Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 8 Issue 1

System with nano piezoengine under randomly influences for biomechanics

Afonin Sergey Mikhailovich

National Research University of Electronic Technology MIET, Russia

Correspondence: Afonin SM. National Research University of Electronic Technology MIET, Moscow, Russia

Received: December 12, 2023 | Published: January 16, 2024

Citation: Afonin SM. System with nano piezoengine under randomly influences for biomechanics. MOJ App Bio Biomech. 2024;8(1):1-3. DOI: 10.15406/mojabb.2024.08.00198

Download PDF

Abstract

The sufficient condition of absolute stability system with nano piezoengine by using the derivative of the hysteretic piezoengine deformation is determined for the randomly influences. The set of equilibrium positions of the piezoengine in the control system is stable relative to mathematical expectations, when the condition of absolute stability with the maximum piezo module is met. The statistical linearization method is using for the determination condition of absolute stability control system with the nano piezoengine.

Keywords: sufficient condition of absolute stability system, randomly influences, nano piezoengine, hysteresis, biomechanics

Introduction

The movement nano piezoengine is achieved due to its deformation, when the electrical voltage is applied.1–11 The nano piezoengine is used for biomechanics for scanning microscopy, nano manipulator, dosing device, nano pump.12–27 In articles1,3,18 the absolute stability of control system under deterministic influences is considered. The sets of equilibrium positions of the systems the piezoengines under deterministic influences are obtained in articles.18,23 Structural models and transfer functions of the piezoengines are defined in.5–22,24,25 In this work the absolute stability of system with the piezoengine under randomly influences is obtained for biomechanics.

Method

The statistical linearization method is using for condition of absolute stability system with the nano piezoengine under the randomly influences for biomechanics.

Results

The application of the criterion of absolute stability of system with the piezoengine23 is determined for biomechanics. In this work, the Preisach hysteresis model is used.14 The hysteresis Preisach function of the relative deformation the piezoengine has the form.

S i =F [ E m | 0 t ,t, S i ( 0 ),sign E ˙ m ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGPbaakeqaaiabg2da9iaadAeadaWadaqaamaaeiaabaGa amyramaaBaaaleaacaWGTbaakeqaaaGaayjcSdWcdaqhaaqaaiaaic daaeaacaWG0baaaOGaaiilaiaadshacaGGSaGaam4uamaaBaaaleaa caWGPbaakeqaamaabmaabaGaaGimaaGaayjkaiaawMcaaiaacYcaca qGZbGaaeyAaiaabEgacaqGUbGabmyrayaacaWaaSbaaSqaaiaad2ga aeqaaaGccaGLBbGaayzxaaWaa0baaSqaaaqaaaaaaaa@4E55@

here S i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGtbWcdaWgaaqaaiaadMgaaeqaaaaa@3E34@  - the deformation, t - time, S i ( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGtbWcdaWgaaqaaiaadMgaaeqaaOWaaeWaaeaacaqGWaaa liaawIcacaGLPaaaaaa@4085@  - the initial condition for the deformation, E m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGfbWaaSbaaSqaaiaad2gaaOqabaaaaa@3E34@  - the strength of electric field, sign E ˙ m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaabM gacaqGNbGaaeOBaiqadweagaGaamaaBaaaleaacaWGTbaabeaaaaa@3BA5@  - the sign for velocity of change strength of electric field.

For the piezoengine the vertices of the basic hysteresis loops lie on the initial curve in the form S i = F 1 ( E m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGtbWcdaWgaaqaaiaadMgaaeqaaOGaeyypa0JaamOraSWa aSbaaeaacaaIXaaabeaakmaabmaabaGaamyramaaBaaaleaacaWGTb aakeqaaaGaayjkaiaawMcaaaaa@447B@ .23 The initial curve3,23 of the hysteresis deformation has the form F 1 ( E m )= d mi 0 E m + c mi E m 3 = d mi max E m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGgbWcdaWgaaqaaiaabgdaaeqaaOWaaeWaaeaacaWGfbWc daWgaaqaaiaad2gaaeqaaaGccaGLOaGaayzkaaGaeyypa0JaamizaS Waa0baaeaacaWGTbGaamyAaaqaaiaabcdaaaGaaGPaVRGaamyraSWa aSbaaeaacaWGTbaabeaakiabgUcaRiaadogalmaaBaaabaGaamyBai aadMgaaeqaaiaaykW7kiaadwealmaaDaaabaGaamyBaaqaaiaaboda aaGaeyypa0JccaWGKbWaa0baaSqaaiaad2gacaWGPbaabaGaaeyBai aabggacaqG4baaaOGaamyramaaBaaaleaacaWGTbaakeqaaaaa@5A83@  the maximum of the piezomodule d mi max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGKbWaa0baaSqaaiaad2gacaWGPbaabaGaciyBaiaacgga caGG4baaaaaa@420C@  has the form.

d mi max = d mi 0 + c mi E m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGKbWaa0baaSqaaiaad2gacaWGPbaabaGaciyBaiaacgga caGG4baaaOGaeyypa0JaamizaSWaa0baaeaacaWGTbGaamyAaaqaai aaicdaaaGccqGHRaWkcaWGJbWcdaWgaaqaaiaad2gacaWGPbaabeaa kiaadwealmaaDaaabaGaamyBaaqaaiaaikdaaaaaaa@4D5B@

where d mi 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGKbWcdaqhaaqaaiaad2gacaWGPbaabaGaaGimaaaaaaa@3FF2@  - the initial piezomodule, c mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGJbWcdaWgaaqaaiaad2gacaWGPbaabeaaaaa@3F36@  - the coefficient, E m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGfbWaaSbaaSqaaiaad2gaaOqabaaaaa@3E34@  - the strength of electric field.

From the Yakubovich criterion23 the criterion absolute stability of control system for the nano piezoengine is obtained for biomechanics. The condition for the absolute stability of system with nano piezoengine at deterministic influences is estimated in the form.

Re ν mi W( jω )1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaciGGsbGaaiyzaiabe27aUnaaBaaaleaacaWGTbGaamyAaaqa baGccaaMc8Uaam4vamaabmaabaGaamOAaiabeM8a3bGaayjkaiaawM caaiabgwMiZkabgkHiTiaaigdaaaa@4BEB@

here ω - the frequency, j - the imaginary unit, ν mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqaH9oGBdaWgaaWcbaGaamyBaiaadMgaaOqabaaaaa@4010@  - maximum of the tangent the angle of inclination to the hysteresis loop.

For the longitudinal piezoengine at deterministic influences the maximum tangent of the hysteresis deformation ν 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqaH9oGBdaWgaaWcbaGaaG4maiaaiodaaOqabaaaaa@3FAA@  = 1 nm/V has the form for the longitudinal piezoeffect.

The equilibrium positions of the piezoengine in the system for controlling its deformation are stable relative to mathematical expectations, when the condition of absolute stability with the maximum piezomodule as the maximum derivative of the hysteresis characteristic is satisfied.

Let us consider the use of the statistical linearization method to calculate the stability of control system for the piezoengine with normal Gaussian distribution of random influences. For statistical linearization the derivative in general has the form.

m S i m E m = 1 2 σ E m 2 + [ S i + ( E m )+ S i ( E m ) ]( E m m E m ) 1 σ E m 2π e ( E m m E m ) 2 2 σ E m 2 d E m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaWcaaqaaiabgkGi2kaad2galmaaBaaabaGaam4uamaaBaaa baGaamyAaaqabaaabeaaaOqaaiabgkGi2kaad2gadaWgaaWcbaGaam yramaaBaaabaGaamyBaaqabaaakeqaaaaacqGH9aqpdaWcaaqaaiaa igdaaeaacaaIYaGaeq4Wdm3cdaqhaaqaaiaadweadaWgaaqaaiaad2 gaaeqaaaqaaiaaikdaaaaaaOWaa8qCaeaacaaMe8oaleaacqGHsisl cqGHEisPaeaacqGHRaWkcqGHEisPaOGaey4kIipadaWadaqaaiaado falmaaDaaabaGaamyAaaqaaiabgUcaRaaakmaabmaabaGaamyramaa BaaaleaacaWGTbaakeqaaaGaayjkaiaawMcaaiabgUcaRiaadofalm aaDaaabaGaamyAaaqaaiabgkHiTaaakmaabmaabaGaamyramaaBaaa leaacaWGTbaakeqaaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaays W7daqadaqaaiaadwealmaaBaaabaGaamyBaaqabaGccqGHsislcaWG TbWcdaWgaaqaaiaadweadaWgaaqaaiaad2gaaeqaaaqabaaakiaawI cacaGLPaaacaaMe8+aaSaaaeaacaaIXaaabaGaeq4Wdm3aaSbaaSqa aiaadweadaWgaaqaaiaad2gaaeqaaaGcbeaadaGcaaqaaiaaikdacq aHapaCaeqaaaaacaWGLbWcdaahaaqabeaacqGHsislcaaMe8+aaSaa aeaadaqadaqaaiaadweadaWgaaqaaiaad2gaaeqaaiabgkHiTiaad2 gadaWgaaqaaiaadweadaWgaaqaaiaad2gaaeqaaaqabaaacaGLOaGa ayzkaaWaaWbaaeqabaGaaGOmaaaaaeaacaaIYaGaeq4Wdm3aa0baae aacaWGfbWaaSbaaeaacaWGTbaabeaaaeaacaaIYaaaaaaaaaGccaWG KbGaamyraSWaaSbaaeaacaWGTbaabeaaaaa@8A11@

where S i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGtbWcdaWgaaqaaiaadMgaaeqaaaaa@3E34@  - the relative deformation, F 1 ( E m )=( S i + ( E m )+ S i ( E m ) )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGgbWcdaWgaaqaaiaaigdaaeqaaOWaaeWaaeaacaWGfbWc daWgaaqaaiaad2gaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaeWaae aacaWGtbWcdaqhaaqaaiaadMgaaeaacqGHRaWkaaGcdaqadaqaaiaa dweadaWgaaqaaiaad2gaaeqaaaGaayjkaiaawMcaaiabgUcaRiaado falmaaDaaabaGaamyAaaqaaiabgkHiTaaakmaabmaabaWccaWGfbWa aSbaaeaacaWGTbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaai aac+cacaaIYaaaaa@5303@  - the initial curve, and indexes + and – are upper indexes for increase and decrease hysteresis deformation.

Then by using the equation of the initial curve, we have statistical linearization the derivative of the nonlinear relative deformation the nano piezoengine at normal Gaussian distribution of the random influences in the form.

m S i m E m = 1 σ E m 2 + F 1 ( E m )( E m m E m ) 1 σ E m 2π e ( E m m E m ) 2 2 σ E m 2 d E m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaWcaaqaaiabgkGi2kaad2galmaaBaaabaGaam4uamaaBaaa baGaamyAaaqabaaabeaaaOqaaiabgkGi2kaad2gadaWgaaWcbaGaam yramaaBaaabaGaamyBaaqabaaakeqaaaaacqGH9aqpdaWcaaqaaiaa igdaaeaacqaHdpWClmaaDaaabaGaamyramaaBaaabaGaamyBaaqaba aabaGaaGOmaaaaaaGcdaWdXbqaaiaadAealmaaBaaabaGaaGymaaqa baGcdaqadaqaaiaadweadaWgaaWcbaGaamyBaaGcbeaaaiaawIcaca GLPaaacaaMe8+aaeWaaeaacaWGfbWaaSbaaSqaaiaad2gaaOqabaGa eyOeI0IaamyBamaaBaaaleaacaWGfbWaaSbaaeaacaWGTbaabeaaaO qabaaacaGLOaGaayzkaaGaaGjbVpaalaaabaGaaGymaaqaaiabeo8a ZnaaBaaaleaacaWGfbWaaSbaaeaacaWGTbaabeaaaOqabaWaaOaaae aacaaIYaGaeqiWdahabeaaaaGaamyzamaaCaaabeWcbaGaeyOeI0Ia aGjbVpaalaaabaWaaeWaaeaacaWGfbWaaSbaaeaacaWGTbaabeaacq GHsislcaWGTbWaaSbaaeaacaWGfbWaaSbaaeaacaWGTbaabeaaaeqa aaGaayjkaiaawMcaamaaCaaabeqaaiaaikdaaaaabaGaaGOmaiabeo 8aZnaaDaaabaGaamyramaaBaaabaGaamyBaaqabaaabaGaaGOmaaaa aaaaaaqaaiabgkHiTiabg6HiLcqaaiabgUcaRiabg6HiLcGccqGHRi I8aiaadsgacaWGfbWaaSbaaSqaaiaad2gaaOqabaaaaa@7D61@

The derivative for the hysteresis characteristic at the mathematical expectation of the electric field strength equal to zero m E m =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGTbWaaSbaaSqaaiaadweadaWgaaqaaiaad2gaaeqaaaGc beaacqGH9aqpcaaIWaaaaa@4107@  has form.

m S i m E m = 1 σ E m 2 + d mi max E m ( E m m E m ) 1 σ E m 2π e ( E m m E m ) 2 2 σ E m 2 d E m = d mi max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaWcaaqaaiabgkGi2kaad2gadaWgaaWcbaGaam4uamaaBaaa baGaamyAaaqabaaakeqaaaqaaiabgkGi2kaad2gadaWgaaWcbaGaam yramaaBaaabaGaamyBaaadbeaaaSqabaaaaOGaeyypa0ZaaSaaaeaa caaIXaaabaGaeq4Wdm3cdaqhaaqaaiaadweadaWgaaqaaiaad2gaae qaaaqaaiaaikdaaaaaaOWaa8qCaeaacaWGKbWaa0baaSqaaiaad2ga caWGPbaabaGaciyBaiaacggacaGG4baaaOGaamyramaaBaaaleaaca WGTbaakeqaaiaaysW7daqadaqaaiaadweadaWgaaWcbaGaamyBaaGc beaacqGHsislcaWGTbWcdaWgaaqaaiaadweadaWgaaqaaiaad2gaae qaaaqabaaakiaawIcacaGLPaaacaaMe8+aaSaaaeaacaaIXaaabaGa eq4Wdm3cdaWgaaqaaiaadweadaWgaaqaaiaad2gaaeqaaaqabaGcda GcaaqaaiaaikdacqaHapaCaeqaaaaacaWGLbWaaWbaaeqaleaacqGH sislcaaMe8+aaSaaaeaadaqadaqaaiaadweadaWgaaqaaiaad2gaae qaaiabgkHiTiaad2gadaWgaaqaaiaadweadaWgaaqaaiaad2gaaeqa aaqabaaacaGLOaGaayzkaaWaaWbaaeqabaGaaGOmaaaaaeaacaaIYa Gaeq4Wdm3aa0baaeaacaWGfbWaaSbaaeaacaWGTbaabeaaaeaacaaI YaaaaaaaaaaabaGaeyOeI0IaeyOhIukabaGaey4kaSIaeyOhIukaki abgUIiYdGaaGPaVlaadsgacaWGfbWcdaWgaaqaaiaad2gaaeqaaiab g2da9OGaamizamaaDaaaleaacaWGTbGaamyAaaqaaiGac2gacaGGHb GaaiiEaaaaaaa@8862@

Accordingly after statistical linearization the derivative of the hysteresis deformation piezoengine, the condition of absolute stability of control system with nano piezoengine under randomly influences is written as Re d mi max W( jω )1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaaciGGsbGaaiyzaiaaysW7caWGKbWaa0baaSqaaiaad2gacaWG PbaabaGaciyBaiaacggacaGG4baaaOGaaGPaVlaadEfadaqadaqaai aadQgacqaHjpWDaiaawIcacaGLPaaacqGHLjYScqGHsislcaaIXaaa aa@4F7E@   for control system with the hysteresis characteristic at the randomly influences g( t )= m g ( t )+ g 0 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGNbWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyBamaaBaaaleaacaWGNbaakeqaamaabmaabaGaamiDaaGaayjkai aawMcaaiabgUcaRiaadEgadaWgaaWcbaGaaGimaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaaa@4A8C@ , | m g ( t ) | R g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaabdaqaaiaad2gadaWgaaWcbaGaam4zaaqabaGcdaqadaqa aiaadshaaiaawIcacaGLPaaaaiaawEa7caGLiWoacqGHKjYOcaWGsb WaaSbaaSqaaiaadEgaaeqaaaaa@479E@ .

where R g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGsbWcdaWgaaqaaiaadEgaaeqaaaaa@3E31@ - the upper bound, and the derivative of the hysteresis characteristic has the form.

0< m S i ( m E m , σ E m ) m E m < d mi max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaaIWaGaeyipaWZaaSaaaeaacqGHciITcaWGTbWaaSbaaSqa aiaadofadaWgaaqaaiaadMgaaeqaaaGcbeaadaqadaqaaiaad2gada WgaaWcbaGaamyramaaBaaabaGaamyBaaqabaaakeqaaiaacYcacqaH dpWClmaaBaaabaGaamyramaaBaaabaGaamyBaaqabaaabeaaaOGaay jkaiaawMcaaaqaaiabgkGi2kaad2gadaWgaaWcbaGaamyramaaBaaa baGaamyBaaqabaaakeqaaaaacqGH8aapcaWGKbWaa0baaSqaaiaad2 gacaWGPbaabaGaciyBaiaacggacaGG4baaaaaa@56D2@

This expression for the derivative of the hysteretic deformation is used to the graphically illustration of the sufficient condition for the absolute stability of the control system with nano piezoengine under the randomly influences on Figure 1.

Figure 1 Sufficient condition of absolute stability system.

For the longitudinal piezoengine at the randomly influences the maximum of the piezomodule has the form d 33 max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGKbWaa0baaSqaaiaaiodacaaIZaaabaGaciyBaiaacgga caGG4baaaaaa@41A6@  = 1.7 nm/V for the longitudinal piezoeffect.

Discussion

The equilibrium positions of the piezoengine in the system for controlling its deformation are stable relative to mathematical expectations, when the condition of absolute stability with the maximum piezomodule as the maximum derivative of the hysteresis characteristic is satisfied.

Conclusion

The sufficient condition of absolute stability system on the derivative for the randomly influences is determined by using of the statistical linearization method. The equilibrium positions of the piezoengine in control system are stable relative to mathematical expectations. The condition for the absolute stability of the control system under random influences is obtained, taking into account the maximum piezo module of the piezoengine.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

  1. Yakubovich VA. Frequency conditions for absolute stability of control systems with hysteresis-like non-linearities. Dokl Akad Nauk SSSR. 1963;149(2):288–291.
  2. Andrievsky BR, Barabanov AE, Bondarko VA, et al. Nonlinear systems. Frequency and matrix inequalities. Eds. Gelig AKh, Leonov GA, Fradkov AL. Fizmatlit. Moscow. 2008:608.
  3. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Dokl Math. 2006;74(3):943–948.
  4. Liao X, Yu P. Absolute stability of nonlinear control systems. Springer, Dordrecht. 2008:384.
  5. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric actuators and generators for energy harvesting. Research and Development. Switzerland, Cham. 2018:182.
  6. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Dokl Phys. 2005;50(2):77–82.
  7. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Dokl Phys. 2008;53(3):137–143.
  8. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Dokl Math. 2006;73(2):307–313.
  9. Cady WG. Piezoelectricity: an introduction to the theory and applications of electromechancial phenomena in crystals. McGraw-Hill Book Company, New York, London. 1946:806.
  10. Mason W, editor. Physical acoustics: principles and methods. Vol. 1. Part A. methods and devices. Academic press, New York. 1964:515.
  11. Yang Y, Tang L. Equivalent circuit modeling of piezoelectric energy harvesters. J Intelligent Material Systems Structures. 2009;20(18):2223–2235.
  12. Schultz J, Ueda J, Asada H. Cellular Actuators. Butterworth-Heinemann Publisher, Oxford. 2017:382.
  13. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Ed. Parinov IA. Nova Science, New York. 2015:225–242.
  14. Preisach А. Über die magnetische nachwirkung. Zeitschrift für Physik. Berlin: Verlag von Julius Springer. 1935;94(5-6):277–302.
  15. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. Int J Phys. 2019;7(2):50–57.
  16. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):1–9.
  17. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):1–14.
  18. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Trans Networks Commun. 2020;8(1):8–15.
  19. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Appl System Innovation. 2020;3(4):1–7.
  20. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Appl System Innovation. 2021;4(3):1–11.
  21. Afonin SM. Piezoengine for nanomedicine and applied bionics. MOJ App Bio Biomech. 2022;6(1):30–33.
  22. Afonin SM. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. Chapter 8 in Advances in Nanotechnology. Volume 25. Eds. Bartul Z, Trenor J, Nova Science, New York. 2021:251–266.
  23. Afonin SM. Absolute stability of system with nano piezoengine for biomechanics. MOJ Appl Bio Biomech. 2023;7(1):211–213.
  24. Afonin SM. Electroelastic actuator of nanomechatronics systems for nanoscience. Chapter 2 in Recent Progress in Chemical Science Research. Volume 6. Ed. Min HS, B P International, India, UK. London. 2023:15–27.
  25.  Afonin SM. Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. Chapter 34 in Physics and Mechanics of New Materials and Their Applications. Proceedings of the International Conference PHENMA 2021-2022, Springer Proceedings in Materials series. Volume 20. Eds. Parinov IA, Chang SH, Soloviev AN. Springer, Cham. 2023:419–428.
  26. Nalwa HS, editor. Encyclopedia of Nanoscience and Nanotechnology. Los Angeles: American Scientific Publishers. 10 Volumes. 2004.
  27. Bhushan B, editor. Springer Handbook of Nanotechnology. New York: Springer. 2004:1222.
Creative Commons Attribution License

©2024 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.