Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 10 Issue 2

A multi-layer electro elastic drive for micro and nano robotics

Afonin SM

National Research University of Electronic Technology, MIET, Moscow, Russia

Correspondence: Afonin Sergey Mikhailovich, National Research University of Electronic Technology, MIET, 124498, Moscow, Russia, Tel 4997102233

Received: July 09, 2024 | Published: July 17, 2024

Citation: Afonin SM. A multi-layer electro elastic drive for micro and nano robotics. Int Rob Auto J. 2024;10(2):73-76. DOI: 10.15406/iratj.2024.10.00286

Download PDF

Abstract

A multi-layer electro elastic drive of robotics is used in adaptive optics of compound telescope, scanning microscopy, interferometry and nanotechnology. For micro and nano robotics a multi-layer electro elastic drive is applied. The parametric model of a multi-layer electro elastic drive is determined. Its functions and matrix deformations are founded. The parameters of the multi-layer longitudinal PZT drive are determined.

Keywords: multi-layer electro elastic drive, multi-layer piezo drive, parametric model, micro and nano robotics.

Introduction

A multi-layer electro elastic drive is used promising for micro and nano robotics in the micro and nano displacement.1−8 This drive based on the piezoelectric or electrostriction effects.9s−19 A multi-layer electro elastic drive of robotics is applied in adaptive optics of compound telescope, scanning microscopy, micro surgery, interferometry, nano pump, nano stabilization and nanotechnology.20−53 The deformations of a multi-layer drive are described with the matrix equation. Its parametric model, scheme and functions are obtained by using of mathematical physics method.

Parametric model

The parametric model6−53 of multi-layer piezo actuator with the voltage or current controlled are determined using the equation of inverse piezo effect in the form at the control of voltage

S i = d mi E m + s ij E T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcaWGKbWaaSbaaSqaaiaad2gacaWG PbaabeaakiaadweadaWgaaWcbaGaamyBaaqabaGccqGHRaWkcaWGZb Waa0baaSqaaiaadMgacaWGQbaabaGaamyraaaakiaadsfadaWgaaWc baGaamOAaaqabaaaaa@45AB@

at the control of current

S i = g mi D m + s ij D T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcaWGNbWaaSbaaSqaaiaad2gacaWG PbaabeaakiaaykW7caWGebWaaSbaaSqaaiaad2gaaeqaaOGaey4kaS Iaam4CamaaDaaaleaacaWGPbGaamOAaaqaaiaadseaaaGccaWGubWa aSbaaSqaaiaadQgaaeqaaaaa@4737@

here S i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaWGPbaabeaaaaa@37E9@ , E m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGTbaabeaaaaa@37DF@ , D m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiramaaBa aaleaacaWGTbaabeaaaaa@37DE@ , T j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaSWaaS baaeaacaWGQbaabeaaaaa@37EB@ , d mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaamyBaiaadMgaaeqaaaaa@3A01@ , g mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaamyBaiaadMgaaeqaaaaa@3A04@ , s ij E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadohadaqhaa WcbaGaamyAaiaadQgaaeaacaWGfbaaaaaa@3AD8@ , s ij D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadohadaqhaa WcbaGaamyAaiaadQgaaeaacaWGebaaaaaa@3AD7@  are the relative deformation, the strength of electric field, the electric induction, the strength of mechanic field, the piezo module, the piezo constant, the elastic compliances at E=const MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2 da9iaabogacaqGVbGaaeOBaiaabohacaqG0baaaa@3C7D@  and at D=const MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiraiabg2 da9iaabogacaqGVbGaaeOBaiaabohacaqG0baaaa@3C7C@ , and i,j,m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaacY cacaaMe8UaamOAaiaacYcacaaMe8UaamyBaaaa@3D40@  are the indexes.

The equation of the direct piezo effect has the form6−53

D m = d mi T i + ε mk T E k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadseadaWgaa WcbaGaamyBaaqabaGccqGH9aqpcaWGKbWaaSbaaSqaaiaad2gacaWG PbaabeaakiaadsfadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqaH1o qzdaqhaaWcbaGaamyBaiaadUgaaeaacaWGubaaaOGaamyramaaBaaa leaacaWGRbaabeaaaaa@4660@

here ε mk T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabew7aLnaaDa aaleaacaWGTbGaam4Aaaqaaiaadsfaaaaaaa@3B9B@  is the dielectric constants at T=const MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaiabg2 da9iaabogacaqGVbGaaeOBaiaabohacaqG0baaaa@3C8C@ , k is the index

Then the electroelasticity equation of a multi-layer drive6−53 has the form

S i = v mi ψ m + s ij ψ T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcaWG2bWaaSbaaSqaaiaad2gacaWG PbaabeaakiabeI8a5naaBaaaleaacaWGTbaabeaakiabgUcaRiaado hadaqhaaWcbaGaamyAaiaadQgaaeaacqaHipqEaaGccaWGubWaaSba aSqaaiaadQgaaeqaaaaa@47C5@

here Ψ=E,D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdKLaey ypa0JaamyraiaacYcacaaMe8Uaamiraaaa@3C5C@  is control parameter at the control of voltage and the control of current.

A multi-layer drive consist from the piezo layers connected the series mechanically and the parallel electrically [6 − 44]. We have the system of equations for T-form quadripole of k piezo layer

F kinp ( s )=( Z 1 + Z 2 ) Ξ k ( s )+ Z 2 Ξ k+1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGRbGaaGjbVlaabMgacaqGUbGaaeiCaaqabaGcdaqadaqa aiaadohaaiaawIcacaGLPaaacqGH9aqpcqGHsisldaqadaqaaiaadQ fadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGAbWaaSbaaSqaaiaa ikdaaeqaaaGccaGLOaGaayzkaaGaeuONdG1aaSbaaSqaaiaadUgaae qaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaey4kaSIaamOwamaa BaaaleaacaaIYaaabeaakiabf65aynaaBaaaleaacaWGRbGaey4kaS IaaGymaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaaa@556B@

F kout ( s )= Z 2 Ξ k ( s )+( Z 1 + Z 2 ) Ξ k+1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam OramaaBaaaleaacaWGRbGaaGjbVlaab+gacaqG1bGaaeiDaaqabaGc daqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpcqGHsislcaWGAb WaaSbaaSqaaiaaikdaaeqaaOGaeuONdG1aaSbaaSqaaiaadUgaaeqa aOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaey4kaSYaaeWaaeaaca WGAbWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamOwamaaBaaaleaa caaIYaaabeaaaOGaayjkaiaawMcaaiabf65aynaaBaaaleaacaWGRb Gaey4kaSIaaGymaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaa aaa@5669@

Z 1 = S o γth(δγ) s ij ψ , Z 2 = S o γ s ij ψ sh(δγ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQfadaWgaa WcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiaadofadaWgaaWcbaGa am4BaaqabaGccqaHZoWzieaacaWF0bGaa8hAaiaacIcacqaH0oazcq aHZoWzcaGGPaaabaGaam4CamaaDaaaleaacaWGPbGaamOAaaqaaiab eI8a5baaaaGccaGGSaGaaGPaVlaaykW7caWGAbWaaSbaaSqaaiaaik daaeqaaOGaeyypa0ZaaSaaaeaacaWGtbWaaSbaaSqaaiaad+gaaeqa aOGaeq4SdCgabaGaam4CamaaDaaaleaacaWGPbGaamOAaaqaaiabeI 8a5baajugibiaa=nhacaWFObGccaGGOaGaeqiTdqMaeq4SdCMaaiyk aaaaaaa@5F42@

where Z 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaaIXaaabeaaaaa@37BD@ , Z 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaaIYaaabeaaaaa@37BE@ , s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Caaaa@36EF@ , δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqgaaa@379C@ , γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@379E@ , F kinp ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGRbGaaGjbVlaabMgacaqGUbGaaeiCaaqabaGcdaqadaqa aiaadohaaiaawIcacaGLPaaaaaa@3EC6@ , F kout ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGRbGaaGjbVlaab+gacaqG1bGaaeiDaaqabaGcdaqadaqa aiaadohaaiaawIcacaGLPaaaaaa@3ED7@ , Ξ k ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaS baaSqaaiaadUgaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaa aa@3B22@ , Ξ k+1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaS baaSqaaiaadUgacqGHRaWkcaaIXaaabeaakmaabmaabaGaam4CaaGa ayjkaiaawMcaaaaa@3CBF@  are the resistances of quadripole k piezo layer, the transform parameter, the thickness, the coefficient wave propagation, the Laplace transform of the forces at the input and output ends of k piezo layer, the transforms of the displacements at input and output ends of k piezo layer.

The system of the equations for k piezo layer has the form

F kinp ( s )=( 1+ Z 1 Z 2 ) F k out ( s )+ Z 1 ( 2+ Z 1 Z 2 ) Ξ k+1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaam OramaaBaaaleaacaWGRbGaaGjbVlaabMgacaqGUbGaaeiCaaqabaGc daqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaaig dacqGHRaWkdaWcaaqaaiaadQfadaWgaaWcbaGaaGymaaqabaaakeaa caWGAbWaaSbaaSqaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiaadA eadaWgaaWcbaGaam4AamaaBaaameaacaWGVbGaamyDaiaadshaaeqa aaWcbeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUcaRiaadQ fadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaaikdacqGHRaWkdaWc aaqaaiaadQfadaWgaaWcbaGaaGymaaqabaaakeaacaWGAbWaaSbaaS qaaiaaikdaaeqaaaaaaOGaayjkaiaawMcaaiabf65aynaaBaaaleaa caWGRbGaey4kaSIaaGymaaqabaGcdaqadaqaaiaadohaaiaawIcaca GLPaaaaaa@5F73@

Ξ k ( s )= 1 Z 1 F kout ( s )+( 1+ Z 1 Z 2 ) Ξ k+1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaS baaSqaaiaadUgaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGa eyypa0ZaaSaaaeaacaaIXaaabaGaamOwamaaBaaaleaacaaIXaaabe aaaaGccaWGgbWaaSbaaSqaaiaadUgacaaMe8Uaae4BaiaabwhacaqG 0baabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUcaRmaabm aabaGaaGymaiabgUcaRmaalaaabaGaamOwamaaBaaaleaacaaIXaaa beaaaOqaaiaadQfadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaay zkaaGaeuONdG1aaSbaaSqaaiaadUgacqGHRaWkcaaIXaaabeaakmaa bmaabaGaam4CaaGaayjkaiaawMcaaaaa@5624@

This system is founded in the matrix form

[ F kinp ( s ) Ξ k ( s ) ]=[ M ][ F kout ( s ) Ξ k+1 ( s ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaafa qabeGabaaabaGaeyOeI0IaamOramaaBaaaleaacaWGRbGaaGjbVlaa bMgacaqGUbGaaeiCaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPa aaaeaacqqHEoawdaWgaaWcbaGaam4AaaqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaaca WGnbaacaGLBbGaayzxaaGaaGjbVpaadmaabaqbaeqabiqaaaqaaiaa dAeadaWgaaWcbaGaam4AaiaaysW7caqGVbGaaeyDaiaabshaaeqaaO WaaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGaeuONdG1aaSbaaSqa aiaadUgacqGHRaWkcaaIXaaabeaakmaabmaabaGaam4CaaGaayjkai aawMcaaaaaaiaawUfacaGLDbaaaaa@5DDB@

[ M ]=[ m 11 m 12 m 21 m 22 ]=[ 1+ Z 1 Z 2 Z 1 ( 2+ Z 1 Z 1 ) 1 Z 2 1+ Z 1 Z 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaadmaabaGaam ytaaGaay5waiaaw2faaiabg2da9maadmaabaqbaeqabiGaaaqaaiaa d2gadaWgaaWcbaGaaGymaiaaigdaaeqaaaGcbaGaamyBamaaBaaale aacaaIXaGaaGOmaaqabaaakeaacaWGTbWaaSbaaSqaaiaaikdacaaI XaaabeaaaOqaaiaad2gadaWgaaWcbaGaaGOmaiaaikdaaeqaaaaaaO Gaay5waiaaw2faaiabg2da9maadmaabaqbaeqabiGaaaqaaiaaigda cqGHRaWkdaWcaaqaaiaadQfadaWgaaWcbaGaaGymaaqabaaakeaaca WGAbWaaSbaaSqaaiaaikdaaeqaaaaaaOqaaiaadQfadaWgaaWcbaGa aGymaaqabaGcdaqadaqaaiaaikdacqGHRaWkdaWcaaqaaiaadQfada WgaaWcbaGaaGymaaqabaaakeaacaWGAbWaaSbaaSqaaiaaigdaaeqa aaaaaOGaayjkaiaawMcaaaqaamaalaaabaGaaGymaaqaaiaadQfada WgaaWcbaGaaGOmaaqabaaaaaGcbaGaaGymaiabgUcaRmaalaaabaGa amOwamaaBaaaleaacaaIXaaabeaaaOqaaiaadQfadaWgaaWcbaGaaG OmaaqabaaaaaaaaOGaay5waiaaw2faaaaa@603B@

m 11 = m 22 =1+ Z 1 Z 2 =ch(δγ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaiaaigdaaeqaaOGaeyypa0JaamyBamaaBaaaleaacaaI YaGaaGOmaaqabaGccqGH9aqpcaaIXaGaey4kaSYaaSaaaeaacaWGAb WaaSbaaSqaaiaaigdaaeqaaaGcbaGaamOwamaaBaaaleaacaaIYaaa beaaaaGccqGH9aqpieaacaWFJbGaa8hAaiaacIcacqaH0oazcqaHZo WzcaGGPaGaaiilaiaaykW7aaa@4D60@ m 12 = Z 1 ( 2+ Z 1 Z 1 )= Z 0 sh(δγ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaykW7caWGTb WaaSbaaSqaaiaaigdacaaIYaaabeaakiabg2da9iaadQfadaWgaaWc baGaaGymaaqabaGcdaqadaqaaiaaikdacqGHRaWkdaWcaaqaaiaadQ fadaWgaaWcbaGaaGymaaqabaaakeaacaWGAbWaaSbaaSqaaiaaigda aeqaaaaaaOGaayjkaiaawMcaaiabg2da9iaadQfadaWgaaWcbaGaaG imaaqabaacbaqcLbsacaWFZbGaa8hAaOGaaiikaiabes7aKjabeo7a NjaacMcaaaa@4ED2@

m 21 = 1 Z 2 = sh(δγ) Z 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGOmaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGa amOwamaaBaaaleaacaaIYaaabeaaaaGccqGH9aqpdaWcaaqaaGqaaK qzGeGaa83Caiaa=HgakiaacIcacqaH0oazcqaHZoWzcaGGPaaabaGa amOwamaaBaaaleaacaaIWaaabeaaaaGccaGGSaGaaGPaVdaa@4991@ Z 0 = S 0 γ s ij ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaykW7caaMc8 UaamOwamaaBaaaleaacaaIWaaabeaakiabg2da9maalaaabaGaam4u amaaBaaaleaacaaIWaaabeaakiabeo7aNbqaaiaadohadaqhaaWcba GaamyAaiaadQgaaeaacqaHipqEaaaaaaaa@4546@

The equation of forces at the boundary between two layers is obtained in the form

F kout ( s )= F k+1inp ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGRbGaaGjbVlaab+gacaqG1bGaaeiDaaqabaGcdaqadaqa aiaadohaaiaawIcacaGLPaaacqGH9aqpcqGHsislcaWGgbWaaSbaaS qaaiaadUgacqGHRaWkcaaIXaGaaGjbVlaabMgacaqGUbGaaeiCaaqa baGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaaa@4B36@

For a multi-layer electro elastic drive with n layers and l length its system has the matrix form

[ F 1inp ( s ) Ξ 1 ( s ) ]= [ M ] n [ F nout ( s ) Ξ n+1 ( s ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaafa qabeGabaaabaGaeyOeI0IaamOramaaBaaaleaacaaIXaGaaGjbVlaa bMgacaqGUbGaaeiCaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPa aaaeaacqqHEoawdaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaaaaaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaaca WGnbaacaGLBbGaayzxaaWaaWbaaSqabeaacaWGUbaaaOGaaGjbVpaa dmaabaqbaeqabiqaaaqaaiaadAeadaWgaaWcbaGaamOBaiaaysW7ca qGVbGaaeyDaiaabshaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzk aaaabaGaeuONdG1aaSbaaSqaaiaad6gacqGHRaWkcaaIXaaabeaakm aabmaabaGaam4CaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaaaaa@5EA1@

[ M ] n =[ ch(nδγ) Z 0 sh(nδγ) sh(nδγ) Z 0 ch(nδγ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaadmaabaGaam ytaaGaay5waiaaw2faamaaCaaaleqabaGaamOBaaaakiabg2da9maa dmaabaqbaeqabiGaaaqaaGqaaiaa=ngacaWFObGaaiikaiaad6gacq aH0oazcqaHZoWzcaGGPaaabaGaamOwamaaBaaaleaacaaIWaaabeaa jugibiaa=nhacaWFObGccaGGOaGaamOBaiabes7aKjabeo7aNjaacM caaeaadaWcaaqaaKqzGeGaa83Caiaa=HgakiaacIcacaWGUbGaeqiT dqMaeq4SdCMaaiykaaqaaiaadQfadaWgaaWcbaGaaGimaaqabaaaaa GcbaGaa83yaiaa=HgacaGGOaGaamOBaiabes7aKjabeo7aNjaacMca aaaacaGLBbGaayzxaaaaaa@6095@

then

[ M ] n =[ ch(lγ) Z 0 sh(lγ) sh(lγ) Z 0 ch(lγ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaadmaabaGaam ytaaGaay5waiaaw2faamaaCaaaleqabaGaamOBaaaakiabg2da9maa dmaabaqbaeqabiGaaaqaaGqaaiaa=ngacaWFObGaaiikaiaadYgacq aHZoWzcaGGPaaabaGaamOwamaaBaaaleaacaaIWaaabeaajugibiaa =nhacaWFObGccaGGOaGaamiBaiabeo7aNjaacMcaaeaadaWcaaqaaK qzGeGaa83Caiaa=HgakiaacIcacaWGSbGaeq4SdCMaaiykaaqaaiaa dQfadaWgaaWcbaGaaGimaaqabaaaaaGcbaGaa83yaiaa=HgacaGGOa GaamiBaiabeo7aNjaacMcaaaaacaGLBbGaayzxaaaaaa@59F9@

The equations of forces a multi-layer drive we have in the form

at x=0, T j ( 0,s ) S 0 = F 1 ( s )+ M 1 s 2 Ξ 1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaaIWaGaaiilaiaaykW7caaMc8UaamivamaaBaaaleaacaWGQbaa beaakmaabmaabaGaaGimaiaacYcacaWGZbaacaGLOaGaayzkaaGaam 4uamaaBaaaleaacaaIWaaabeaakiabg2da9iaadAeadaWgaaWcbaGa aGymaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaacqGHRaWkca WGnbWaaSbaaSqaaiaaigdaaeqaaOGaam4CamaaCaaaleqabaGaaGOm aaaakiabf65aynaaBaaaleaacaaIXaaabeaakmaabmaabaGaam4Caa GaayjkaiaawMcaaaaa@5409@

at x=l, T j ( l,s ) S 0 = F 2 ( s ) M 2 s 2 Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaWGSbGaaiilaiaaykW7caaMc8UaamivamaaBaaaleaacaWGQbaa beaakmaabmaabaGaamiBaiaacYcacaWGZbaacaGLOaGaayzkaaGaam 4uamaaBaaaleaacaaIWaaabeaakiabg2da9iabgkHiTiaadAeadaWg aaWcbaGaaGOmaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaacq GHsislcaWGnbWaaSbaaSqaaiaaikdaaeqaaOGaam4CamaaCaaaleqa baGaaGOmaaaakiabf65aynaaBaaaleaacaaIYaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@5572@

The transform of its force causes deformation has the equation in the form

F( s )= v mi S 0 ψ m ( s ) s ij ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadAhadaWg aaWcbaGaamyBaiaadMgaaeqaaOGaam4uamaaBaaaleaacaaIWaaabe aakiabeI8a5naaBaaaleaacaWGTbaabeaakmaabmaabaGaam4CaaGa ayjkaiaawMcaaaqaaiaadohadaqhaaWcbaGaamyAaiaadQgaaeaacq aHipqEaaaaaaaa@4A8E@

Then the parametric model and scheme on Figure 1 of a multi-layer electro elastic drive are obtained in the form

Ξ 1 (s)=( 1/( M 1 s 2 ) ){ F 1 ( s )+( 1/ χ ij ψ )[ v mi ψ m ( s )( γ/sh(lγ) )× ×( ch(lγ) Ξ 1 (s) Ξ 2 (s) ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabf65aynaaBa aaleaacaaIXaaabeaakiaaykW7caGGOaGaam4CaiaacMcacqGH9aqp daqadaqaaiaaigdacaGGVaWaaeWaaeaacaWGnbWaaSbaaSqaaiaaig daaeqaaOGaam4CamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca aaGaayjkaiaawMcaamaacmaabaGaeyOeI0IaamOramaaBaaaleaaca aIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUcaRmaa bmaabaGaaGymaiaac+cacqaHhpWydaqhaaWcbaGaamyAaiaadQgaae aacqaHipqEaaaakiaawIcacaGLPaaadaWadaqaauaabeqaceaaaeaa caWG2bWaaSbaaSqaaiaad2gacaWGPbaabeaakiabeI8a5naaBaaale aacaWGTbaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgkHi TmaabmaabaGaeq4SdCMaai4laGqaaKqzGeGaa83Caiaa=HgakiaacI cacaWGSbGaeq4SdCMaaiykaaGaayjkaiaawMcaaiabgEna0cqaaiab gEna0oaabmaabaGaa83yaiaa=HgacaGGOaGaamiBaiabeo7aNjaacM cacqqHEoawdaWgaaWcbaGaaGymaaqabaGccaGGOaGaam4CaiaacMca cqGHsislcqqHEoawdaWgaaWcbaGaaGOmaaqabaGccaGGOaGaam4Cai aacMcaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaacaGL7bGaayzF aaaaaa@8314@

Ξ 2 (s)=( 1/( M 2 s 2 ) ){ F 2 ( s )+( 1/ χ ij ψ )[ v mi ψ m ( s )( γ/sh(lγ) )× ×( ch(lγ) Ξ 2 (s) Ξ 1 (s) ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabf65aynaaBa aaleaacaaIYaaabeaakiaaykW7caGGOaGaam4CaiaacMcacqGH9aqp daqadaqaaiaaigdacaGGVaWaaeWaaeaacaWGnbWaaSbaaSqaaiaaik daaeqaaOGaam4CamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMca aaGaayjkaiaawMcaamaacmaabaGaeyOeI0IaamOramaaBaaaleaaca aIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUcaRmaa bmaabaGaaGymaiaac+cacqaHhpWydaqhaaWcbaGaamyAaiaadQgaae aacqaHipqEaaaakiaawIcacaGLPaaadaWadaqaauaabeqaceaaaeaa caWG2bWaaSbaaSqaaiaad2gacaWGPbaabeaakiabeI8a5naaBaaale aacaWGTbaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgkHi TmaabmaabaGaeq4SdCMaai4laGqaaKqzGeGaa83Caiaa=HgakiaacI cacaWGSbGaeq4SdCMaaiykaaGaayjkaiaawMcaaiabgEna0cqaaiab gEna0oaabmaabaGaa83yaiaa=HgacaGGOaGaamiBaiabeo7aNjaacM cacqqHEoawdaWgaaWcbaGaaGOmaaqabaGccaGGOaGaam4CaiaacMca cqGHsislcqqHEoawdaWgaaWcbaGaaGymaaqabaGccaGGOaGaam4Cai aacMcaaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaacaGL7bGaayzF aaaaaa@8317@

Figure 1 Parametric scheme multi layer electro elastic drive.

here v mi ={ d 33 , d 31 , d 15 g 33, g 31 , g 15 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaamyBaiaadMgaaeqaaOGaeyypa0ZaaiqaaeaafaqabeGabaaa baGaamizamaaBaaaleaacaaIZaGaaG4maaqabaGccaGGSaGaaGPaVl aaykW7caWGKbWaaSbaaSqaaiaaiodacaaIXaaabeaakiaacYcacaaM c8UaaGPaVlaadsgadaWgaaWcbaGaaGymaiaaiwdaaeqaaOGaaGPaVd qaaiaadEgadaWgaaWcbaGaaG4maiaaiodacaGGSaaabeaakiaaykW7 caaMc8Uaam4zamaaBaaaleaacaaIZaGaaGymaaqabaGccaGGSaGaaG PaVlaaykW7caWGNbWaaSbaaSqaaiaaigdacaaI1aaabeaaaaaakiaa wUhaaiaacYcaaaa@5D38@ , Ψ m ={ E 3 , E 1 D 3 , D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdK1aaS baaSqaaiaad2gaaeqaaOGaeyypa0ZaaiqaaeaafaqabeGabaaabaGa amyramaaBaaaleaacaaIZaaabeaakiaacYcacaWGfbWaaSbaaSqaai aaigdaaeqaaaGcbaGaamiramaaBaaaleaacaaIZaaabeaakiaacYca caWGebWaaSbaaSqaaiaaigdaaeqaaaaaaOGaay5Eaaaaaa@4329@ , s ij ψ ={ s 33 E s 11 E s 55 E s 33 D s 11 D s 55 D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadohadaqhaa WcbaGaamyAaiaadQgaaeaacqaHipqEaaGccqGH9aqpdaGabaqaauaa beqacmaaaeaacaWGZbWaa0baaSqaaiaaiodacaaIZaaabaGaamyraa aaaOqaaiaadohadaqhaaWcbaGaaGymaiaaigdaaeaacaWGfbaaaaGc baGaam4CamaaDaaaleaacaaI1aGaaGynaaqaaiaadweaaaaakeaaca WGZbWaa0baaSqaaiaaiodacaaIZaaabaGaamiraaaaaOqaaiaadoha daqhaaWcbaGaaGymaiaaigdaaeaacaWGebaaaaGcbaGaam4CamaaDa aaleaacaaI1aGaaGynaaqaaiaadseaaaaaaaGccaGL7baaaaa@52C8@ , c Ψ ={ c E c D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaGaeuiQdKfaaOGaeyypa0ZaaiqaaeaafaqabeGabaaabaGa am4yamaaCaaaleqabaGaamyraaaaaOqaaiaadogadaahaaWcbeqaai aadseaaaaaaaGccaGL7baaaaa@3EA3@ , γ={ γ E γ E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey ypa0ZaaiqaaeaafaqabeGabaaabaGaeq4SdC2aaWbaaSqabeaacaWG fbaaaaGcbaGaeq4SdC2aaWbaaSqabeaacaWGfbaaaaaaaOGaay5Eaa aaaa@3F1B@ , χ ij ψ = s ij ψ / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaDa aaleaacaWGPbGaamOAaaqaaiabeI8a5baakiabg2da9iaadohadaqh aaWcbaGaamyAaiaadQgaaeaacqaHipqEaaGccaGGVaGaam4uamaaBa aaleaacaaIWaaabeaaaaa@44F6@ .

The matrix function of a multi-layer drive has the form

[ Ξ 1 (s) Ξ 2 (s) ]=[ W 11 ( s ) W 12 ( s ) W 13 ( s ) W 21 ( s ) W 22 ( s ) W 23 ( s ) ][ ψ m ( s ) F 1 (s) F 2 (s) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaadmaabaqbae qabiqaaaqaaiabf65aynaaBaaaleaacaaIXaaabeaakiaaykW7caGG OaGaam4CaiaacMcaaeaacqqHEoawdaWgaaWcbaGaaGOmaaqabaGcca aMc8UaaiikaiaadohacaGGPaaaaaGaay5waiaaw2faaiabg2da9maa dmaabaqbaeqabiWaaaqaaiaadEfadaWgaaWcbaGaaGymaiaaigdaae qaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGaam4vamaaBaaa leaacaaIXaGaaGOmaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPa aaaeaacaWGxbWaaSbaaSqaaiaaigdacaaIZaaabeaakmaabmaabaGa am4CaaGaayjkaiaawMcaaaqaaiaadEfadaWgaaWcbaGaaGOmaiaaig daaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGaam4vamaa BaaaleaacaaIYaGaaGOmaaqabaGcdaqadaqaaiaadohaaiaawIcaca GLPaaaaeaacaWGxbWaaSbaaSqaaiaaikdacaaIZaaabeaakmaabmaa baGaam4CaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaadaWadaqaau aabeqadeaaaeaacqaHipqEdaWgaaWcbaGaamyBaaqabaGcdaqadaqa aiaadohaaiaawIcacaGLPaaaaeaacaWGgbWaaSbaaSqaaiaaigdaae qaaOGaaiikaiaadohacaGGPaaabaGaamOramaaBaaaleaacaaIYaaa beaakiaacIcacaWGZbGaaiykaaaaaiaawUfacaGLDbaaaaa@768B@

then

[ Ξ( s ) ]=[ W( s ) ][ P( s ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq qHEoawdaqadaqaaiaadohaaiaawIcacaGLPaaaaiaawUfacaGLDbaa cqGH9aqpdaWadaqaaiaadEfadaqadaqaaiaadohaaiaawIcacaGLPa aaaiaawUfacaGLDbaacaaMe8+aamWaaeaacaWGqbWaaeWaaeaacaWG ZbaacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaa@4918@

[ Ξ( s ) ]=[ Ξ 1 ( s ) Ξ 2 ( s ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaacq qHEoawdaqadaqaaiaadohaaiaawIcacaGLPaaaaiaawUfacaGLDbaa cqGH9aqpdaWadaqaauaabeqaceaaaeaacqqHEoawdaWgaaWcbaGaaG ymaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaeaacqqHEoaw daWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPa aaaaaacaGLBbGaayzxaaaaaa@48E0@ , [ P( s ) ]=[ Ψ m ( s ) F 1 ( s ) F 2 ( s ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WGqbWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaacaGLBbGaayzxaaGa eyypa0ZaamWaaeaafaqabeWabaaabaGaeuiQdK1aaSbaaSqaaiaad2 gaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGaamOramaa BaaaleaacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaa qaaiaadAeadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadohaaiaa wIcacaGLPaaaaaaacaGLBbGaayzxaaaaaa@4BF9@

[ W( s ) ]=[ W 11 ( s ) W 12 ( s ) W 13 ( s ) W 21 ( s ) W 22 ( s ) W 23 ( s ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaadmaabaGaam 4vamaabmaabaGaam4CaaGaayjkaiaawMcaaaGaay5waiaaw2faaiab g2da9maadmaabaqbaeqabiWaaaqaaiaadEfadaWgaaWcbaGaaGymai aaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGaam4v amaaBaaaleaacaaIXaGaaGOmaaqabaGcdaqadaqaaiaadohaaiaawI cacaGLPaaaaeaacaWGxbWaaSbaaSqaaiaaigdacaaIZaaabeaakmaa bmaabaGaam4CaaGaayjkaiaawMcaaaqaaiaadEfadaWgaaWcbaGaaG OmaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGa am4vamaaBaaaleaacaaIYaGaaGOmaaqabaGcdaqadaqaaiaadohaai aawIcacaGLPaaaaeaacaWGxbWaaSbaaSqaaiaaikdacaaIZaaabeaa kmaabmaabaGaam4CaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaaaa a@5DA5@

The functions of a multi-layer drive are determined

W 11 ( s )= Ξ 1 (s)/ ψ m ( s )= v mi [ M 2 χ ij ψ s 2 +γth(lγ/2) ]/ A ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaGymaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzk aaGaeyypa0JaeuONdG1aaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacI cacaWGZbGaaiykaiaac+cacqaHipqEdaWgaaWcbaGaamyBaaqabaGc daqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpcaWG2bWaaSbaaS qaaiaad2gacaWGPbaabeaakmaadmaabaGaamytamaaBaaaleaacaaI YaaabeaakiabeE8aJnaaDaaaleaacaWGPbGaamOAaaqaaiabeI8a5b aakiaadohadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHZoWzieaa caWF0bGaa8hAaiaacIcacaWGSbGaeq4SdCMaai4laiaaikdacaGGPa aacaGLBbGaayzxaaGaai4laiaadgeadaWgaaWcbaGaamyAaiaadQga aeqaaaaa@6639@

χ ij ψ = s ij ψ / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaDa aaleaacaWGPbGaamOAaaqaaiabeI8a5baakiabg2da9iaadohadaqh aaWcbaGaamyAaiaadQgaaeaacqaHipqEaaGccaGGVaGaam4uamaaBa aaleaacaaIWaaabeaaaaa@44F6@

A ij = M 1 M 2 ( χ ij ψ ) 2 s 4 +{ ( M 1 + M 2 )( χ ij ψ )/[ c ψ th(lγ) ] } s 3 + +[ ( M 1 + M 2 ) χ ij ψ α/th(lγ)+1/ ( c ψ ) 2 ] s 2 +2αs/ c ψ + α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadgeadaWgaa WcbaGaamyAaiaadQgaaeqaaOGaeyypa0tbaeqabiqaaaqaaiaad2ea daWgaaWcbaGaaGymaaqabaGccaWGnbWaaSbaaSqaaiaaikdaaeqaaO WaaeWaaeaacqaHhpWydaqhaaWcbaGaamyAaiaadQgaaeaacqaHipqE aaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWGZbWaaW baaSqabeaacaaI0aaaaOGaey4kaSYaaiWaaeaadaqadaqaaiaad2ea daWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGnbWaaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacqaHhpWydaqhaaWcbaGa amyAaiaadQgaaeaacqaHipqEaaaakiaawIcacaGLPaaacaGGVaWaam WaaeaacaWGJbWaaWbaaSqabeaacqaHipqEaaacbaGccaWF0bGaa8hA aiaacIcacaWGSbGaeq4SdCMaaiykaaGaay5waiaaw2faaaGaay5Eai aaw2haaiaadohadaahaaWcbeqaaiaaiodaaaGccqGHRaWkaeaacqGH RaWkdaWadaqaamaabmaabaGaamytamaaBaaaleaacaaIXaaabeaaki abgUcaRiaad2eadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaa cqaHhpWydaqhaaWcbaGaamyAaiaadQgaaeaacqaHipqEaaGccqaHXo qycaGGVaGaa8hDaiaa=HgacaGGOaGaamiBaiabeo7aNjaacMcacqGH RaWkcaaIXaGaai4lamaabmaabaGaam4yamaaCaaaleqabaGaeqiYdK haaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLBbGa ayzxaaGaam4CamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacq aHXoqycaWGZbGaai4laiaadogadaahaaWcbeqaaiabeI8a5baakiab gUcaRiabeg7aHnaaCaaaleqabaGaaGOmaaaaaaaaaa@9243@

W 21 ( s )= Ξ 2 (s)/ ψ m ( s )= v ij ψ M 1 χ ij ψ s 2 +γth(lγ/2)/ A ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaGOmaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzk aaGaeyypa0JaeuONdG1aaSbaaSqaaiaaikdaaeqaaOGaaGPaVlaacI cacaWGZbGaaiykaiaac+cacqaHipqEdaWgaaWcbaGaamyBaaqabaGc daqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpcqGHsislcaWG2b Waa0baaSqaaiaadMgacaWGQbaabaGaeqiYdKhaaOGaamytamaaBaaa leaacaaIXaaabeaakiabeE8aJnaaDaaaleaacaWGPbGaamOAaaqaai abeI8a5baakiaadohadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH ZoWzieaacaWF0bGaa8hAaiaacIcacaWGSbGaeq4SdCMaai4laiaaik dacaGGPaGaai4laiaadgeadaWgaaWcbaGaamyAaiaadQgaaeqaaaaa @6701@

W 12 ( s )= Ξ 1 (s)/ F 1 ( s )= χ ij ψ [ M 2 χ ij ψ s 2 +γth(lγ) ]/ A ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaGymaiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzk aaGaeyypa0JaeuONdG1aaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaacI cacaWGZbGaaiykaiaac+cacaWGgbWaaSbaaSqaaiaaigdaaeqaaOWa aeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyypa0JaeyOeI0Iaeq4Xdm 2aa0baaSqaaiaadMgacaWGQbaabaGaeqiYdKhaaOWaamWaaeaacaWG nbWaaSbaaSqaaiaaikdaaeqaaOGaeq4Xdm2aa0baaSqaaiaadMgaca WGQbaabaGaeqiYdKhaaOGaam4CamaaCaaaleqabaGaaGOmaaaakiab gUcaRiabeo7aNHqaaiaa=rhacaWFObGaaiikaiaadYgacqaHZoWzca GGPaaacaGLBbGaayzxaaGaai4laiaadgeadaWgaaWcbaGaamyAaiaa dQgaaeqaaaaa@6706@

W 13 ( s )= Ξ 1 (s)/ F 2 ( s )= = W 22 ( s )= Ξ 2 (s)/ F 1 ( s )=[ χ ij ψ γ/sh( lγ ) ]/ A ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaam4vam aaBaaaleaacaaIXaGaaG4maaqabaGcdaqadaqaaiaadohaaiaawIca caGLPaaacqGH9aqpcqqHEoawdaWgaaWcbaGaaGymaaqabaGccaaMc8 UaaiikaiaadohacaGGPaGaai4laiaadAeadaWgaaWcbaGaaGOmaaqa baGcdaqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpaeaacqGH9a qpcaWGxbWaaSbaaSqaaiaaikdacaaIYaaabeaakmaabmaabaGaam4C aaGaayjkaiaawMcaaiabg2da9iabf65aynaaBaaaleaacaaIYaaabe aakiaaykW7caGGOaGaam4CaiaacMcacaGGVaGaamOramaaBaaaleaa caaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabg2da9m aadmaabaGaeq4Xdm2aa0baaSqaaiaadMgacaWGQbaabaGaeqiYdKha aOGaeq4SdCMaai4laGqaaKqzGeGaa83Caiaa=HgakmaabmaabaGaam iBaiabeo7aNbGaayjkaiaawMcaaaGaay5waiaaw2faaiaac+cacaWG bbWaaSbaaSqaaiaadMgacaWGQbaabeaaaaaa@70D2@

W 23 ( s )= Ξ 2 (s)/ F 2 ( s )= χ ij ψ [ M 1 χ ij ψ s 2 +γ/th(lγ) ]/ A ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaGOmaiaaiodaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzk aaGaeyypa0JaeuONdG1aaSbaaSqaaiaaikdaaeqaaOGaaGPaVlaacI cacaWGZbGaaiykaiaac+cacaWGgbWaaSbaaSqaaiaaikdaaeqaaOWa aeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyypa0JaeyOeI0Iaeq4Xdm 2aa0baaSqaaiaadMgacaWGQbaabaGaeqiYdKhaaOWaamWaaeaacaWG nbWaaSbaaSqaaiaaigdaaeqaaOGaeq4Xdm2aa0baaSqaaiaadMgaca WGQbaabaGaeqiYdKhaaOGaam4CamaaCaaaleqabaGaaGOmaaaakiab gUcaRiabeo7aNjaac+caieaacaWF0bGaa8hAaiaacIcacaWGSbGaeq 4SdCMaaiykaaGaay5waiaaw2faaiaac+cacaWGbbWaaSbaaSqaaiaa dMgacaWGQbaabeaaaaa@67BC@

The function of the multi-layer longitudinal piezo drive with one fixed face is determined at the elastic-inertial load and the control of voltage in the form

W( s )= Ξ 2 ( s ) U( s ) = d 33 n ( 1+ C e / C 33 E )( T t 2 s 2 +2 T t ξ t s+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadEfadaqada qaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabf65aynaa BaaaleaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaa qaaiaadwfadaqadaqaaiaadohaaiaawIcacaGLPaaaaaGaeyypa0Za aSaaaeaacaWGKbWaaSbaaSqaaiaaiodacaaIZaaabeaakiaad6gaae aadaqadaqaaiaaigdacqGHRaWkcaWGdbWaaSbaaSqaaiaadwgaaeqa aOGaai4laiaadoeadaqhaaWcbaGaaG4maiaaiodaaeaacaWGfbaaaa GccaGLOaGaayzkaaGaaGPaVlaaykW7daqadaqaaiaadsfadaqhaaWc baGaamiDaaqaaiaaikdaaaGccaWGZbWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaaGOmaiaadsfadaWgaaWcbaGaamiDaaqabaGccqaH+oaE daWgaaWcbaGaamiDaaqabaGccaWGZbGaey4kaSIaaGymaaGaayjkai aawMcaaaaaaaa@63F3@

T t = M 2 /( C e + C 33 E ) , ξ t =α l 2 C 33 E /[ 3 c E M 2 ( C e + C 33 E ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamiDaaqabaGccqGH9aqpdaGcaaqaaiaad2eadaWgaaWcbaGa aGOmaaqabaGccaGGVaWaaeWaaeaacaWGdbWaaSbaaSqaaiaadwgaae qaaOGaey4kaSIaam4qamaaDaaaleaacaaIZaGaaG4maaqaaiaadwea aaaakiaawIcacaGLPaaaaSqabaGccaaMc8UaaiilaiaaykW7caaMc8 UaeqOVdG3aaSbaaSqaaiaadshaaeqaaOGaeyypa0JaeqySdeMaamiB amaaCaaaleqabaGaaGOmaaaakiaadoeadaqhaaWcbaGaaG4maiaaio daaeaacaWGfbaaaOGaai4lamaadmaabaGaaG4maiaadogadaahaaWc beqaaiaadweaaaGcdaGcaaqaaiaad2eadaWgaaWcbaGaaGOmaaqaba GcdaqadaqaaiaadoeadaWgaaWcbaGaamyzaaqabaGccqGHRaWkcaWG dbWaa0baaSqaaiaaiodacaaIZaaabaGaamyraaaaaOGaayjkaiaawM caaaWcbeaaaOGaay5waiaaw2faaaaa@6325@

Its transient response has the form

ξ( t )= ξ m ( 1 e ξ t t T t 1 ξ t 2 sin( ω t t+ ϕ t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aae WaaeaacaWG0baacaGLOaGaayzkaaGaeyypa0JaeqOVdG3cdaWgaaqa aiaad2gaaeqaaOWaaeWabeaacaaIXaGaeyOeI0YaaSaaaeaacaWGLb WaaWbaaeqabaGaeyOeI0YaaSaaaeaacqaH+oaEdaWgaaWcbaGaamiD aaGcbeaacaWG0baabaGaamivamaaBaaaleaacaWG0baakeqaaaaaaa aabaWaaOaaaeaacaaIXaGaeyOeI0IaeqOVdG3cdaqhaaqaaiaadsha aeaacaaIYaaaaaGcbeaaaaGaae4CaiaabMgacaqGUbWaaeWaaeaacq aHjpWDlmaaBaaabaGaamiDaaqabaGccaWG0bGaey4kaSIaeqy1dy2c daWgaaqaaiaadshaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaa WaaSbaaSqaaaqabaaaaa@5B28@

ξ m = d 33 n U m 1+ C e / C 33 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWGTbaabeaakiabg2da9maalaaabaGaamizamaaBaaaleaa caaIZaGaaG4maaqabaGccaWGUbGaamyvamaaBaaaleaacaWGTbaabe aaaOqaaiaaigdacqGHRaWkcaWGdbWaaSbaaSqaaiaadwgaaeqaaOGa ai4laiaadoeadaqhaaWcbaGaaG4maiaaiodaaeaacaWGfbaaaaaaaa a@480C@ , ω t = 1 ξ t 2 / T t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3cda WgaaqaaiaadshaaeqaaOGaeyypa0ZaaSGbaeaadaGcaaqaaiaaigda cqGHsislcqaH+oaElmaaDaaabaGaamiDaaqaaiaaikdaaaaakeqaaa qaaiaadsfalmaaBaaabaGaamiDaaqabaaaaaaa@4174@ , ϕ t =arctg( 1 ξ t 2 / ξ t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dy2cda WgaaqaaiaadshaaeqaaOGaeyypa0JaaeyyaiaabkhacaqGJbGaaeiD aiaabEgadaqadaqaamaalyaabaWaaOaaaeaacaaIXaGaeyOeI0Iaeq OVdG3cdaqhaaqaaiaadshaaeaacaaIYaaaaaGcbeaaaeaacqaH+oaE lmaaBaaabaGaamiDaaqabaaaaaGccaGLOaGaayzkaaaaaa@488C@

For the multi-layer longitudinal PZT drive at U m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyvamaaBaaaleaacaWGTbaabeaaaaa@3924@  =60 V, d 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamizamaaBaaaleaacaaIZaGaaG4maaqabaaaaa@39BB@ = 4∙10-10 m/V, n= 8, M= 1 kg, C 33 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaaDaaaleaacaaIZaGaaG4maaqaaiaadweaaaaaaa@3A65@ = 5.8∙107 N/m, C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qamaaBaaaleaacaWGLbaabeaaaaa@390A@ = 0.6∙107 N/m its parameters ξ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3aaSbaaSqaaiaad2gaaeqaaaaa@3A0D@  = 174 nm and T t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamivamaaBaaaleaacaWG0baabeaaaaa@392A@  = 1.25∙10-4 s are obtained with error 10%.

Discussion

We have the parametric model and scheme of a multi-layer electro elastic drive of robotics by using of mathematical physics method. The system of equations for T-form quadripole of piezo layer is used. For a multi-layer electro elastic drive its system has the matrix form. By using the equations of forces on ends of a multi-layer drive and the equation of force causes deformation its parametric model and scheme, functions are determined.

Conclusion

A multi-layer electro elastic drive of robotics is used in adaptive optics, scanning microscopy, micro surgery, interferometry, nanotechnology, nano pump, nano stabilization, compensation of deformations. The parameters of the multi-layer longitudinal PZT drive at the control of voltage are obtained.

The characteristics in of the multi-layer piezo drive are obtained by applied of mathematical physics method. Future works are planned to explore the multi-layer piezo drive for adaptive optics of compound telescope.

Acknowledgments

None.

Conflicts of interest

Author declares that there is no conflict of interest.

References

  1. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher; 1997. 350 p.
  2. Zhao C. Ultrasonic motors technologies and applications. Springer: Berlin, Germany; 2011. 494 p.
  3. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;74(3):943–948.
  4. Bhushan B. Springer Handbook of Nanotechnology. New York: Springer; 2004. 1222 p.
  5. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric Actuators and Generators for Energy Harvesting. Research and Development. Springer: Switzerland, Cham; 2018;182 p.
  6. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 200550(2):77–82.
  7. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  8. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;73(2): 307–313.
  9. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation. 2020;3(4):53.
  10. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Applied System Innovation. 2021;4(3):47.
  11. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):6.
  12. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):52.
  13. Mason W. Physical Acoustics: Principles and Methods. Vol. 1. Part A. Methods and Devices. Academic Press: New York; 1964. 515 p.
  14. Liu Y, Zhang S, Yan P, et al. Finite element modeling and test of piezo disk with local ring electrodes for micro displacement. Micromachines. 2022;13(6):951.
  15.  Jang Seon M, Yang Su C. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials. Nanotechnology. 2018;29(23):235602.
  16. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Parinov IA, editors. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Nova Science: New York; 2015:225–242.
  17. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics. 2017;5(1):9–15.
  18. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics. 2019;7(2):50–57.
  19. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russian Engineering Research. 2021;41(4):285–288.
  20. Afonin SM. Structural scheme of an electromagnetoelastic actuator for nanotechnology research. Parinov IA, Chang SH, Putri EP, editors. Chapter 45 in Physics and Mechanics of New Materials and Their Applications. PHENMA 2023. Springer Proceedings in Materials. Vol. 41. Springer: Cham; 2024:486–501.
  21. Afonin SM. Deformation of electromagnetoelastic actuator for nano robotics system. Int Rob Auto J. 2020;6(2):84–86.
  22. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeron Aero Open Access J. 2018;2(5):270–272.
  23. Afonin SM. Piezoactuator of nanodisplacement for astrophysics. Aeron Aero Open Access J. 2022;6(4):155–158.
  24. Afonin SM. Condition absolute stability of system with nano piezoactuator for astrophysics research. Aeron Aero Open Access J. 2023;7(3):99­–102.
  25. Afonin SM. Piezoengine for nanomedicine and applied bionics. MOJ App Bio Biomech. 2022;6(1):30–33.
  26. Afonin SM. System with nano piezoengine under randomly influences for biomechanics. MOJ App Bio Biomech. 2024;8(1):1–3.
  27. Afonin SM. DAC electro elastic engine for nanomedicine. MOJ App Bio Biomech. 2024;8(1):38–40.
  28. Afonin SM. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. Bartul Z, Trenor J, editors. Nova Science. Chapter 8 in Advances in Nanotechnology. Volume 25. New York; 2021:251-266.
  29. Afonin SM. Structural model of nano piezoengine for applied biomechanics and biosciencess. MOJ Applied Bionics and Biomechanics. 2023;7(1):21–25.
  30. Afonin SM. Multilayer piezo engine for nanomedicine research. MOJ App Bio Biomech. 2020;4(2):30–31.
  31. Afonin SM. Characteristics electroelastic engine for nanobiomechanics. MOJ App Bio Biomech. 2020;4(3):51–53.
  32. Afonin SM. Piezo actuators for nanomedicine research. MOJ App Bio Biomech. 2019;3(2):56–57.
  33. Afonin SM. Structural scheme of piezoactuator for astrophysics. Phys Astron Int J. 2024;8(1):32‒36.
  34. Afonin SM. Nanopiezoactuator for astrophysics equipment. Phys Astron Int J. 2023;7(2):153–155.
  35. Afonin SM. Electroelastic actuator of nanomechatronics systems for nanoscience. Min HS, editors. Chapter 2 in Recent Progress in Chemical Science Research. Volume 6. B P International: India, UK. London; 2023:15–27.
  36. Afonin SM. Structural scheme of electroelastic actuator for nanomechatronics. Chapter 40 in Advanced Materials. Proceedings of the International Conference on Physics and Mechanics of New Materials and Their Applications, PHENMA 2019. Ivan A Parinov, Shun-Hsyung C, Banh Tien L, editors. Springer Nature: Switzerland, Cham; 2020:487–502.             
  37. Afonin SM. Absolute stability of control system for deformation of electromagnetoelastic actuator under random impacts in nanoresearch. Chapter 43 in Physics and Mechanics of New Materials and Their Applications, PHENMA 2020. Parinov IA, Chang SH, Kim YH, et al., editors. Springer Proceedings in Materials. Volume 10.  Springer: Switzerland, Cham; 2021;519–531.
  38.  Afonin SM. Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. Chapter 34 in Physics and Mechanics of New Materials and Their Applications. Proceedings of the International Conference PHENMA 2021-2022. Parinov IA, Chang SH, Soloviev AN, editors. Springer Proceedings in Materials series. Vol. 20: Springer, Cham; 2023:419–428.
  39. Afonin SM. Structural parametric model and diagram of electromagnetoelastic actuator for nanodisplacement in chemistry and biochemistry research. Chapter 7 in Current Topics on Chemistry and Biochemistry. Baena OJR, editor. Vol. 9, B P International: India, UK; 2023:77–95.
  40. Afonin SM. Structural-parametric models of electromagnetoelastic actuators of nano- and microdisplacement for robotics and mechatronics systems. In Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus): St. Petersburg and Moscow, Russia; 2017:769–773.
  41. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. In Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus): Moscow and St. Petersburg, Russia; pp. 2018:1698–1701.
  42. Afonin SM. Digital analog electro elastic converter actuator for nanoresearch. In Proceedings of the 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus): St. Petersburg and Moscow, Russia; 2020:2332–2335.
  43. Afonin SM. Frequency method for determination self-oscillations in control systems with a piezo actuator for astrophysical research. Aeron Aero Open Access J. 2024;8(2):115–117.
  44. Afonin SM. Parallel and coded control of multi layered longitudinal piezo engine for nano biomedical research. MOJ App Bio Biomech. 2024;8(1):62–65.
  45. Afonin SM. Structural model of a nano piezoelectric actuator for nanotechnology. Russian Engineering Research. 2024;44(1):14–19.
  46. Afonin SM. Electroelastic actuators for nano- and microdisplacement. SCIREA Journal of Physics. 2018;3(2):81–91.
  47. Afonin SM. Structural-parametric models of electromagnetoelastic actuators for nano- and micromanipulators of mechatronic systems.  SCIREA Journal of Mechanics. 2016;1(2):64–80.
  48. Afonin SM. Structural-parametric model of electro elastic actuator for nanotechnology and biotechnology. Journal of Pharmacy and Pharmaceutics. 2018;5(1):8–12.
  49. Afonin SM. Electroelastic actuator nano- and microdisplacement for precision mechanics. American Journal of Mechanics and Applications. 2018;6(1):17–22.
  50. Afonin SM. Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and microdisplacement for mechatronic systems. International Journal of Theoretical and Applied Mathematics. 2016;2(2):52–59.
  51. Afonin SM. Decision wave equation and block diagram of electro magneto elastic actuator nano - and micro displacement for communications systems. International Journal of Information and Communication Sciences. 2016;1(2):22–29.
  52. Schultz J, Ueda J, Asada H. Cellular Actuators. Butterworth-Heinemann Publisher, Oxford; 2017. 382 p.
  53. Nalwa HS. Encyclopedia of Nanoscience and Nanotechnology. Los Angeles: American Scientific Publishers. 2004;10.
Creative Commons Attribution License

©2024 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.