Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Short Communication Volume 8 Issue 3

Parameters of a nanopiezoengine for astrophysics research

Afonin SM

National Research University of Electronic Technology, Russia

Correspondence: Afonin SM, National Research University of Electronic Technology MIET, Moscow, Russia

Received: August 08, 2024 | Published: August 21, 2024

Citation: Afonin SM. Parameters of a nanopiezoengine for astrophysics research. Aeron Aero Open Access J. 2024;8(3):175-177. DOI: 10.15406/aaoaj.2024.08.00205

Download PDF

Abstract

The static and dynamic parameters of a nanopiezoengine for astrophysics research are determined. The function of the nanopiezoengine is obtained. The parameters of the transverse nanopiezoengine are written.

Keywords: nanopiezoengine, parameter, function, characteristic, astrophysics research

Introduction

For astrophysics research a nanopiezoengine is applied.1–12 The energy transformation is clearly for a nanopiezoengine.11–34. A nanopiezoengine is promising for nanotechnology, microscopy, interferometers, adaptive optics and astrophysics research.20–42

Determination of parameters

The static and dynamic parameters of a nanopiezoengine for astrophysics research are written from piezoelasticity and its differential equation.

Piezoelasticity is determined6–42

S i = v mi Ψ m + s ij ψ T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb WcdaWgaaqaaKqzadGaamyAaaWcbeaajugibiabg2da9iaadAhalmaa BaaabaqcLbmacaWGTbGaamyAaaWcbeaajugibiabfI6azPWaaSbaaS qaaKqzadGaamyBaaWcbeaajugibiabgUcaRiaadohalmaaDaaabaqc LbmacaWGPbGaamOAaaWcbaqcLbmacqaHipqEaaqcLbsacaWGubGcda WgaaWcbaqcLbmacaWGQbaaleqaaaaa@528D@

Here the control parameter is E m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGTbaabeaaaaa@37DF@ the strength electric field or D m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGTbaabeaaaaa@37DE@ the electric induction, ν mi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyVd42aaS baaSqaaiaad2gacaWGPbaabeaaaaa@39BB@ the piezoconstant is d mi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGTbGaamyAaaqabaaaaa@38EC@ the piezomodule or g mi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWGTbGaamyAaaqabaaaaa@38EF@ the piezocoefficient, s ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaDa aaleaacaWGPbGaamOAaaqaaiabfI6azbaaaaa@3A88@ the elastic compliance, S i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGPbaabeaaaaa@37E9@ is the relative displacement, T j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWGQbaabeaaaaa@37EB@ the strength mechanical field.

Its differential equation6–39

d 2 Ξ(x,s) d x 2 γ 2 Ξ(x,s)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaju gibiaadsgakmaaCaaaleqabaGaaGOmaaaajugibiabf65ayjaacIca caWG4bGaaiilaiaadohacaGGPaaakeaajugibiaadsgacaWG4bGcda ahaaWcbeqaaiaaikdaaaaaaKqzGeGaeyOeI0Iaeq4SdC2cdaahaaqa beaacaaIYaaaaKqzGeGaeuONdGLaaiikaiaadIhacaGGSaGaam4Cai aacMcacqGH9aqpcaaIWaaaaa@4FEC@

Here Ξ( x,s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aae WaaeaacaWG4bGaaiilaiaadohaaiaawIcacaGLPaaaaaa@3BA9@ , s, x , γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@379E@ are the Laplace transform of nanodisplacement, the parameter, the coordinate and the propagation coefficient.

The matrix of the nanodisplacements6–39

( Ξ 1 ( s ) Ξ 2 ( s ) )=( W 11 ( s ) W 21 ( s ) W 12 ( s ) W 22 ( s ) W 13 ( s ) W 23 ( s ) )( Ψ m ( s ) F 1 ( s ) F 2 ( s ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaju gibuaabeqaceaaaOqaaKqzGeGaeuONdG1cdaWgaaqaaiaaigdaaeqa aOWaaeWaaeaajugibiaadohaaOGaayjkaiaawMcaaaqaaKqzGeGaeu ONdG1cdaWgaaqaaiaaikdaaeqaaOWaaeWaaeaajugibiaadohaaOGa ayjkaiaawMcaaaaaaiaawIcacaGLPaaajugibiabg2da9OWaaeWaae aajugibuaabeqabmaaaOqaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWG xbGcdaWgaaWcbaGaaGymaiaaigdaaeqaaOWaaeWaaeaajugibiaado haaOGaayjkaiaawMcaaaqaaKqzGeGaam4vaSWaaSbaaeaacaaIYaGa aGymaaqabaGcdaqadaqaaKqzGeGaam4CaaGccaGLOaGaayzkaaaaaa qaaKqzGeqbaeqabiqaaaGcbaqcLbsacaWGxbWcdaWgaaqaaiaaigda caaIYaaabeaakmaabmaabaqcLbsacaWGZbaakiaawIcacaGLPaaaae aajugibiaadEfalmaaBaaabaGaaGOmaiaaikdaaeqaaOWaaeWaaeaa jugibiaadohaaOGaayjkaiaawMcaaaaaaeaajugibuaabeqaceaaaO qaaKqzGeGaam4vaSWaaSbaaeaacaaIXaGaaG4maaqabaGcdaqadaqa aKqzGeGaam4CaaGccaGLOaGaayzkaaaabaqcLbsacaWGxbWcdaWgaa qaaiaaikdacaaIZaaabeaakmaabmaabaqcLbsacaWGZbaakiaawIca caGLPaaaaaaaaaGaayjkaiaawMcaamaabmaabaqcLbsafaqabeWaba aakeaajugibiabfI6azTWaaSbaaeaacaWGTbaabeaakmaabmaabaqc LbsacaWGZbaakiaawIcacaGLPaaaaeaajugibiaadAealmaaBaaaba GaaGymaaqabaGcdaqadaqaaKqzGeGaam4CaaGccaGLOaGaayzkaaaa baqcLbsacaWGgbWcdaWgaaqaaiaaikdaaeqaaOWaaeWaaeaajugibi aadohaaOGaayjkaiaawMcaaaaaaiaawIcacaGLPaaaaaa@84D5@

Then the transverse static nanodisplacements

ξ 1 = d 31 ( h/δ )U M 2 / ( M 1 + M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cda WgaaqaaiaaigdaaeqaaOGaeyypa0ZaaSGbaeaacaWGKbWcdaWgaaqa aiaaiodacaaIXaaabeaakmaabmaabaWaaSGbaeaacaWGObaabaGaeq iTdqgaaaGaayjkaiaawMcaaiaadwfacaWGnbWaaSbaaSqaaiaaikda aeqaaaGcbaWaaeWaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaamytamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaa aaa@491F@

ξ 2 = d 31 ( h/δ )U M 1 / ( M 1 + M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cda WgaaqaaiaaikdaaeqaaOGaeyypa0ZaaSGbaeaacaWGKbWcdaWgaaqa aiaaiodacaaIXaaabeaakmaabmaabaWaaSGbaeaacaWGObaabaGaeq iTdqgaaaGaayjkaiaawMcaaiaadwfacaWGnbWaaSbaaSqaaiaaigda aeqaaaGcbaWaaeWaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaey 4kaSIaamytamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaa aaa@491F@

To the transverse PZT engine d31= 0.2 nm/V, h/δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGObaabaGaeqiTdqgaaaaa@389F@ = 10, U= 50 V, M1= 0.25 kg, M2= 1 kg its parameters are written ξ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cda Wgaaqaaiaaigdaaeqaaaaa@38A1@ = 80 nm, ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3cda Wgaaqaaiaaikdaaeqaaaaa@38A2@ = 20 nm with 10% error.

If the boundary conditions

Ξ( 0,s )= Ξ 1 ( s )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHEo awkmaabmaabaqcLbsacaaIWaGaaiilaiaadohaaOGaayjkaiaawMca aKqzGeGaeyypa0JaeuONdG1cdaWgaaqaaiaaigdaaeqaaOWaaeWaae aajugibiaadohaaOGaayjkaiaawMcaaKqzGeGaeyypa0JaaGimaaaa @4825@ for x = 0

Ξ( h,s )= Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHEo awkmaabmaabaqcLbsacaWGObGaaiilaiaadohaaOGaayjkaiaawMca aKqzGeGaeyypa0JaeuONdG1cdaWgaaqaaiaaikdaaeqaaOWaaeWaae aajugibiaadohaaOGaayjkaiaawMcaaaaa@460A@ for x = h

then the solution at fixed first end of the transverse nanopiezoengine

Ξ( x,s )= Ξ 2 ( s )sh( xγ ) sh( hγ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHEo awkmaabmaabaqcLbsacaWG4bGaaiilaiaadohaaOGaayjkaiaawMca aKqzGeGaeyypa0JcdaWcaaqaaKqzGeGaeuONdGLcdaWgaaWcbaGaaG OmaaqabaGcdaqadaqaaKqzGeGaam4CaaGccaGLOaGaayzkaaqcLbsa caqGZbGaaeiAaOWaaeWaaeaajugibiaadIhacqaHZoWzaOGaayjkai aawMcaaaqaaKqzGeGaae4CaiaabIgakmaabmaabaqcLbsacaWGObGa eq4SdCgakiaawIcacaGLPaaaaaaaaa@553E@

and

Ξ 2 ( s )γ th( hγ ) + Ξ 2 ( s ) s 11 E M 2 s 2 S 0 + Ξ 2 ( s ) s 11 E C 1 S 0 = d 31 E 3 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaju gibiabf65ayTWaaSbaaeaacaaIYaaabeaakmaabmaabaqcLbsacaWG ZbaakiaawIcacaGLPaaajugibiabeo7aNbGcbaqcLbsacaqG0bGaae iAaOWaaeWaaeaajugibiaadIgacqaHZoWzaOGaayjkaiaawMcaaaaa jugibiabgUcaROWaaSaaaeaajugibiabf65ayXWaaSbaaeaacaaIYa aabeaakmaabmaabaqcLbsacaWGZbaakiaawIcacaGLPaaajugibiaa dohalmaaDaaabaGaaGymaiaaigdaaeaacaWGfbaaaKqzGeGaamytaS WaaSbaaeaacaaIYaaabeaajugibiaadohakmaaCaaaleqabaGaaGOm aaaaaOqaaKqzGeGaam4uaOWaaSbaaSqaaKqzGeGaaGimaaWcbeaaaa qcLbsacqGHRaWkkmaalaaabaqcLbsacqqHEoawlmaaBaaabaGaaGOm aaqabaGcdaqadaqaaKqzGeGaam4CaaGccaGLOaGaayzkaaqcLbsaca WGZbWcdaqhaaqaaiaaigdacaaIXaaabaGaamyraaaajugibiaadoea kmaaBaaaleaacaaIXaaabeaaaOqaaKqzGeGaam4uaOWaaSbaaSqaai aaicdaaeqaaaaajugibiabg2da9iaadsgalmaaBaaabaGaaG4maiaa igdaaeqaaKqzGeGaamyraOWaaSbaaSqaaiaaiodaaeqaaOWaaeWaae aajugibiaadohaaOGaayjkaiaawMcaaaaa@74E8@

Therefore, the function at the voltage control and R=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabg2 da9iaaicdaaaa@388E@ is determined

W( s )= Ξ 2 ( s ) U( s ) = d 31 ( h/δ ) M 2 p 2 / C 11 E +hγcth( hγ )+ C e / C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGxb GcdaqadaqaaKqzGeGaam4CaaGccaGLOaGaayzkaaqcLbsacqGH9aqp kmaalaaabaqcLbsacqqHEoawlmaaBaaabaGaaGOmaaqabaGcdaqada qaaKqzGeGaam4CaaGccaGLOaGaayzkaaaabaqcLbsacaWGvbGcdaqa daqaaKqzGeGaam4CaaGccaGLOaGaayzkaaaaaKqzGeGaeyypa0Jcda WcaaqaaKqzGeGaamizaSWaaSbaaeaacaaIZaGaaGymaaqabaGcdaqa daqaamaalyaabaqcLbsacaWGObaakeaajugibiabes7aKbaaaOGaay jkaiaawMcaaaqaamaalyaabaqcLbsacaWGnbGcdaWgaaWcbaGaaGOm aaqabaqcLbsacaWGWbGcdaahaaWcbeqaaiaaikdaaaaakeaajugibi aadoealmaaDaaabaGaaGymaiaaigdaaeaacaWGfbaaaaaajugibiab gUcaRiaadIgacqaHZoWzcaqGJbGaaeiDaiaabIgakmaabmaabaqcLb sacaWGObGaeq4SdCgakiaawIcacaGLPaaajugibiabgUcaROWaaSGb aeaajugibiaadoeakmaaBaaaleaacaWGLbaabeaaaOqaaKqzGeGaam 4qaSWaa0baaeaacaaIXaGaaGymaaqaaiaadweaaaaaaaaaaaa@6F45@

where Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaa aa@3AEE@ , C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaSWaa0 raaeaacaaIXaGaaGymaaqaaiaadweaaaaaaa@392D@ , C e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa aaleaacaWGLbaabeaaaaa@37D5@ are the transform the nanodisplacement its second end, the stiffness transverse piezo engine and its load.

At elastic-inertial load for M 2 m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb WcdaWgaaqaaiaaikdaaeqaaKqzGeGaeS4AI8JaamyBaaaa@3D38@ , m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaaaa@36E9@ the mass of the engine, its function is written

W( s )= Ξ( s ) U( s ) = k 31 U T t 2 s 2 +2 T t ξ t s+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaabm aabaGaam4CaaGaayjkaiaawMcaaiabg2da9maalaaabaGaeuONdG1a aeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGaamyvamaabmaabaGaam 4CaaGaayjkaiaawMcaaaaacqGH9aqpdaWcaaqaaiaadUgadaqhaaWc baGaaG4maiaaigdaaeaacaWGvbaaaaGcbaGaaGjbVlaadsfalmaaDa aabaGaamiDaaqaaiaaikdaaaGccaWGZbWcdaahaaqabeaacaaIYaaa aOGaey4kaSIaaGOmaiaadsfalmaaBaaabaGaamiDaaqabaGccqaH+o aElmaaBaaabaGaamiDaaqabaGccaWGZbGaey4kaSIaaGymaaaaaaa@55C3@

k 31 U = d 31 ( h/δ )/ ( 1+ C e / C 11 E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaDa aaleaacaaIZaGaaGymaaqaaiaadwfaaaGccqGH9aqpdaWcgaqaaiaa dsgalmaaBaaabaGaaG4maiaaigdaaeqaaOWaaeWaaeaadaWcgaqaai aadIgaaeaacqaH0oazaaaacaGLOaGaayzkaaaabaWaaeWaaeaacaaI XaGaey4kaSYaaSGbaeaacaWGdbWaaSbaaSqaaiaadwgaaeqaaaGcba Gaam4qamaaDaaaleaacaaIXaGaaGymaaqaaiaadweaaaaaaaGccaGL OaGaayzkaaaaaaaa@49B7@ , T t = M 2 / ( C e + C 11 E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa aaleaacaWG0baabeaakiabg2da9maakaaabaWaaSGbaeaacaWGnbWa aSbaaSqaaiaaikdaaeqaaaGcbaWaaeWaaeaacaWGdbWaaSbaaSqaai aadwgaaeqaaOGaey4kaSIaam4qamaaDaaaleaacaaIXaGaaGymaaqa aiaadweaaaaakiaawIcacaGLPaaaaaaaleqaaaaa@428C@

To the PZT engine C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaWgaaqaaiaadwgaaeqaaaaa@3A7E@  = 0.33×107 N/m, C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb WcdaqhaaqaaiaaigdacaaIXaaabaGaamyraaaaaaa@3BD5@ = 3×107 N/m, M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGnb WcdaWgaaqaaiaaikdaaeqaaaaa@3A5A@ = 1 kg its parameter is obtained T t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGub WcdaWgaaqaaiaadshaaeqaaaaa@3A9E@  = 0.17×10-3 s with 10% error.

The transverse static nanodisplacement at voltage control

Δh= d 31 ( h/δ )U 1+ C e / C 11 E = k 31 U U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iAaiabg2da9maalaaabaGaamizaSWaaSbaaeaacaaIZaGaaGymaaqa baGcdaqadaqaamaalyaabaGaamiAaaqaaiabes7aKbaaaSGaayjkai aawMcaaOGaamyvaaqaaiaaigdacqGHRaWkdaWcgaqaaiaadoeadaWg aaWcbaGaamyzaaqabaaakeaacaWGdbWaa0baaSqaaiaaigdacaaIXa aabaGaamyraaaaaaaaaOGaeyypa0Jaam4AamaaDaaaleaacaaIZaGa aGymaaqaaiaadwfaaaGccaWGvbaaaa@4D4A@

To the PZT engine d 31 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaS baaeaacaaIZaGaaGymaaqabaaaaa@3884@ = 0.2 nm/V, h/δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGObaabaGaeqiTdqgaaaaa@389F@ = 10, U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D1@ = 50 V, C e / C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGdbWaaSbaaSqaaiaadwgaaeqaaaGcbaGaam4qamaaDaaaleaacaaI XaGaaGymaaqaaiaadweaaaaaaaaa@3B2A@ = 0.11, k 31 U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaDa aaleaacaaIZaGaaGymaaqaaiaadwfaaaaaaa@3966@ = 1.8 nm/V its parameter is determined Δh MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iAaaaa@384A@ = 90 nm at 10% error.

For the transverse nanopiezoengine mechanical characteristic with maximums values of its parameters are obtained

Δh=Δ h max ( 1F/ F max ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iAaiabg2da9iabfs5aejaadIgalmaaBaaabaGaaeyBaiaabggacaqG 4baabeaakmaabmaabaGaaGymaiabgkHiTmaalyaabaGaamOraaqaai aadAeadaWgaaWcbaGaaeyBaiaabggacaqG4baabeaaaaaakiaawIca caGLPaaaaaa@468A@

Δ h max = d 31 ( h/δ )U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iAaSWaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0Jaamiz aSWaaSbaaeaacaaIZaGaaGymaaqabaGcdaqadaqaamaalyaabaGaam iAaaqaaiabes7aKbaaaSGaayjkaiaawMcaaOGaamyvaaaa@440C@

F max = d 31 S 0 E 3 / s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaqGTbGaaeyyaiaabIhaaeqaaOGaeyypa0ZaaSGbaeaacaWG KbWcdaWgaaqaaiaaiodacaaIXaaabeaakiaadofalmaaBaaabaGaaG imaaqabaGccaWGfbWaaSbaaSqaaiaaiodaaOqabaaabaGaam4CaSWa a0baaeaacaaIXaGaaGymaaqaaiaadweaaaaaaaaa@4464@

To the PZT engine h/δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaju gibiaadIgaaOqaaKqzGeGaeqiTdqgaaaaa@3BE1@  = 10, U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGvb aaaa@397A@ = 50 V, E 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb WcdaWgaaqaaiaaiodaaeqaaaaa@3A53@ = 1×105 V/m, S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb WcdaWgaaqaaiaaicdaaeqaaaaa@3A5E@ = 1×10-5 m2, d 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb WcdaWgaaqaaiaaiodacaaIXaaabeaaaaa@3B2D@ = 0.2 nm/V, s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb WcdaqhaaqaaiaaigdacaaIXaaabaGaamyraaaaaaa@3C05@ = 10×10-12 m2/N its parameters are received Δ h max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHuo arcaWGObWcdaWgaaqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3DF3@ = 100 nm, F max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0dg9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGgb WcdaWgaaqaaiGac2gacaGGHbGaaiiEaaqabaaaaa@3C6B@ = 20 N with 10% error.

Discussion

The transverse nanopiezoengine is used for astrophysics research, interferometers, adaptive optics. The parameters of the nanopiezoengine are obtained for astrophysics research.

Conclusion

The parameters of the nanopiezoengine are received. The function of the nanopiezoengine is obtained for astrophysics research. The parameters of characteristic the transverse nanopiezoengine are determined.

Acknowledgments

None.

Conflicts of interest

The authors declare that there is no conflict of interest..

References

  1. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher; 1997. p. 350.
  2. Gao J, Xue D, Liu W, et al. Recent progress in BaTiO3 - based on piezoelectric ceramics for actuator applications. Actuators. 2017;6(3):5.
  3. Spanner K, Koc B. Piezoelectric motors, an overview. Actuators. 2016;5(1):6.
  4. Bhushan B. Springer Handbook of Nanotechnology. New York: Springer; 2004. 1222 p.
  5. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric actuators and generators for energy harvesting. Switzerland: Research and Development Springer; 2018. 182 p.
  6. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 2005;50(2):77–82.
  7. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  8. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;73(2):307–313.
  9. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation. 2020;3(4):1–7.
  10. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Applied System Innovation. 2021;4(3):1–11.
  11. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):1–9.
  12. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):1–14.
  13. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York, London: McGraw-Hill Book Company; 1946. 806 p.
  14. Mason W. Physical acoustics: principles and methods. New York: Academic Press; 1964. 515 p.
  15. Liu Y, Zeng A, Zhang S, et al. An experimental investigation on polarization process of a PZT-52 tube actuator with interdigitated electrodes. Micromachines. 2022;13(10):1760.
  16. Jang Seon-Min, Yang Su Chul. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials. Nanotechnology. 2018;29(23):235602.
  17. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. In: Piezoelectrics and nanomaterials: fundamentals. developments and applications. New York: Nova Science; 2015. p. 225–242.
  18. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics. 2017;5(1):9–15.
  19. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics. 2019;7(2):50–57.
  20. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russian Engineering Research. 2021;41(4):285–288.
  21. Afonin SM. An engine for nanochemistry. Journal of Chemistry & its Applications. 2022;1(1):1–4.
  22. Afonin SM. Structural scheme of an electromagnetoelastic actuator for nanotechnology research. In: Parinov IA, et al., editors. Physics and mechanics of new materials and their applications. PHENMA 2023. Springer Proceedings in Materials. Springer; 2024. p. 486–501.
  23. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeron Aero Open Access J. 2018;2(5):270–272.
  24. Afonin SM. Piezoactuator of nanodisplacement for astrophysics. Aeron Aero Open Access J. 2022;6(4):155–158.
  25. Afonin SM. An engine for nano material science. OAJRC Material Science. 2023;5(1):1–6.
  26. Afonin SM. Piezoengine for nanomedicine and applied bionics. MOJ App Bio Biomech. 2022;6(1):30-33.
  27. Afonin SM. System with nano piezoengine under randomly influences for biomechanics. MOJ App Bio Biomech. 2024;8(1):1–3.
  28. Afonin SM. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. In: Bartul Z, et al., editors. Advances in Nanotechnology. New York: Nova Science; 2021. p. 251–266.
  29. Afonin SM. Structural model of nano piezoengine for applied biomechanics and biosciencess. MOJ App Bio Biomech. 2023;7(1):21–25.
  30. Afonin SM. Characteristics electroelastic engine for nanobiomechanics. MOJ App Bio Biomech. 2020;4(3):51–53.
  31. Afonin SM. Piezo actuators for nanomedicine research. MOJ App Bio Biomech. 2019;3(2):56–57.
  32. Afonin SM. Structural scheme of piezoactuator for astrophysics. Phys Astron Int J. 2024;8(1):32‒36.
  33. Afonin SM. Nanopiezoactuator for astrophysics equipment. Phys Astron Int J. 2023;7(2):153–155.
  34. Afonin SM. Deformation of electromagnetoelastic actuator for nano robotics system. Int Rob Auto J. 2020;6(2):84–86.
  35. Afonin SM. A multi-layer electro elastic drive for micro and nano robotics. Int Rob Auto J. 2024;10(2):73–76.
  36. Afonin SM. Structural scheme of an engine for nanomedicine and nanotechnology. Nanomedicine & Nanotechnology Open Access. 2024;9(2):300.
  37. Afonin SM. Electroelastic actuator of nanomechatronics systems for nanoscience. In: Min HS, editor. Recent progress in chemical science research. India, UK, London: BP International; 2023. p. 15–27.
  38. Afonin SM. Structural scheme of electroelastic actuator for nanomechatronics. In: Ivan A, et al., editors. Advanced Materials; Proceedings of the International Conference on “Physics and Mechanics of New Materials and Their Applications. PHENMA 2019. Switzerland: Springer Nature; 2019. p. 487–502.
  39. Afonin SM. Structural parametric model and diagram of electromagnetoelastic actuator for nanodisplacement in chemistry and biochemistry research. In: Baena OJR, editor. Current Topics on Chemistry and Biochemistry. India, UK: B P International; 2023. p. 77–95.
  40. Afonin SM. Structural-parametric models of electromagnetoelastic actuators of nano- and microdisplacement for robotics and mechatronics systems. St. Petersburg and Moscow, Russia: Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus); 2017. p. 769–773.
  41. Zhao C. Ultrasonic motors technologies and applications. Berlin, Germany: Springer; 2011;494.
  42. Nalwa HS. Encyclopedia of nanoscience and nanotechnology. Los Angeles: American Scientific Publishers; 2004.
Creative Commons Attribution License

©2024 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.