Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 7 Issue 1

Absolute stability of system with nano piezoengine for biomechanics

Afonin SM

National Research University of Electronic Technology MIET, Russia

Correspondence: Afonin SM. National Research University of Electronic Technology MIET, Moscow, Russia

Received: October 10, 2023 | Published: November 14, 2023

Citation: Afonin SM. Absolute stability of system with nano piezoengine for biomechanics. MOJ App Bio Biomech. 2023;7(1):211-213. DOI: 10.15406/mojabb.2023.07.00197

Download PDF

Abstract

The nano piezoengine is used for biomechanics and nano sciences in dosing device, scanning microscopy, nano manipulator, nano pump. For the nano piezoengine with hysteresis in control system its set of equilibrium positions is the segment of line. The frequency method for studying the stability of system is used. By applying Yakubovich criterion for system with the nano piezoengine the absolute stability of system is calculated for biomechanics. The ratio of the piezomodules of the nano piezoengine with transverse, longitudinal, shear piezoelectric effects is proportional the ratio of its tangents of the angle of inclination to the hysteresis.

Keywords: absolute stability system, nano piezoengine, hysteresis, set equilibrium positions, biomechanics

Introduction

Many equilibrium positions are found in system with nano piezoengine for biomechanics and nano science. For calculation absolute stability of system with the nano piezoengine is using Yakubovich criterion, which is the development of the Lyapunov and Popov criterions.1–20 The nano piezoengine is used for biomechanics and nano sciences in dosing device, scanning microscopy, nano manipulator, nano pump.3–30

Methods

The frequency method for studying the stability of system is used to study the absolute stability of control system with the nano piezoengine.

Results

In this work for discussions stability of system with the nano piezoengine are used three main problems: the set of equilibrium positions, the Yakubovich criterion for the absolute stability of system, the maximum of the tangent the angle of inclination to the hysteresis loop of the nano piezoengine.

For written the hysteresis of the nano piezoengine for biomechanics and nano science the Preisach model is used for its hysteresis deformation. The hysteresis Preisach function of the relative deformation the nano piezoengine on Figure 1 is determined.3–28

S i =F[ E m | 0 t ,t, S i ( 0 ),sign E ˙ m ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGtbWaaSbaaSqaaiaadMgaaOqabaGaeyypa0JaamOramaa dmaabaWaaqGaaeaacaWGfbWaaSbaaSqaaiaad2gaaOqabaaacaGLiW oalmaaDaaabaGaaGimaaqaaiaadshaaaGccaGGSaGaamiDaiaacYca caWGtbWaaSbaaSqaaiaadMgaaOqabaWaaeWaaeaacaaIWaaacaGLOa GaayzkaaGaaiilaiaadohacaWGPbGaam4zaiaad6gaceWGfbGbaiaa daWgaaWcbaGaamyBaaqabaaakiaawUfacaGLDbaaaaa@547B@  

here S i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGtbWcdaWgaaqaaiaadMgaaeqaaaaa@3E34@  - the hysteresis deformation, t - time, S i ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGtbWcdaWgaaqaaiaadMgaaeqaaOWaaeWaaeaacaaIWaaa liaawIcacaGLPaaaaaa@408C@  - the initial condition, E m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGfbWaaSbaaSqaaiaad2gaaOqabaaaaa@3E34@  - the strength of electric field, sign E ˙ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaqGZbGaaeyAaiaabEgacaqGUbGaaGPaVlqadweagaGaamaa BaaaleaacaWGTbaabeaaaaa@437B@  - the sign for velocity of change strength of electric field.

In control system the set of equilibrium positions is the set of points M of intersection of the line L with the hysteresis characteristic of nano piezo engine on Figure 1 in the form of the selected line segment.3 Respectively, the equation of the line L is evaluated

E m +k S i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGfbWaaSbaaSqaaiaad2gaaOqabaGaey4kaSIaam4Aaiaa dofalmaaBaaabaGaamyAaaqabaGccqGH9aqpcaaIWaaaaa@43C2@  

here k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaaaa@36E6@  - the transfer coefficient for the linear part of control system.

Figure 1 Hysteresis characteristic of nano piezoengine.

The expression for the symmetric main hysteresis loop28 of the characteristic of nano piezoengine on Figure 1 is determined in the form

S i = d mi E m γ mi E mmax ( 1 E m 2 E mmax 2 ) n mi sign E ˙ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaWGPbaabeaakiabg2da9iaadsgalmaaBaaabaGaamyBaiaa dMgaaeqaaOGaamyraSWaaSbaaeaacaWGTbaabeaakiabgkHiTiabeo 7aNTWaaSbaaeaacaWGTbGaamyAaaqabaGccaWGfbWcdaWgaaqaaiaa d2gacaaMe8UaaeyBaiaabggacaqG4baabeaakmaabmaabaGaaGymai abgkHiTmaalaaabaGaamyraSWaa0baaeaacaWGTbaabaGaaGOmaaaa aOqaaiaadwealmaaDaaabaGaamyBaiaaysW7caqGTbGaaeyyaiaabI haaeaacaaIYaaaaaaaaOGaayjkaiaawMcaamaaCaaabeWcbaGaamOB amaaBaaameaacaWGTbGaamyAaaWcbeaaaaGccaqGZbGaaeyAaiaabE gacaqGUbGabmyrayaacaWaaSbaaSqaaiaad2gaaeqaaaaa@5ECC@  

here d mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaS baaeaacaWGTbGaamyAaaqabaaaaa@38EB@  - the piezo module, γ mi = S i 0 / E mmax MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2cda Wgaaqaaiaad2gacaWGPbaabeaakiabg2da9maalyaabaGaam4uaSWa a0babeaacaWGPbaabaGaaGimaaaaaOqaaiaadwealmaaBaaabaGaam yBaiaaysW7caqGTbGaaeyyaiaabIhaaeqaaaaaaaa@43CB@  - the coefficient of hysteresis, S i 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaa0 babeaacaWGPbaabaGaaGimaaaaaaa@38A4@  - the relative deformation at E m =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraWWaaS baaeaacaWGTbaabeaakiabg2da9iaaicdaaaa@39A9@ , n mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaSWaaS baaeaacaWGTbGaamyAaaqabaaaaa@38F5@  - the coefficient for the nano piezoengine from PZT n mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaSWaaS baaeaacaWGTbGaamyAaaqabaaaaa@38F5@  = 1.

The width of the resting zone at Δ E mmax MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam yraSWaaSbaaeaacaWGTbGaaGjbVlaab2gacaqGHbGaaeiEaaqabaaa aa@3DA0@  is obtained

Δ E mmax +k S i + ( Δ E mmax )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam yraSWaaSbaaeaacaWGTbGaaGjbVlaab2gacaqGHbGaaeiEaaqabaGc cqGHRaWkcaWGRbGaam4uaSWaa0baaeaacaWGPbaabaGaey4kaScaaO WaaeWaaeaacqqHuoarcaWGfbWcdaWgaaqaaiaad2gacaaMe8UaaeyB aiaabggacaqG4baabeaaaiaawIcacaGLPaaakiabg2da9iaaicdaaa a@4D58@  

here Δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqeaaa@375C@  - the relative value of electric field strength; S i + ( Δ E mmax ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaa0 baaeaacaWGPbaabaGaey4kaScaaOWaaeWaaeaacqqHuoarcaWGfbWc daWgaaqaaiaad2gacaaMe8UaaeyBaiaabggacaqG4baabeaaaOGaay jkaiaawMcaaaaa@4212@  - the value of the relative deformation on the ascending branch for E ˙ m >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyrayaaca WaaSbaaSqaaiaad2gaaeqaaOGaeyOpa4JaaGimaaaa@39B3@ , S i ( Δ E mmax ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaa0 baaeaacaWGPbaabaGaeyOeI0caaOWaaeWaaeaacqGHsislcqqHuoar caWGfbWcdaWgaaqaaiaad2gacaaMe8UaaeyBaiaabggacaqG4baabe aaaOGaayjkaiaawMcaaaaa@430A@  - the value of the relative deformation on the descending branch for E ˙ m <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyrayaaca WaaSbaaSqaaiaad2gaaeqaaOGaeyipaWJaaGimaaaa@39AF@  on Figure 1.

At the symmetric main hysteresis loop characteristic of the nano piezo engine the equation is evaluated

S i + ( Δ E mmax )= d mi Δ E mmax γ mi E mmax ( 1 ( Δ E mmax ) 2 E mmax 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaa0 baaeaacaWGPbaabaGaey4kaScaaOWaaeWaaeaacqqHuoarcaWGfbWc daWgaaqaaiaad2gacaaMe8UaaeyBaiaabggacaqG4baabeaaaOGaay jkaiaawMcaaiabg2da9iaadsgalmaaBaaabaGaamyBaiaadMgaaeqa aOGaeuiLdqKaamyraSWaaSbaaeaacaWGTbGaaGjbVlaab2gacaqGHb GaaeiEaaqabaGccqGHsislcqaHZoWzdaWgaaWcbaGaamyBaiaadMga aOqabaGaamyraSWaaSbaaeaacaWGTbGaaGjbVlaab2gacaqGHbGaae iEaaqabaGcdaqadaqaaiaaigdacqGHsisldaWcaaqaamaabmaabaGa euiLdqKaamyraSWaaSbaaeaacaWGTbGaaGjbVlaab2gacaqGHbGaae iEaaqabaaakiaawIcacaGLPaaalmaaCaaabeqaaiaaikdaaaaakeaa caWGfbWcdaqhaaqaaiaad2gacaaMe8UaaeyBaiaabggacaqG4baaba GaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@6D3F@  

After transformation this expression is determined

S i + ( Δ E mmax )= d mi Δ E mmax γ mi E mmax ( 1 Δ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGtbWcdaqhaaqaaiaadMgaaeaacqGHRaWkaaGcdaqadaqa aiabfs5aejaadwealmaaBaaabaGaamyBaiaaysW7caqGTbGaaeyyai aabIhaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaamizaSWaaSbaaeaa caWGTbGaamyAaaqabaGccqqHuoarcaWGfbWcdaWgaaqaaiaad2gaca aMe8UaaeyBaiaabggacaqG4baabeaakiabgkHiTiabeo7aNnaaBaaa leaacaWGTbGaamyAaaGcbeaacaWGfbWcdaWgaaqaaiaad2gacaaMe8 UaaeyBaiaabggacaqG4baabeaakmaabmaabaGaaGymaiabgkHiTiab fs5aenaaCaaajeaybeqaaiaabkdaaaaakiaawIcacaGLPaaaaaa@64F1@  

From equation for the width of the resting zone the expression is calculated

Δ E mmax +k E mmax [ d mi Δ γ mi ( 1 Δ 2 ) ] =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam yraSWaaSbaaeaacaWGTbGaaGjbVlaab2gacaqGHbGaaeiEaaqabaGc cqGHRaWkcaWGRbGaamyraSWaaSbaaeaacaWGTbGaaGjbVlaab2gaca qGHbGaaeiEaaqabaGcdaWadaqaaiaadsgalmaaBaaabaGaamyBaiaa dMgaaeqaaOGaeuiLdqKaeyOeI0Iaeq4SdC2cdaWgaaqaaiaad2gaca WGPbaabeaakmaabmaabaGaaGymaiabgkHiTiabfs5aenaaCaaabeWc baGaaGOmaaaaaOGaayjkaiaawMcaaaGaay5waiaaw2faamaaDaaale aaaeaaaaGccqGH9aqpcaaIWaaaaa@584C@  

Then the equation is determined

Δ+k [ d mi Δ γ mi ( 1 Δ 2 ) ] =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaey 4kaSIaam4AamaadmaabaGaamizaSWaaSbaaeaacaWGTbGaamyAaaqa baGccqqHuoarcqGHsislcqaHZoWzdaWgaaWcbaGaamyBaiaadMgaaO qabaWaaeWaaeaacaaIXaGaeyOeI0IaeuiLdq0aaWbaaeqaleaacaaI YaaaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaWaa0baaSqaaaqaaa aakiabg2da9iaaicdaaaa@4BB0@  

The quadratic equation is calculated

Δ 2 + ( 1+k d mi ) k γ mi Δ1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqqHuoardaahaaWcbeqcbawaaiaabkdaaaGccqGHRaWkdaWc aaqaamaabmaabaGaaGymaiabgUcaRiaadUgacaWGKbWcdaWgaaqaai aad2gacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaadUgacqaHZoWz daWgaaWcbaGaamyBaiaadMgaaOqabaaaaiabfs5aejabgkHiTiaaig dacqGH9aqpcaaIWaaaaa@5080@  

The relative width of the rest zone of system with the nano piezoengine for biomechanics and nano sciences is obtained from this quadratic equation for the symmetric loop characteristic in the form

2Δ= ( 1+k d mi ) k γ mi + ( 1+k d mi ) 2 k 2 γ mi 2 +4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabfs 5aejabg2da9iabgkHiTmaalaaabaWaaeWaaeaacaaIXaGaey4kaSIa am4AaiaadsgalmaaBaaabaGaamyBaiaadMgaaeqaaaGccaGLOaGaay zkaaaabaGaam4Aaiabeo7aNTWaaSbaaeaacaWGTbGaamyAaaqabaaa aOGaey4kaSYaaOaaaeaadaWcaaqaamaabmaabaGaaGymaiabgUcaRi aadUgacaWGKbWcdaWgaaqaaiaad2gacaWGPbaabeaaaOGaayjkaiaa wMcaamaaCaaabeWcbaGaaGOmaaaaaOqaaiaadUgalmaaCaaabeqaai aaikdaaaGccqaHZoWzlmaaDaaabaGaamyBaiaadMgaaeaacaaIYaaa aaaakiabgUcaRiaaisdaaeqaaaaa@56E4@  

and for the asymmetric loop characteristic its relative width of the rest zone of system is evaluated in the form

Δ + + Δ = ( 1+k d mi ) 2k ( 1 γ mi + + 1 γ mi ) + 1 2 ( 1+k d mi ) 2 k 2 ( γ mi + ) 2 +4 + 1 2 ( 1+k d mi ) 2 k 2 ( γ mi ) 2 +4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqqHuo arlmaaCaaabeqaaiabgUcaRaaakiabgUcaRiabfs5aeTWaaWbaaeqa baGaeyOeI0caaOGaeyypa0JaeyOeI0YaaSaaaeaadaqadaqaaiaaig dacqGHRaWkcaWGRbGaamizaSWaaSbaaeaacaWGTbGaamyAaaqabaaa kiaawIcacaGLPaaaaeaacaaIYaGaam4Aaaaadaqadaqaamaalaaaba GaaGymaaqaaiabeo7aNTWaa0baaeaacaWGTbGaamyAaaqaaiabgUca RaaaaaGccqGHRaWkdaWcaaqaaiaaigdaaeaacqaHZoWzlmaaDaaaba GaamyBaiaadMgaaeaacqGHsislaaaaaaGccaGLOaGaayzkaaaabaGa ey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaadaGcaaqaamaalaaaba WaaeWaaeaacaaIXaGaey4kaSIaam4AaiaadsgalmaaBaaabaGaamyB aiaadMgaaeqaaaGccaGLOaGaayzkaaWaaWbaaeqaleaacaaIYaaaaa GcbaGaam4AaSWaaWbaaeqabaGaaGOmaaaakmaabmaabaGaeq4SdC2c daqhaaqaaiaad2gacaWGPbaabaGaey4kaScaaaGccaGLOaGaayzkaa WaaWbaaeqaleaacaaIYaaaaaaakiabgUcaRiaaisdaaeqaaiabgUca RmaalaaabaGaaGymaaqaaiaaikdaaaWaaOaaaeaadaWcaaqaamaabm aabaGaaGymaiabgUcaRiaadUgacaWGKbWcdaWgaaqaaiaad2gacaWG PbaabeaaaOGaayjkaiaawMcaaSWaaWbaaeqabaGaaGOmaaaaaOqaai aadUgadaahaaqabSqaaiaaikdaaaGcdaqadaqaaiabeo7aNTWaa0ba aeaacaWGTbGaamyAaaqaaiabgkHiTaaaaOGaayjkaiaawMcaaSWaaW baaeqabaGaaGOmaaaaaaGccqGHRaWkcaaI0aaabeaaaaaa@7E63@  

From the Yakubovich criterion,1–4 which is the development of the Lyapunov and Popov criterions, the absolute stability of system with the nano piezoengine for biomechanics is obtained. The condition for the absolute stability of system with nano piezoactuator from PZT for biomechanics on Figure 2 is evaluated in the form

Re ν mi W( jω )1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabw gacqaH9oGBdaWgaaWcbaGaamyBaiaadMgaaeqaaOGaam4vamaabmaa baGaamOAaiabeM8a3bGaayjkaiaawMcaaiabgwMiZkabgkHiTiaaig daaaa@4410@  

here ω - the frequency, j - the imaginary unit, ν mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd42aaS baaSqaaiaad2gacaWGPbaakeqaaaaa@39C4@  - maximum of the tangent the angle of inclination to the hysteresis loop. The amplitude-phase frequency characteristic on Figure 2 shows the frequency transfer function W( jω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaabm aabaGaamOAaiabeM8a3bGaayjkaiaawMcaaaaa@3B17@  with boundary vertical line B, passing point -1 on real axis.

Figure 2 Absolute stability of system with nano piezoengine.

At the maximum strength of electric field in the nano piezoengine the minimum for the tangent the angle of inclination has the form min[ d S i / d E m ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaqGTbGaaeyAaiaab6gadaWadaqaamaalyaabaGaamizaiaa dofadaWgaaWcbaGaamyAaaGcbeaaaeaacaWGKbGaamyramaaBaaale aacaWGTbaakeqaaaaaaiaawUfacaGLDbaacqGH9aqpcaqGWaaaaa@4890@  and maximum has the form max[ d S i / d E m ]= ν mi . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaqGTbGaaeyyaiaabIhadaWadaqaamaalyaabaGaamizaiaa dofadaWgaaWcbaGaamyAaaGcbeaaaeaacaWGKbGaamyramaaBaaale aacaWGTbaakeqaaaaaaiaawUfacaGLDbaacqGH9aqpcqaH9oGBdaWg aaWcbaGaamyBaiaadMgaaOqabaGaaiOlaaaa@4C5F@ For the nano piezoengine from PZT for biomechanics we have its maximum tangents ν 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd42cda WgaaqaaiaaiodacaaIXaaabeaaaaa@3952@  = 0.55 nm/V for transverse piezoeffect, ν 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd42aaS baaSqaaiaaiodacaaIZaaakeqaaaaa@395E@  = 1 nm/V for longitudinal piezoeffect, and ν 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd42aaS baaSqaaiaaigdacaaI1aaakeqaaaaa@395E@  = 1.25 nm/V for shear piezoeffect at error 10%.

Discussion

Therefore, the ratio of the piezomodules of the nano piezoengine from PZT with transverse, longitudinal, shear piezoelectric effects is proportional the ratio of its tangents of the angle of inclination to the hysteresis in the form: d 31 : d 33 : d 15 = ν 31 : ν 33 : ν 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIZaGaaGymaaGcbeaacaqG6aGaamizaSWaaSbaaeaacaaI ZaGaaG4maaqabaGccaqG6aGaamizaSWaaSbaaeaacaaIXaGaaGynaa qabaGccqGH9aqpcqaH9oGBdaWgaaWcbaGaaG4maiaaigdaaOqabaGa aeOoaiabe27aUTWaaSbaaeaacaaIZaGaaG4maaqabaGccaqG6aGaeq yVd42cdaWgaaqaaiaaigdacaaI1aaabeaaaaa@4BE5@

Conclusion

For the nano piezoengine with hysteresis in the control system for biomechanics its set of equilibrium positions of the control system is the segment of line. The frequency method for studying the stability of system is used. By using Yakubovich criterion for system with the nano piezoengine the absolute stability of control system is obtained for biomechanics. The ratio of the piezomodules of the nano piezoengine with transverse, longitudinal, shear piezoelectric effects is proportional the ratio of its tangents of the angle of inclination to its hysteresis deformation.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

  1. Yakubovich VA. Frequency conditions for absolute stability of control systems with hysteresis-like non-linearities, Dokl. Akad. Nauk SSSR. 1963;149(2):288–291.
  2. Andrievsky BR, Barabanov AE, Bondarko VA, et al. Nonlinear systems. Frequency and matrix inequalities. Eds. Gelig AKh, Leonov GA, Fradkov AL. Fizmatlit. Moscow. 2008:608.
  3. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;74(3):943–948.
  4. Liao X, Yu P. Absolute stability of nonlinear control systems. Springer, Dordrecht. 2008:384.
  5. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric actuators and generators for energy harvesting. Res Develop. 2018:182.
  6. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 2005;50(2):77–82.
  7. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  8. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;73(2):307–313.
  9. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. McGraw-Hill Book Company, New York, London. 1946:806.
  10. Mason WP editor. Physical Acoustics: Principles and Methods. Vol. 1. Part A. Methods and Devices. Academic Press, New York. 1964:515.
  11. Yang Y, Tang L. Equivalent circuit modeling of piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures. 2009;20(18):2223–2235.
  12. Schultz JA, Ueda J, Asada H. Cellular Actuators. Butterworth-Heinemann Publisher, Oxford. 2017:382.
  13. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Ed. Parinov IA. Nova Science, New York. 2015:225–242.
  14. Afonin SM. Stability of strain control systems of nano-and microdisplacement piezotransducers. Mechanics of Solids. 2014;49(2):196–207.
  15. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. Int J Physics. 2017;5(1):9–15.
  16. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. Int J Physics. 2019;7(2):50–57.
  17. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):1–9.
  18. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):1–14.
  19. Afonin SM. Electromagnetoelastic actuator for nanomechanics. GJRE: A Mechanical and Mechanics Engineering. 2018;18(2):19–23.
  20. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Discoveries in Agriculture and Food Sciences. 2020;8(1):8–15.
  21. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation. 2020;3(4):1–7.
  22. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Applied System Innovation. 2021;4(3):1–11.
  23. Afonin SM. Structural–parametric model electroelastic actuator nano- and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Eco Environ Sci. 2018;3(5):306‒309.
  24. Afonin SM. Piezo actuators for nanomedicine research. MOJ App Bio Biomech. 2019;3(2):56–57.
  25. Afonin SM. Piezoengine for nanomedicine and applied bionics. MOJ App Bio Biomech. 2022;6(1):30–33.
  26. Afonin SM. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. Chapter 8 in Advances in Nanotechnology. Volume 25. Eds. Bartul Z, Trenor J, Nova Science, New York. 2021:251–266.
  27. Afonin SM. Electroelastic actuator of nanomechatronics systems for nanoscience. Chapter 2 in Recent Progress in Chemical Science Research. Volume 6. Ed. Min HS, B P International, India, UK. London. 2023:15–27.
  28.  Afonin SM. Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. Chapter 34 in Physics and Mechanics of New Materials and Their Applications. Proceedings of the International Conference PHENMA 2021-2022, Springer Proceedings in Materials series. Volume 20. Eds. Parinov IA, Chang SH, Soloviev AN. Springer, Cham. 2023:419–428.
  29. Nalwa HS editor. Encyclopedia of Nanoscience and Nanotechnology. Los Angeles: American Scientific Publishers. 10 Volumes. 2004.
  30. Bhushan B editor. Springer Handbook of Nanotechnology. New York: Springer. 2006:1222.
Creative Commons Attribution License

©2023 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.