Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Short Communication Volume 8 Issue 3

Parameters of a nanopiezoengine for astrophysics research

Afonin SM

National Research University of Electronic Technology, Russia

Correspondence: Afonin SM, National Research University of Electronic Technology MIET, Moscow, Russia

Received: August 08, 2024 | Published: August 21, 2024

Citation: Afonin SM. Parameters of a nanopiezoengine for astrophysics research. Aeron Aero Open Access J. 2024;8(3):175-177. DOI: 10.15406/aaoaj.2024.08.00205

Download PDF

Abstract

The static and dynamic parameters of a nanopiezoengine for astrophysics research are determined. The function of the nanopiezoengine is obtained. The parameters of the transverse nanopiezoengine are written.

Keywords: nanopiezoengine, parameter, function, characteristic, astrophysics research

Introduction

For astrophysics research a nanopiezoengine is applied.1–12 The energy transformation is clearly for a nanopiezoengine.11–34. A nanopiezoengine is promising for nanotechnology, microscopy, interferometers, adaptive optics and astrophysics research.20–42

Determination of parameters

The static and dynamic parameters of a nanopiezoengine for astrophysics research are written from piezoelasticity and its differential equation.

Piezoelasticity is determined6–42

Si=vmiΨm+sψijTjSi=vmiΨm+sψijTj

Here the control parameter is EmEm the strength electric field or DmDm the electric induction, νmiνmi the piezoconstant is dmidmi the piezomodule orgmigmi the piezocoefficient, sΨijsΨij the elastic compliance, SiSi is the relative displacement, TjTj the strength mechanical field.

Its differential equation6–39

d2Ξ(x,s)dx2γ2Ξ(x,s)=0d2Ξ(x,s)dx2γ2Ξ(x,s)=0

Here Ξ(x,s)Ξ(x,s) , s, x , γγ are the Laplace transform of nanodisplacement, the parameter, the coordinate and the propagation coefficient.

The matrix of the nanodisplacements6–39

(Ξ1(s)Ξ2(s))=(W11(s)W21(s)W12(s)W22(s)W13(s)W23(s))(Ψm(s)F1(s)F2(s))

Then the transverse static nanodisplacements

ξ1=d31(h/δ)UM2/(M1+M2)

ξ2=d31(h/δ)UM1/(M1+M2)

To the transverse PZT engine d31= 0.2 nm/V, h/δ = 10, U= 50 V, M1= 0.25 kg, M2= 1 kg its parameters are written ξ1 = 80 nm, ξ2 = 20 nm with 10% error.

If the boundary conditions

Ξ(0,s)=Ξ1(s)=0 for x = 0

Ξ(h,s)=Ξ2(s) for x = h

then the solution at fixed first end of the transverse nanopiezoengine

Ξ(x,s)=Ξ2(s)sh(xγ)sh(hγ)

and

Ξ2(s)γth(hγ)+Ξ2(s)sE11M2s2S0+Ξ2(s)sE11C1S0=d31E3(s)

Therefore, the function at the voltage control and R=0 is determined

W(s)=Ξ2(s)U(s)=d31(h/δ)M2p2/CE11+hγcth(hγ)+Ce/CE11

where Ξ2(s) , CE11 , Ce are the transform the nanodisplacement its second end, the stiffness transverse piezo engine and its load.

At elastic-inertial load for M2m ,m the mass of the engine, its function is written

W(s)=Ξ(s)U(s)=kU31T2ts2+2Ttξts+1

kU31=d31(h/δ)/(1+Ce/CE11) , Tt=M2/(Ce+CE11)

To the PZT engine Ce  = 0.33×107 N/m, CE11 = 3×107 N/m, M2 = 1 kg its parameter is obtained Tt  = 0.17×10-3 s with 10% error.

The transverse static nanodisplacement at voltage control

Δh=d31(h/δ)U1+Ce/CE11=kU31U

To the PZT engine d31 = 0.2 nm/V, h/δ = 10, U = 50 V, Ce/CE11 = 0.11, kU31 = 1.8 nm/V its parameter is determined Δh = 90 nm at 10% error.

For the transverse nanopiezoengine mechanical characteristic with maximums values of its parameters are obtained

Δh=Δhmax(1F/Fmax)

Δhmax=d31(h/δ)U

Fmax=d31S0E3/sE11

To the PZT engine h/δ  = 10,U = 50 V, E3 = 1×105 V/m, S0 = 1×10-5 m2, d31 = 0.2 nm/V, sE11 = 10×10-12 m2/N its parameters are received Δhmax = 100 nm, Fmax = 20 N with 10% error.

Discussion

The transverse nanopiezoengine is used for astrophysics research, interferometers, adaptive optics. The parameters of the nanopiezoengine are obtained for astrophysics research.

Conclusion

The parameters of the nanopiezoengine are received. The function of the nanopiezoengine is obtained for astrophysics research. The parameters of characteristic the transverse nanopiezoengine are determined.

Acknowledgments

None.

Conflicts of interest

The authors declare that there is no conflict of interest..

References

  1. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher; 1997. p. 350.
  2. Gao J, Xue D, Liu W, et al. Recent progress in BaTiO3 - based on piezoelectric ceramics for actuator applications. Actuators. 2017;6(3):5.
  3. Spanner K, Koc B. Piezoelectric motors, an overview. Actuators. 2016;5(1):6.
  4. Bhushan B. Springer Handbook of Nanotechnology. New York: Springer; 2004. 1222 p.
  5. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric actuators and generators for energy harvesting. Switzerland: Research and Development Springer; 2018. 182 p.
  6. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 2005;50(2):77–82.
  7. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  8. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;73(2):307–313.
  9. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation. 2020;3(4):1–7.
  10. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Applied System Innovation. 2021;4(3):1–11.
  11. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):1–9.
  12. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):1–14.
  13. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York, London: McGraw-Hill Book Company; 1946. 806 p.
  14. Mason W. Physical acoustics: principles and methods. New York: Academic Press; 1964. 515 p.
  15. Liu Y, Zeng A, Zhang S, et al. An experimental investigation on polarization process of a PZT-52 tube actuator with interdigitated electrodes. Micromachines. 2022;13(10):1760.
  16. Jang Seon-Min, Yang Su Chul. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials. Nanotechnology. 2018;29(23):235602.
  17. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. In: Piezoelectrics and nanomaterials: fundamentals. developments and applications. New York: Nova Science; 2015. p. 225–242.
  18. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics. 2017;5(1):9–15.
  19. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics. 2019;7(2):50–57.
  20. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russian Engineering Research. 2021;41(4):285–288.
  21. Afonin SM. An engine for nanochemistry. Journal of Chemistry & its Applications. 2022;1(1):1–4.
  22. Afonin SM. Structural scheme of an electromagnetoelastic actuator for nanotechnology research. In: Parinov IA, et al., editors. Physics and mechanics of new materials and their applications. PHENMA 2023. Springer Proceedings in Materials. Springer; 2024. p. 486–501.
  23. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeron Aero Open Access J. 2018;2(5):270–272.
  24. Afonin SM. Piezoactuator of nanodisplacement for astrophysics. Aeron Aero Open Access J. 2022;6(4):155–158.
  25. Afonin SM. An engine for nano material science. OAJRC Material Science. 2023;5(1):1–6.
  26. Afonin SM. Piezoengine for nanomedicine and applied bionics. MOJ App Bio Biomech. 2022;6(1):30-33.
  27. Afonin SM. System with nano piezoengine under randomly influences for biomechanics. MOJ App Bio Biomech. 2024;8(1):1–3.
  28. Afonin SM. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. In: Bartul Z, et al., editors. Advances in Nanotechnology. New York: Nova Science; 2021. p. 251–266.
  29. Afonin SM. Structural model of nano piezoengine for applied biomechanics and biosciencess. MOJ App Bio Biomech. 2023;7(1):21–25.
  30. Afonin SM. Characteristics electroelastic engine for nanobiomechanics. MOJ App Bio Biomech. 2020;4(3):51–53.
  31. Afonin SM. Piezo actuators for nanomedicine research. MOJ App Bio Biomech. 2019;3(2):56–57.
  32. Afonin SM. Structural scheme of piezoactuator for astrophysics. Phys Astron Int J. 2024;8(1):32‒36.
  33. Afonin SM. Nanopiezoactuator for astrophysics equipment. Phys Astron Int J. 2023;7(2):153–155.
  34. Afonin SM. Deformation of electromagnetoelastic actuator for nano robotics system. Int Rob Auto J. 2020;6(2):84–86.
  35. Afonin SM. A multi-layer electro elastic drive for micro and nano robotics. Int Rob Auto J. 2024;10(2):73–76.
  36. Afonin SM. Structural scheme of an engine for nanomedicine and nanotechnology. Nanomedicine & Nanotechnology Open Access. 2024;9(2):300.
  37. Afonin SM. Electroelastic actuator of nanomechatronics systems for nanoscience. In: Min HS, editor. Recent progress in chemical science research. India, UK, London: BP International; 2023. p. 15–27.
  38. Afonin SM. Structural scheme of electroelastic actuator for nanomechatronics. In: Ivan A, et al., editors. Advanced Materials; Proceedings of the International Conference on “Physics and Mechanics of New Materials and Their Applications. PHENMA 2019. Switzerland: Springer Nature; 2019. p. 487–502.
  39. Afonin SM. Structural parametric model and diagram of electromagnetoelastic actuator for nanodisplacement in chemistry and biochemistry research. In: Baena OJR, editor. Current Topics on Chemistry and Biochemistry. India, UK: B P International; 2023. p. 77–95.
  40. Afonin SM. Structural-parametric models of electromagnetoelastic actuators of nano- and microdisplacement for robotics and mechatronics systems. St. Petersburg and Moscow, Russia: Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus); 2017. p. 769–773.
  41. Zhao C. Ultrasonic motors technologies and applications. Berlin, Germany: Springer; 2011;494.
  42. Nalwa HS. Encyclopedia of nanoscience and nanotechnology. Los Angeles: American Scientific Publishers; 2004.
Creative Commons Attribution License

©2024 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.