Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 4 Issue 3

Characteristics electroelastic engine for nanobiomechanics

Afonin SM

National Research University of Electronic Technology, Russia

Correspondence: Afonin SM, National Research University of Electronic Technology, MIET, Moscow, Russia

Received: May 03, 2020 | Published: May 20, 2020

Citation: Afonin SM. Characteristics electroelastic engine for nanobiomechanics. MOJ App Bio Biomech. 2020;4(3):51-53. DOI: 10.15406/mojabb.2020.04.00133

Download PDF

Abstract

We received the characteristics of the electroelastic engine for nanobiomechanics. We obtained the mechanical and control characteristics of the electroelastic engine. We investigated the regulation characteristic of the multilayer piezo engine for the elastic load.

Keywords: electroelastic engine, piezo engine; mechanical and control characteristics, nanobiomechanics.

Introduction

The electroelastic engine with the piezoelectric or electrostriction effect for nanobiomechanics is used in nanomanipulator, scanning microscopy, nanopump. The use of the electroelastic engine is promising in the equipment of nanobiotechnology, microelectronics and nanotechnology. The electroelastic engine is the electromechanical device for actuating and controlling mechanisms, systems with the conversion of electrical signals into mechanical displacements and forces.1–5 The piezo engine is used for nanoscale motion in interferometry, scanning microscopy, adaptive optics, laser systems, focusing and image stabilization systems, vibration damping, micromanipulation in cells. The electroelastic engine is provided range of movement from nanometers to microns, loading capacity up to 1000 N, fast response 1-10 ms. The multilayer electroelastic engine is designed to increase the range of movement up to tens of microns.6–29

Characteristics engine

Let us consider the characteristics of the electroelastic engine with fixe one face in the form the mechanical characteristic and the control characteristic are used in the calculation of the control system for nanobiomechanics with using the parameters of its load. From the equation of the electroelasticity6,7,10–28 we receive the mechanical characteristic of the electroelastic engine for nanobiomechanics in form the characteristic S i ( T j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaWGPbaabeaakmaabmaabaGaamivamaaBaaaleaacaWGQbaa keqaaaWccaGLOaGaayzkaaGcdaqhaaWcbaaabaaaaaaa@3BBB@  - the relative displacement from the mechanical stress or Δl( F ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBamaabmaabaGaamOraaGaayjkaiaawMcaaaaa@3AA1@  - the displacement from the force at E=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2 da9iaabogacaqGVbGaaeOBaiaabohacaqG0baaaa@3C7C@ . We have the mechanical characteristic in the following form

S i | E=const = d mi E m | E=const + s ij E T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaaeaaca WGtbWcdaWgaaqaaiaadMgaaeqaaaGccaGLiWoadaWgaaWcbaGaamyr aiabg2da9iaabogacaqGVbGaaeOBaiaabohacaqG0baabeaakiabg2 da9maaeiaabaGaamizamaaBaaaleaacaWGTbGaamyAaaGcbeaacaWG fbWcdaWgaaqaaiaad2gaaeqaaaGccaGLiWoadaWgaaWcbaGaamyrai abg2da9iaabogacaqGVbGaaeOBaiaabohacaqG0baabeaakiabgUca RiaadohalmaaDaaabaGaamyAaiaadQgaaeaacaWGfbaaaOGaamivam aaBaaaleaacaWGQbaakeqaaaaa@5543@ ,

where S i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaWGPbaabeaaaaa@37E8@ , d mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGTbGaamyAaaGcbeaaaaa@38F5@ , E m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraSWaaS baaeaacaWGTbaabeaaaaa@37DE@ , s ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaSWaa0 baaeaacaWGPbGaamOAaaqaaiaadweaaaaaaa@39C2@ , T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGQbaakeqaaaaa@37F4@  are the relative displacement, the electroelastic module or the piezo module, the electric field strength, the elastic compliance, the mechanical stress.

The control characteristic of the electroelastic engine for nanobiomechanics is the characteristic in the form S i ( E m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaWGPbaabeaakmaabmaabaGaamyramaaBaaaleaacaWGTbaa keqaaaWccaGLOaGaayzkaaaaaa@3B78@  - the relative displacement from the electric field strength or Δl( U ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBamaabmaabaGaamyvaaGaayjkaiaawMcaaaaa@3AB0@  - the displacement from the voltage at T=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 da9iaabogacaqGVbGaaeOBaiaabohacaqG0baaaa@3C8B@ . We have the control characteristic in the form

S i | T=const = d mi E m + s ij E T j | T=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaaeaaca WGtbWcdaWgaaqaaiaadMgaaeqaaaGccaGLiWoadaWgaaWcbaGaamiv aiabg2da9iaabogacaqGVbGaaeOBaiaabohacaqG0baabeaakiabg2 da9iaadsgadaWgaaWcbaGaamyBaiaadMgaaOqabaGaamyraSWaaSba aeaacaWGTbaabeaakiabgUcaRmaaeiaabaGaam4CaSWaa0baaeaaca WGPbGaamOAaaqaaiaadweaaaGccaWGubWaaSbaaSqaaiaadQgaaOqa baaacaGLiWoadaWgaaWcbaGaamivaiabg2da9iaabogacaqGVbGaae OBaiaabohacaqG0baabeaaaaa@5557@ .

For the mechanical characteristic of the electroelastic engine with controlling voltage we get the following equation

Δl=Δ l max ( 1F/ F max ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaiabg2da9iabfs5aejaadYgalmaaBaaabaGaaeyBaiaabggacaqG 4baabeaakmaabmaabaGaaGymaiabgkHiTmaalyaabaGaamOraaqaai aadAeadaWgaaWcbaGaaeyBaiaabggacaqG4baabeaaaaaakiaawIca caGLPaaaaaa@4691@ ,

where Δ l max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaSWaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaaaa@3B48@  is the maximum displacement for F=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiabg2 da9iaaicdaaaa@3881@  and F max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaqGTbGaaeyyaiaabIhaaeqaaaaa@39BC@  is the maximum force for Δl=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaiabg2da9iaaicdaaaa@3A0D@ .

The maximum displacement of the electroelastic engine is written as the expression

Δ l max = d mi E m l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaSWaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0Jaamiz aSWaaSbaaeaacaWGTbGaamyAaaqabaGccaWGfbWaaSbaaSqaaiaad2 gaaOqabaGaamiBaaaa@423A@ ,

where l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36E7@  is the length of the engine. This length of the engine is equal to the thickness with the longitudinal piezo effect, the height with the transverse piezo effect and the width with the shear piezo effect. For the maximum mechanical stress of the electroelastic engine with controlling voltage we have the equation

T j max = d mi E m / s ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaSWaaS baaeaacaqGQbGaaeiiaiaab2gacaqGHbGaaeiEaaqabaGccqGH9aqp daWcgaqaaiaadsgalmaaBaaabaGaamyBaiaadMgaaeqaaOGaamyram aaBaaaleaacaWGTbaakeqaaaqaaiaadohalmaaDaaabaGaamyAaiaa dQgaaeaacaWGfbaaaaaaaaa@453D@ .

The maximum force of the electroelastic engine is written as the expression

F max = T j max S 0 = d mi E m S 0 / s ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0JaamivaSWaaSba aeaacaqGQbGaaeiiaiaab2gacaqGHbGaaeiEaaqabaGccaWGtbWcda WgaaqaaiaaicdaaeqaaOGaeyypa0ZaaSGbaeaacaWGKbWcdaWgaaqa aiaad2gacaWGPbaabeaakiaadweadaWgaaWcbaGaamyBaaGcbeaaca WGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaam4CaSWaa0baaeaacaWG PbGaamOAaaqaaiaadweaaaaaaaaa@4DA3@ ,

where S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaaIWaaabeaaaaa@37B4@  is the cross sectional area of the engine.

For the piezo engine with the transverse piezo effect and we obtain the maximum displacement and the maximum force in the form

Δ l max = d 31 E 3 l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaSWaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0Jaamiz aSWaaSbaaeaacaaIZaGaaGymaaqabaGccaWGfbWaaSbaaSqaaiaaio daaOqabaGaamiBaaaa@419D@ ,

F max = d 31 E 3 S 0 / s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0ZaaSGbaeaacaWG KbWcdaWgaaqaaiaaiodacaaIXaaabeaakiaadweadaWgaaWcbaGaaG 4maaGcbeaacaWGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaam4CaSWa a0baaeaacaaIXaGaaGymaaqaaiaadweaaaaaaaaa@4463@ .

At d 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaS baaeaacaaIZaGaaGymaaqabaaaaa@3883@  = 2∙10-10 m/V, E 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaaIZaaabeaaaaa@37A9@  = 6×105 V/m, l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaaaa@36E7@  = 2∙10-2 m, S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaaIWaaabeaaaaa@37B4@  = 1∙10-5 m2, s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaSWaa0 baaeaacaaIXaGaaGymaaqaaiaadweaaaaaaa@395B@  = 15∙10-12 m2/N for the piezo engine with the transverse piezo effect from piezo ceramic PZT are received the maximum displacement Δ l max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaSWaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaaaa@3B48@  = 2.4 μm and fhe maximum force  = 80 N (Figure 1).

Figure 1 Mechanical characteristic of piezo engine with transverse piezo effect for nanobiomechanics.

For the regulation characteristic of the electroelastic engine with elastic force F max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaqGTbGaaeyyaiaabIhaaeqaaaaa@39BC@  we have equation

Δl l = d mi E m s ij E C e S 0 Δl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq qHuoarcaWGSbaabaGaamiBaaaacqGH9aqpcaWGKbWcdaWgaaqaaiaa d2gacaWGPbaabeaakiaadweadaWgaaWcbaGaamyBaaGcbeaacqGHsi sldaWcaaqaaiaadohalmaaDaaabaGaamyAaiaadQgaaeaacaWGfbaa aOGaam4qamaaBaaaleaacaWGLbaakeqaaaqaaiaadofalmaaBaaaba GaaGimaaqabaaaaOGaeuiLdqKaamiBaaaa@4A1F@ ,

We get the displacement of the electroelastic engine for elastic load in the form the regulation characteristic

Δl= ( d mi l/δ )U 1+ C e / C ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaiabg2da9maalaaabaWaaeWaaeaacaWGKbWcdaWgaaqaaiaad2ga caWGPbaabeaakmaalyaabaGaamiBaaqaaiabes7aKbaaaiaawIcaca GLPaaacaWGvbaabaGaaGymaiabgUcaRmaalyaabaGaam4qamaaBaaa leaacaWGLbaabeaaaOqaaiaadoeadaqhaaWcbaGaamyAaiaadQgaae aacaWGfbaaaaaaaaaaaa@48A8@ ,

U= E m δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabg2 da9iaadweadaWgaaWcbaGaamyBaaGcbeaacqaH0oazaaa@3B6D@ , C ij E = S 0 / ( s ij E l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacaWGPbGaamOAaaqaaiaadweaaaGccqGH9aqpdaWcgaqaaiaa dofalmaaBaaabaGaaGimaaqabaaakeaadaqadaqaaiaadohalmaaDa aabaGaamyAaiaadQgaaeaacaWGfbaaaOGaamiBaaGaayjkaiaawMca aaaaaaa@42D0@ ,

Where U  is the voltage, δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqgaaa@379B@  is the thickness, C ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacaWGPbGaamOAaaqaaiaadweaaaaaaa@3992@  is stiffness of the electroelastic engine at E=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2 da9iaabogacaqGVbGaaeOBaiaabohacaqG0baaaa@3C7C@ .

For the multilayer piezo engine with the longitudinal piezo effect we obtain the regulation characteristic in the following form

Δl= d 33 nU 1+ C e / C 33 E = k 33 E U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaiabg2da9maalaaabaGaamizaSWaaSbaaeaacaaIZaGaaG4maaqa baGccaWGUbGaamyvaaqaaiaaigdacqGHRaWkdaWcgaqaaiaadoeada WgaaWcbaGaamyzaaqabaaakeaacaWGdbWaa0baaSqaaiaaiodacaaI ZaaabaGaamyraaaaaaaaaOGaeyypa0Jaam4AamaaDaaaleaacaaIZa GaaG4maaqaaiaadweaaaGccaWGvbaaaa@49F2@ ,

l=nδ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabg2 da9iaad6gacqaH0oazaaa@3A85@ , k 33 E = d 33 n/ ( 1+ C e / C 33 E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaDa aaleaacaaIZaGaaG4maaqaaiaadweaaaGccqGH9aqpdaWcgaqaaiaa dsgalmaaBaaabaGaaG4maiaaiodaaeqaaOGaamOBaaqaamaabmaaba GaaGymaiabgUcaRmaalyaabaGaam4qamaaBaaaleaacaWGLbaabeaa aOqaaiaadoeadaqhaaWcbaGaaG4maiaaiodaaeaacaWGfbaaaaaaaO GaayjkaiaawMcaaaaaaaa@4670@ ,

Where k 33 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaDa aaleaacaaIZaGaaG4maaqaaiaadweaaaaaaa@3957@  is the transfer coefficient at E=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2 da9iaabogacaqGVbGaaeOBaiaabohacaqG0baaaa@3C7C@ .

At d 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaS baaeaacaaIZaGaaG4maaqabaaaaa@3885@  = 4∙10-10 m/V, n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36E9@  = 16, C 33 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaSWaa0 baaeaacaaIZaGaaG4maaqaaiaadweaaaaaaa@392F@  = 1.5∙107 N/m, C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaSWaaS baaeaacaWGLbaabeaaaaa@37D4@  = 0.3∙107 N/m, U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D0@  = 90 V for the multilayer piezo engine with the longitudinal piezo effect from piezo ceramic PZT are received the transfer coefficient k 33 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaDa aaleaacaaIZaGaaG4maaqaaiaadweaaaaaaa@3957@  = 5.33 nm/V and the displacement Δl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaaaa@384D@  = 480 nm on Figure 2. The discrepancy between the experimental data for the piezo engines and the calculation results is 10%. We received the regulation characteristic of the multilayer piezo engine for the elastic load.

Figure 2 Regulation characteristic of multilayer piezo engine with longitudinal piezo effect for elastic load in nanobiomechanics.

Conclusion

The mechanical and control characteristics of the electroelastic engine are used in the calculation of the control system for nanobiomechanics. The mechanical characteristic of the electroelastic engine with controlling voltage is received with used the maximum displacement and the maximum force of the engine. The regulation characteristic of the electroelastic engine is obtained for the elastic load.

Acknowledgments

None.

Conflicts of interest

The authors declare, that there is no conflict of interest.

Funding

None.

References

  1. Schultz J, Ueda J, Asada H. Cellular Actuators. Butterworth-Heinemann Publisher: Oxford; 2017. p. 382.
  2. Afonin SM. Piezo actuators for nanomedicine research. MOJ Applied Bionics and Biomechanics. 2019;3(2):56‒57.
  3.  Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surgery and Case Studies Open Access Journal. 2019;3(3):307–309.
  4. Zhou S, Yao Z. Design and optimization of a modal-independent linear ultrasonic motor. IEEE transaction on ultrasonics, ferroelectrics, and frequency control. 2014;61(3):535‒546.
  5. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher; 1997. p. 347.
  6. Afonin SM. Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the transverse piezoeffect. Journal of computer and systems sciences international. 2015;54(3):424‒439.
  7. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transduser. Doklady physics. 2008;53(3):137‒143.
  8. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady mathematics. 2006;73(2):307‒313.
  9. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York, London: McGraw-Hill Book Company; 1946. p. 806.
  10. Mason W. Physical Acoustics: Principles and Methods. Vol.1. Part A. Methods and Devices. New York: Academic Press; 1964. p. 515.
  11. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Ed. Parinov IA. New York: Nova Science; 2015. p. 225‒242.
  12. Afonin SM. Stability of strain control systems of nano-and microdisplacement piezotransducers. Mechanics of solids. 2014;49(2):196‒207.
  13. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics. 2017;5(1): 9‒15.
  14. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics. 2019;7(2):50‒57.
  15. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano- and microdisplacement. International Journal of Mathematical Analysis and Applications. 2016;3(4):31‒38.
  16. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):1‒9.
  17. Afonin SM. Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and microdisplacement for mechatronic systems. International Journal of Theoretical and Applied Mathematics. 2016;2(2):52‒59.
  18. Afonin SM. Parametric block diagrams of a multi-layer piezoelectric transducer of nano- and microdisplacements under transverse piezoelectric effect. Mechanics of Solids. 2017;52(1):81‒94.
  19. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. Proceedings of the 2018 IEEE Conference EIConRus. 2018. p. 1698‒1701.
  20. Afonin SM. Electromagnetoelastic nano- and microactuators for mechatronic systems. Russian Engineering Research. 2018;38(12): 938‒944.
  21. Afonin SM. Structural-parametric model of electro elastic actuator for nanotechnology and biotechnology. Journal of Pharmacy and Pharmaceutics. 2018;5(1):8‒12.
  22. Afonin SM. Electromagnetoelastic actuator for nanomechanics. Global Journal of Research in Engineering. A: Mechanical and Mechanics Engineering. 2018;18(2):19‒23.
  23. Afonin SM. Structural–parametric model electroelastic actuator nano– and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Ecology and Environmental Sciences.2018;3(5):306‒309.
  24. Afonin SM. Static and dynamic characteristics of multilayered electromagnetoelastic transducer of nano- and micrometric movements. Journal of Computer and Systems Sciences International. 2010;49(1):73‒85.
  25. Afonin SM. Static and dynamic characteristics of a multi-layer electroelastic solid. Mechanics of Solids. 2009;44(6):935‒950.
  26. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators 2019;8(3):1‒14.
  27. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transactions on Networks and Communications. 2018;6(3):1‒9.
  28. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems, Transactions on Networks and Communications. 2019;7(3):11‒21.
  29. Springer Handbook of Nanotechnology. ed. by Bhushan B. Berlin, New York: Springer; 2004. p. 1222.
Creative Commons Attribution License

©2020 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.