaWG 4bGaeyypa0JaaGimaaqabaGccqGHsislpeGaaiiOaiaacckapaWaaS aaaeaacqaH9oGBdaWgaaWcbaWdbiaacckajeaqpaGaamyBaiaadMga aSqabaaakeaacaWGZbWaa0baaKqaafaapeGaaiiOa8aacaWGPbGaam OAa8qacaGGGcaapaqaaiabfI6azbaaaaGcpeGaaiiOa8aacqqHOoqw daWgaaqcbauaaiaad2gaaSqabaGcpeGaaiiOa8aadaqadaqaaiaado haaiaawIcacaGLPaaaaeaacaWGubWaaSbaaKqaafaacaWGQbaaleqa aOWaaeWaaeaacaWGSbGaaiilaiaadohaaiaawIcacaGLPaaacqGH9a qppeGaaiiOaiaacckapaWaaSaaaeaacaaIXaaabaGaam4CamaaDaaa jeaqbaWdbiaacckapaGaamyAaiaadQgapeGaaiiOaaWdaeaacqqHOo qwaaaaaOWdbiaacckapaWaaqGaaeaadaWcaaqaaiaadsgapeGaaiiO a8aacqqHEoawpeGaaiiOa8aadaqadaqaaiaadIhacaGGSaGaam4Caa GaayjkaiaawMcaaaqaa8qacaGGGcGaaiiOa8aacaWGKbGaamiEa8qa caGGGcGaaiiOaaaacaGGGcaapaGaayjcSdWaaSbaaKqaafaacaWG4b Gaeyypa0JaamiBaaWcbeaakiabgkHiT8qacaGGGcGaaiiOa8aadaWc aaqaaiabe27aUnaaBaaajeaqbaWdbiaacckapaGaamyBaiaadMgaaK qaGfqaaaGcbaGaam4CamaaDaaajeaibaWdbiaacckapaGaamyAaiaa dQgapeGaaiiOaaWdaeaacqqHOoqwaaaaaOWdbiaacckacaGGGcWdai abfI6aznaaBaaajeaibaqcbaKaamyBaKqaG8qacaGGGcaal8aabeaa kmaabmaabaGaam4CaaGaayjkaiaawMcaaaaaaa@B6E2@

The structural model and scheme of the nano piezoengine on Figure 2 are evaluated

Ξ 1 ( s )= ( M 1 s 2 ) 1 { F  1   ( s )+( χ     ij    Ψ    )   1 × [ ν  mi    Ψ  m  ( s )[   γ /  sh ( lγ )  ] × [ ch( lγ ) Ξ 1 ( s ) Ξ 2 ( s ) ] ]  } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaaBa aajeaibaGaaGymaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaa cqGH9aqpdaqadaqaaiaad2eadaWgaaqcbasaaiaaigdaaeqaaOGaam 4CamaaCaaajeaibeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaqc bauabeaacqGHsislcaaIXaaaaOWaaiWaaqaabeqaaiabgkHiTiaadA eadaWgaaWcbaaeaaaaaaaaa8qacaGGGcqcbaYdaiaaigdal8qacaGG GcaapaqabaGcpeGaaiiOa8aadaqadaqaaiaadohaaiaawIcacaGLPa aacqGHRaWkdaqadaqaaiabeE8aJ9qacaGGGcWdamaaDaaajeaqbaWd biaacckacaGGGcWdaiaadMgacaWGQbWdbiaacckacaGGGcaapaqaa8 qacaGGGcWdaiabfI6az9qacaGGGcaaaOGaaiiOaaWdaiaawIcacaGL PaaapeGaaiiOa8aadaahaaqcbauabeaacqGHsislcaaIXaaaaaGcba Gaey41aq7dbiaacckapaWaamWaaqaabeqaaiabe27aUnaaBaaaleaa peGaaiiOaKqaa9aacaWGTbGaamyAaSWdbiaacckaa8aabeaak8qaca GGGcWdaiabfI6aznaaBaaaleaapeGaaiiOaKqaa9aacaWGTbWcpeGa aiiOaaWdaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyOeI0 YaamWaaeaapeGaaiiOa8aadaWcgaqaaiabeo7aN9qacaGGGcaapaqa a8qacaGGGcWdaiaabohacaqGObWdbiaacckapaWaaeWaaeaacaWGSb Gaeq4SdCgacaGLOaGaayzkaaWdbiaacckaaaaapaGaay5waiaaw2fa aaqaaiabgEna0+qacaGGGcWdamaadmaabaGaae4yaiaabIgadaqada qaaiaadYgacqaHZoWzaiaawIcacaGLPaaacqqHEoawdaWgaaqcbaua aiaaigdaaSqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaacqGHsi slcqqHEoawdaWgaaqcbauaaiaaikdaaSqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaaaiaawUfacaGLDbaaaaGaay5waiaaw2faa8qaca GGGcaaa8aacaGL7bGaayzFaaaaaa@A3AA@

Ξ  2 ( s )= ( M 2   s 2 ) 1 {   F  2 ( s )+( χ    ij  Ψ   )   1 × [ ν mi Ψ m ( s )[  γ /  sh (  lγ  )  ] × [  ch ( lγ ) Ξ  2  ( s ) Ξ  1  ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65ayTWaaS baaKqaafaaqaaaaaaaaaWdbiaacckapaGaaGOmaaqabaGcdaqadaqa aiaadohaaiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaad2eadaWgaa qcbauaaiaaikdaaSqabaGcpeGaaiiOa8aacaWGZbWaaWbaaKqaafqa baGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaajeaqbeqaaiabgkHiTi aaigdaaaGcdaGadaabaeqabaWdbiaacckapaGaeyOeI0IaamOraSWa aSbaaKqaafaapeGaaiiOa8aacaaIYaaaleqaaOWaaeWaaeaacaWGZb aacaGLOaGaayzkaaGaey4kaSYaaeWaaeaacqaHhpWypeGaaiiOa8aa daqhaaqcbauaa8qacaGGGcWdaiaadMgacaWGQbWdbiaacckaa8aaba GaeuiQdKfaaOWdbiaacckaa8aacaGLOaGaayzkaaWdbiaacckapaWa aWbaaSqabKqaafaacqGHsislcaaIXaaaaaGcbaGaey41aq7dbiaacc kapaWaamWaaqaabeqaaiabe27aUnaaBaaajeaqbaGaamyBaiaadMga aSqabaGccqqHOoqwdaWgaaqcbauaaiaad2gaaSqabaGcdaqadaqaai aadohaaiaawIcacaGLPaaacqGHsisldaWadaqaamaalyaabaWdbiaa cckapaGaeq4SdC2dbiaacckaa8aabaWdbiaacckapaGaae4CaiaabI gapeGaaiiOa8aadaqadaqaa8qacaGGGcWdaiaadYgacqaHZoWzpeGa aiiOaaWdaiaawIcacaGLPaaapeGaaiiOaaaaa8aacaGLBbGaayzxaa aabaGaey41aq7dbiaacckapaWaamWaaeaapeGaaiiOa8aacaqGJbGa aeiAa8qacaGGGcWdamaabmaabaGaamiBaiabeo7aNbGaayjkaiaawM caaiabf65aynaaBaaajeaqbaWdbiaacckapaGaaGOma8qacaGGGcaa l8aabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgkHiTiabf6 5aynaaBaaajeaqbaWdbiaacckapaGaaGyma8qacaGGGcaal8aabeaa kmaabmaabaGaam4CaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaaca GLBbGaayzxaaaaaiaawUhacaGL9baaaaa@A352@

χ   ij Ψ  =  s   ij Ψ  /   S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJbbaaa aaaaaapeGaaiiOa8aadaqhaaqcbauaaiaadMgacaWGQbaabaGaeuiQ dKfaaOWdbiaacckapaGaeyypa0ZaaSGbaeaapeGaaiiOa8aacaWGZb WdbiaacckapaWaa0baaKqaafaacaWGPbGaamOAaaqaaiabfI6azbaa k8qacaGGGcaapaqaa8qacaGGGcWdaiaadofadaWgaaqcbauaaiaaic daaSqabaaaaaaa@4C77@

v   mi  =  {   d  33  ,  d  31  ,  d  15     g  33  ,  g  31  ,  g  15    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhaqaaaaa aaaaWdbiaacckapaWaaSbaaKqaGfaacaWGTbGaamyAaaWcbeaak8qa caGGGcWdaiabg2da98qacaGGGcGaaiiOa8aadaGabaqaauaabeqace aaaeaapeGaaiiOa8aacaWGKbWaaSbaaSqaa8qacaGGGcqcba0daiaa iodacaaIZaWcpeGaaiiOaaWdaeqaaOGaaiila8qacaGGGcWdaiaads gadaWgaaqcbawaa8qacaGGGcqcba0daiaaiodacaaIXaaajeaybeaa k8qacaGGGcWdaiaacYcapeGaaiiOa8aacaWGKbWaaSbaaKqaGfaape GaaiiOaKqaa9aacaaIXaGaaGynaaqcbawabaGcpeGaaiiOaaWdaeaa peGaaiiOa8aacaWGNbWaaSbaaSqaa8qacaGGGcqcba0daiaaiodaca aIZaaaleqaaOWdbiaacckapaGaaiila8qacaGGGcWdaiaadEgadaWg aaWcbaWdbiaacckajeaqpaGaaG4maiaaigdal8qacaGGGcaapaqaba GccaGGSaWdbiaacckapaGaam4zamaaBaaajeaybaqcba0dbiaaccka paGaaGymaiaaiwdajeaypeGaaiiOaaWcpaqabaaaaaGccaGL7baape GaaiiOaaaa@706B@

Ψ   m  =  {   E  3  ,  E  3  ,  E  1    D  3  ,  D  3 ,  D  1   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI6azbbaaa aaaaaapeGaaiiOa8aadaWgaaqcbawaaiaad2gapeGaaiiOaaWcpaqa baGccqGH9aqppeGaaiiOaiaacckapaWaaiqaaeaafaqabeGabaaaba WdbiaacckajaaypaGaamyraOWaaSbaaKqaGfaapeGaaiiOaKqaa9aa caaIZaqcba2dbiaacckaaSWdaeqaaOGaaiila8qacaGGGcqcaa2dai aadweakmaaBaaajeaybaWdbiaacckajeaqpaGaaG4maKqaG9qacaGG Gcaal8aabeaakiaacYcapeGaaiiOaKaaG9aacaWGfbGcdaWgaaqcba waa8qacaGGGcqcba0daiaaigdajeaypeGaaiiOaaWcpaqabaaakeaa peGaaiiOaKaaG9aacaWGebGcdaWgaaqcbawaa8qacaGGGcqcba0dai aaiodapeGaaiiOaaWcpaqabaGccaGGSaWdbiaacckajaaypaGaamir aOWaaSbaaKqaafaapeGaaiiOa8aacaaIZaaajeaybeaakiaacYcape GaaiiOaKaaG9aacaWGebGcdaWgaaqcbauaa8qacaGGGcWdaiaaigda aKqaGfqaaOWdbiaacckaaaaapaGaay5Eaaaaaa@6C35@

s    ij  Ψ  =  {   s  33   E  , s    11    E  , s    55    E    s  33   D  ,s    11    D  , s    55    D  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohaqaaaaa aaaaWdbiaacckapaWaa0baaKqaafaapeGaaiiOa8aacaWGPbGaamOA a8qacaGGGcaapaqaaiabfI6azbaak8qacaGGGcWdaiabg2da98qaca GGGcGaaiiOa8aadaGabaqaauaabeqaceaaaeaapeGaaiiOa8aacaWG ZbWaa0baaKqaafaapeGaaiiOa8aacaaIZaGaaG4ma8qacaGGGcaapa qaa8qacaGGGcWdaiaadweapeGaaiiOaaaak8aacaGGSaWdbiaaccka paGaam4Ca8qacaGGGcWdamaaDaaajeaqbaWdbiaacckapaGaaGymai aaigdapeGaaiiOaaWdaeaapeGaaiiOaiaacckapaGaamyra8qacaGG GcaaaOWdaiaacYcapeGaaiiOa8aacaWGZbWdbiaacckapaWaa0baaK qaafaapeGaaiiOa8aacaaI1aGaaGyna8qacaGGGcaapaqaa8qacaGG GcGaaiiOa8aacaWGfbWdbiaacckaaaaak8aabaWdbiaacckapaGaam 4CamaaDaaajeaqbaWdbiaacckapaGaaG4maiaaiodapeGaaiiOaaWd aeaapeGaaiiOa8aacaWGebWdbiaacckaaaGcpaGaaiilaiaadohape GaaiiOa8aadaqhaaqcbauaa8qacaGGGcWdaiaaigdacaaIXaWdbiaa cckaa8aabaWdbiaacckacaGGGcWdaiaadseapeGaaiiOaaaak8aaca GGSaWdbiaacckapaGaam4Ca8qacaGGGcWdamaaDaaajeaqbaWdbiaa cckapaGaaGynaiaaiwdapeGaaiiOaaWdaeaapeGaaiiOaiaacckapa Gaamira8qacaGGGcaaaaaaaOWdaiaawUhaaaaa@8CE4@

γ={ γ E , γ D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maaceaabaGaeq4SdC2aaWbaaSqabKqaafaacaWGfbaaaOGaaiil aiaaysW7cqaHZoWzdaahaaWcbeqcbauaaiaadseaaaaakiaawUhaaa aa@4325@

c  Ψ ={ c  E ,c   D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaahaa WcbeqcbauaaabaaaaaaaaapeGaaiiOa8aacqqHOoqwaaGccqGH9aqp daGabaqaaiaaysW7caWGJbWaaWbaaSqabKqaafaapeGaaiiOa8aaca WGfbaaaOGaaiilaiaaysW7caWGJbWdbiaacckapaWaaWbaaSqabKqa afaacaWGebaaaaGccaGL7baaaaa@485E@

Figure 2 In general scheme of nano piezoengine.

The displacements matrix is calculated

( Ξ 1 ( s ) Ξ 2 ( s ) )=( W  11  ( s ) W  12  ( s ) W  13  ( s ) W  21  ( s ) W  22  ( s ) W  23  ( s ) )( Ψ m ( s ) F 1 ( s ) F 2 ( s ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiqaaaqaaiabf65aynaaBaaajeaqbaGaaGymaaWcbeaakmaabmaa baGaam4CaaGaayjkaiaawMcaaaqaaiabf65aynaaBaaajeaqbaGaaG OmaaWcbeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaaaaiaawIca caGLPaaacqGH9aqpdaqadaqaauaabeqaceaaaeaafaqabeqadaaaba Gaam4vamaaBaaajeaqbaaeaaaaaaaaa8qacaGGGcWdaiaaigdacaaI XaWdbiaacckaaSWdaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaa aabaGaam4vamaaBaaajeaqbaWdbiaacckapaGaaGymaiaaikdapeGa aiiOaaWcpaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaeaaca WGxbWaaSbaaKqaafaapeGaaiiOa8aacaaIXaGaaG4ma8qacaGGGcaa l8aabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaaaaeaafaqabe qadaaabaGaam4vamaaBaaajeaqbaWdbiaacckapaGaaGOmaiaaigda peGaaiiOaaWcpaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaae aacaWGxbWaaSbaaKqaafaapeGaaiiOa8aacaaIYaGaaGOma8qacaGG Gcaal8aabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaqaaiaadE fadaWgaaqcbauaa8qacaGGGcWdaiaaikdacaaIZaWdbiaacckaaSWd aeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaaaaaiaawIcaca GLPaaacaaMe8+aaeWaaeaafaqabeWabaaabaGaeuiQdK1aaSbaaKqa afaacaWGTbaaleqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaba GaamOramaaBaaajeaqbaGaaGymaaWcbeaakmaabmaabaGaam4CaaGa ayjkaiaawMcaaaqaaiaadAeadaWgaaqcbauaaiaaikdaaSqabaGcda qadaqaaiaadohaaiaawIcacaGLPaaaaaaacaGLOaGaayzkaaaaaa@86F4@

W 11 ( s )= Ξ 1 ( s )/ Ψ m ( s ) = ν  mi  [ M 2 χ    ij  Ψ   s 2 +γ th ( lγ/2 ) ]/A  ij  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfalmaaBa aajeaqbaGaaGymaiaaigdaaSqabaGcdaqadaqaaiaadohaaiaawIca caGLPaaacqGH9aqpdaWcgaqaaiabf65ayTWaaSbaaKqaafaacaaIXa aaleqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGaeuiQdK1a aSbaaKqaafaacaWGTbaakeqaamaabmaabaGaam4CaaGaayjkaiaawM caaaaacqGH9aqpdaWcgaqaaiabe27aUnaaBaaajeaqbaaeaaaaaaaa a8qacaGGGcWdaiaad2gacaWGPbaaleqaaOWdbiaacckapaWaamWaae aacaWGnbWcdaWgaaqcbauaaiaaikdaaSqabaGccqaHhpWypeGaaiiO aSWdamaaDaaajeaqbaWdbiaacckapaGaamyAaiaadQgapeGaaiiOaa WdaeaacqqHOoqwaaGcpeGaaiiOa8aacaWGZbWcdaahaaqabKqaafaa caaIYaaaaOGaey4kaSIaeq4SdC2dbiaacckapaGaaeiDaiaabIgape GaaiiOa8aadaqadaqaamaalyaabaGaamiBaiabeo7aNbqaaiaaikda aaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaabaGaamyqaaaalmaaBa aajeaqbaWdbiaacckapaGaamyAaiaadQgapeGaaiiOaaWcpaqabaaa aa@72C2@

A  ij  = M 1 M 2 ( χ    ij  Ψ   ) 2 s 4 +{ ( M 1 + M 2 ) χ  ij  Ψ / [ c Ψ  th ( lγ ) ] }  s 3 +[ ( M 1 + M 2 )χ    ij  Ψ  α/  th ( lγ ) +1/ ( c Ψ ) 2 ] s 2 + 2αs/ c Ψ + α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgealmaaBa aabaaeaaaaaaaaa8qacaGGGcWdaiaadMgacaWGQbWdbiaacckaa8aa beaakiabg2da9iaad2ealmaaBaaajeaqbaGaaGymaaWcbeaakiaad2 ealmaaBaaajeaqbaGaaGOmaaWcbeaakmaabmaabaGaeq4Xdm2dbiaa cckal8aadaqhaaqcbauaa8qacaGGGcWdaiaadMgacaWGQbWdbiaacc kaa8aabaGaeuiQdKfaaOWdbiaacckaa8aacaGLOaGaayzkaaWcdaah aaqabKqaafaacaaIYaaaaOGaam4CaSWaaWbaaeqajeaqbaGaaGinaa aakiabgUcaRmaacmaabaWaaSGbaeaadaqadaqaaiaad2ealmaaBaaa jeaqbaGaaGymaaWcbeaakiabgUcaRiaad2ealmaaBaaajeaqbaGaaG OmaaWcbeaaaOGaayjkaiaawMcaaiabeE8aJTWaa0baaKqaafaapeGa aiiOa8aacaWGPbGaamOAa8qacaGGGcaapaqaaiabfI6azbaaaOqaam aadmaabaGaam4yamaaCaaabeqcbauaaiabfI6azbaak8qacaGGGcWd aiaabshacaqGObWdbiaacckapaWaaeWaaeaacaWGSbGaeq4SdCgaca GLOaGaayzkaaaacaGLBbGaayzxaaaaaaGaay5Eaiaaw2haa8qacaGG GcWdaiaadohalmaaCaaabeqcbauaaiaaiodaaaGccqGHRaWkdaWada qaamaalyaabaWaaeWaaeaacaWGnbWcdaWgaaqcbauaaiaaigdaaSqa baGccqGHRaWkcaWGnbWcdaWgaaqcbauaaiaaikdaaSqabaaakiaawI cacaGLPaaacqaHhpWypeGaaiiOaSWdamaaDaaajeaqbaWdbiaaccka paGaamyAaiaadQgapeGaaiiOaaWdaeaacqqHOoqwaaGcpeGaaiiOa8 aacqaHXoqyaeaapeGaaiiOa8aacaqG0bGaaeiAa8qacaGGGcWdamaa bmaabaGaamiBaiabeo7aNbGaayjkaiaawMcaaaaacqGHRaWkdaWcga qaaiaaigdaaeaadaqadaqaaiaadogadaahaaqabKqaafaacqqHOoqw aaaakiaawIcacaGLPaaalmaaCaaabeqcbauaaiaaikdaaaaaaaGcca GLBbGaayzxaaGaam4CaSWaaWbaaeqajeaqbaGaaGOmaaaakiabgUca RmaalyaabaGaaGOmaiabeg7aHjaadohaaeaacaWGJbWcdaahaaqabK qaafaacqqHOoqwaaaaaOGaey4kaSIaeqySde2cdaahaaqabKqaafaa caaIYaaaaaaa@A751@

W  21  ( s )= Ξ 2 ( s )/ Ψ m ( s ) = ν  mi  [ M 1 χ    ij  Ψ s 2 +γ th ( lγ/2 ) ]/A  ij  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa qcbauaaabaaaaaaaaapeGaaiiOa8aacaaIYaGaaGyma8qacaGGGcaa l8aabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabg2da9maaly aabaGaeuONdG1aaSbaaKqaafaacaaIYaaaleqaaOWaaeWaaeaacaWG ZbaacaGLOaGaayzkaaaabaGaeuiQdK1aaSbaaKqaafaacaWGTbaake qaamaabmaabaGaam4CaaGaayjkaiaawMcaaaaacqGH9aqpdaWcgaqa aiabe27aUnaaBaaajeaqbaWdbiaacckapaGaamyBaiaadMgapeGaai iOaaWcpaqabaGcdaWadaqaaiaad2eadaWgaaqcbauaaiaaigdaaSqa baGccqaHhpWypeGaaiiOaSWdamaaDaaajeaqbaWdbiaacckapaGaam yAaiaadQgapeGaaiiOaaWdaeaacqqHOoqwaaGccaWGZbWaaWbaaSqa bKqaafaacaaIYaaaaOGaey4kaSIaeq4SdC2dbiaacckapaGaaeiDai aabIgapeGaaiiOa8aadaqadaqaamaalyaabaGaamiBaiabeo7aNbqa aiaaikdaaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaabaGaamyqaa aadaWgaaqcbauaa8qacaGGGcWdaiaadMgacaWGQbWdbiaacckaaSWd aeqaaaaa@73DA@

W  12  ( s )= Ξ 1 ( s )/ F  1 ( s ) = χ    ij  Ψ  [ M  2  χ     ij  Ψ   s 2 + γ /  th ( lγ ) ]/  A  ij  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa qcbauaaabaaaaaaaaapeGaaiiOa8aacaaIXaGaaGOma8qacaGGGcaa l8aabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabg2da9maaly aabaGaeuONdG1aaSbaaKqaafaacaaIXaaaleqaaOWaaeWaaeaacaWG ZbaacaGLOaGaayzkaaaabaGaamOramaaBaaajeaqbaWdbiaacckapa GaaGymaaWcbeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaaacqGH 9aqpcqGHsisldaWcgaqaaiabeE8aJ9qacaGGGcWcpaWaa0baaKqaaf aapeGaaiiOa8aacaWGPbGaamOAa8qacaGGGcaapaqaaiabfI6azbaa k8qacaGGGcWdamaadmaabaGaamytamaaBaaajeaqbaWdbiaacckapa GaaGOmaaWcbeaak8qacaGGGcWdaiabeE8aJ9qacaGGGcGaaiiOaSWd amaaDaaajeaqbaWdbiaacckapaGaamyAaiaadQgapeGaaiiOaaWdae aacqqHOoqwaaGcpeGaaiiOa8aacaWGZbWcdaahaaqabKqaafaacaaI YaaaaOGaey4kaSYaaSGbaeaacqaHZoWzpeGaaiiOaaWdaeaapeGaai iOa8aacaqG0bGaaeiAa8qacaGGGcWdamaabmaabaGaamiBaiabeo7a NbGaayjkaiaawMcaaaaaaiaawUfacaGLDbaaaeaapeGaaiiOa8aaca WGbbaaamaaBaaajeaqbaWdbiaacckapaGaamyAaiaadQgapeGaaiiO aaWcpaqabaaaaa@7FE3@

W  13  ( s )= Ξ 1 ( s )/ F  2 ( s ) = W  22   ( s )= Ξ 2 ( s )/ F  1 ( s ) = [ χ    ij   Ψ  γ/  sh ( lγ ) ]/  A    ij  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa qcbauaaabaaaaaaaaapeGaaiiOa8aacaaIXaGaaG4ma8qacaGGGcaa l8aabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabg2da9maaly aabaGaeuONdG1aaSbaaKqaafaacaaIXaaaleqaaOWaaeWaaeaacaWG ZbaacaGLOaGaayzkaaaabaGaamOramaaBaaajeaqbaWdbiaacckapa GaaGOmaaWcbeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaaacqGH 9aqpcaWGxbWaaSbaaKqaafaapeGaaiiOa8aacaaIYaGaaGOma8qaca GGGcGaaiiOaaWcpaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaa cqGH9aqpdaWcgaqaaiabf65aynaaBaaajeaqbaGaaGOmaaWcbeaakm aabmaabaGaam4CaaGaayjkaiaawMcaaaqaaiaadAeadaWgaaqcbaua a8qacaGGGcWdaiaaigdaaSqabaGcdaqadaqaaiaadohaaiaawIcaca GLPaaaaaGaeyypa0ZaaSGbaeaadaWadaqaamaalyaabaGaeq4Xdm2d biaacckal8aadaqhaaqcbauaa8qacaGGGcWdaiaadMgacaWGQbWdbi aacckaa8aabaWdbiaacckapaGaeuiQdK1dbiaacckaaaGcpaGaeq4S dCgabaWdbiaacckapaGaae4CaiaabIgapeGaaiiOa8aadaqadaqaai aadYgacqaHZoWzaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaabaWd biaacckapaGaamyqaaaapeGaaiiOa8aadaWgaaqcbauaa8qacaGGGc WdaiaadMgacaWGQbWdbiaacckaaSWdaeqaaaaa@82E7@

W  23  ( s )= Ξ 2 ( s )/ F  2  ( s ) = χ    ij  Ψ [ M 1   χ    ij  Ψ   s 2 +γ/  th ( lγ ) ]/  A  ij  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa qcbauaaabaaaaaaaaapeGaaiiOa8aacaaIYaGaaG4ma8qacaGGGcaa l8aabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabg2da9maaly aabaGaeuONdG1aaSbaaKqaafaacaaIYaaaleqaaOWaaeWaaeaacaWG ZbaacaGLOaGaayzkaaaabaGaamOramaaBaaajeaqbaWdbiaacckapa GaaGOma8qacaGGGcaal8aabeaakmaabmaabaGaam4CaaGaayjkaiaa wMcaaaaacqGH9aqpcqGHsisldaWcgaqaaiabeE8aJ9qacaGGGcWcpa Waa0baaKqaafaapeGaaiiOa8aacaWGPbGaamOAa8qacaGGGcaapaqa aiabfI6azbaakmaadmaabaGaamytamaaBaaajeaqbaGaaGyma8qaca GGGcaal8aabeaak8qacaGGGcWdaiabeE8aJ9qacaGGGcWcpaWaa0ba aKqaafaapeGaaiiOa8aacaWGPbGaamOAa8qacaGGGcaapaqaaiabfI 6azbaak8qacaGGGcWdaiaadohadaahaaWcbeqcbauaaiaaikdaaaGc cqGHRaWkdaWcgaqaaiabeo7aNbqaa8qacaGGGcWdaiaabshacaqGOb WdbiaacckapaWaaeWaaeaacaWGSbGaeq4SdCgacaGLOaGaayzkaaaa aaGaay5waiaaw2faaaqaa8qacaGGGcWdaiaadgeaaaWaaSbaaKqaaf aapeGaaiiOa8aacaWGPbGaamOAa8qacaGGGcaal8aabeaaaaa@7D7F@

The static longitudinal displacements are evaluated

ξ 1 = d  33   U  M 2   /  ( M 1 + M 2 ) ξ 2 = d  33   U  M  1   /  ( M 1 + M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqOVdG 3cdaWgaaqcbauaaiaaigdaaSqabaGccqGH9aqpdaWcgaqaaiaadsga daWgaaqcbauaaabaaaaaaaaapeGaaiiOa8aacaaIZaGaaG4ma8qaca GGGcaal8aabeaak8qacaGGGcWdaiaadwfapeGaaiiOa8aacaWGnbWa aSbaaKqaafaacaaIYaWdbiaacckaaSWdaeqaaOWdbiaacckaa8aaba WdbiaacckapaWaaeWaaeaacaWGnbWaaSbaaKqaafaacaaIXaaaleqa aOGaey4kaSIaamytamaaBaaajeaqbaGaaGOmaaWcbeaaaOGaayjkai aawMcaaaaaaeaacqaH+oaElmaaBaaajeaqbaGaaGOmaaWcbeaakiab g2da9maalyaabaGaamizamaaBaaajeaqbaWdbiaacckapaGaaG4mai aaiodapeGaaiiOaaWcpaqabaGcpeGaaiiOa8aacaWGvbWdbiaaccka paGaamytamaaBaaajeaqbaWdbiaacckapaGaaGyma8qacaGGGcaal8 aabeaak8qacaGGGcaapaqaa8qacaGGGcWdamaabmaabaGaamytamaa BaaajeaqbaGaaGymaaWcbeaakiabgUcaRiaad2eadaWgaaqcbauaai aaikdaaSqabaaakiaawIcacaGLPaaaaaaaaaa@6B2E@

For d  33  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgalmaaBa aajeaqbaaeaaaaaaaaa8qacaGGGcWdaiaaiodacaaIZaWdbiaaccka aSWdaeqaaaaa@3CB8@  = 4 10 10 m/V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGinaGGaaiab=vSixlaaigdacaaIWaWdamaaCaaaleqajeaqbaWd biabgkHiTiaaigdacaaIWaaaaOWdaiaac2gapeGaai4laiaacAfaaa a@417D@ , U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D1@  = 25 V, M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa qcbauaaiaaigdaaSqabaaaaa@3941@  = 1 kg, M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa qcbauaaiaaikdaaSqabaaaaa@3942@  = 4 kg the static displacements ξ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4TWaaS baaKqaafaacaaIXaaaleqaaaaa@3A3D@  = 8 nm, ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4TWaaS baaKqaafaacaaIXaaaleqaaaaa@3A3D@  = 2 nm and ξ 1 + ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4TWaaS baaKqaafaacaaIXaaaleqaaOGaey4kaSIaeqOVdG3cdaWgaaqcbaua aiaaikdaaSqabaaaaa@3E29@  = 10 nm are evaluated at error 10%.

The equation of the direct piezo effect is used1–29

D   m =   d mi   T i  + ε   mk   E E  k k  d =   d  mi  S 0 δ s   ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamiraa baaaaaaaaapeGaaiiOa8aadaWgaaqcbauaaiaad2gaaSqabaGccqGH 9aqppeGaaiiOaiaacckapaGaamizamaaBaaajeaqbaGaamyBaiaadM gaaSqabaGcpeGaaiiOa8aacaWGubWaaSbaaKqaafaacaWGPbaaleqa aOWdbiaacckapaGaey4kaSYdbiaacckapaGaeqyTdu2dbiaacckal8 aadaqhaaqcbauaaiaad2gacaWGRbWdbiaacckaa8aabaWdbiaaccka paGaamyraaaakiaadweadaWgaaqcbauaa8qacaGGGcWdaiaadUgaaS qabaaakeaacaWGRbWaaSbaaKqaafaapeGaaiiOa8aacaWGKbaaleqa aOGaeyypa0ZdbiaacckacaGGGcWdamaalaaabaGaamizaSWaaSbaaK qaafaapeGaaiiOa8aacaWGTbGaamyAa8qacaGGGcaal8aabeaakiaa dofalmaaBaaajeaqbaGaaGimaaWcbeaaaOqaaiabes7aK9qacaGGGc WdaiaadohapeGaaiiOa8aadaqhaaqcbauaaiaadMgacaWGQbaabaGa amyraaaaaaaaaaa@6BDB@

here ε   mk  E , D m , k d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLbbaaa aaaaaapeGaaiiOa8aadaqhaaqcbauaaiaad2gacaWGRbaabaWdbiaa cckapaGaamyraaaakiaacYcacaWGebWaaSbaaKqaafaacaWGTbaale qaaOGaaiilaiaadUgadaWgaaqcbauaaiaadsgaaSqabaaaaa@4487@  - the permittivity, the electric induction and the direct coefficient. The transform the voltage of feedback for the nano piezoengine on Figure 3 is calculated

U d ( s )= d   mi  S 0  R δs   ij E   Ξ n  ( s )=   k d  R  Ξ n  ( s ),n=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfadaWgaa qcbauaaiaadsgaaSqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaa cqGH9aqpdaWcaaqaaiaadsgaqaaaaaaaaaWdbiaacckal8aadaWgaa qcbauaaiaad2gacaWGPbWdbiaacckaaSWdaeqaaOGaam4uaSWaaSba aKqaafaacaaIWaaaleqaaOWdbiaacckapaGaamOuaaqaaiabes7aKj aadohapeGaaiiOa8aadaqhaaqcbauaaiaadMgacaWGQbaabaGaamyr aaaaaaGcpeGaaiiOa8aadaWfGaqcaawaaiabf65aybWcbeqcbauaai abgkci3caalmaaBaaabaWaaSbaaKqaafaacaWGUbaaleqaaaqabaGc peGaaiiOa8aadaqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqppe GaaiiOaiaacckapaGaam4AamaaBaaajeaqbaGaamizaaWcbeaak8qa caGGGcWdaiaadkfapeGaaiiOa8aadaWfGaqcaawaaiabf65aybWcbe qcbauaaiabgkci3caalmaaBaaabaWaaSbaaKqaafaacaWGUbaaleqa aaqabaGcpeGaaiiOa8aadaqadaqaaiaadohaaiaawIcacaGLPaaaca GGSaGaamOBaiabg2da9iaaigdacaGGSaGaaGjbVlaaikdaaaa@71C9@

Figure 3 Scheme of nano piezoengine with back electromotive force.

For the nano piezoengine its static deformation is obtained.

For voltage control

T jmax =   E m    d mi  /  s   ij E F max =   E m    d  mi   S  0  /  s   ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamivam aaBaaajeaqbaGaamOAaiaab2gacaqGHbGaaeiEaaGcbeaacqGH9aqp daWcgaqaaabaaaaaaaaapeGaaiiOa8aacaWGfbWaaSbaaKqaafaaca WGTbaakeqaa8qacaGGGcGaaiiOa8aacaWGKbWcdaWgaaqcbauaaiaa d2gacaWGPbWdbiaacckaaSWdaeqaaaGcbaWdbiaacckapaGaam4Ca8 qacaGGGcWcpaWaa0baaKqaafaacaWGPbGaamOAaaqaaiaadweaaaaa aaGcbaGaamOraSWaaSbaaKqaafaacaqGTbGaaeyyaiaabIhaaSqaba GccqGH9aqpdaWcgaqaa8qacaGGGcWdaiaadwealmaaBaaajeaqbaGa amyBa8qacaGGGcaal8aabeaak8qacaGGGcWdaiaadsgalmaaBaaaje aqbaWdbiaacckapaGaamyBaiaadMgaaSqabaGcpeGaaiiOa8aacaWG tbWcdaWgaaqcbauaa8qacaGGGcWdaiaaicdapeGaaiiOaaWcpaqaba aakeaapeGaaiiOa8aacaWGZbWdbiaacckal8aadaqhaaqcbauaaiaa dMgacaWGQbaabaGaamyraaaaaaaaaaa@6AFF@

For current control

F max = U δ  d   mi   S  0 s   ij E +   F   max S 0   d  mi  S   c   1 ε   mk  T   S  c /  δ   1 δ   d  mi   S  0 s   ij E F max S 0  (  1   d   mi  2 ε   mk  T  s   ij E   )s   ij E =E   m   d   mi  T jmax  (  1k   mi  2   ) s   ij E = E  m  d   mi k  mi   = d  mi  /  s   ij  E  ε   mk   T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOraS WaaSbaaKqaafaacaqGTbGaaeyyaiaabIhaaSqabaGccqGH9aqpdaWc aaqaaiaadwfaaeaacqaH0oazaaaeaaaaaaaaa8qacaGGGcWdaiaads gapeGaaiiOaSWdamaaBaaajeaqbaGaamyBaiaadMgaaSqabaGcpeGa aiiOa8aadaWcaaqaaiaadofalmaaBaaajeaqbaWdbiaacckapaGaaG imaaWcbeaaaOqaaiaadohapeGaaiiOaSWdamaaDaaajeaqbaGaamyA aiaadQgaaeaacaWGfbaaaaaakiabgUcaR8qacaGGGcGaaiiOa8aada WcaaqaaiaadAeapeGaaiiOaSWdamaaBaaajeaqbaGaaeyBaiaabgga caqG4baaleqaaaGcbaGaam4uaSWaaSbaaKqaafaacaaIWaaaleqaaa aak8qacaGGGcWdaiaadsgalmaaBaaajeaqbaWdbiaacckapaGaamyB aiaadMgapeGaaiiOaaWcpaqabaGccaWGtbWdbiaacckal8aadaWgaa qcbauaaiaadogaaSqabaGcpeGaaiiOa8aadaWcaaqaaiaaigdaaeaa daWcgaqaaiabew7aL9qacaGGGcWcpaWaa0baaKqaafaacaWGTbGaam 4Aaaqaa8qacaGGGcWdaiaadsfaaaGcpeGaaiiOa8aacaWGtbWcdaWg aaqcbauaa8qacaGGGcWdaiaadogaaSqabaaakeaapeGaaiiOa8aacq aH0oazaaaaa8qacaGGGcWdamaalaaabaGaaGymaaqaaiabes7aKbaa peGaaiiOa8aacaWGKbWcdaWgaaqcbauaa8qacaGGGcWdaiaad2gaca WGPbaaleqaaOWdbiaacckapaWaaSaaaeaacaWGtbWcdaWgaaqcbaua a8qacaGGGcWdaiaaicdaaSqabaaakeaacaWGZbWdbiaacckal8aada qhaaqcbauaaiaadMgacaWGQbaabaGaamyraaaaaaaakeaadaWcaaqa aiaadAealmaaBaaajeaibaGaaeyBaiaabggacaqG4baajeaybeaaaO qaaiaadofalmaaBaaajeaqbaGaaGimaaWcbeaaaaGcpeGaaiiOa8aa daqadaqaa8qacaGGGcWdaiaaigdacqGHsislpeGaaiiOaiaacckapa WaaSaaaeaacaWGKbWdbiaacckal8aadaqhaaqcbasaaiaad2gacaWG PbaabaWdbiaacckapaGaaGOmaaaaaOqaaiabew7aL9qacaGGGcWcpa Waa0baaKqaGeaacaWGTbGaam4Aaaqaa8qacaGGGcWdaiaadsfaaaGc peGaaiiOa8aacaWGZbWdbiaacckal8aadaqhaaqcbasaaiaadMgaca WGQbaabaGaamyraaaaaaGcpeGaaiiOaaWdaiaawIcacaGLPaaacaWG ZbWdbiaacckal8aadaqhaaqcbasaaiaadMgacaWGQbaabaGaamyraa aakiabg2da9iaadweapeGaaiiOa8aadaWgaaqcbasaaiaad2gaaKaa GeqaaOWdbiaacckapaGaamizaSWaaSbaaKqaGeaapeGaaiiOaiaacc kapaGaamyBaiaadMgapeGaaiiOaaWcpaqabaaakeaacaWGubWcdaWg aaqaaKqaajaadQgacaqGTbGaaeyyaiaabIhal8qacaGGGcaapaqaba Gcdaqadaqaa8qacaGGGcWdaiaaigdacqGHsislcaWGRbWdbiaaccka l8aadaqhaaqcbauaaiaad2gacaWGPbaabaWdbiaacckapaGaaGOmaa aak8qacaGGGcaapaGaayjkaiaawMcaa8qacaGGGcWdaiaadohapeGa aiiOaSWdamaaDaaajeaqbaGaamyAaiaadQgaaeaacaWGfbaaaOGaey ypa0JaamyraSWaaSbaaKqaafaapeGaaiiOa8aacaWGTbaaleqaaOWd biaacckapaGaamiza8qacaGGGcWcpaWaaSbaaKqaafaacaWGTbGaam yAaaWcbeaaaOqaaiaadUgalmaaBaaajeaqbaWdbiaacckapaGaamyB aiaadMgaaSqabaGcpeGaaiiOaiaacckapaGaeyypa0ZaaSGbaeaaca WGKbWcdaWgaaqcbauaa8qacaGGGcWdaiaad2gacaWGPbWdbiaaccka aSWdaeqaaaGcbaWaaOaaaeaapeGaaiiOa8aacaWGZbWdbiaacckal8 aadaqhaaqcbauaaiaadMgacaWGQbWdbiaacckaa8aabaGaamyraaaa k8qacaGGGcWdaiabew7aL9qacaGGGcWcpaWaa0baaKqaafaacaWGTb Gaam4Aa8qacaGGGcaapaqaa8qacaGGGcWdaiaadsfaaaaakeqaaaaa aaaa@0339@

here S c , C 0 , k  mi  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofalmaaBa aajeaqbaGaam4yaaWcbeaacaGGSaGccaWGdbWcdaWgaaqcbauaaiaa icdaaSqabaGaaiilaOGaam4AaSWaaSbaaKqaafaaqaaaaaaaaaWdbi aacckapaGaamyBaiaadMgapeGaaiiOaaWcpaqabaaaaa@42DD@  - the sectional area of capacitor, the capacitance, and the coefficient of electromechanical coupling.

For current control of the nano piezoengine

T j max = E   m   d  mi   /  s   ij D F max = E   m  d   mi   S  0  /  s   ij D s    ij    D  =  ( 1  k    mi    2  )  s   ij     E  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamivam aaBaaajeaqbaGaamOAaabaaaaaaaaapeGaaiiOa8aacaqGTbGaaeyy aiaabIhaaOqabaGaeyypa0ZaaSGbaeaacaWGfbWdbiaacckal8aada Wgaaqcbauaaiaad2gaaSqabaGcpeGaaiiOa8aacaWGKbWcdaWgaaqc bauaa8qacaGGGcWdaiaad2gacaWGPbWdbiaacckacaGGGcaal8aabe aaaOqaa8qacaGGGcWdaiaadohapeGaaiiOaSWdamaaDaaajeaqbaGa amyAaiaadQgaaeaacaWGebaaaaaaaOqaaiaadAealmaaBaaajeaqba GaaeyBaiaabggacaqG4baaleqaaOGaeyypa0ZaaSGbaeaacaWGfbWd biaacckapaWaaSbaaKqaafaacaWGTbaakeqaa8qacaGGGcWdaiaads gapeGaaiiOaSWdamaaBaaajeaqbaGaamyBaiaadMgaaSqabaGcpeGa aiiOa8aacaWGtbWcdaWgaaqcbauaa8qacaGGGcWdaiaaicdaaSqaba GcpeGaaiiOaaWdaeaapeGaaiiOa8aacaWGZbWdbiaacckal8aadaqh aaqcbauaaiaadMgacaWGQbaabaGaamiraaaaaaaakeaacaWGZbWdbi aacckal8aadaqhaaqcbauaa8qacaGGGcWdaiaadMgacaWGQbWdbiaa cckacaGGGcaapaqaa8qacaGGGcWdaiaadseaaaGcpeGaaiiOa8aacq GH9aqppeGaaiiOaiaacckapaWaaeWaaeaacaaIXaGaeyOeI0Ydbiaa cckacaGGGcWdaiaadUgapeGaaiiOaSWdamaaDaaajeaqbaWdbiaacc kapaGaamyBaiaadMgapeGaaiiOaaWdaeaapeGaaiiOaiaacckapaGa aGOma8qacaGGGcaaaaGcpaGaayjkaiaawMcaa8qacaGGGcWdaiaado halmaaDaaajeaqbaWdbiaacckacaGGGcWdaiaadMgacaWGQbWdbiaa cckacaGGGcaapaqaa8qacaGGGcGaaiiOa8aacaWGfbWdbiaacckaaa aaaaa@9A24@

The mechanical characteristic of the nano piezoengine is obtained

Δl=Δ l max ( 1F/ F max ) Δ l  max =  ν   mi   Ψ  m  l F max = T j max S 0 =   ν   mi  Ψ   m   S 0  /  s   ij  Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeuiLdq KaamiBaiabg2da9iabfs5aejaadYgalmaaBaaajeaqbaGaaeyBaiaa bggacaqG4baaleqaaOWaaeWaaeaacaaIXaGaeyOeI0YaaSGbaeaaca WGgbaabaGaamOramaaBaaajeaqbaGaaeyBaiaabggacaqG4baaleqa aaaaaOGaayjkaiaawMcaaaqaaiabfs5aejaadYgalmaaBaaajeaqba aeaaaaaaaaa8qacaGGGcWdaiaab2gacaqGHbGaaeiEaaWcbeaakiab g2da98qacaGGGcGaaiiOa8aacqaH9oGBpeGaaiiOaSWdamaaBaaaje aqbaGaamyBaiaadMgaaSqabaGcpeGaaiiOa8aacqqHOoqwdaWgaaqc bauaa8qacaGGGcWdaiaad2gapeGaaiiOaaGcpaqabaGaamiBaaqaai aadAeadaWgaaqcbauaaiaab2gacaqGHbGaaeiEaaWcbeaakiabg2da 9iaadsfalmaaBaaajeaqbaGaamOAaiaabccacaqGTbGaaeyyaiaabI haaeqaaOGaam4uaSWaaSbaaKqaafaacaaIWaaabeaakiabg2da98qa caGGGcGaaiiOa8aadaWcgaqaaiabe27aU9qacaGGGcWcpaWaaSbaaK qaafaacaWGTbGaamyAa8qacaGGGcaal8aabeaakiabfI6az9qacaGG GcWdamaaBaaajeaqbaGaamyBaaqcaawabaGcpeGaaiiOa8aacaWGtb WcdaWgaaqcbauaaKazba4=caaIWaqcba0dbiaacckaaSWdaeqaaaGc baWdbiaacckapaGaam4Ca8qacaGGGcWcpaWaa0baaKqaGeaacaWGPb GaamOAa8qacaGGGcaapaqaaiabfI6azbaaaaaaaaa@8B1F@

The expression of the mechanical characteristic of the nano transverse piezoengine is calculated

Δh=Δ h max ( 1F/ F max ) Δ h max = d  31    E 3 h F  max = d   3 1  E   3  S  0  /  s   1 1  E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeuiLdq KaamiAaiabg2da9iabfs5aejaadIgalmaaBaaajeaqbaGaaeyBaiaa bggacaqG4baaleqaaOWaaeWaaeaacaaIXaGaeyOeI0YaaSGbaeaaca WGgbaabaGaamOramaaBaaajeaqbaGaaeyBaiaabggacaqG4baaleqa aaaaaOGaayjkaiaawMcaaaqaaiabfs5aejaadIgalmaaBaaajeaqba GaaeyBaiaabggacaqG4baaleqaaOGaeyypa0JaamizaSWaaSbaaKqa afaaqaaaaaaaaaWdbiaacckapaGaaG4maiaaigdapeGaaiiOaaWcpa qabaGcpeGaaiiOa8aacaWGfbWaaSbaaKqaafaacaaIZaaakeqaaiaa dIgaaeaacaWGgbWaaSbaaKqaafaapeGaaiiOa8aacaqGTbGaaeyyai aabIhaaeqaaOGaeyypa0ZaaSGbaeaacaWGKbWdbiaacckal8aadaWg aaqcbauaaiaaiodapeGaaiiOa8aacaaIXaaabeaak8qacaGGGcWdai aadweapeGaaiiOa8aadaWgaaqcbauaaiaaiodapeGaaiiOaaGcpaqa baGaam4uaSWaaSbaaeaapeGaaiiOaKqaa9aacaaIWaWcpeGaaiiOaa WdaeqaaaGcbaWdbiaacckapaGaam4Ca8qacaGGGcWcpaWaa0baaKqa afaacaaIXaWdbiaacckapaGaaGymaaqaa8qacaGGGcWdaiaadweaaa aaaaaaaa@77D1@

At d  3 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgalmaaBa aajeaqbaaeaaaaaaaaa8qacaGGGcWdaiaaiodapeGaaiiOa8aacaaI Xaaaleqaaaaa@3CB6@  = 2 10 10 m/V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabgwSixlaaigdacaaIWaWdamaaCaaajeaqbeqaa8qacqGH sislcaaIXaGaaGimaaaak8aacaGGTbWdbiaac+cacaGGwbaaaa@416D@ , E 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwealmaaBa aajeaqbaGaaG4maaWcbeaaaaa@3946@  = 0.5∙105 V/m, h = 2.5∙10-2 m, S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaaIWaaabeaaaaa@37B5@  = 1.5∙10-5 m2, s   1 1 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohaqaaaaa aaaaWdbiaacckal8aadaqhaaqcbasaaiaaigdapeGaaiiOa8aacaaI XaaabaGaamyraaaaaaa@3D63@  = 15∙10-12 m2/N the parameters Δ h max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadI galmaaBaaajeaqbaGaaeyBaiaabggacaqG4baaleqaaaaa@3CE1@  = 250 nm, F max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa qcbauaaiaab2gacaqGHbGaaeiEaaWcbeaaaaa@3B4E@  = 10 N are obtained on Figure 4 at error 10%.

Figure 4 Mechanical characteristic of nano transverse piezoengine.

The deformation piezoengine at elastic load is obtained

Δl l   =  ν   mi    Ψ m    s   ij Ψ    C e S 0   Δl F= C e  Δl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaaSaaae aacqqHuoarcaWGSbaabaGaamiBaaaaqaaaaaaaaaWdbiaacckacaGG GcWdaiabg2da98qacaGGGcGaaiiOa8aacqaH9oGBpeGaaiiOaSWdam aaBaaajeaqbaGaamyBaiaadMgapeGaaiiOaaqcba2daeqaaOWdbiaa cckapaGaeuiQdK1aaSbaaKqaafaacaWGTbaajaaybeaakiabgkHiT8 qacaGGGcGaaiiOa8aadaWcaaqaaiaadohapeGaaiiOaSWdamaaDaaa jeaibaGaamyAaiaadQgaaeaacqqHOoqwaaGcpeGaaiiOaiaacckapa Gaam4qamaaBaaajeaqbaGaamyzaaqcaawabaaakeaacaWGtbWcdaWg aaqcbauaaiaaicdaaKqaGfqaaaaak8qacaGGGcGaaiiOa8aacqqHuo arcaWGSbaabaGaamOraiabg2da9iaadoeadaWgaaqcbauaaiaadwga aSqabaGcpeGaaiiOa8aacqqHuoarcaWGSbaaaaa@6965@

The control characteristic of the nano piezoengine is determined

Δl=   ν   mi   l  Ψ m 1+  C   e  /   C   ij  Ψ s   ij   =   k s  s  ij   E ,(  1  k   mi  2   ) k s 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeuiLdq KaamiBaiabg2da9abaaaaaaaaapeGaaiiOaiaacckapaWaaSaaaeaa cqaH9oGBlmaaBaaajeaqbaWdbiaacckacaGGGcWdaiaad2gacaWGPb WdbiaacckaaSWdaeqaaOWdbiaacckapaGaamiBa8qacaGGGcWdaiab fI6aznaaBaaajeaqbaGaamyBaaGcbeaaaeaacaaIXaGaey4kaSYaaS GbaeaapeGaaiiOa8aacaWGdbWdbiaacckapaWaaSbaaKqaafaacaWG LbWdbiaacckaaSWdaeqaaaGcbaWdbiaacckapaGaam4qamaaDaaaje aqbaWdbiaacckacaGGGcWdaiaadMgacaWGQbaabaWdbiaacckapaGa euiQdKfaaaaaaaaakeaacaWGZbWdbiaacckal8aadaWgaaqcbauaai aadMgajeaicaWGQbqcba0dbiaacckaaSWdaeqaaOWdbiaacckapaGa eyypa0ZdbiaacckacaGGGcWdaiaadUgadaWgaaqcbauaaiaadohape GaaiiOaaqcba2daeqaaOGaam4CaSWaa0baaKqaafaapeGaaiiOa8aa caWGPbGaamOAa8qacaGGGcaapaqaa8qacaGGGcWdaiaadweaaaWcca GGSaGcdaqadaqaa8qacaGGGcWdaiaaigdacqGHsislpeGaaiiOaiaa cckapaGaam4Aa8qacaGGGcWcpaWaa0baaKqaGeaacaWGTbGaamyAaa qaa8qacaGGGcWdaiaaikdaaaGcpeGaaiiOaaWdaiaawIcacaGLPaaa cqGHKjYOcaWGRbWcdaWgaaqcbauaaiaadohaaSqabaGccqGHKjYOca aIXaaaaaa@8989@

here k s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa qcbauaaiaadohaaOqabaaaaa@399B@  the coefficients change of elastic compliance.

For the nano piezoengine its reverse and direct coefficients are calculated

k r = k d =   d  mi   S 0 δ  s  ij  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa qcbauaaiaadkhaaKqaGfqaaOGaeyypa0Jaam4AamaaBaaajeaqbaGa amizaaWcbeaakiabg2da9abaaaaaaaaapeGaaiiOaiaacckapaWaaS aaaeaacaWGKbWcdaWgaaqcbauaa8qacaGGGcWdaiaad2gacaWGPbaa jeaybeaak8qacaGGGcWdaiaadofadaWgaaqcbauaaiaaicdaaKaaaf qaaaGcbaGaeqiTdq2dbiaacckapaGaam4CaSWaaSbaaKqaafaapeGa aiiOa8aacaWGPbGaamOAa8qacaGGGcaajeaypaqabaaaaaaa@529C@

By using the equation of load the scheme of the nano piezoengine with one fixed face on Figure 5 is calculated.

Figure 5 Scheme of nano piezoengine with one fixed face.

The expression on voltage for Figure 4 is calculated

W( s )= Ξ 2 ( s )/ U( s ) = k r / N( s ) N( s )= a 0   s 3 + a 1   s 2 + a 2  s+ a 3 a 0 =R  C 0   M 2 , a 1  = M 2 + R  C 0    k v a 2 = k v +R  C 0  C   ij  + R  C 0  C + e  R  k r  k d , a  3 =  C   e + C ij  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4vam aabmaabaGaam4CaaGaayjkaiaawMcaaiabg2da9maalyaabaGaeuON dG1aaSbaaKqaafaacaaIYaaaleqaaOWaaeWaaeaacaWGZbaacaGLOa GaayzkaaaabaGaamyvamaabmaabaGaam4CaaGaayjkaiaawMcaaaaa cqGH9aqpdaWcgaqaaiaadUgadaWgaaqcbauaaiaadkhaaSqabaaake aacaWGobWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaaqaaiaad6ea daqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpcaWGHbWaaSbaaK qaafaacaaIWaaaleqaaOaeaaaaaaaaa8qacaGGGcWdaiaadohalmaa CaaabeqcbauaaiaaiodaaaGccqGHRaWkcaWGHbWaaSbaaKqaafaaca aIXaaaleqaaOWdbiaacckapaGaam4CaSWaaWbaaeqajeaqbaGaaGOm aaaaliabgUcaROGaamyyamaaBaaajeaqbaGaaGOmaaWcbeaak8qaca GGGcWdaiaadohacqGHRaWkcaWGHbWaaSbaaKqaafaacaaIZaaaleqa aaGcbaGaamyyamaaBaaajeaqbaGaaGimaaqcbawabaGccqGH9aqpca WGsbWdbiaacckapaGaam4qaSWaaSbaaKqaafaacaaIWaaajeaybeaa k8qacaGGGcWdaiaad2eadaWgaaqcbauaaiaaikdaaSqabaGccaGGSa GaamyyamaaBaaajeaqbaGaaGymaaqabaqcaa0dbiaacckak8aacqGH 9aqpcaWGnbWaaSbaaKqaafaacaaIYaaabeaakiabgUcaR8qacaGGGc WdaiaadkfapeGaaiiOa8aacaWGdbWaaSbaaKqaafaacaaIWaWdbiaa cckaa8aabeaak8qacaGGGcWdaiaadUgadaWgaaqcbauaaiaadAhaaS qabaaakeaacaWGHbWaaSbaaKqaafaacaaIYaaabeaakiabg2da9iaa dUgadaWgaaqcbauaaiaadAhaaKqaGfqaaOGaey4kaSIaamOua8qaca GGGcWdaiaadoeadaWgaaqcbauaaiaaicdaaeqaaOWdbiaacckapaGa am4qaSWaaSraaKqaafaajaaicaWGPbqcKfaG=laadQgajeaqpeGaai iOaaWcpaqabaGcpeGaaiiOa8aacqGHRaWkpeGaaiiOa8aacaWGsbWd biaacckapaGaam4qamaaBaaajeaqbaGaaGima8qacaGGGcaal8aabe aakiaadoealmaaBeaajeaqbaGaamyzaaWcbeaakiabgUcaR8qacaGG GcWdaiaadkfapeGaaiiOa8aacaWGRbWaaSbaaKqaafaacaWGYbWdbi aacckaaSWdaeqaaOGaam4AamaaBaaajeaqbaGaamizaaWcbeaakiaa cYcacaWGHbWaaSbaaKqaafaapeGaaiiOa8aacaaIZaaabeaakiabg2 da98qacaGGGcGaaiiOa8aacaWGdbWcdaWgbaqcbauaaiaadwgaaSqa baGcpeGaaiiOa8aacqGHRaWkpeGaaiiOa8aacaWGdbWcdaWgbaqcba uaaiaadMgacaWGQbWdbiaacckaaKqaG9aabeaaaaaa@BBFD@

here k v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa qcbauaaiaadAhaaSqabaaaaa@399F@  - the coefficient of damping.

For the nano transverse piezoengine for R=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabg2 da9iaaicdaaaa@388E@  the expression on voltage is determined

W ( s )=   Ξ ( s ) U ( s ) = k   31    U T t 2   s 2 +2 T t   ξ t  s+1 k   31  U  = d  31   ( h/δ )/ (  1+ C   l / C   11  E ) T t =   M / (  C   l  + C   1 1   E ) , ω t =1/   T t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4vaa baaaaaaaaapeGaaiiOa8aadaqadaqaaiaadohaaiaawIcacaGLPaaa cqGH9aqppeGaaiiOaiaacckapaWaaSaaaeaacqqHEoawpeGaaiiOa8 aadaqadaqaaiaadohaaiaawIcacaGLPaaaaeaacaWGvbWdbiaaccka paWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaiabg2da9maalaaaba Gaam4Aa8qacaGGGcWdamaaDaaajeaibaGaaG4maiaaigdapeGaaiiO aiaacckaa8aabaWdbiaacckapaGaamyvaaaaaOqaaiaaysW7caWGub WcdaqhaaqcbauaaiaadshaaeaacaaIYaaaaOWdbiaacckapaGaam4C aSWaaWbaaKqaGfqajeaqbaGaaGOmaaaakiabgUcaRiaaikdacaWGub WcdaWgaaqcbauaaiaadshaaSqabaGcpeGaaiiOa8aacqaH+oaElmaa BaaajeaqbaGaamiDaaWcbeaak8qacaGGGcWdaiaadohacqGHRaWkca aIXaaaaaqaaiaadUgapeGaaiiOa8aadaqhaaqcbauaaiaaiodacaaI XaaabaWdbiaacckapaGaamyvaaaajaaypeGaaiiOaOWdaiabg2da9m aalyaabaGaamizaSWaaSbaaKqaafaapeGaaiiOa8aacaaIZaGaaGym a8qacaGGGcaajeaypaqabaGcpeGaaiiOa8aadaqadaqaamaalyaaba GaamiAaaqaaiabes7aKbaaaiaawIcacaGLPaaaaeaadaqadaqaa8qa caGGGcWdaiaaigdacqGHRaWkdaWcgaqaaiaadoeapeGaaiiOa8aada WgaaqcbauaaiaadYgaaKqaGfqaaaGcbaGaam4qa8qacaGGGcWdamaa DaaajeaqbaGaaGymaiaaigdaaeaapeGaaiiOa8aacaWGfbaaaaaaaO GaayjkaiaawMcaaaaaaeaacaWGubWaaSbaaKqaafaacaWG0baaleqa aOGaeyypa0ZdbiaacckacaGGGcWdamaakaaabaWaaSGbaKaaGfaaca WGnbWdbiaacckaaOWdaeaadaqadaqaa8qacaGGGcWdaiaadoeapeGa aiiOa8aadaWgaaqcbauaaiaadYgaaKqaGfqaaOWdbiaacckapaGaey 4kaSYdbiaacckapaGaam4qa8qacaGGGcWdamaaDaaajeaqbaGaaGym a8qacaGGGcWdaiaaigdapeGaaiiOaaWdaeaapeGaaiiOa8aacaWGfb aaaaGccaGLOaGaayzkaaaaaaWcbeaakiaacYcacqaHjpWDlmaaBaaa jeaqbaGaamiDaaWcbeaakiabg2da9maalyaabaGaaGymaaqaa8qaca GGGcWdaiaadsfadaWgaaqcbauaaiaadshaaSqabaaaaaaaaa@AEF6@

For M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaaaa@36C9@  = 2 kg, C l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoealmaaBa aajeaqbaGaamiBaaWcbeaaaaa@3978@  = 0.2 10 7 N/m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiaac6cacaaIYaaccaWdaiab=vSix=qacaaIXaGaaGima8aa daahaaqcbauabeaapeGaaG4naaaak8aacaGGobWdbiaac+cacaGGTb aaaa@4152@ , C   11  E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeaqaaaaa aaaaWdbiaacckal8aadaqhaaqcbauaaiaaigdacaaIXaaabaWdbiaa cckapaGaamyraaaaaaa@3D53@  = 1.6 10 7 N/m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiaac6cacaaI2aaccaWdaiab=vSix=qacaaIXaGaaGima8aa daahaaWcbeqcbauaa8qacaaI3aaaaOWdaiaac6eapeGaai4laiaac2 gaaaa@4162@  the parameters T t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfalmaaBa aajeaqbaGaamiDaaWcbeaaaaa@3991@  = 0.33×10-3 s, ω t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3TWaaS baaKqaafaacaWG0baaleqaaaaa@3A85@  = 3 10   3  s   1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaG4maiaacckaiiaapaGae8xXIC9dbiaaigdacaaIWaGaaiiOa8aa daahaaqcbauabeaapeGaaG4maaaakiaacckacaWGZbGaaiiOa8aada ahaaWcbeqcbauaa8qacqGHsislcaaIXaaaaaaa@4514@ are evaluated on Figure 6 at error 10%.

Figure 6 Bandwidth of nano transverse piezoengine.

The static displacement

Δh= d  31  ( h/δ )U 1+ C l  / C   11  E =k   31  U  U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadI gacqGH9aqpdaWcaaqaaiaadsgalmaaBaaajeaqbaaeaaaaaaaaa8qa caGGGcWdaiaaiodacaaIXaWdbiaacckaa8aabeaakmaabmaabaWaaS GbaeaacaWGObaabaGaeqiTdqgaaaWccaGLOaGaayzkaaGccaWGvbaa baGaaGymaiabgUcaRmaalyaabaGaam4qamaaBaaajeaqbaGaamiBaa Wcbeaak8qacaGGGcaapaqaaiaadoeapeGaaiiOa8aadaqhaaqcbaua aiaaigdacaaIXaaabaWdbiaacckapaGaamyraaaaaaaaaOGaeyypa0 Jaam4Aa8qacaGGGcWdamaaDaaajeaqbaGaaG4maiaaigdaaeaapeGa aiiOa8aacaWGvbaaaOWdbiaacckapaGaamyvaaaa@59D2@

For d  31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgalmaaBa aajeaqbaaeaaaaaaaaa8qacaGGGcWdaiaaiodacaaIXaaaleqaaaaa @3B73@  = 2 10 10 m/V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGOmaiabgwSixlaaigdacaaIWaWdamaaCaaajeaqbeqaa8qacqGH sislcaaIXaGaaGimaaaak8aacaGGTbWdbiaac+cacaGGwbaaaa@416D@ , h/δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGObaabaGaeqiTdqgaaaaa@389F@  = 24, C l  / C   11  E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalyaabaGaam 4qamaaBaaajeaqbaGaamiBaaqabaGcqaaaaaaaaaWdbiaacckaa8aa baGaam4qa8qacaGGGcWdamaaDaaajeaqbaGaaGymaiaaigdaaeaape GaaiiOa8aacaWGfbaaaaaaaaa@40CF@  = 0.1 the parameter k   31  U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgaqaaaaa aaaaWdbiaacckapaWaa0baaKqaafaacaaIZaGaaGymaaqaa8qacaGG GcWdaiaadwfaaaaaaa@3D82@  = 4.4 nm/V is evaluated at error 10%.

Conclusion

For calculation nano systems the structural model and scheme of the nano piezoengine are used, which reflect the conversion of electrical energy into mechanical energy. The structural model and schemes of the nano piezoengine are obtained for applied biomechanics and biosciences. The matrix of the deformations of the nano piezoengine is constructed. The parameters of the nano piezoengine are determined for applied biomechanics and biosciences.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Schultz J, Ueda J, Asada H. Cellular Actuators. Butterworth-Heinemann Publisher, Oxford. 2017:382p.
  2. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;74(3):943–948.
  3. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher. 1997:350p.
  4. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 2005;50(2):77–82.
  5. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  6. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;73(2):307–313.
  7. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. McGraw-Hill Book Company, New York, London. 1946:806p.
  8. Mason W. Physical Acoustics: Principles and Methods. Vol. 1. Part A. Methods and Devices. Academic Press, New York. 1964:515p.
  9. Yang Y, Tang L. Equivalent circuit modeling of piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures. 2009;20(18):2223–2235.
  10. Zwillinger D. Handbook of Differential Equations. Academic Press, Boston. 1989:673p.
  11. Afonin SM. A generalized structural-parametric model of an elecromagnetoelastic converter for nano- and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano- and micrometric movement control systems. Journal of Computer and Systems Sciences International. 2006;45(2):317–325.
  12. Afonin SM. Generalized structural-parametric model of an electromagnetoelastic converter for control systems of nano-and micrometric movements: IV. Investigation and calculation of characteristics of step-piezodrive of nano-and micrometric movements. Journal of Computer and Systems Sciences International. 2006;45(6):1006–1013.
  13. Afonin SM. Decision wave equation and block diagram of electromagnetoelastic actuator nano- and microdisplacement for communications systems. International Journal of Information and Communication Sciences. 2016;1(2):22–29.
  14. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Ed. Parinov IA. Nova Science, New York. 2015:225–242.
  15. Afonin SM. A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Chapter 8 in Advances in Nanotechnology. Volume 19. Eds. Bartul Z, Trenor J, Nova Science, New York. 2017:259–284.
  16. Afonin SM. Electromagnetoelastic nano- and microactuators for mechatronic systems. Russian Engineering Research. 2018;38(12):938–944.
  17. Afonin SM. Nano- and micro-scale piezomotors. Russian Engineering Research. 2012;32(7–8):519–522.
  18. Afonin SM. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mechanics of Solids. 2007;42(1):43–49.
  19. Afonin SM. Stability of strain control systems of nano-and microdisplacement piezotransducers. Mechanics of Solids. 2014;49(2):196–207.
  20. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics. 2017;5(1):9–15.
  21. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics. 2019;7(2):50–57.
  22. Afonin SM. Calculation deformation of an engine for nano biomedical research. International Journal of Biomed Research. 2021;1(5):1–4.
  23. Afonin SM. Precision engine for nanobiomedical research. Biomedical Research and Clinical Reviews. 2021;3(4):1–5.
  24. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano- and microdisplacement. International Journal of Mathematical Analysis and Applications. 2016;3(4):31–38.
  25. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):1–9.
  26. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):1–14.
  27. Afonin SM. Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and microdisplacement for mechatronic systems. International Journal of Theoretical and Applied Mathematics. 2016;2(2):52–59.
  28. Afonin SM. Design static and dynamic characteristics of a piezoelectric nanomicrotransducers. Mechanics of Solids. 2010;45(1):123–132.
  29. Afonin SM. Electromagnetoelastic Actuator for Nanomechanics. Global Journal of Research in Engineering: A Mechanical and Mechanics Engineering. 2018;18(2):19–23.
  30. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. Proceedings of the 2018 IEEE Conference EIConRus. 2018:1698–1701.
  31. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transactions on Networks and Communications. 2018;6(3):1–9.
  32. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems. Transactions on Networks and Communications. 2019;7(3):11–21.
  33. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Transactions on Networks and Communications. 2020;8(1):8–15.
  34. Afonin SM. A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Transactions on Machine Learning and Artificial Intelligence. 2020;8(4):23–33.
  35. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. applied system innovation. 2020;3(4):1–7.
  36. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. applied system innovation. 2021;4(3):1–11.
  37. Afonin SM. (2020) Structural scheme actuator for nano research. COJ Reviews and Research. 2020;2(5):1–3.
  38.  Afonin SM. Structural–parametric model electroelastic actuator nano- and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Ecology and Environmental Sciences. 2018;3(5):306‒309.
  39. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeronautics and Aerospace Open Access Journal. 2018;2(5):270–272.
  40.  Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surgery & Case Studies Open Access Journal. 2019;3(3):307–309.
  41. Afonin SM. Piezo actuators for nanomedicine research. MOJ App Bio Biomech. 2019;3(2):56–57.
  42. Afonin SM. Frequency criterion absolute stability of electromagnetoelastic system for nano and micro displacement in biomechanics. MOJ App Bio Biomech. 2019;3(6):137–140.
  43. Afonin SM. Multilayer piezo engine for nanomedicine research. MOJ App Bio Biomech. 2020;4(2):30–31.
  44. Afonin SM. Piezoengine for nanomedicine and applied bionics. MOJ App Bio Biomech. 2022;6(1):30–33.
  45. Afonin SM. Multilayer engine for microsurgery and nano biomedicine. Surg Case Stud Open Access J. 2020;4(4):423–425.
  46. Afonin SM. A structural-parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology. Chapter 7 in Advances in Nanotechnology. Volume 22. Eds. Bartul Z, Trenor J, Nova Science, New York. 2019:169–186.
  47. Afonin SM. Electroelastic digital-to-analog converter actuator nano and microdisplacement for nanotechnology. Chapter 6 in Advances in Nanotechnology. Volume 24. Eds. Bartul Z, Trenor J, Nova Science, New York. 2020:205–218.
  48. Afonin SM. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. Chapter 8 in Advances in Nanotechnology. Volume 25. Eds. Bartul Z, Trenor J, Nova Science, New York. 2021:251–266.
  49. Afonin SM. An absolute stability of nanomechatronics system with electroelastic actuator. Chapter 9 in Advances in Nanotechnology. Volume 27. Eds. Bartul Z, Trenor J, Nova Science, New York. 2022:183–198.
  50. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russian Eng Res. 2021;41(4):285–288.
  51. Afonin SM. Piezo engine for nano biomedical science. Open Access J Biomed Sci. 2022;4(5):2057–2059.
  52. Afonin SM. An engine for nanochemistry. J Chem Appl. 2022;1(1):1–4.
  53. Afonin SM. Electroelastic actuator of nanomechatronics systems for nanoscience. Chapter 2 in Recent Progress in Chemical Science Research. Volume 6. Ed. Min HS, B P International, India, UK. London 2023:15–27.
  54. Afonin SM. Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. Chapter 34 in Physics and Mechanics of New Materials and Their Applications. Proceedings of the International Conference PHENMA 2021-2022, Springer Proceedings in Materials series. Volume 20. Eds. Parinov IA, Chang SH, Soloviev AN. Springer, Cham. 2023:419–428.
  55. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric Actuators and Generators for Energy Harvesting. Research and Development. Springer, Switzerland, Cham. 2018:182 p.
  56. Bhushan B. Springer Handbook of Nanotechnology. New York: Springer. 2004:1222.
Creative Commons Attribution License

©2023 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.