Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 8 Issue 1

Structural scheme of piezoactuator for astrophysics

Afonin SM

National Research University of Electronic Technology, Russia

Correspondence: Afonin SM, National Research University of Electronic Technology, MIET, 124498, Moscow, Russia

Received: December 19, 2023 | Published: February 8, 2024

Citation: Afonin SM. Structural scheme of piezoactuator for astrophysics. Phys Astron Int J. 2024;8(1):32‒36. DOI: 10.15406/paij.2024.08.00328

Download PDF

Abstract

In the work is calculated of the piezoactuator for astrophysics. The structural scheme of the piezoactuator is determined for astrophysics. The matrix equation is constructed for the piezoactuator. The mechanical characteristic is determined. The parameters of the piezoactuator are obtained in nano control systems for astrophysics.

Keywords: Piezoactuator, Structural scheme, Astrophysics

Introduction

The piezoactuator is used for astrophysics.1-43 In nanotechnology and precision machining the piezoactuator is widely used.17-19,58 The piezoactuator is applied for the nano alignment in adaptive optics and interferometers.4-59

Method

The method mathematical physics is using for calculation the structural scheme of piezoactuator in nano control systems for astrophysics.

Structural scheme of piezoactuator

The structural scheme of the piezoactuator for astrophysics is calculated by the method mathematical physics by using the equations of the inverse and direct piezoeffects and the decision of the second order ordinary differential equation for the piezoactuator. From the structural model and scheme we have the matrix equation and the mechanical characteristic the nano piezoactuator, and its parameters in adaptive optics for astrophysics.

Let us construct of structural models of piezoactuators. The expression of the inverse piezoeffect.1-15

S i = d mi E m + s ij E T j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaale aacaWGPbaabeaakiabg2da9iaadsgadaWgaaWcbaGaamyBaiaadMga aeqaaOGaamyramaaBaaaleaacaWGTbaabeaakiabgUcaRiaadohada qhaaWcbaGaamyAaiaadQgaaeaacaWGfbaaaOGaamivamaaBaaaleaa caWGQbaabeaaaaa@458D@

here S i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaale aacaWGPbaabeaaaaa@38E0@ , d mi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBaaale aacaWGTbGaamyAaaqabaaaaa@39E3@ , E m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBaaale aacaWGTbaabeaaaaa@38D6@ , s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDaaale aacaWGPbGaamOAaaqaaiaadweaaaaaaa@3ABA@ , T j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaale aacaWGQbaabeaaaaa@38E2@ , are the relative displacement, piezomodule, strength electric field, elastic compliance, strength mechanical field.

The expression of the longitudinal inverse piezoeffect has the form.1-15

S 3 = d 33 E 3 + s 33 E T 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaSbaae aacaaIZaaabeaakiabg2da9iaadsgadaWgaaWcbaGaaG4maiaaioda aOqabaGaamyraSWaaSbaaeaacaaIZaaabeaakiabgUcaRiaadohalm aaDaaabaGaaG4maiaaiodaaeaacaWGfbaaaOGaamivamaaBaaaleaa caaIZaaakeqaaaaa@4436@

The second order ordinary differential equation of the piezoactuator is used.4-54

d 2 Ξ( x,s ) d x 2 γ 2 Ξ( x,s )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGKb WaaWbaaeqaleaacaaIYaaaaOGaeuONdG1aaeWaaeaacaWG4bGaaiil aiaadohaaiaawIcacaGLPaaaaeaacaWGKbGaamiEaSWaaWbaaeqaba GaaGOmaaaaaaGccqGHsislcqaHZoWzdaahaaWcbeqaaiaaikdaaaGc cqqHEoawdaqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaawMcaai abg2da9iaaicdaaaa@4C5E@

here Ξ( x,s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaeWaae aacaWG4bGaaiilaiaadohaaiaawIcacaGLPaaaaaa@3CA0@ , s, x, γ are the Laplace transform of the displacement, the parameter, the coordinate, the coefficient of propagation. For the longitudinal piezoactuator we have at x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9i aaicdaaaa@39AB@  the deformation Ξ( 0,s )= Ξ 1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaeWaae aacaaIWaGaaiilaiaadohaaiaawIcacaGLPaaacqGH9aqpcqqHEoaw lmaaBaaabaGaaGymaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPa aaaaa@4259@  and at x=δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9i abes7aKbaa@3A96@   Ξ( δ,s )= Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaeWaae aacqaH0oazcaGGSaGaam4CaaGaayjkaiaawMcaaiabg2da9iabf65a yTWaaSbaaeaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawM caaaaa@4345@ . The decision is calculated.

Ξ( x,s )= { Ξ 1 ( s )sh[ ( δx )γ ]+ Ξ 2 ( s )sh( xγ ) }/ sh( δγ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaeWaae aacaWG4bGaaiilaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcgaqa amaacmaabaGaeuONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaaca WGZbaacaGLOaGaayzkaaGaae4CaiaabIgadaWadaqaamaabmaabaGa eqiTdqMaeyOeI0IaamiEaaGaayjkaiaawMcaaiabeo7aNbGaay5wai aaw2faaiabgUcaRiabf65aynaaBaaaleaacaaIYaaabeaakmaabmaa baGaam4CaaGaayjkaiaawMcaaiaabohacaqGObWaaeWaaeaacaWG4b Gaeq4SdCgacaGLOaGaayzkaaaacaGL7bGaayzFaaaabaGaae4Caiaa bIgadaqadaqaaiabes7aKjabeo7aNbGaayjkaiaawMcaaaaaaaa@6212@

From the expression of the longitudinal inverse piezoeffect and and two boundary conditions we have the set of equations.4-32

T 3 ( 0,s )= 1 s 33 E dΞ( x,s ) dx | x=0 d 33 s 33 E E 3 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaale aacaaIZaaabeaakmaabmaabaGaaGimaiaacYcacaWGZbaacaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4CamaaDaaaleaaca aIZaGaaG4maaqaaiaadweaaaaaaOWaaqGaaeaadaWcaaqaaiaadsga cqqHEoawdaqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaawMcaaa qaaiaadsgacaWG4baaaaGaayjcSdWaaSbaaSqaaiaadIhacqGH9aqp caaIWaaabeaakiabgkHiTmaalaaabaGaamizamaaBaaaleaacaaIZa GaaG4maaqabaaakeaacaWGZbWaa0baaSqaaiaaiodacaaIZaaabaGa amyraaaaaaGccaWGfbWaaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaaca WGZbaacaGLOaGaayzkaaaaaa@5A4A@

T 3 ( δ,s )= 1 s 33 E dΞ( x,s ) dx | x=δ d 33 s 33 E E 3 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaale aacaaIZaaabeaakmaabmaabaGaeqiTdqMaaiilaiaadohaaiaawIca caGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGZbWaa0baaSqaai aaiodacaaIZaaabaGaamyraaaaaaGcdaabcaqaamaalaaabaGaamiz aiabf65aynaabmaabaGaamiEaiaacYcacaWGZbaacaGLOaGaayzkaa aabaGaamizaiaadIhaaaaacaGLiWoadaWgaaWcbaGaamiEaiabg2da 9iabes7aKbqabaGccqGHsisldaWcaaqaaiaadsgadaWgaaWcbaGaaG 4maiaaiodaaeqaaaGcbaGaam4CamaaDaaaleaacaaIZaGaaG4maaqa aiaadweaaaaaaOGaamyramaaBaaaleaacaaIZaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@5C20@

After using the decision of the differential equation of the we have the structural model of the longitudinal piezoactuator.

Ξ 1 ( s )= ( M 1 s 2 ) 1 { F 1 ( s )+ ( χ 33 E ) 1 ×[ d 33 E 3 ( s )[ γ/ sh( δγ ) ] ×[ ch( δγ ) Ξ 1 ( s ) Ξ 2 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaSbaaS qaaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyyp a0ZaaeWaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaam4CamaaCa aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOe I0IaaGymaaaakmaacmaaeaqabeaacqGHsislcaWGgbWaaSbaaSqaai aaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaey4kaSYa aeWaaeaacqaHhpWydaqhaaWcbaGaaG4maiaaiodaaeaacaWGfbaaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGa ey41aq7aamWaaqaabeqaaiaadsgadaWgaaWcbaGaaG4maiaaiodaae qaaOGaamyramaaBaaaleaacaaIZaaabeaakmaabmaabaGaam4CaaGa ayjkaiaawMcaaiabgkHiTmaadmaabaWaaSGbaeaacqaHZoWzaeaaca qGZbGaaeiAamaabmaabaGaeqiTdqMaeq4SdCgacaGLOaGaayzkaaaa aaGaay5waiaaw2faaiaaysW7aeaacqGHxdaTdaWadaqaaiaabogaca qGObWaaeWaaeaacqaH0oazcqaHZoWzaiaawIcacaGLPaaacqqHEoaw daWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPa aacqGHsislcqqHEoawdaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaa dohaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaGaay5waiaaw2faaa aacaGL7bGaayzFaaaaaa@812D@

Ξ 2 ( s )= ( M 2 s 2 ) 1 { F 2 ( s )+ ( χ 33 E ) 1 ×[ d 33 E 3 ( s )[ γ/ sh( δγ ) ] ×[ ch( δγ ) Ξ 2 ( s ) Ξ 1 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1cdaWgaa qaaiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyyp a0ZaaeWaaeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaOGaam4CamaaCa aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOe I0IaaGymaaaakmaacmaaeaqabeaacqGHsislcaWGgbWcdaWgaaqaai aaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaey4kaSYa aeWaaeaacqaHhpWydaqhaaWcbaGaaG4maiaaiodaaeaacaWGfbaaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGa ey41aq7aamWaaqaabeqaaiaadsgadaWgaaWcbaGaaG4maiaaiodaae qaaOGaamyramaaBaaaleaacaaIZaaabeaakmaabmaabaGaam4CaaGa ayjkaiaawMcaaiabgkHiTmaadmaabaWaaSGbaeaacqaHZoWzaeaaca qGZbGaaeiAamaabmaabaGaeqiTdqMaeq4SdCgacaGLOaGaayzkaaaa aaGaay5waiaaw2faaaqaaiabgEna0oaadmaabaGaae4yaiaabIgada qadaqaaiabes7aKjabeo7aNbGaayjkaiaawMcaaiabf65aynaaBaaa leaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgk HiTiabf65aynaaBaaaleaacaaIXaaabeaakmaabmaabaGaam4CaaGa ayjkaiaawMcaaaGaay5waiaaw2faaaaacaGLBbGaayzxaaaaaiaawU hacaGL9baaaaa@7FA3@

χ 33 E = s 33 E / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aa0baaS qaaiaaiodacaaIZaaabaGaamyraaaakiabg2da9maalyaabaGaam4C amaaDaaaleaacaaIZaGaaG4maaqaaiaadweaaaaakeaacaWGtbWaaS baaSqaaiaaicdaaeqaaaaaaaa@416D@

here Ξ 1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaSbaaS qaaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaa@3BE4@ , Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1cdaWgaa qaaiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaa@3BE5@  are the Laplace transforms of the displacements, S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaSbaae aacaaIWaaabeaaaaa@38AC@  is the area.

The expression of the transverse inverse inverse piezoeffect has the form1-15

S 1 = d 31 E 3 + s 11 E T 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaale aacaaIXaaabeaakiabg2da9iaadsgadaWgaaWcbaGaaG4maiaaigda aeqaaOGaamyramaaBaaaleaacaaIZaaabeaakiabgUcaRiaadohada qhaaWcbaGaaGymaiaaigdaaeaacaWGfbaaaOGaamivamaaBaaaleaa caaIXaaabeaaaaa@4422@

The decision of the differential equation is written.

Ξ( x,s )= { Ξ 1 ( s )sh[ ( hx )γ ]+ Ξ 2 ( s )sh( xγ ) }/ sh( hγ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaeWaae aacaWG4bGaaiilaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcgaqa amaacmaabaGaeuONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaaca WGZbaacaGLOaGaayzkaaGaae4CaiaabIgadaWadaqaamaabmaabaGa amiAaiabgkHiTiaadIhaaiaawIcacaGLPaaacqaHZoWzaiaawUfaca GLDbaacqGHRaWkcqqHEoawdaWgaaWcbaGaaGOmaaqabaGcdaqadaqa aiaadohaaiaawIcacaGLPaaacaqGZbGaaeiAamaabmaabaGaamiEai abeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiaabohacaqG ObWaaeWaaeaacaWGObGaeq4SdCgacaGLOaGaayzkaaaaaaaa@60A2@

From the expression of the transverse inverse piezoeffect and two boundary conditions we have the set of equations.

T 1 ( 0,s )= 1 s 11 E dΞ( x,s ) dx | x=0 d 31 s 11 E E 3 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaale aacaaIXaaabeaakmaabmaabaGaaGimaiaacYcacaWGZbaacaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4CamaaDaaaleaaca aIXaGaaGymaaqaaiaadweaaaaaaOWaaqGaaeaadaWcaaqaaiaadsga cqqHEoawdaqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaawMcaaa qaaiaadsgacaWG4baaaaGaayjcSdWaaSbaaSqaaiaadIhacqGH9aqp caaIWaaabeaakiabgkHiTmaalaaabaGaamizamaaBaaaleaacaaIZa GaaGymaaqabaaakeaacaWGZbWaa0baaSqaaiaaigdacaaIXaaabaGa amyraaaaaaGccaWGfbWaaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaaca WGZbaacaGLOaGaayzkaaaaaa@5A3E@

T 1 ( h,s )= 1 s 11 E dΞ( x,s ) dx | x=h d 31 s 11 E E 3 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaale aacaaIXaaabeaakmaabmaabaGaamiAaiaacYcacaWGZbaacaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4CamaaDaaaleaaca aIXaGaaGymaaqaaiaadweaaaaaaOWaaqGaaeaadaWcaaqaaiaadsga cqqHEoawdaqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaawMcaaa qaaiaadsgacaWG4baaaaGaayjcSdWaaSbaaSqaaiaadIhacqGH9aqp caWGObaabeaakiabgkHiTmaalaaabaGaamizamaaBaaaleaacaaIZa GaaGymaaqabaaakeaacaWGZbWaa0baaSqaaiaaigdacaaIXaaabaGa amyraaaaaaGccaWGfbWaaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaaca WGZbaacaGLOaGaayzkaaaaaa@5AA4@

By using the decision of the differential equation of the we have the structural model of the transverse piezoactuator.

Ξ 1 ( s )= ( M 1 s 2 ) 1 { F 1 ( s )+ ( χ 11 E ) 1 ×[ d 31 E 3 ( s )[ γ/ sh( hγ ) ] ×[ ch( hγ ) Ξ 1 ( s ) Ξ 2 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaSbaaS qaaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyyp a0ZaaeWaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaam4CamaaCa aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOe I0IaaGymaaaakmaacmaaeaqabeaacqGHsislcaWGgbWaaSbaaSqaai aaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaey4kaSYa aeWaaeaacqaHhpWydaqhaaWcbaGaaGymaiaaigdaaeaacaWGfbaaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGa ey41aq7aamWaaqaabeqaaiaadsgadaWgaaWcbaGaaG4maiaaigdaae qaaOGaamyramaaBaaaleaacaaIZaaabeaakmaabmaabaGaam4CaaGa ayjkaiaawMcaaiabgkHiTmaadmaabaWaaSGbaeaacqaHZoWzaeaaca qGZbGaaeiAamaabmaabaGaamiAaiabeo7aNbGaayjkaiaawMcaaaaa aiaawUfacaGLDbaacaaMe8oabaGaey41aq7aamWaaeaacaqGJbGaae iAamaabmaabaGaamiAaiabeo7aNbGaayjkaiaawMcaaiabf65aynaa BaaaleaacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaai abgkHiTiabf65aynaaBaaaleaacaaIYaaabeaakmaabmaabaGaam4C aaGaayjkaiaawMcaaaGaay5waiaaw2faaaaacaGLBbGaayzxaaaaai aawUhacaGL9baaaaa@7FB7@

Ξ 2 ( s )= ( M 2 s 2 ) 1 { F 2 ( s )+ ( χ 11 E ) 1 ×[ d 31 E 3 ( s )[ γ/ sh( hγ ) ] ×[ ch( hγ ) Ξ 2 ( s ) Ξ 1 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1cdaWgaa qaaiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyyp a0ZaaeWaaeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaOGaam4CamaaCa aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOe I0IaaGymaaaakmaacmaaeaqabeaacqGHsislcaWGgbWcdaWgaaqaai aaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaey4kaSYa aeWaaeaacqaHhpWydaqhaaWcbaGaaGymaiaaigdaaeaacaWGfbaaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGa ey41aq7aamWaaqaabeqaaiaadsgadaWgaaWcbaGaaG4maiaaigdaae qaaOGaamyramaaBaaaleaacaaIZaaabeaakmaabmaabaGaam4CaaGa ayjkaiaawMcaaiabgkHiTmaadmaabaWaaSGbaeaacqaHZoWzaeaaca qGZbGaaeiAamaabmaabaGaamiAaiabeo7aNbGaayjkaiaawMcaaaaa aiaawUfacaGLDbaaaeaacqGHxdaTdaWadaqaaiaabogacaqGObWaae WaaeaacaWGObGaeq4SdCgacaGLOaGaayzkaaGaeuONdG1aaSbaaSqa aiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyOeI0 IaeuONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGL OaGaayzkaaaacaGLBbGaayzxaaaaaiaawUfacaGLDbaaaaGaay5Eai aaw2haaaaa@7E2D@

χ 11 E = s 11 E / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aa0baaS qaaiaaigdacaaIXaaabaGaamyraaaakiabg2da9maalyaabaGaam4C amaaDaaaleaacaaIXaGaaGymaaqaaiaadweaaaaakeaacaWGtbWaaS baaSqaaiaaicdaaeqaaaaaaaa@4165@

The expression of the shift inverse inverse piezoeffect has the form.1-15

S 5 = d 15 E 1 + s 55 E T 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBaaale aacaaI1aaabeaakiabg2da9iaadsgadaWgaaWcbaGaaGymaiaaiwda aeqaaOGaamyramaaBaaaleaacaaIXaaabeaakiabgUcaRiaadohada qhaaWcbaGaaGynaiaaiwdaaeaacaWGfbaaaOGaamivamaaBaaaleaa caaI1aaabeaaaaa@4432@

The decision of the differential equation has the form.

Ξ( x,s )= { Ξ 1 ( s )sh[ ( bx )γ ]+ Ξ 2 ( s )sh( xγ ) }/ sh( bγ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaeWaae aacaWG4bGaaiilaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcgaqa amaacmaabaGaeuONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaaca WGZbaacaGLOaGaayzkaaGaae4CaiaabIgadaWadaqaamaabmaabaGa amOyaiabgkHiTiaadIhaaiaawIcacaGLPaaacqaHZoWzaiaawUfaca GLDbaacqGHRaWkcqqHEoawdaWgaaWcbaGaaGOmaaqabaGcdaqadaqa aiaadohaaiaawIcacaGLPaaacaqGZbGaaeiAamaabmaabaGaamiEai abeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiaabohacaqG ObWaaeWaaeaacaWGIbGaeq4SdCgacaGLOaGaayzkaaaaaaaa@6096@

From the expression of the shift inverse piezoeffect and two boundary conditions we have the set of equations.

T 5 ( 0,s )= 1 s 55 E dΞ( x,s ) dx | x=0 d 15 s 55 E E 1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaale aacaaI1aaabeaakmaabmaabaGaaGimaiaacYcacaWGZbaacaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4CamaaDaaaleaaca aI1aGaaGynaaqaaiaadweaaaaaaOWaaqGaaeaadaWcaaqaaiaadsga cqqHEoawdaqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaawMcaaa qaaiaadsgacaWG4baaaaGaayjcSdWaaSbaaSqaaiaadIhacqGH9aqp caaIWaaabeaakiabgkHiTmaalaaabaGaamizamaaBaaaleaacaaIXa GaaGynaaqabaaakeaacaWGZbWaa0baaSqaaiaaiwdacaaI1aaabaGa amyraaaaaaGccaWGfbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaaca WGZbaacaGLOaGaayzkaaaaaa@5A52@

T 5 ( b,s )= 1 s 55 E dΞ( x,s ) dx | x=b d 15 s 55 E E 1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaale aacaaI1aaabeaakmaabmaabaGaamOyaiaacYcacaWGZbaacaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4CamaaDaaaleaaca aI1aGaaGynaaqaaiaadweaaaaaaOWaaqGaaeaadaWcaaqaaiaadsga cqqHEoawdaqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaawMcaaa qaaiaadsgacaWG4baaaaGaayjcSdWaaSbaaSqaaiaadIhacqGH9aqp caWGIbaabeaakiabgkHiTmaalaaabaGaamizamaaBaaaleaacaaIXa GaaGynaaqabaaakeaacaWGZbWaa0baaSqaaiaaiwdacaaI1aaabaGa amyraaaaaaGccaWGfbWaaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaaca WGZbaacaGLOaGaayzkaaaaaa@5AAC@

By using the decision of the differential equation we have the structural model of the shift piezoactuator.

Ξ 1 ( s )= ( M 1 s 2 ) 1 { F 1 ( s )+ ( χ 55 E ) 1 ×[ d 15 E 1 ( s )[ γ/ sh( bγ ) ] ×[ ch( bγ ) Ξ 1 ( s ) Ξ 2 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaSbaaS qaaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyyp a0ZaaeWaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaam4CamaaCa aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOe I0IaaGymaaaakmaacmaaeaqabeaacqGHsislcaWGgbWaaSbaaSqaai aaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaey4kaSYa aeWaaeaacqaHhpWydaqhaaWcbaGaaGynaiaaiwdaaeaacaWGfbaaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGa ey41aq7aamWaaqaabeqaaiaadsgadaWgaaWcbaGaaGymaiaaiwdaae qaaOGaamyramaaBaaaleaacaaIXaaabeaakmaabmaabaGaam4CaaGa ayjkaiaawMcaaiabgkHiTmaadmaabaWaaSGbaeaacqaHZoWzaeaaca qGZbGaaeiAamaabmaabaGaamOyaiabeo7aNbGaayjkaiaawMcaaaaa aiaawUfacaGLDbaacaaMe8oabaGaey41aq7aamWaaeaacaqGJbGaae iAamaabmaabaGaamOyaiabeo7aNbGaayjkaiaawMcaaiabf65aynaa BaaaleaacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaai abgkHiTiabf65aynaaBaaaleaacaaIYaaabeaakmaabmaabaGaam4C aaGaayjkaiaawMcaaaGaay5waiaaw2faaaaacaGLBbGaayzxaaaaai aawUhacaGL9baaaaa@7FB3@

Ξ 2 ( s )= ( M 2 s 2 ) 1 { F 2 ( s )+ ( χ 55 E ) 1 ×[ d 15 E 1 ( s )[ γ/ sh( bγ ) ] ×[ ch( bγ ) Ξ 2 ( s ) Ξ 1 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1cdaWgaa qaaiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyyp a0ZaaeWaaeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaOGaam4CamaaCa aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOe I0IaaGymaaaakmaacmaaeaqabeaacqGHsislcaWGgbWcdaWgaaqaai aaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaey4kaSYa aeWaaeaacqaHhpWydaqhaaWcbaGaaGynaiaaiwdaaeaacaWGfbaaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGcbaGa ey41aq7aamWaaqaabeqaaiaadsgadaWgaaWcbaGaaGymaiaaiwdaae qaaOGaamyramaaBaaaleaacaaIXaaabeaakmaabmaabaGaam4CaaGa ayjkaiaawMcaaiabgkHiTmaadmaabaWaaSGbaeaacqaHZoWzaeaaca qGZbGaaeiAamaabmaabaGaamOyaiabeo7aNbGaayjkaiaawMcaaaaa aiaawUfacaGLDbaaaeaacqGHxdaTdaWadaqaaiaabogacaqGObWaae WaaeaacaWGIbGaeq4SdCgacaGLOaGaayzkaaGaeuONdG1aaSbaaSqa aiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyOeI0 IaeuONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGL OaGaayzkaaaacaGLBbGaayzxaaaaaiaawUfacaGLDbaaaaGaay5Eai aaw2haaaaa@7E29@

χ 55 E = s 55 E / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aa0baaS qaaiaaiwdacaaI1aaabaGaamyraaaakiabg2da9maalyaabaGaam4C amaaDaaaleaacaaI1aGaaGynaaqaaiaadweaaaaakeaacaWGtbWaaS baaSqaaiaaicdaaeqaaaaaaaa@4175@

At l={ δ, h,b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBaiabg2da9m aaceaabaGaaGjbVlabes7aKjaacYcaaiaawUhaaiaaysW7caWGObGa aiilaiaaysW7caWGIbaaaa@437F@  the decision in general of the differential equation of the piezoactuator has the form.

Ξ( x,s )= { Ξ 1 ( s )sh[ ( lx )γ ]+ Ξ 2 ( s )sh( xγ ) }/ sh( lγ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaeWaae aacaWG4bGaaiilaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcgaqa amaacmaabaGaeuONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaaca WGZbaacaGLOaGaayzkaaGaae4CaiaabIgadaWadaqaamaabmaabaGa amiBaiabgkHiTiaadIhaaiaawIcacaGLPaaacqaHZoWzaiaawUfaca GLDbaacqGHRaWkcqqHEoawdaWgaaWcbaGaaGOmaaqabaGcdaqadaqa aiaadohaaiaawIcacaGLPaaacaqGZbGaaeiAamaabmaabaGaamiEai abeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiaabohacaqG ObWaaeWaaeaacaWGSbGaeq4SdCgacaGLOaGaayzkaaaaaaaa@60AA@

From the expression of the inverse piezoeffect and two boundary conditions we have the set of equations.

T j ( 0,s )= 1 s ij Ψ dΞ( x,s ) dx | x=0 ν mi s ij Ψ Ψ m ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaale aacaWGQbaabeaakmaabmaabaGaaGimaiaacYcacaWGZbaacaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4CamaaDaaaleaaca WGPbGaamOAaaqaaiabfI6azbaaaaGcdaabcaqaamaalaaabaGaamiz aiabf65aynaabmaabaGaamiEaiaacYcacaWGZbaacaGLOaGaayzkaa aabaGaamizaiaadIhaaaaacaGLiWoadaWgaaWcbaGaamiEaiabg2da 9iaaicdaaeqaaOGaeyOeI0YaaSaaaeaacqaH9oGBdaWgaaWcbaGaam yBaiaadMgaaeqaaaGcbaGaam4CamaaDaaaleaacaWGPbGaamOAaaqa aiabfI6azbaaaaGccqqHOoqwdaWgaaWcbaGaamyBaaqabaGcdaqada qaaiaadohaaiaawIcacaGLPaaaaaa@5EFB@

T j ( l,s )= 1 s ij Ψ dΞ( x,s ) dx | x=l ν mi s ij Ψ Ψ m ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaale aacaWGQbaabeaakmaabmaabaGaamiBaiaacYcacaWGZbaacaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4CamaaDaaaleaaca WGPbGaamOAaaqaaiabfI6azbaaaaGcdaabcaqaamaalaaabaGaamiz aiabf65aynaabmaabaGaamiEaiaacYcacaWGZbaacaGLOaGaayzkaa aabaGaamizaiaadIhaaaaacaGLiWoadaWgaaWcbaGaamiEaiabg2da 9iaadYgaaeqaaOGaeyOeI0YaaSaaaeaacqaH9oGBdaWgaaWcbaGaam yBaiaadMgaaeqaaaGcbaGaam4CamaaDaaaleaacaWGPbGaamOAaaqa aiabfI6azbaaaaGccqqHOoqwdaWgaaWcbaGaamyBaaqabaGcdaqada qaaiaadohaaiaawIcacaGLPaaaaaa@5F69@

By using the decision in general of the second order ordinary differential equation the structural model in general of the nano piezoactuator is calculated on Figure 1.

Ξ 1 ( s )= ( M 1 s 2 ) 1 { F 1 ( s )+ ( χ ij Ψ ) 1 ×[ ν mi Ψ m ( s )[ γ/ sh( lγ ) ] ×[ ch( lγ ) Ξ 1 ( s ) Ξ 2 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaSbaaS qaaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyyp a0ZaaeWaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaam4CamaaCa aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOe I0IaaGymaaaakmaacmaaeaqabeaacqGHsislcaWGgbWaaSbaaSqaai aaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaey4kaSYa aeWaaeaacqaHhpWydaqhaaWcbaGaamyAaiaadQgaaeaacqqHOoqwaa aakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaa cqGHxdaTdaWadaabaeqabaGaeqyVd42aaSbaaSqaaiaad2gacaWGPb aabeaakiabfI6aznaaBaaaleaacaWGTbaabeaakmaabmaabaGaam4C aaGaayjkaiaawMcaaiabgkHiTmaadmaabaWaaSGbaeaacqaHZoWzae aacaqGZbGaaeiAamaabmaabaGaamiBaiabeo7aNbGaayjkaiaawMca aaaaaiaawUfacaGLDbaaaeaacqGHxdaTdaWadaqaaiaabogacaqGOb WaaeWaaeaacaWGSbGaeq4SdCgacaGLOaGaayzkaaGaeuONdG1aaSba aSqaaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaey OeI0IaeuONdG1aaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGZbaa caGLOaGaayzkaaaacaGLBbGaayzxaaaaaiaawUfacaGLDbaaaaGaay 5Eaiaaw2haaaaa@818F@

Ξ 2 ( s )= ( M 2 s 2 ) 1 { F 2 ( s )+ ( χ ij Ψ ) 1 ×[ ν mi Ψ m ( s )[ γ/ sh( lγ ) ] ×[ ch( lγ ) Ξ 2 ( s ) Ξ 1 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1cdaWgaa qaaiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyyp a0ZaaeWaaeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaOGaam4CamaaCa aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOe I0IaaGymaaaakmaacmaaeaqabeaacqGHsislcaWGgbWcdaWgaaqaai aaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaey4kaSYa aeWaaeaacqaHhpWydaqhaaWcbaGaamyAaiaadQgaaeaacqqHOoqwaa aakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaa cqGHxdaTdaWadaabaeqabaGaeqyVd42aaSbaaSqaaiaad2gacaWGPb aabeaakiabfI6aznaaBaaaleaacaWGTbaabeaakmaabmaabaGaam4C aaGaayjkaiaawMcaaiabgkHiTmaadmaabaWaaSGbaeaacqaHZoWzae aacaqGZbGaaeiAamaabmaabaGaamiBaiabeo7aNbGaayjkaiaawMca aaaaaiaawUfacaGLDbaaaeaacqGHxdaTdaWadaqaaiaabogacaqGOb WaaeWaaeaacaWGSbGaeq4SdCgacaGLOaGaayzkaaGaeuONdG1aaSba aSqaaiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaey OeI0IaeuONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGZbaa caGLOaGaayzkaaaacaGLBbGaayzxaaaaaiaawUfacaGLDbaaaaGaay 5Eaiaaw2haaaaa@8192@

χ ij Ψ = s ij Ψ / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aa0baaS qaaiaadMgacaWGQbaabaGaeuiQdKfaaOGaeyypa0ZaaSGbaeaacaWG ZbWaa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaaGcbaGaam4uam aaBaaaleaacaaIWaaabeaaaaaaaa@43BD@

here

v mi ={ d 33 , d 31 , d 15 g 33 , g 31 , g 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBaaale aacaWGTbGaamyAaaqabaGccqGH9aqpdaGabaqaauaabeqaceaaaeaa caWGKbWaaSbaaSqaaiaaiodacaaIZaaabeaakiaacYcacaWGKbWaaS baaSqaaiaaiodacaaIXaaabeaakiaacYcacaWGKbWaaSbaaSqaaiaa igdacaaI1aaabeaaaOqaaiaadEgadaWgaaWcbaGaaG4maiaaiodaae qaaOGaaiilaiaadEgadaWgaaWcbaGaaG4maiaaigdaaeqaaOGaaiil aiaadEgadaWgaaWcbaGaaGymaiaaiwdaaeqaaaaaaOGaay5Eaaaaaa@4E87@

Ψ m =={ E 3 , E 1 D 3 , D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdK1aaSbaaS qaaiaad2gaaeqaaOGaeyypa0Jaeyypa0ZaaiqaaeaafaqabeGabaaa baGaamyramaaBaaaleaacaaIZaaabeaakiaacYcacaWGfbWaaSbaaS qaaiaaigdaaeqaaaGcbaGaamiramaaBaaaleaacaaIZaaabeaakiaa cYcacaWGebWaaSbaaSqaaiaaigdaaeqaaaaaaOGaay5Eaaaaaa@4526@

s ij Ψ =={ s 33 E , s 11 E , s 55 E s 33 D , s 11 D , s 55 D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDaaale aacaWGPbGaamOAaaqaaiabfI6azbaakiabg2da9iabg2da9maaceaa baqbaeqabiqaaaqaaiaadohadaqhaaWcbaGaaG4maiaaiodaaeaaca WGfbaaaOGaaiilaiaadohadaqhaaWcbaGaaGymaiaaigdaaeaacaWG fbaaaOGaaiilaiaadohadaqhaaWcbaGaaGynaiaaiwdaaeaacaWGfb aaaaGcbaGaam4CamaaDaaaleaacaaIZaGaaG4maaqaaiaadseaaaGc caGGSaGaam4CamaaDaaaleaacaaIXaGaaGymaaqaaiaadseaaaGcca GGSaGaam4CamaaDaaaleaacaaI1aGaaGynaaqaaiaadseaaaaaaaGc caGL7baaaaa@562B@

γ={ γ E , γ D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaeyypa0 ZaaiqaaeaacqaHZoWzdaahaaWcbeqaaiaadweaaaGccaGGSaGaaGjb Vlabeo7aNnaaCaaaleqabaGaamiraaaaaOGaay5Eaaaaaa@4241@

c Ψ ={ c E , c D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCaaale qabaGaeuiQdKfaaOGaeyypa0ZaaiqaaeaacaaMe8Uaam4yamaaCaaa leqabaGaamyraaaakiaacYcacaaMe8Uaam4yamaaCaaaleqabaGaam iraaaaaOGaay5Eaaaaaa@4357@

Figure 1 Structural scheme in general of nano piezoactuator.

The matrix for the deformations of the piezoactuator from the structural model and scheme on Figure 1 is calculated.

( Ξ 1 ( s ) Ξ 2 ( s ) )=( W 11 ( s ) W 12 ( s ) W 13 ( s ) W 21 ( s ) W 22 ( s ) W 23 ( s ) )( Ψ m ( s ) F 1 ( s ) F 2 ( s ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafaqabe GabaaabaGaeuONdG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWG ZbaacaGLOaGaayzkaaaabaGaeuONdG1aaSbaaSqaaiaaikdaaeqaaO WaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaaGaayjkaiaawMcaaiab g2da9maabmaabaqbaeqabiqaaaqaauaabeqabmaaaeaacaWGxbWaaS baaSqaaiaaigdacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaa wMcaaaqaaiaadEfadaWgaaWcbaGaaGymaiaaikdaaeqaaOWaaeWaae aacaWGZbaacaGLOaGaayzkaaaabaGaam4vamaaBaaaleaacaaIXaGa aG4maaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaaaabaqbae qabeWaaaqaaiaadEfadaWgaaWcbaGaaGOmaiaaigdaaeqaaOWaaeWa aeaacaWGZbaacaGLOaGaayzkaaaabaGaam4vamaaBaaaleaacaaIYa GaaGOmaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaeaacaWG xbWaaSbaaSqaaiaaikdacaaIZaaabeaakmaabmaabaGaam4CaaGaay jkaiaawMcaaaaaaaaacaGLOaGaayzkaaGaaGjbVpaabmaabaqbaeqa bmqaaaqaaiabfI6aznaaBaaaleaacaWGTbaabeaakmaabmaabaGaam 4CaaGaayjkaiaawMcaaaqaaiaadAeadaWgaaWcbaGaaGymaaqabaGc daqadaqaaiaadohaaiaawIcacaGLPaaaaeaacaWGgbWaaSbaaSqaai aaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaaGaayjk aiaawMcaaaaa@7442@

W 11 ( s )= Ξ 1 ( s )/ Ψ m ( s ) = ν mi [ M 2 χ ij Ψ s 2 +γth( lγ/2 ) ]/A ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaSWaaSbaae aacaaIXaGaaGymaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaa cqGH9aqpdaWcgaqaaiabf65ayTWaaSbaaeaacaaIXaaabeaakmaabm aabaGaam4CaaGaayjkaiaawMcaaaqaaiabfI6aznaaBaaaleaacaWG TbaakeqaamaabmaabaGaam4CaaGaayjkaiaawMcaaaaacqGH9aqpda Wcgaqaaiabe27aUnaaBaaaleaacaWGTbGaamyAaaqabaGcdaqhaaWc baaabaaaaOWaamWaaeaacaWGnbWcdaWgaaqaaiaaikdaaeqaaOGaeq 4Xdm2cdaqhaaqaaiaadMgacaWGQbaabaGaeuiQdKfaaOGaam4CaSWa aWbaaeqabaGaaGOmaaaakiabgUcaRiabeo7aNjaabshacaqGObWaae WaaeaadaWcgaqaaiaadYgacqaHZoWzaeaacaaIYaaaaaGaayjkaiaa wMcaaaGaay5waiaaw2faaaqaaiaadgeaaaWcdaWgaaqaaiaadMgaca WGQbaabeaaaaa@638A@

A ij = M 1 M 2 ( χ ij Ψ ) 2 s 4 +{ ( M 1 + M 2 ) χ ij Ψ / [ c Ψ th( lγ ) ] } s 3 + +[ ( M 1 + M 2 ) χ ij Ψ α/ th( lγ ) +1/ ( c Ψ ) 2 ] s 2 + 2αs/ c Ψ + α 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGbbWcda WgaaqaaiaadMgacaWGQbaabeaakiabg2da9iaad2ealmaaBaaabaGa aGymaaqabaGccaWGnbWcdaWgaaqaaiaaikdaaeqaaOWaaeWaaeaacq aHhpWylmaaDaaabaGaamyAaiaadQgaaeaacqqHOoqwaaaakiaawIca caGLPaaalmaaCaaabeqaaiaaikdaaaGccaWGZbWcdaahaaqabeaaca aI0aaaaOGaey4kaSYaaiWaaeaadaWcgaqaamaabmaabaGaamytaSWa aSbaaeaacaaIXaaabeaakiabgUcaRiaad2ealmaaBaaabaGaaGOmaa qabaaakiaawIcacaGLPaaacqaHhpWylmaaDaaabaGaamyAaiaadQga aeaacqqHOoqwaaaakeaadaWadaqaaiaadogadaahaaqabSqaaiabfI 6azbaakiaabshacaqGObWaaeWaaeaacaWGSbGaeq4SdCgacaGLOaGa ayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaaaaaaaaGccaGL7bGaay zFaaGaam4CaSWaaWbaaeqabaGaaG4maaaakiabgUcaRaqaaiabgUca RmaadmaabaWaaSGbaeaadaqadaqaaiaad2ealmaaBaaabaGaaGymaa qabaGccqGHRaWkcaWGnbWcdaWgaaqaaiaaikdaaeqaaaGccaGLOaGa ayzkaaGaeq4Xdm2cdaqhaaqaaiaadMgacaWGQbaabaGaeuiQdKfaaO GaeqySdegabaGaaeiDaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaa wIcacaGLPaaaaaGaey4kaSYaaSGbaeaacaaIXaaabaWaaeWaaeaaca WGJbWaaWbaaeqaleaacqqHOoqwaaaakiaawIcacaGLPaaalmaaCaaa beqaaiaaikdaaaaaaaGccaGLBbGaayzxaaGaam4CaSWaaWbaaeqaba GaaGOmaaaakiabgUcaRmaalyaabaGaaGOmaiabeg7aHjaadohaaeaa caWGJbWcdaahaaqabeaacqqHOoqwaaaaaOGaey4kaSIaeqySde2cda ahaaqabeaacaaIYaaaaaaaaa@8D3E@

W 21 ( s )= Ξ 2 ( s )/ Ψ m ( s ) = ν mi [ M 1 χ ij Ψ s 2 +γth( lγ/2 ) ] /A ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaale aacaaIYaGaaGymaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaa cqGH9aqpdaWcgaqaaiabf65aynaaBaaaleaacaaIYaaabeaakmaabm aabaGaam4CaaGaayjkaiaawMcaaaqaaiabfI6aznaaBaaaleaacaWG TbaakeqaamaabmaabaGaam4CaaGaayjkaiaawMcaaaaacqGH9aqpda Wcgaqaaiabe27aUnaaBaaaleaacaWGTbGaamyAaaqabaGcdaqhaaWc baaabaaaaOWaamWaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaeq 4Xdm2cdaqhaaqaaiaadMgacaWGQbaabaGaeuiQdKfaaOGaam4Camaa CaaaleqabaGaaGOmaaaakiabgUcaRiabeo7aNjaabshacaqGObWaae WaaeaadaWcgaqaaiaadYgacqaHZoWzaeaacaaIYaaaaaGaayjkaiaa wMcaaaGaay5waiaaw2faamaaCaaaleqabaaaaaGcbaGaamyqaaaada WgaaWcbaGaamyAaiaadQgaaeqaaaaa@63C2@

W 12 ( s )= Ξ 1 ( s )/ F 1 ( s ) = χ ij Ψ [ M 2 χ ij Ψ s 2 +γ/ th( lγ ) ]/A ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaale aacaaIXaGaaGOmaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaa cqGH9aqpdaWcgaqaaiabf65aynaaBaaaleaacaaIXaaabeaakmaabm aabaGaam4CaaGaayjkaiaawMcaaaqaaiaadAeadaWgaaWcbaGaaGym aaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaaGaeyypa0Jaey OeI0YaaSGbaeaacqaHhpWylmaaDaaabaGaamyAaiaadQgaaeaacqqH OoqwaaGcdaqhaaWcbaaabaaaaOWaamWaaeaacaWGnbWaaSbaaSqaai aaikdaaeqaaOGaeq4Xdm2cdaqhaaqaaiaadMgacaWGQbaabaGaeuiQ dKfaaOGaam4CaSWaaWbaaeqabaGaaGOmaaaakiabgUcaRmaalyaaba Gaeq4SdCgabaGaaeiDaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaa wIcacaGLPaaaaaaacaGLBbGaayzxaaaabaGaamyqaaaadaWgaaWcba GaamyAaiaadQgaaeqaaaaa@644D@

W 13 ( s )= Ξ 1 ( s )/ F 2 ( s ) = = W 22 ( s )= Ξ 2 ( s )/ F 1 ( s ) = [ χ ij Ψ γ/ sh( lγ ) ]/A ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGxbWaaS baaSqaaiaaigdacaaIZaaabeaakmaabmaabaGaam4CaaGaayjkaiaa wMcaaiabg2da9maalyaabaGaeuONdG1aaSbaaSqaaiaaigdaaeqaaO WaaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGaamOramaaBaaaleaa caaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaaacqGH9a qpaeaacqGH9aqpcaWGxbWaaSbaaSqaaiaaikdacaaIYaaabeaakmaa bmaabaGaam4CaaGaayjkaiaawMcaaiabg2da9maalyaabaGaeuONdG 1aaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzk aaaabaGaamOramaaBaaaleaacaaIXaaabeaakmaabmaabaGaam4Caa GaayjkaiaawMcaaaaacqGH9aqpdaWcgaqaamaadmaabaWaaSGbaeaa cqaHhpWylmaaDaaabaGaamyAaiaadQgaaeaacqqHOoqwaaGccqaHZo WzaeaacaqGZbGaaeiAamaabmaabaGaamiBaiabeo7aNbGaayjkaiaa wMcaaaaaaiaawUfacaGLDbaaaeaacaWGbbaaamaaBaaaleaacaWGPb GaamOAaaqabaaaaaa@6AAD@

W 23 ( s )= Ξ 2 ( s )/ F 2 ( s ) = χ ij Ψ [ M 1 χ ij Ψ s 2 +γ/ th( lγ ) ]/A ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBaaale aacaaIYaGaaG4maaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaa cqGH9aqpdaWcgaqaaiabf65aynaaBaaaleaacaaIYaaabeaakmaabm aabaGaam4CaaGaayjkaiaawMcaaaqaaiaadAeadaWgaaWcbaGaaGOm aaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaaGaeyypa0Jaey OeI0YaaSGbaeaacqaHhpWylmaaDaaabaGaamyAaiaadQgaaeaacqqH OoqwaaWaa0baaWqaaaqaaaaakmaadmaabaGaamytamaaBaaaleaaca aIXaaabeaakiabeE8aJTWaa0baaeaacaWGPbGaamOAaaqaaiabfI6a zbaakiaadohadaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaWcgaqaai abeo7aNbqaaiaabshacaqGObWaaeWaaeaacaWGSbGaeq4SdCgacaGL OaGaayzkaaaaaaGaay5waiaaw2faaaqaaiaadgeaaaWaaSbaaSqaai aadMgacaWGQbaabeaaaaa@6447@

The longitudinal deformations are obtained.

ξ 1 = d 33 U M 2 / ( M 1 + M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cdaWgaa qaaiaaigdaaeqaaOGaeyypa0ZaaSGbaeaacaWGKbWaaSbaaSqaaiaa iodacaaIZaaabeaakiaadwfacaWGnbWaaSbaaSqaaiaaikdaaeqaaa GcbaWaaeWaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amytamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaaaaa@45E7@

ξ 2 = d 33 U M 1 / ( M 1 + M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cdaWgaa qaaiaaikdaaeqaaOGaeyypa0ZaaSGbaeaacaWGKbWaaSbaaSqaaiaa iodacaaIZaaabeaakiaadwfacaWGnbWaaSbaaSqaaiaaigdaaeqaaa GcbaWaaeWaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIa amytamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaaaaa@45E7@

For d 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaSbaae aacaaIZaGaaG4maaqabaaaaa@397D@  = 4×10-10 m/V, U = 50 V, M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaale aacaaIXaaabeaaaaa@38A7@  = 1 kg, M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBaaale aacaaIXaaabeaaaaa@38A7@  = 4 kg we have ξ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cdaWgaa qaaiaaigdaaeqaaaaa@3998@  = 16 nm, ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cdaWgaa qaaiaaigdaaeqaaaaa@3998@  = 4 nm and ξ 1 + ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cdaWgaa qaaiaaigdaaeqaaOGaey4kaSIaeqOVdG3cdaWgaaqaaiaaikdaaeqa aaaa@3D2F@  = 20 nm with error 10%.

Let us evaluate the influence of the anti electromotive force on the deformation of the piezoactuator. The expression of the direct piezoeffect1-15 is used

D m = d mi T i + ε mk E E k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaale aacaWGTbaabeaakiabg2da9iaadsgadaWgaaWcbaGaamyBaiaadMga aeqaaOGaamivamaaBaaaleaacaWGPbaabeaakiabgUcaRiabew7aLT Waa0baaeaacaWGTbGaam4AaaqaaiaadweaaaGccaWGfbWaaSbaaSqa aiaadUgaaeqaaaaa@4633@

where D m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBaaale aacaWGTbaabeaaaaa@38D5@ , ε mk E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aa0baaS qaaiaad2gacaWGRbaabaGaamyraaaaaaa@3B6E@  are the electric induction and the permittivity,

The direct coefficient of the piezoactuator is written for calculation the voltage negative feedback from anti electromotive force.

k d = d mi S 0 δ s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBaaale aacaWGKbaabeaakiabg2da9maalaaabaGaamizaSWaaSbaaeaacaWG TbGaamyAaaqabaGccaWGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaeq iTdqMaam4CamaaDaaaleaacaWGPbGaamOAaaqaaiaadweaaaaaaaaa @444B@

The expression of the voltage negative feedback from anti electromotive force on Figure 2 is used.

U d ( s )= d mi S 0 R δ s ij E Ξ n ( s )= k d R Ξ n ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvamaaBaaale aacaWGKbaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabg2da 9maalaaabaGaamizaSWaaSbaaeaacaWGTbGaamyAaaqabaGccaWGtb WcdaWgaaqaaiaaicdaaeqaaOGaamOuaaqaaiabes7aKjaadohadaqh aaWcbaGaamyAaiaadQgaaeaacaWGfbaaaaaakmaaxacabaGaeuONdG faleqabaGaeyOiGClaamaaBaaabaWaaSbaaeaacaWGUbaabeaaaeqa aOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyypa0Jaam4AamaaBa aaleaacaWGKbaabeaakiaadkfadaWfGaqaaiabf65aybWcbeqaaiab gkci3caadaWgaaqaamaaBaaabaGaamOBaaqabaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@59A7@ ,   n=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2da9i aaigdacaGGSaGaaGjbVlaaikdaaaa@3C9B@

Figure 2 Structural scheme of piezoactuator with negative feedback from anti electromotive force.

The maximum the strength mechanical field and the force in the static working regime have the form at voltage control.

T jmax = E m d mi / s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaale aacaWGQbGaaeyBaiaabggacaqG4baakeqaaiabg2da9maalyaabaGa amyramaaBaaaleaacaWGTbaakeqaaiaadsgalmaaBaaabaGaamyBai aadMgaaeqaaaGcbaGaam4CaSWaa0baaeaacaWGPbGaamOAaaqaaiaa dweaaaaaaaaa@4594@

F max = E m d mi S 0 / s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraSWaaSbaae aacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0ZaaSGbaeaacaWGfbWc daWgaaqaaiaad2gaaeqaaOGaamizaSWaaSbaaeaacaWGTbGaamyAaa qabaGccaWGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaam4CaSWaa0ba aeaacaWGPbGaamOAaaqaaiaadweaaaaaaaaa@465F@

The maximum force in the static working regime has the form at current control.

F max = U δ d mi S 0 s ij E + F max S 0 d mi S c 1 ε mk T S c /δ 1 δ d mi S 0 s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraSWaaSbaae aacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0ZaaSaaaeaacaWGvbaa baGaeqiTdqgaaiaadsgalmaaBaaabaGaamyBaiaadMgaaeqaaOWaaS aaaeaacaWGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaam4CaSWaa0ba aeaacaWGPbGaamOAaaqaaiaadweaaaaaaOGaey4kaSYaaSaaaeaaca WGgbWcdaWgaaqaaiaab2gacaqGHbGaaeiEaaqabaaakeaacaWGtbWc daWgaaqaaiaaicdaaeqaaaaakiaadsgalmaaBaaabaGaamyBaiaadM gaaeqaaOGaam4uaSWaaSbaaeaacaWGJbaabeaakmaalaaabaGaaGym aaqaamaalyaabaGaeqyTdu2cdaqhaaqaaiaad2gacaWGRbaabaGaam ivaaaakiaadofalmaaBaaabaGaam4yaaqabaaakeaacqaH0oazaaaa amaalaaabaGaaGymaaqaaiabes7aKbaacaWGKbWcdaWgaaqaaiaad2 gacaWGPbaabeaakmaalaaabaGaam4uaSWaaSbaaeaacaaIWaaabeaa aOqaaiaadohalmaaDaaabaGaamyAaiaadQgaaeaacaWGfbaaaaaaaa a@66A7@

F max S 0 ( 1 d mi 2 ε mk T s ij E ) s ij E = E m d mi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacaWGgb WcdaWgaaqaaiaab2gacaqGHbGaaeiEaaqabaaakeaacaWGtbWcdaWg aaqaaiaaicdaaeqaaaaakmaabmaabaGaaGymaiabgkHiTmaalaaaba GaamizaSWaa0baaeaacaWGTbGaamyAaaqaaiaaikdaaaaakeaacqaH 1oqzlmaaDaaabaGaamyBaiaadUgaaeaacaWGubaaaOGaam4CaSWaa0 baaeaacaWGPbGaamOAaaqaaiaadweaaaaaaaGccaGLOaGaayzkaaGa am4CaSWaa0baaeaacaWGPbGaamOAaaqaaiaadweaaaGccqGH9aqpca WGfbWaaSbaaSqaaiaad2gaaOqabaGaamizaSWaaSbaaeaacaWGTbGa amyAaaqabaaaaa@55C5@

T jmax ( 1 k mi 2 ) s ij E = E m d mi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaSWaaSbaae aacaWGQbGaaeyBaiaabggacaqG4baabeaakmaabmaabaGaaGymaiab gkHiTiaadUgalmaaDaaabaGaamyBaiaadMgaaeaacaaIYaaaaaGcca GLOaGaayzkaaGaam4CaSWaa0baaeaacaWGPbGaamOAaaqaaiaadwea aaGccqGH9aqpcaWGfbWcdaWgaaqaaiaad2gaaeqaaOGaamizaSWaaS baaeaacaWGTbGaamyAaaqabaaaaa@4C72@

k mi = d mi / s ij E ε mk T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaSWaaSbaae aacaWGTbGaamyAaaqabaGccqGH9aqpdaWcgaqaaiaadsgalmaaBaaa baGaamyBaiaadMgaaeqaaaGcbaWaaOaaaeaacaWGZbWcdaqhaaqaai aadMgacaWGQbaabaGaamyraaaakiabew7aLTWaa0baaeaacaWGTbGa am4Aaaqaaiaadsfaaaaakeqaaaaaaaa@468E@

here k mi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AaSWaaSbaae aacaWGTbGaamyAaaqabaaaaa@39EA@  is the coefficient of electromechanical coupling.

The expressions for the strength mechanical field and the maximum force in the static working regime we have at current control.

T jmax = E m d mi / s ij D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaale aacaWGQbGaaeyBaiaabggacaqG4baakeqaaiabg2da9maalyaabaGa amyraSWaaSbaaeaacaWGTbaabeaakiaadsgalmaaBaaabaGaamyBai aadMgaaeqaaaGcbaGaam4CaSWaa0baaeaacaWGPbGaamOAaaqaaiaa dseaaaaaaaaa@4593@

F max = E m d mi S 0 / s ij D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraSWaaSbaae aacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0ZaaSGbaeaacaWGfbWa aSbaaSqaaiaad2gaaOqabaGaamizaSWaaSbaaeaacaWGTbGaamyAaa qabaGccaWGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaam4CaSWaa0ba aeaacaWGPbGaamOAaaqaaiaadseaaaaaaaaa@465E@

s ij D =( 1 k mi 2 ) s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaSWaa0baae aacaWGPbGaamOAaaqaaiaadseaaaGccqGH9aqpdaqadaqaaiaaigda cqGHsislcaWGRbWcdaqhaaqaaiaad2gacaWGPbaabaGaaGOmaaaaaO GaayjkaiaawMcaaiaadohalmaaDaaabaGaamyAaiaadQgaaeaacaWG fbaaaaaa@4689@

The mechanical characteristic of the piezoactuator is determined in the static working regime.

S i ( T j )| Ψ=const = ν mi Ψ m | Ψ=const + s ij Ψ T j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaaeaacaWGtb WcdaWgaaqaaiaadMgaaeqaaOWaaeWaaeaacaWGubWaaSbaaSqaaiaa dQgaaOqabaaaliaawIcacaGLPaaaaOGaayjcSdWaaSbaaSqaaiabfI 6azjabg2da9iaabogacaqGVbGaaeOBaiaabohacaqG0baabeaakiab g2da9maaeiaabaGaeqyVd42aaSbaaSqaaiaad2gacaWGPbaakeqaai abfI6azTWaaSbaaeaacaWGTbaabeaaaOGaayjcSdWaaSbaaSqaaiab fI6azjabg2da9iaabogacaqGVbGaaeOBaiaabohacaqG0baabeaaki abgUcaRiaadohalmaaDaaabaGaamyAaiaadQgaaeaacqqHOoqwaaGc caWGubWaaSbaaSqaaiaadQgaaOqabaaaaa@5DBA@

The adjustment characteristic of the piezoactuator is calculated in the static working regime.

S i ( Ψ m )| T=const = ν mi Ψ m + s ij Ψ T j | T=const MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaaeaacaWGtb WcdaWgaaqaaiaadMgaaeqaaOWaaeWaaeaacqqHOoqwdaWgaaWcbaGa amyBaaqabaaacaGLOaGaayzkaaaakiaawIa7amaaBaaaleaacaWGub Gaeyypa0Jaae4yaiaab+gacaqGUbGaae4CaiaabshaaeqaaOGaeyyp a0JaeqyVd42aaSbaaSqaaiaad2gacaWGPbaakeqaaiabfI6azTWaaS baaeaacaWGTbaabeaakiabgUcaRmaaeiaabaGaam4CaSWaa0baaeaa caWGPbGaamOAaaqaaiabfI6azbaakiaadsfadaWgaaWcbaGaamOAaa GcbeaaaiaawIa7amaaBaaaleaacaWGubGaeyypa0Jaae4yaiaab+ga caqGUbGaae4Caiaabshaaeqaaaaa@5CE8@

The mechanical characteristic of the piezoactuator has the form.

Δl=Δ l max ( 1F/ F max ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiBai abg2da9iabfs5aejaadYgalmaaBaaabaGaaeyBaiaabggacaqG4baa beaakmaabmaabaGaaGymaiabgkHiTmaalyaabaGaamOraaqaaiaadA eadaWgaaWcbaGaaeyBaiaabggacaqG4baabeaaaaaakiaawIcacaGL Paaaaaa@4789@

Δ l max = ν mi Ψ m l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiBaS WaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0JaeqyVd42c daWgaaqaaiaad2gacaWGPbaabeaakiabfI6aznaaBaaaleaacaWGTb aakeqaaiaadYgaaaa@44C6@

F max = T j max S 0 = ν mi Ψ m S 0 / s ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBaaale aacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0JaamivaSWaaSbaaeaa caWGQbGaaeiiaiaab2gacaqGHbGaaeiEaaqabaGccaWGtbWcdaWgaa qaaiaaicdaaeqaaOGaeyypa0ZaaSGbaeaacqaH9oGBlmaaBaaabaGa amyBaiaadMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2gaaOqabaGaam 4uaSWaaSbaaeaacaaIWaaabeaaaOqaaiaadohalmaaDaaabaGaamyA aiaadQgaaeaacqqHOoqwaaaaaaaa@50F6@

The expression of the mechanical characteristic for the transverse piezoactuator is determined

Δh=Δ h max ( 1F/ F max ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiAai abg2da9iabfs5aejaadIgalmaaBaaabaGaaeyBaiaabggacaqG4baa beaakmaabmaabaGaaGymaiabgkHiTmaalyaabaGaamOraaqaaiaadA eadaWgaaWcbaGaaeyBaiaabggacaqG4baabeaaaaaakiaawIcacaGL Paaaaaa@4781@

Δ h max = d 31 E 3 h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiAaS WaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0JaamizaSWa aSbaaeaacaaIZaGaaGymaaqabaGccaWGfbWaaSbaaSqaaiaaiodaaO qabaGaamiAaaaa@428D@

F max = d 31 E 3 S 0 / s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBaaale aacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0ZaaSGbaeaacaWGKbWc daWgaaqaaiaaiodacaaIXaaabeaakiaadweadaWgaaWcbaGaaG4maa GcbeaacaWGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaam4CaSWaa0ba aeaacaaIXaGaaGymaaqaaiaadweaaaaaaaaa@455B@

At d 31 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaSbaae aacaaIZaGaaGymaaqabaaaaa@397B@  = 2∙10-10 m/V, E 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraSWaaSbaae aacaaIZaaabeaaaaa@38A1@  = 0.25∙105 V/m, h = 2.5∙10-2 m, S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaSbaae aacaaIWaaabeaaaaa@38AC@  = 1.5∙10-5 m2, s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaSWaa0baae aacaaIXaGaaGymaaqaaiaadweaaaaaaa@3A53@  = 15∙10-12 m2/N we have the parameters of the transverse piezoactuator Δ h max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiAaS WaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaaaa@3C3C@  = 125 nm, F max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBaaale aacaqGTbGaaeyyaiaabIhaaeqaaaaa@3AB4@  = 5 N with error 10%

The deformation of the piezoactuator is obtained at voltage control and elastic load.

Δl l = d mi E m s ij E S 0 F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacqqHuo arcaWGSbaabaGaamiBaaaacqGH9aqpcaWGKbWcdaWgaaqaaiaad2ga caWGPbaabeaakiaadweadaWgaaWcbaGaamyBaaGcbeaacqGHsislda WcaaqaaiaadohalmaaDaaabaGaamyAaiaadQgaaeaacaWGfbaaaaGc baGaam4uaSWaaSbaaeaacaaIWaaabeaaaaGccaWGgbaaaa@47A3@ F= C e Δl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiabg2da9i aadoeadaWgaaWcbaGaamyzaaqabaGccqqHuoarcaWGSbaaaa@3CFE@

The adjustment characteristic has the form.

Δl= d mi l E m 1+ C e / C ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiBai abg2da9maalaaabaGaamizaSWaaSbaaeaacaWGTbGaamyAaaqabaGc caWGSbGaamyramaaBaaaleaacaWGTbaakeqaaaqaaiaaigdacqGHRa WkdaWcgaqaaiaadoeadaWgaaWcbaGaamyzaaqabaaakeaacaWGdbWa a0baaSqaaiaadMgacaWGQbaabaGaamyraaaaaaaaaaaa@4774@

The coefficients of the piezoactuator in general are calculated for the structural scheme of the piezoactuator with negative feedback from anti electromotive force.

k d = k r = d mi S 0 δ s ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBaaale aacaWGKbaabeaakiabg2da9iaadUgadaWgaaWcbaGaamOCaaqabaGc cqGH9aqpdaWcaaqaaiaadsgalmaaBaaabaGaamyBaiaadMgaaeqaaO Gaam4uamaaBaaaleaacaaIWaaakeqaaaqaaiabes7aKjaadohalmaa BaaabaGaamyAaiaadQgaaeqaaaaaaaa@46A3@

s ij = k s s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaSWaaSbaae aacaWGPbGaamOAaaqabaGccqGH9aqpcaWGRbWaaSbaaSqaaiaadoha aeqaaOGaam4CaSWaa0baaeaacaWGPbGaamOAaaqaaiaadweaaaaaaa@40E9@

( 1 k mi 2 ) k s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacaaIXa GaeyOeI0Iaam4AaSWaa0baaeaacaWGTbGaamyAaaqaaiaaikdaaaaa kiaawIcacaGLPaaacqGHKjYOcaWGRbWcdaWgaaqaaiaadohaaeqaaO GaeyizImQaaGymaaaa@4425@

At one fixed face and elastic-inertial load of the piezoactuator Figure 2 is transformed to Figure 3.

Figure 3 Structural scheme of piezoactuator with negative feedback from anti electromotive force.

At R=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabg2da9i aaicdaaaa@3985@  we have the expressions for the transverse piezoactuator at voltage control.

W( s )= Ξ( s ) U( s ) = k 31 U T t 2 s 2 +2 T t ξ t s+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaabmaaba Gaam4CaaGaayjkaiaawMcaaiabg2da9maalaaabaGaeuONdG1aaeWa aeaacaWGZbaacaGLOaGaayzkaaaabaGaamyvamaabmaabaGaam4Caa GaayjkaiaawMcaaaaacqGH9aqpdaWcaaqaaiaadUgadaqhaaWcbaGa aG4maiaaigdaaeaacaWGvbaaaaGcbaGaaGjbVlaadsfalmaaDaaaba GaamiDaaqaaiaaikdaaaGccaWGZbWcdaahaaqabeaacaaIYaaaaOGa ey4kaSIaaGOmaiaadsfalmaaBaaabaGaamiDaaqabaGccqaH+oaElm aaBaaabaGaamiDaaqabaGccaWGZbGaey4kaSIaaGymaaaaaaa@56BA@

k 31 U = d 31 ( h/δ )/ ( 1+ C e / C 11 E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaDaaale aacaaIZaGaaGymaaqaaiaadwfaaaGccqGH9aqpdaWcgaqaaiaadsga lmaaBaaabaGaaG4maiaaigdaaeqaaOWaaeWaaeaadaWcgaqaaiaadI gaaeaacqaH0oazaaaacaGLOaGaayzkaaaabaWaaeWaaeaacaaIXaGa ey4kaSYaaSGbaeaacaWGdbWaaSbaaSqaaiaadwgaaeqaaaGcbaGaam 4qamaaDaaaleaacaaIXaGaaGymaaqaaiaadweaaaaaaaGccaGLOaGa ayzkaaaaaaaa@4AAE@

T t = M/ ( C e + C 11 E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBaaale aacaWG0baabeaakiabg2da9maakaaabaWaaSGbaeaacaWGnbaabaWa aeWaaeaacaWGdbWaaSbaaSqaaiaadwgaaeqaaOGaey4kaSIaam4qam aaDaaaleaacaaIXaGaaGymaaqaaiaadweaaaaakiaawIcacaGLPaaa aaaaleqaaaaa@4291@ ,   ω t =1/ T t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3cdaWgaa qaaiaadshaaeqaaOGaeyypa0ZaaSGbaeaacaaIXaaabaGaamivamaa BaaaleaacaWG0baabeaaaaaaaa@3DBF@

At M = 4 kg, C e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBaaale aacaWGLbaabeaaaaa@38CC@  = 0.1×107 N/m, C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaSWaa0baae aacaaIXaGaaGymaaqaaiaadweaaaaaaa@3A23@  = 1.5×107 N/m the parameters of the transverse piezoactuator are calculated T t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaSWaaSbaae aacaWG0baabeaaaaa@38EC@  = 0.5×10-3 s, ω t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3cdaWgaa qaaiaadshaaeqaaaaa@39E0@  = 2×103 s-1 with error 10%.

The transverse deformation at voltage control has the form.

Δh= d 31 ( h/δ )U 1+ C e / C 11 E = k 31 U U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaamiAai abg2da9maalaaabaGaamizaSWaaSbaaeaacaaIZaGaaGymaaqabaGc daqadaqaamaalyaabaGaamiAaaqaaiabes7aKbaaaSGaayjkaiaawM caaOGaamyvaaqaaiaaigdacqGHRaWkdaWcgaqaaiaadoealmaaBaaa baGaamyzaaqabaaakeaacaWGdbWaa0baaSqaaiaaigdacaaIXaaaba GaamyraaaaaaaaaOGaeyypa0Jaam4AamaaDaaaleaacaaIZaGaaGym aaqaaiaadwfaaaGccaWGvbaaaa@4E41@

At d 31 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaSbaae aacaaIZaGaaGymaaqabaaaaa@397B@  = 2∙10-10 m/V, h/δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacaWGOb aabaGaeqiTdqgaaaaa@3996@  = 22, C e / C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaacaWGdb WaaSbaaSqaaiaadwgaaeqaaaGcbaGaam4qamaaDaaaleaacaaIXaGa aGymaaqaaiaadweaaaaaaaaa@3C21@  = 0 we have the parameter of the transverse piezoactuator k 31 U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaDaaale aacaaIZaGaaGymaaqaaiaadwfaaaaaaa@3A5D@  = 4 nm/V with error 10%.

Discussion

The structural schemes of the piezoactuator for astrophysics are obtained by the method mathematical physics with using the equations of the inverse and direct piezoeffects and the decision of the second order ordinary differential equation of the piezoactuator. The matrix equation and the mechanical characteristic the nano piezoactuator are determined. The parameters of piezoactuator in adaptive optics for astrophysics are obtained.

Conclusion

The nano piezoactuator is calculated for nano control systems in adaptive optics for astrophysics. The structural schemes of the nano piezoactuator with electrical and mechanical parameters are calculated for astrophysics. In various working regimes the deformation of the nano piezoactuator is determined. The structural schemes of the piezoactuator are obtained. The matrix of the deformations of the piezoactuator is obtained. The parameters of the piezoactuator are determined for astrophysics.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Uchino K. Piezoelectric actuator and ultrasonic motors. Elect Mat Sci Technol. 1977;1:350.
  2. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Math. 2006;74(3):943–948.
  3. Liu Y, Zhang S, Yan P, et al. Finite element modeling and test of piezo disk with local ring electrodes for micro displacement. Micromachines. 2022;13(6):951.
  4. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 2005;50(2):77–82.
  5. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  6. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Math. 2006;73(2):307–313.
  7. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. McGraw–Hill Book Company, New York, London. 1946;806.
  8. Mason W. Physical Acoustics: Principles and Methods. Methods and Devices. Academic Press, New York. 1964;1:515.
  9. Yang Y, Tang L. Equivalent circuit modeling of piezoelectric energy harvesters. J Intelligent Mat Sys Struc. 2019;20(18):2223–2235.
  10. Zwillinger D. Handbook of differential equations. Academic Press, Boston. 1989;673.
  11. Afonin SM. A generalized structural–parametric model of an elecromagnetoelastic converter for nano– and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano– and micrometric movement control systems. J Comput Sys Sci Int. 2006;45(6):1006–1013.
  12. Afonin SM. Generalized structural–parametric model of an electromagnetoelastic converter for control systems of nano– and micrometric movements: IV. Investigation and calculation of characteristics of step–piezodrive of nano–and micrometric movements. J Comput Sys Sci Int. 2006;45(6):1006–1013.
  13. Afonin SM. Decision wave equation and block diagram of electromagnetoelastic actuator nano– and microdisplacement for communications systems. Int J Info Comm Sci. 2016;1(2):22–29.
  14. Afonin SM. Structural–parametric model and transfer functions of electroelastic actuator for nano– and microdisplacement. Chapter 9 in Piezoelectrics and nanomaterials: fundamentals, developments and applications. Ed. Parinov IA. Nova Science, New York. 2015;225–242.
  15. Afonin SM. A structural–parametric model of electroelastic actuator for nano– and microdisplacement of mechatronic system. Chapter 8 in Advances in Nanotechnology. Bartul Z, Trenor J, Nova Science, New York, 2017;19:259–284.
  16. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric actuators and generators for energy harvesting. Res Develop. 2018;182.
  17. Adaptive Optics – Core Morrow, 2023, Harbin, China.
  18. Precision Machining – Core Morrow, 2023. Harbin, China.
  19. Baraniuk R, Drossel WG. Simplification of the model of piezoelectric actuator control based on preliminary measurements. Actuators. 2020;9(3):90.
  20. Afonin SM. Electromagnetoelastic nano– and microactuators for mechatronic systems. Russian Eng Res. 2018;38(12):938–944.
  21. Afonin SM. Nano– and micro–scale piezomotors. Russian Eng Res. 2021;32(7–8):519–522.
  22. Afonin SM. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mechanics of Solids. 2007;42(1):43–49.
  23. Afonin SM. Stability of strain control systems of nano–and microdisplacement piezotransducers. Mechanics of Solids. 2014;49(2):196–207.
  24. Afonin SM. Structural–parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. Int J Phys. 2017;5(1):9–15.
  25. Afonin SM. Structural–parametric model multilayer electromagnetoelastic actuator for nanomechatronics. Int J Phys. 2019;7(2):50–57.
  26. Afonin SM. Calculation deformation of an engine for nano biomedical research. Int J Biomed Res. 2021;1(5):1–4.
  27. Afonin SM. Precision engine for nanobiomedical research. Biomed Res Clin Rev. 2021;3(4):1–5.
  28. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano– and microdisplacement. Int J Math Analysis Appl. 2016;3(4):31–38.
  29. Afonin SM. Structural–parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):6.
  30. Afonin SM. Structural–parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):52.
  31. Afonin SM. Structural–parametric models and transfer functions of electromagnetoelastic actuators nano– and microdisplacement for mechatronic systems. Int J Theor Appl Math. 2016;2(2):52–59.
  32. Afonin SM. Design static and dynamic characteristics of a piezoelectric nanomicrotransducers. Mechanics of Solids. 2010;45(1):123–132.
  33. Afonin SM. Electromagnetoelastic Actuator for Nanomechanics. Global J Res Eng: A Mech Mech Eng. 2018;18(2):19–23.
  34. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. Proceedings of the 2018 IEEE Conference EIConRus. 2018;1698–1701.
  35. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transac Net Commun. 2018;6(3):1–9.
  36. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems. Transac Net Commun. 2019;7(3):11–21.
  37. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Transac Net Commun. 2020;8(1):8–15.
  38. Afonin SM. A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Transac Machine Learn Artificial Intelligence. 2020;8(4):23–33.
  39. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Appl Sys Innovat. 2020;3(4):53.
  40. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Appl Sys Innovat. 2020;4(3):47.
  41. Afonin SM. Structural–parametric model actuator of adaptive optics for composite telescope and astrophysics equipment. Phys Astron Int J. 2020;4(1):18–21.
  42. Afonin SM. An actuator nano and micro displacements for composite telescope in astronomy and physics research. Phys Astron Int J. 2020;4(4):165–167.
  43. Afonin SM. Calculation of the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment. Phys Astron Int J. 2021;5(2):55–58.
  44. Afonin SM. Structural scheme actuator for nano research. COJ Rev Res. 2020;2(5):1–3.
  45. Afonin SM. Structural–parametric model electroelastic actuator nano– and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Ecol Environ Sci. 2018;3(5):306‒309.
  46. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeron Aero Open Access J. 2018;2(5):270–272.
  47. Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surg Case Stud Open Access J. 2019;3(3):307–309.
  48. Afonin SM. Piezo actuators for nanomedicine research. MOJ Appl Bio Biomech. 2019;3(2):56–57.
  49. Afonin SM. Frequency criterion absolute stability of electromagnetoelastic system for nano and micro displacement in biomechanics. MOJ Appl Bio Biomech. 2019;3(6):137–140.
  50. Afonin SM. A structural–parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology. Chapter 7 in Advances in Nanotechnology. Eds. Bartul Z, Trenor J, Nova Science, New York. 2019;22:169–186.
  51. Afonin SM. Electroelastic digital–to–analog converter actuator nano and microdisplacement for nanotechnology. Chapter 6 in Advances in Nanotechnology. Eds. Bartul Z, Trenor J, Nova Science, New York. 2020;24:205–218.
  52. Afonin SM. Characteristics of an electroelastic actuator nano– and microdisplacement for nanotechnology. Chapter 8 in Advances in Nanotechnology. Eds. Bartul Z, Trenor J, Nova Science, New York. 2021;25:251–266.
  53. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russ Eng Res. 2021;41(4):285–288.
  54. Afonin SM. Structural scheme of electroelastic actuator for nanomechatronics, Chapter 40 in Advanced Materials. Proceedings of the International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2019. Eds: Parinov IA, Chang SH, Long BT. 2019;487–502.
  55. Afonin SM. Absolute stability of control system for deformation of electromagnetoelastic actuator under random impacts in nanoresearch. Chapter 3 in Physics and Mechanics of New Materials and Their Applications. 2021;519–531.
  56. Afonin SM. Electroelastic actuator of nanomechatronics systems for nanoscience. Chapter 2 in Recent Progress in Chemical Science Research. Volume 6. Ed. Min HS, B P International, India, UK. London. 2023;15–27.
  57. Afonin SM. Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. Chapter 34 in Physics and Mechanics of New Materials and Their Applications. 2023;20:419–428.
  58. Bhushan B. Springer Handbook of Nanotechnology. New York: Springer. 2004;1222.
  59. Nalwa HS. Encyclopedia of Nanoscience and Nanotechnology. Los Angeles: Am Sci Publish. 2004.
Creative Commons Attribution License

©2024 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.