Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 10 Issue 2

A multi-layer electro elastic drive for micro and nano robotics

Afonin SM

National Research University of Electronic Technology, MIET, Moscow, Russia

Correspondence: Afonin Sergey Mikhailovich, National Research University of Electronic Technology, MIET, 124498, Moscow, Russia, Tel 4997102233

Received: July 09, 2024 | Published: July 17, 2024

Citation: Afonin SM. A multi-layer electro elastic drive for micro and nano robotics. Int Rob Auto J. 2024;10(2):73-76. DOI: 10.15406/iratj.2024.10.00286

Download PDF

Abstract

A multi-layer electro elastic drive of robotics is used in adaptive optics of compound telescope, scanning microscopy, interferometry and nanotechnology. For micro and nano robotics a multi-layer electro elastic drive is applied. The parametric model of a multi-layer electro elastic drive is determined. Its functions and matrix deformations are founded. The parameters of the multi-layer longitudinal PZT drive are determined.

Keywords: multi-layer electro elastic drive, multi-layer piezo drive, parametric model, micro and nano robotics.

Introduction

A multi-layer electro elastic drive is used promising for micro and nano robotics in the micro and nano displacement.1−8 This drive based on the piezoelectric or electrostriction effects.9s−19 A multi-layer electro elastic drive of robotics is applied in adaptive optics of compound telescope, scanning microscopy, micro surgery, interferometry, nano pump, nano stabilization and nanotechnology.20−53 The deformations of a multi-layer drive are described with the matrix equation. Its parametric model, scheme and functions are obtained by using of mathematical physics method.

Parametric model

The parametric model6−53 of multi-layer piezo actuator with the voltage or current controlled are determined using the equation of inverse piezo effect in the form at the control of voltage

Si=dmiEm+sEijTjSi=dmiEm+sEijTj

at the control of current

Si=gmiDm+sDijTjSi=gmiDm+sDijTj

here SiSi , EmEm , DmDm , TjTj , dmidmi , gmigmi , sEijsEij , sDijsDij  are the relative deformation, the strength of electric field, the electric induction, the strength of mechanic field, the piezo module, the piezo constant, the elastic compliances at E=constE=const  and at D=constD=const , and i,j,mi,j,m  are the indexes.

The equation of the direct piezo effect has the form6−53

Dm=dmiTi+εTmkEkDm=dmiTi+εTmkEk

here εTmkεTmk  is the dielectric constants at T=constT=const , k is the index

Then the electroelasticity equation of a multi-layer drive6−53 has the form

Si=vmiψm+sψijTjSi=vmiψm+sψijTj

here Ψ=E,DΨ=E,D  is control parameter at the control of voltage and the control of current.

A multi-layer drive consist from the piezo layers connected the series mechanically and the parallel electrically [6 − 44]. We have the system of equations for T-form quadripole of k piezo layer

Fkinp(s)=(Z1+Z2)Ξk(s)+Z2Ξk+1(s)Fkinp(s)=(Z1+Z2)Ξk(s)+Z2Ξk+1(s)

Fkout(s)=Z2Ξk(s)+(Z1+Z2)Ξk+1(s)Fkout(s)=Z2Ξk(s)+(Z1+Z2)Ξk+1(s)

Z1=Soγth(δγ)sψij,Z2=Soγsψijsh(δγ)Z1=Soγth(δγ)sψij,Z2=Soγsψijsh(δγ)

where Z1Z1 , Z2Z2 , ss , δδ , γγ , Fkinp(s)Fkinp(s) , Fkout(s)Fkout(s) , Ξk(s)Ξk(s) , Ξk+1(s)Ξk+1(s)  are the resistances of quadripole k piezo layer, the transform parameter, the thickness, the coefficient wave propagation, the Laplace transform of the forces at the input and output ends of k piezo layer, the transforms of the displacements at input and output ends of k piezo layer.

The system of the equations for k piezo layer has the form

Fkinp(s)=(1+Z1Z2)Fkout(s)+Z1(2+Z1Z2)Ξk+1(s)Fkinp(s)=(1+Z1Z2)Fkout(s)+Z1(2+Z1Z2)Ξk+1(s)

Ξk(s)=1Z1Fkout(s)+(1+Z1Z2)Ξk+1(s)Ξk(s)=1Z1Fkout(s)+(1+Z1Z2)Ξk+1(s)

This system is founded in the matrix form

[Fkinp(s)Ξk(s)]=[M][Fkout(s)Ξk+1(s)][Fkinp(s)Ξk(s)]=[M][Fkout(s)Ξk+1(s)]

[M]=[m11m12m21m22]=[1+Z1Z2Z1(2+Z1Z1)1Z21+Z1Z2][M]=[m11m12m21m22]=1+Z1Z2Z1(2+Z1Z1)1Z21+Z1Z2

m11=m22=1+Z1Z2=ch(δγ),m11=m22=1+Z1Z2=ch(δγ), m12=Z1(2+Z1Z1)=Z0sh(δγ)m12=Z1(2+Z1Z1)=Z0sh(δγ)

m21=1Z2=sh(δγ)Z0,m21=1Z2=sh(δγ)Z0, Z0=S0γsψijZ0=S0γsψij

The equation of forces at the boundary between two layers is obtained in the form

Fkout(s)=Fk+1inp(s)Fkout(s)=Fk+1inp(s)

For a multi-layer electro elastic drive with n layers and l length its system has the matrix form

[F1inp(s)Ξ1(s)]=[M]n[Fnout(s)Ξn+1(s)][F1inp(s)Ξ1(s)]=[M]n[Fnout(s)Ξn+1(s)]

[M]n=[ch(nδγ)Z0sh(nδγ)sh(nδγ)Z0ch(nδγ)][M]n=[ch(nδγ)Z0sh(nδγ)sh(nδγ)Z0ch(nδγ)]

then

[M]n=[ch(lγ)Z0sh(lγ)sh(lγ)Z0ch(lγ)][M]n=[ch(lγ)Z0sh(lγ)sh(lγ)Z0ch(lγ)]

The equations of forces a multi-layer drive we have in the form

atx=0,Tj(0,s)S0=F1(s)+M1s2Ξ1(s)x=0,Tj(0,s)S0=F1(s)+M1s2Ξ1(s)

atx=l,Tj(l,s)S0=F2(s)M2s2Ξ2(s)x=l,Tj(l,s)S0=F2(s)M2s2Ξ2(s)

The transform of its force causes deformation has the equation in the form

F(s)=vmiS0ψm(s)sψijF(s)=vmiS0ψm(s)sψij

Then the parametric model and scheme on Figure 1 of a multi-layer electro elastic drive are obtained in the form

Ξ1(s)=(1/(M1s2)){F1(s)+(1/χψij)[vmiψm(s)(γ/sh(lγ))××(ch(lγ)Ξ1(s)Ξ2(s))]}Ξ1(s)=(1/(M1s2)){F1(s)+(1/χψij)[vmiψm(s)(γ/sh(lγ))××(ch(lγ)Ξ1(s)Ξ2(s))]}

Ξ2(s)=(1/(M2s2)){F2(s)+(1/χψij)[vmiψm(s)(γ/sh(lγ))××(ch(lγ)Ξ2(s)Ξ1(s))]}Ξ2(s)=(1/(M2s2)){F2(s)+(1/χψij)[vmiψm(s)(γ/sh(lγ))××(ch(lγ)Ξ2(s)Ξ1(s))]}

Figure 1 Parametric scheme multi layer electro elastic drive.

here vmi={d33,d31,d15g33,g31,g15,vmi={d33,d31,d15g33,g31,g15, , Ψm={E3,E1D3,D1Ψm={E3,E1D3,D1 , sψij={sE33sE11sE55sD33sD11sD55sψij={sE33sE11sE55sD33sD11sD55 , cΨ={cEcDcΨ={cEcD , γ={γEγEγ={γEγE , χψij=sψij/S0χψij=sψij/S0 .

The matrix function of a multi-layer drive has the form

[Ξ1(s)Ξ2(s)]=[W11(s)W12(s)W13(s)W21(s)W22(s)W23(s)][ψm(s)F1(s)F2(s)][Ξ1(s)Ξ2(s)]=[W11(s)W12(s)W13(s)W21(s)W22(s)W23(s)]ψm(s)F1(s)F2(s)

then

[Ξ(s)]=[W(s)][P(s)][Ξ(s)]=[W(s)][P(s)]

[Ξ(s)]=[Ξ1(s)Ξ2(s)][Ξ(s)]=[Ξ1(s)Ξ2(s)] ,[P(s)]=[Ψm(s)F1(s)F2(s)][P(s)]=Ψm(s)F1(s)F2(s)

[W(s)]=[W11(s)W12(s)W13(s)W21(s)W22(s)W23(s)][W(s)]=[W11(s)W12(s)W13(s)W21(s)W22(s)W23(s)]

The functions of a multi-layer drive are determined

W11(s)=Ξ1(s)/ψm(s)=vmi[M2χψijs2+γth(lγ/2)]/AijW11(s)=Ξ1(s)/ψm(s)=vmi[M2χψijs2+γth(lγ/2)]/Aij

χψij=sψij/S0χψij=sψij/S0

Aij=M1M2(χψij)2s4+{(M1+M2)(χψij)/[cψth(lγ)]}s3++[(M1+M2)χψijα/th(lγ)+1/(cψ)2]s2+2αs/cψ+α2Aij=M1M2(χψij)2s4+{(M1+M2)(χψij)/[cψth(lγ)]}s3++[(M1+M2)χψijα/th(lγ)+1/(cψ)2]s2+2αs/cψ+α2

W21(s)=Ξ2(s)/ψm(s)=vψijM1χψijs2+γth(lγ/2)/Aij

W12(s)=Ξ1(s)/F1(s)=χψij[M2χψijs2+γth(lγ)]/Aij

W13(s)=Ξ1(s)/F2(s)==W22(s)=Ξ2(s)/F1(s)=[χψijγ/sh(lγ)]/Aij

W23(s)=Ξ2(s)/F2(s)=χψij[M1χψijs2+γ/th(lγ)]/Aij

The function of the multi-layer longitudinal piezo drive with one fixed face is determined at the elastic-inertial load and the control of voltage in the form

W(s)=Ξ2(s)U(s)=d33n(1+Ce/CE33)(T2ts2+2Ttξts+1)

Tt=M2/(Ce+CE33),ξt=αl2CE33/[3cEM2(Ce+CE33)]

Its transient response has the form

ξ(t)=ξm(1eξttTt1ξ2tsin(ωtt+ϕt))

ξm=d33nUm1+Ce/CE33 , ωt=1ξ2t/Tt , ϕt=arctg(1ξ2t/ξt)

For the multi-layer longitudinal PZT drive at Um  =60 V, d33 = 4∙10-10 m/V, n= 8, M= 1 kg, CE33 = 5.8∙107 N/m, Ce = 0.6∙107 N/m its parameters ξm  = 174 nm and Tt  = 1.25∙10-4 s are obtained with error 10%.

Discussion

We have the parametric model and scheme of a multi-layer electro elastic drive of robotics by using of mathematical physics method. The system of equations for T-form quadripole of piezo layer is used. For a multi-layer electro elastic drive its system has the matrix form. By using the equations of forces on ends of a multi-layer drive and the equation of force causes deformation its parametric model and scheme, functions are determined.

Conclusion

A multi-layer electro elastic drive of robotics is used in adaptive optics, scanning microscopy, micro surgery, interferometry, nanotechnology, nano pump, nano stabilization, compensation of deformations. The parameters of the multi-layer longitudinal PZT drive at the control of voltage are obtained.

The characteristics in of the multi-layer piezo drive are obtained by applied of mathematical physics method. Future works are planned to explore the multi-layer piezo drive for adaptive optics of compound telescope.

Acknowledgments

None.

Conflicts of interest

Author declares that there is no conflict of interest.

References

  1. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher; 1997. 350 p.
  2. Zhao C. Ultrasonic motors technologies and applications. Springer: Berlin, Germany; 2011. 494 p.
  3. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;74(3):943–948.
  4. Bhushan B. Springer Handbook of Nanotechnology. New York: Springer; 2004. 1222 p.
  5. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric Actuators and Generators for Energy Harvesting. Research and Development. Springer: Switzerland, Cham; 2018;182 p.
  6. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 200550(2):77–82.
  7. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  8. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;73(2): 307–313.
  9. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation. 2020;3(4):53.
  10. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Applied System Innovation. 2021;4(3):47.
  11. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):6.
  12. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):52.
  13. Mason W. Physical Acoustics: Principles and Methods. Vol. 1. Part A. Methods and Devices. Academic Press: New York; 1964. 515 p.
  14. Liu Y, Zhang S, Yan P, et al. Finite element modeling and test of piezo disk with local ring electrodes for micro displacement. Micromachines. 2022;13(6):951.
  15.  Jang Seon M, Yang Su C. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials. Nanotechnology. 2018;29(23):235602.
  16. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Parinov IA, editors. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Nova Science: New York; 2015:225–242.
  17. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics. 2017;5(1):9–15.
  18. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics. 2019;7(2):50–57.
  19. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russian Engineering Research. 2021;41(4):285–288.
  20. Afonin SM. Structural scheme of an electromagnetoelastic actuator for nanotechnology research. Parinov IA, Chang SH, Putri EP, editors. Chapter 45 in Physics and Mechanics of New Materials and Their Applications. PHENMA 2023. Springer Proceedings in Materials. Vol. 41. Springer: Cham; 2024:486–501.
  21. Afonin SM. Deformation of electromagnetoelastic actuator for nano robotics system. Int Rob Auto J. 2020;6(2):84–86.
  22. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeron Aero Open Access J. 2018;2(5):270–272.
  23. Afonin SM. Piezoactuator of nanodisplacement for astrophysics. Aeron Aero Open Access J. 2022;6(4):155–158.
  24. Afonin SM. Condition absolute stability of system with nano piezoactuator for astrophysics research. Aeron Aero Open Access J. 2023;7(3):99­–102.
  25. Afonin SM. Piezoengine for nanomedicine and applied bionics. MOJ App Bio Biomech. 2022;6(1):30–33.
  26. Afonin SM. System with nano piezoengine under randomly influences for biomechanics. MOJ App Bio Biomech. 2024;8(1):1–3.
  27. Afonin SM. DAC electro elastic engine for nanomedicine. MOJ App Bio Biomech. 2024;8(1):38–40.
  28. Afonin SM. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. Bartul Z, Trenor J, editors. Nova Science. Chapter 8 in Advances in Nanotechnology. Volume 25. New York; 2021:251-266.
  29. Afonin SM. Structural model of nano piezoengine for applied biomechanics and biosciencess. MOJ Applied Bionics and Biomechanics. 2023;7(1):21–25.
  30. Afonin SM. Multilayer piezo engine for nanomedicine research. MOJ App Bio Biomech. 2020;4(2):30–31.
  31. Afonin SM. Characteristics electroelastic engine for nanobiomechanics. MOJ App Bio Biomech. 2020;4(3):51–53.
  32. Afonin SM. Piezo actuators for nanomedicine research. MOJ App Bio Biomech. 2019;3(2):56–57.
  33. Afonin SM. Structural scheme of piezoactuator for astrophysics. Phys Astron Int J. 2024;8(1):32‒36.
  34. Afonin SM. Nanopiezoactuator for astrophysics equipment. Phys Astron Int J. 2023;7(2):153–155.
  35. Afonin SM. Electroelastic actuator of nanomechatronics systems for nanoscience. Min HS, editors. Chapter 2 in Recent Progress in Chemical Science Research. Volume 6. B P International: India, UK. London; 2023:15–27.
  36. Afonin SM. Structural scheme of electroelastic actuator for nanomechatronics. Chapter 40 in Advanced Materials. Proceedings of the International Conference on Physics and Mechanics of New Materials and Their Applications, PHENMA 2019. Ivan A Parinov, Shun-Hsyung C, Banh Tien L, editors. Springer Nature: Switzerland, Cham; 2020:487–502.             
  37. Afonin SM. Absolute stability of control system for deformation of electromagnetoelastic actuator under random impacts in nanoresearch. Chapter 43 in Physics and Mechanics of New Materials and Their Applications, PHENMA 2020. Parinov IA, Chang SH, Kim YH, et al., editors. Springer Proceedings in Materials. Volume 10.  Springer: Switzerland, Cham; 2021;519–531.
  38.  Afonin SM. Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. Chapter 34 in Physics and Mechanics of New Materials and Their Applications. Proceedings of the International Conference PHENMA 2021-2022. Parinov IA, Chang SH, Soloviev AN, editors. Springer Proceedings in Materials series. Vol. 20: Springer, Cham; 2023:419–428.
  39. Afonin SM. Structural parametric model and diagram of electromagnetoelastic actuator for nanodisplacement in chemistry and biochemistry research. Chapter 7 in Current Topics on Chemistry and Biochemistry. Baena OJR, editor. Vol. 9, B P International: India, UK; 2023:77–95.
  40. Afonin SM. Structural-parametric models of electromagnetoelastic actuators of nano- and microdisplacement for robotics and mechatronics systems. In Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus): St. Petersburg and Moscow, Russia; 2017:769–773.
  41. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. In Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus): Moscow and St. Petersburg, Russia; pp. 2018:1698–1701.
  42. Afonin SM. Digital analog electro elastic converter actuator for nanoresearch. In Proceedings of the 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus): St. Petersburg and Moscow, Russia; 2020:2332–2335.
  43. Afonin SM. Frequency method for determination self-oscillations in control systems with a piezo actuator for astrophysical research. Aeron Aero Open Access J. 2024;8(2):115–117.
  44. Afonin SM. Parallel and coded control of multi layered longitudinal piezo engine for nano biomedical research. MOJ App Bio Biomech. 2024;8(1):62–65.
  45. Afonin SM. Structural model of a nano piezoelectric actuator for nanotechnology. Russian Engineering Research. 2024;44(1):14–19.
  46. Afonin SM. Electroelastic actuators for nano- and microdisplacement. SCIREA Journal of Physics. 2018;3(2):81–91.
  47. Afonin SM. Structural-parametric models of electromagnetoelastic actuators for nano- and micromanipulators of mechatronic systems.  SCIREA Journal of Mechanics. 2016;1(2):64–80.
  48. Afonin SM. Structural-parametric model of electro elastic actuator for nanotechnology and biotechnology. Journal of Pharmacy and Pharmaceutics. 2018;5(1):8–12.
  49. Afonin SM. Electroelastic actuator nano- and microdisplacement for precision mechanics. American Journal of Mechanics and Applications. 2018;6(1):17–22.
  50. Afonin SM. Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and microdisplacement for mechatronic systems. International Journal of Theoretical and Applied Mathematics. 2016;2(2):52–59.
  51. Afonin SM. Decision wave equation and block diagram of electro magneto elastic actuator nano - and micro displacement for communications systems. International Journal of Information and Communication Sciences. 2016;1(2):22–29.
  52. Schultz J, Ueda J, Asada H. Cellular Actuators. Butterworth-Heinemann Publisher, Oxford; 2017. 382 p.
  53. Nalwa HS. Encyclopedia of Nanoscience and Nanotechnology. Los Angeles: American Scientific Publishers. 2004;10.
Creative Commons Attribution License

©2024 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.