Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 9 Issue 1

Structural scheme of electroelastic engine micro and nano displacement for applied bionics and biomechanics

Afonin S.M.

National Research University of Electronic Technology MIET, Russia

Correspondence: Afonin SM, National Research University of Electronic Technology MIET, Moscow, Russia

Received: December 24, 2024 | Published: January 7, 2025

Citation: Afonin S.M. Structural scheme of electroelastic engine micro and nano displacement for applied bionics and biomechanics. MOJ App Bio Biomech. 2025;9(1):1-4. DOI: 10.15406/mojab.2025.09.00216

Download PDF

Abstract

The structural schemes of electroelastic engine micro and nano displacement are determined for applied bionics and biomechanics. The structural scheme of electroelastic engine is constructed by method mathematical physics. The displacement matrix of electroelastic engine micro and nano displacement is determined.

Keywords: electroelastic engine, structural scheme, micro and nano displacement, applied bionics

Introduction

An electroelastic engines based on electroelasticity with piezoelectric and electrostriction effects are used for micro and nano displacement in applied bionics and biomechanics in adaptive optics, scanning microscopy, ring quantum generator, for the actively dampen mechanical vibrations, for penetration to a cells and for the works with a genes.1–15 An electroelastic engine is applied in adaptive optics systems for phase corrections in an interferometer to adjust maximum of the interference image. In scanning probe microscopy, an image of a surface is formed using an electroelastic engine to scan an object. Scanning tunneling microscope is used to visualize surfaces at the atomic level. Nano displacements of the probe along three coordinates X, Y, Z are carried out using an electroelastic engine.14–58

The equation of electroelastic effect3–49 is written in the general form

S i = ν mi Ψ m + s ij Ψ T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGtbWcdaWgaaqaaiaadMgaaeqaaOGaeyypa0JaeqyVd42a aSbaaSqaaiaad2gacaWGPbaakeqaaiabfI6azTWaaSbaaeaacaWGTb aabeaakiabgUcaRiaadohalmaaDaaabaGaamyAaiaadQgaaeaacqqH OoqwaaGccaWGubWaaSbaaSqaaiaadQgaaOqabaaaaa@4D44@

here Ψ m = E m , D m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqqHOoqwdaWgaaWcbaGaamyBaaqabaGccqGH9aqpcaWGfbWa aSbaaSqaaiaad2gaaeqaaOGaaiilaiaaysW7caWGebWaaSbaaSqaai aad2gaaeqaaaaa@4615@ is control parameter and ν mi = d mi , g mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqaH9oGBdaWgaaWcbaGaamyBaiaadMgaaOqabaGaeyypa0Ja amizamaaBaaaleaacaWGTbGaamyAaaGcbeaacaGGSaGaaGjbVlaadE gadaWgaaWcbaGaamyBaiaadMgaaOqabaaaaa@4954@ at the voltage or current control, S i , E m , D m , T j , d mi , g mi , s ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGtbWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaaykW7caaM c8UaamyramaaBaaaleaacaWGTbaabeaakiaacYcacaaMc8UaaGPaVl aadseadaWgaaWcbaGaamyBaaqabaGccaGGSaGaaGPaVlaaykW7caWG ubWaaSbaaSqaaiaadQgaaeqaaOGaaiilaiaaykW7caaMc8Uaamizam aaBaaaleaacaWGTbGaamyAaaqabaGccaGGSaGaaGPaVlaaykW7caWG NbWaaSbaaSqaaiaad2gacaWGPbaabeaakiaacYcacaaMc8UaaGPaVl aadohadaqhaaWcbaGaamyAaiaadQgaaeaacqqHOoqwaaaaaa@6555@ are the relative displacement, the strength electric field, the electric induction, the strength mechanical field, the modules, and the elastic compliance at Ψ=const, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqqHOoqwcqGH9aqpcaqGJbGaae4Baiaab6gacaqGZbGaaeiD aiaabYcaaaa@443C@ the indexes i, j, m. The ordinary differential equation an electroelastic engine8–49 has form

d 2 Ξ( x,s ) d x 2 γ 2 Ξ( x,s )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaWcaaqaaiaabsgadaahaaqabSqaaiaabkdaaaGccqqHEoaw daqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaawMcaaaqaaiaabs gacaWG4bWcdaahaaqabeaacaqGYaaaaaaakiabgkHiTiabeo7aNnaa CaaaleqabaGaaeOmaaaakiabf65aynaabmaabaGaamiEaiaacYcaca WGZbaacaGLOaGaayzkaaGaeyypa0Jaaeimaaaa@5192@

here Ξ( x,s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqqHEoawdaqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaa wMcaaaaa@41F4@ , x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWG4baaaa@3D3F@ , s, γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqaHZoWzaaa@3DE9@ are the transform of the displacement, the coordinate, the parameter, the propagation coefficient and the general length l={ h, δ,b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGSbGaeyypa0ZaaiqaaeaacaaMe8UaamiAaiaacYcaaiaa wUhaaiaaysW7cqaH0oazcaGGSaGaaGjbVlaadkgaaaa@48D3@ an electroelastic engine. For an electroelastic engine at x=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWG4bGaeyypa0JaaeimaiaabYcaaaa@3FA7@ Ξ( 0,s )= Ξ 1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqqHEoawdaqadaqaaiaabcdacaGGSaGaam4CaaGaayjkaiaa wMcaaiabg2da9iabf65ayTWaaSbaaeaacaqGXaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@479F@ and at x=l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWG4bGaeyypa0JaamiBaaaa@3F36@ , Ξ( l,s )= Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqqHEoawdaqadaqaaiaadYgacaGGSaGaam4CaaGaayjkaiaa wMcaaiabg2da9iabf65ayTWaaSbaaeaacaqGYaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@47DE@ .

We have the solution this ordinary differential equation

Ξ( x,s )= { Ξ 1 ( s )sh[ ( lx )γ ]+ Ξ 2 ( s )sh( xγ ) }/ sh( lγ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqqHEoawdaqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaa wMcaaiabg2da9maalyaabaWaaiWaaeaacqqHEoawdaWgaaWcbaGaae ymaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaacaqGZbGaaeiA amaadmaabaWaaeWaaeaacaWGSbGaeyOeI0IaamiEaaGaayjkaiaawM caaiabeo7aNbGaay5waiaaw2faaiabgUcaRiabf65aynaaBaaaleaa caqGYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiaabohaca qGObWaaeWaaeaacaWG4bGaeq4SdCgacaGLOaGaayzkaaaacaGL7bGa ayzFaaaabaGaae4CaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaawI cacaGLPaaaaaaaaa@65F0@

here Ξ 1 ( s ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqqHEoawdaWgaaWcbaGaaeymaaqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaacaGGSaaaaa@41E1@ Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqqHEoawlmaaBaaabaGaaeOmaaqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaaaaa@4132@ are the transforms displacements of its two ends.

For the boundary conditions its system has the form

T j ( 0,s )= 1 s ij Ψ dΞ( x,s ) dx | x=0 ν mi s ij Ψ Ψ m ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGubWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaqGWaGa aiilaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaabgdaae aacaWGZbWaa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaaaakmaa eiaabaWaaSaaaeaacaqGKbGaeuONdG1aaeWaaeaacaWG4bGaaiilai aadohaaiaawIcacaGLPaaaaeaacaqGKbGaamiEaaaaaiaawIa7amaa BaaaleaacaWG4bGaeyypa0JaaeimaaqabaGccqGHsisldaWcaaqaai abe27aUnaaBaaaleaacaWGTbGaamyAaaqabaaakeaacaWGZbWaa0ba aSqaaiaadMgacaWGQbaabaGaeuiQdKfaaaaakiabfI6aznaaBaaale aacaWGTbaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaaa@6436@ , T j ( l,s )= 1 s ij Ψ dΞ( x,s ) dx | x=l ν mi s ij Ψ Ψ m ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGubWaaSbaaSqaaiaadQgaaeqaaOWaaeWaaeaacaWGSbGa aiilaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaabgdaae aacaWGZbWaa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaaaakmaa eiaabaWaaSaaaeaacaqGKbGaeuONdG1aaeWaaeaacaWG4bGaaiilai aadohaaiaawIcacaGLPaaaaeaacaqGKbGaamiEaaaaaiaawIa7amaa BaaaleaacaWG4bGaeyypa0JaamiBaaqabaGccqGHsisldaWcaaqaai abe27aUnaaBaaaleaacaWGTbGaamyAaaqabaaakeaacaWGZbWaa0ba aSqaaiaadMgacaWGQbaabaGaeuiQdKfaaaaakiabfI6aznaaBaaale aacaWGTbaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaaa@64B2@

The transform of the force causes displacement is obtained

F( s )= ν mi Ψ m ( s ) χ ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjY=Mj0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabmaaba Gaam4CaaGaayjkaiaawMcaaiabg2da9maalaaabaGaeqyVd42aaSba aSqaaiaad2gacaWGPbaakeqaaiabfI6azTWaaSbaaeaacaWGTbaabe aakmaabmaabaGaam4CaaGaayjkaiaawMcaaaqaaiabeE8aJnaaDaaa leaacaWGPbGaamOAaaqaaiabfI6azbaaaaaaaa@49F5@ , χ ij Ψ = s ij Ψ / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjY=Mj0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aa0baaS qaaiaadMgacaWGQbaabaGaeuiQdKfaaOGaeyypa0ZaaSGbaeaacaWG ZbWaa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaaGcbaGaam4uam aaBaaaleaacaaIWaaabeaaaaaaaa@440C@

The general structural scheme of electroelastic engine on Figure 1 and its model are determined at voltage or current control for longitudinal, transverse and shift displacements

Figure 1 General structural scheme electroelastic engine.

Ξ 1 ( s )= ( M 1 s 2 ) 1 { F 1 ( s )+ ( χ ij Ψ ) 1 ×[ ν mi Ψ m ( s )[ γ/ sh( lγ ) ] ×[ ch( lγ ) Ξ 1 ( s ) Ξ 2 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqqHEoawdaWgaaWcbaGaaeymaaqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaad2eadaWgaaWcbaGaae ymaaqabaGccaWGZbWaaWbaaSqabeaacaqGYaaaaaGccaGLOaGaayzk aaWaaWbaaSqabeaacqGHsislcaqGXaaaaOWaaiWaaqaabeqaaiabgk HiTiaadAeadaWgaaWcbaGaaeymaaqabaGcdaqadaqaaiaadohaaiaa wIcacaGLPaaacqGHRaWkdaqadaqaaiabeE8aJnaaDaaaleaacaWGPb GaamOAaaqaaiabfI6azbaaaOGaayjkaiaawMcaamaaCaaaleqabaGa eyOeI0IaaeymaaaaaOqaaiabgEna0oaadmaaeaqabeaacqaH9oGBda WgaaWcbaGaamyBaiaadMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2ga aeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyOeI0YaamWaae aadaWcgaqaaiabeo7aNbqaaiaabohacaqGObWaaeWaaeaacaWGSbGa eq4SdCgacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaqaaiabgEna0o aadmaabaGaae4yaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaawIca caGLPaaacqqHEoawdaWgaaWcbaGaaeymaaqabaGcdaqadaqaaiaado haaiaawIcacaGLPaaacqGHsislcqqHEoawdaWgaaWcbaGaaeOmaaqa baGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaa Gaay5waiaaw2faaaaacaGL7bGaayzFaaaaaa@86AB@ Ξ 2 ( s )= ( M 2 s 2 ) 1 { F 2 ( s )+ ( χ ij Ψ ) 1 ×[ ν mi Ψ m ( s )[ γ/ sh( lγ ) ] ×[ ch( lγ ) Ξ 2 ( s ) Ξ 1 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqqHEoawlmaaBaaabaGaaeOmaaqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaad2eadaWgaaWcbaGaae OmaaqabaGccaWGZbWaaWbaaSqabeaacaqGYaaaaaGccaGLOaGaayzk aaWaaWbaaSqabeaacqGHsislcaqGXaaaaOWaaiWaaqaabeqaaiabgk HiTiaadAealmaaBaaabaGaaeOmaaqabaGcdaqadaqaaiaadohaaiaa wIcacaGLPaaacqGHRaWkdaqadaqaaiabeE8aJnaaDaaaleaacaWGPb GaamOAaaqaaiabfI6azbaaaOGaayjkaiaawMcaamaaCaaaleqabaGa eyOeI0IaaeymaaaaaOqaaiabgEna0oaadmaaeaqabeaacqaH9oGBda WgaaWcbaGaamyBaiaadMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2ga aeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyOeI0YaamWaae aadaWcgaqaaiabeo7aNbqaaiaabohacaqGObWaaeWaaeaacaWGSbGa eq4SdCgacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaqaaiabgEna0o aadmaabaGaae4yaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaawIca caGLPaaacqqHEoawdaWgaaWcbaGaaeOmaaqabaGcdaqadaqaaiaado haaiaawIcacaGLPaaacqGHsislcqqHEoawdaWgaaWcbaGaaeymaaqa baGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaa Gaay5waiaaw2faaaaacaGL7bGaayzFaaaaaa@86AE@

here v mi ={ d 33 , d 31 , d 15 g 33 , g 31 , g 15 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWG2bWaaSbaaSqaaiaad2gacaWGPbaabeaakiabg2da9maa ceaabaqbaeqabiqaaaqaaiaadsgadaWgaaWcbaGaae4maiaabodaae qaaOGaaiilaiaadsgadaWgaaWcbaGaae4maiaabgdaaeqaaOGaaiil aiaadsgadaWgaaWcbaGaaeymaiaabwdaaeqaaaGcbaGaam4zamaaBa aaleaacaqGZaGaae4maaqabaGccaGGSaGaam4zamaaBaaaleaacaqG ZaGaaeymaaqabaGccaGGSaGaam4zamaaBaaaleaacaqGXaGaaeynaa qabaaaaaGccaGL7baacaGGSaaaaa@5437@

Ψ m ={ E 3 , E 3 , E 1 D 3 , D 3 , D 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqqHOoqwdaWgaaWcbaGaamyBaaqabaGccqGH9aqpdaGabaqa auaabeqaceaaaeaacaWGfbWaaSbaaSqaaiaabodaaeqaaOGaaiilai aadweadaWgaaWcbaGaae4maaqabaGccaGGSaGaamyramaaBaaaleaa caqGXaaabeaaaOqaaiaadseadaWgaaWcbaGaae4maaqabaGccaGGSa GaamiramaaBaaaleaacaqGZaaabeaakiaacYcacaWGebWaaSbaaSqa aiaabgdaaeqaaaaaaOGaay5Eaaaaaa@4E23@ , s ij Ψ ={ s 33 E , s 11 E , s 55 E s 33 D , s 11 D , s 55 D , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGZbWaa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaOGa eyypa0ZaaiqaaeaafaqabeGabaaabaGaam4CamaaDaaaleaacaqGZa Gaae4maaqaaiaadweaaaGccaGGSaGaam4CamaaDaaaleaacaqGXaGa aeymaaqaaiaadweaaaGccaGGSaGaam4CamaaDaaaleaacaqG1aGaae ynaaqaaiaadweaaaaakeaacaWGZbWaa0baaSqaaiaabodacaqGZaaa baGaamiraaaakiaacYcacaWGZbWaa0baaSqaaiaabgdacaqGXaaaba GaamiraaaakiaacYcacaWGZbWaa0baaSqaaiaabwdacaqG1aaabaGa amiraaaaaaaakiaawUhaaiaacYcaaaa@5AD5@ γ={ γ E , γ D , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqaHZoWzcqGH9aqpdaGabaqaaiabeo7aNnaaCaaaleqabaGa amyraaaakiaacYcacaaMe8Uaeq4SdC2aaWbaaSqabeaacaWGebaaaa GccaGL7baacaGGSaaaaa@4845@ c Ψ ={ c E , c D MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGJbWaaWbaaSqabeaacqqHOoqwaaGccqGH9aqpdaGabaqa aiaaysW7caWGJbWaaWbaaSqabeaacaWGfbaaaOGaaiilaiaaysW7ca WGJbWaaWbaaSqabeaacaWGebaaaaGccaGL7baaaaa@48AB@

The general structural scheme of electroelastic engine micro and nano displacement on Figure 1 are used for applied bionics and biomechanics

The displacement matrix has the form

( Ξ 1 ( s ) Ξ 2 ( s ) )=( W( s ) )( Ψ m ( s ) F 1 ( s ) F 2 ( s ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaqadaqaauaabeqaceaaaeaacqqHEoawdaWgaaWcbaGaaeym aaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaeaacqqHEoawda WgaaWcbaGaaeOmaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaa aaaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacaWGxbWaaeWaaeaaca WGZbaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaGjbVpaabmaabaqb aeqabmqaaaqaaiabfI6aznaaBaaaleaacaWGTbaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaaqaaiaadAeadaWgaaWcbaGaaeymaaqa baGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaeaacaWGgbWaaSbaaS qaaiaabkdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaaGa ayjkaiaawMcaaaaa@5E6D@ ( W( s ) )=( W 11 ( s ) W 12 ( s ) W 13 ( s ) W 21 ( s ) W 22 ( s ) W 23 ( s ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaqadaqaaiaadEfadaqadaqaaiaadohaaiaawIcacaGLPaaa aiaawIcacaGLPaaacqGH9aqpdaqadaqaauaabeqaceaaaeaafaqabe qadaaabaGaam4vamaaBaaaleaacaqGXaGaaeymaaqabaGcdaqadaqa aiaadohaaiaawIcacaGLPaaaaeaacaWGxbWaaSbaaSqaaiaabgdaca qGYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaqaaiaadEfa daWgaaWcbaGaaeymaiaabodaaeqaaOWaaeWaaeaacaWGZbaacaGLOa GaayzkaaaaaaqaauaabeqabmaaaeaacaWGxbWaaSbaaSqaaiaabkda caqGXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaqaaiaadE fadaWgaaWcbaGaaeOmaiaabkdaaeqaaOWaaeWaaeaacaWGZbaacaGL OaGaayzkaaaabaGaam4vamaaBaaaleaacaqGYaGaae4maaqabaGcda qadaqaaiaadohaaiaawIcacaGLPaaaaaaaaaGaayjkaiaawMcaaaaa @61CD@

here the transfer functions

W 11 ( s )= Ξ 1 ( s )/ Ψ m ( s ) = ν mi [ M 2 χ ij Ψ s 2 +γth( lγ/2 ) ]/A ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGxbWcdaWgaaqaaiaabgdacaqGXaaabeaakmaabmaabaGa am4CaaGaayjkaiaawMcaaiabg2da9maalyaabaGaeuONdG1cdaWgaa qaaiaabgdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGa euiQdK1aaSbaaSqaaiaad2gaaOqabaWaaeWaaeaacaWGZbaacaGLOa Gaayzkaaaaaiabg2da9maalyaabaGaeqyVd42aaSbaaSqaaiaad2ga caWGPbaabeaakmaadmaabaGaamytaSWaaSbaaeaacaqGYaaabeaaki abeE8aJTWaa0baaeaacaWGPbGaamOAaaqaaiabfI6azbaakiaadoha lmaaCaaabeqaaiaabkdaaaGccqGHRaWkcqaHZoWzcaqG0bGaaeiAam aabmaabaWaaSGbaeaacaWGSbGaeq4SdCgabaGaaeOmaaaaaiaawIca caGLPaaaaiaawUfacaGLDbaaaeaacaWGbbaaaSWaaSbaaeaacaWGPb GaamOAaaqabaaaaa@687D@ A ij = M 1 M 2 ( χ ij Ψ ) 2 s 4 +{ ( M 1 + M 2 ) χ ij Ψ / [ c Ψ th( lγ ) ] } s 3 +[ ( M 1 + M 2 ) χ ij Ψ α/ th( lγ ) +1/ ( c Ψ ) 2 ] s 2 + 2αs/ c Ψ + α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakqaabeqaaiaadgealmaaBaaabaGaamyAaiaadQgaaeqaaOGaeyyp a0JaamytaSWaaSbaaeaacaqGXaaabeaakiaad2ealmaaBaaabaGaae OmaaqabaGcdaqadaqaaiabeE8aJTWaa0baaeaacaWGPbGaamOAaaqa aiabfI6azbaaaOGaayjkaiaawMcaaSWaaWbaaeqabaGaaeOmaaaaki aadohalmaaCaaabeqaaiaabsdaaaGccqGHRaWkdaGadaqaamaalyaa baWaaeWaaeaacaWGnbWcdaWgaaqaaiaabgdaaeqaaOGaey4kaSIaam ytaSWaaSbaaeaacaqGYaaabeaaaOGaayjkaiaawMcaaiabeE8aJTWa a0baaeaacaWGPbGaamOAaaqaaiabfI6azbaaaOqaamaadmaabaGaam 4yamaaCaaabeWcbaGaeuiQdKfaaOGaaeiDaiaabIgadaqadaqaaiaa dYgacqaHZoWzaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaaacaGL7b GaayzFaaGaam4CaSWaaWbaaeqabaGaae4maaaaaOqaaiabgUcaRmaa dmaabaWaaSGbaeaadaqadaqaaiaad2ealmaaBaaabaGaaeymaaqaba GccqGHRaWkcaWGnbWcdaWgaaqaaiaabkdaaeqaaaGccaGLOaGaayzk aaGaeq4Xdm2cdaqhaaqaaiaadMgacaWGQbaabaGaeuiQdKfaaOGaeq ySdegabaGaaeiDaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaawIca caGLPaaaaaGaey4kaSYaaSGbaeaacaqGXaaabaWaaeWaaeaacaWGJb WaaWbaaeqaleaacqqHOoqwaaaakiaawIcacaGLPaaalmaaCaaabeqa aiaabkdaaaaaaaGccaGLBbGaayzxaaGaam4CaSWaaWbaaeqabaGaae OmaaaakiabgUcaRmaalyaabaGaaeOmaiabeg7aHjaadohaaeaacaWG JbWcdaahaaqabeaacqqHOoqwaaaaaOGaey4kaSIaeqySde2cdaahaa qabeaacaqGYaaaaaaaaa@9117@ W 21 ( s )= Ξ 2 ( s )/ Ψ m ( s ) = ν mi [ M 1 χ ij Ψ s 2 +γth( lγ/2 ) ]/A ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGxbWaaSbaaSqaaiaabkdacaqGXaaabeaakmaabmaabaGa am4CaaGaayjkaiaawMcaaiabg2da9maalyaabaGaeuONdG1aaSbaaS qaaiaabkdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGa euiQdK1aaSbaaSqaaiaad2gaaOqabaWaaeWaaeaacaWGZbaacaGLOa Gaayzkaaaaaiabg2da9maalyaabaGaeqyVd42aaSbaaSqaaiaad2ga caWGPbaabeaakmaadmaabaGaamytamaaBaaaleaacaqGXaaabeaaki abeE8aJTWaa0baaeaacaWGPbGaamOAaaqaaiabfI6azbaakiaadoha daahaaWcbeqaaiaabkdaaaGccqGHRaWkcqaHZoWzcaqG0bGaaeiAam aabmaabaWaaSGbaeaacaWGSbGaeq4SdCgabaGaaeOmaaaaaiaawIca caGLPaaaaiaawUfacaGLDbaaaeaacaWGbbaaamaaBaaaleaacaWGPb GaamOAaaqabaaaaa@687E@ W 12 ( s )= Ξ 1 ( s )/ F 1 ( s ) = χ ij Ψ [ M 2 χ ij Ψ s 2 +γ/ th( lγ ) ]/A ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGxbWaaSbaaSqaaiaabgdacaqGYaaabeaakmaabmaabaGa am4CaaGaayjkaiaawMcaaiabg2da9maalyaabaGaeuONdG1aaSbaaS qaaiaabgdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGa amOramaaBaaaleaacaqGXaaabeaakmaabmaabaGaam4CaaGaayjkai aawMcaaaaacqGH9aqpcqGHsisldaWcgaqaaiabeE8aJTWaa0baaeaa caWGPbGaamOAaaqaaiabfI6azbaakmaadmaabaGaamytamaaBaaale aacaqGYaaabeaakiabeE8aJTWaa0baaeaacaWGPbGaamOAaaqaaiab fI6azbaakiaadohalmaaCaaabeqaaiaabkdaaaGccqGHRaWkdaWcga qaaiabeo7aNbqaaiaabshacaqGObWaaeWaaeaacaWGSbGaeq4SdCga caGLOaGaayzkaaaaaaGaay5waiaaw2faaaqaaiaadgeaaaWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@6940@ W 13 ( s )= Ξ 1 ( s )/ F 2 ( s ) = W 22 ( s )= Ξ 2 ( s )/ F 1 ( s ) = [ χ ij Ψ γ/ sh( lγ ) ]/A ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGxbWaaSbaaSqaaiaabgdacaqGZaaabeaakmaabmaabaGa am4CaaGaayjkaiaawMcaaiabg2da9maalyaabaGaeuONdG1aaSbaaS qaaiaabgdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGa amOramaaBaaaleaacaqGYaaabeaakmaabmaabaGaam4CaaGaayjkai aawMcaaaaacqGH9aqpcaaMc8Uaam4vamaaBaaaleaacaqGYaGaaeOm aaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcga qaaiabf65aynaaBaaaleaacaqGYaaabeaakmaabmaabaGaam4CaaGa ayjkaiaawMcaaaqaaiaadAeadaWgaaWcbaGaaeymaaqabaGcdaqada qaaiaadohaaiaawIcacaGLPaaaaaGaeyypa0ZaaSGbaeaadaWadaqa amaalyaabaGaeq4Xdm2cdaqhaaqaaiaadMgacaWGQbaabaGaeuiQdK faaOGaeq4SdCgabaGaae4CaiaabIgadaqadaqaaiaadYgacqaHZoWz aiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaabaGaamyqaaaadaWgaa WcbaGaamyAaiaadQgaaeqaaaaa@7047@ W 23 ( s )= Ξ 2 ( s )/ F 2 ( s ) = χ ij Ψ [ M 1 χ ij Ψ s 2 +γ/ th( lγ ) ]/A ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGxbWaaSbaaSqaaiaabkdacaqGZaaabeaakmaabmaabaGa am4CaaGaayjkaiaawMcaaiabg2da9maalyaabaGaeuONdG1aaSbaaS qaaiaabkdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaabaGa amOramaaBaaaleaacaqGYaaabeaakmaabmaabaGaam4CaaGaayjkai aawMcaaaaacqGH9aqpcqGHsisldaWcgaqaaiabeE8aJTWaa0baaeaa caWGPbGaamOAaaqaaiabfI6azbaakmaadmaabaGaamytamaaBaaale aacaqGXaaabeaakiabeE8aJTWaa0baaeaacaWGPbGaamOAaaqaaiab fI6azbaakiaadohadaahaaWcbeqaaiaabkdaaaGccqGHRaWkdaWcga qaaiabeo7aNbqaaiaabshacaqGObWaaeWaaeaacaWGSbGaeq4SdCga caGLOaGaayzkaaaaaaGaay5waiaaw2faaaqaaiaadgeaaaWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@6943@

At voltage control we have the equation of the direct piezoeffect in the form8–41

D m = d mi T i + ε mk E E k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGebWaaSbaaSqaaiaad2gaaeqaaOGaeyypa0Jaamizamaa BaaaleaacaWGTbGaamyAaaqabaGccaWGubWaaSbaaSqaaiaadMgaae qaaOGaey4kaSIaeqyTdu2cdaqhaaqaaiaad2gacaWGRbaabaGaamyr aaaakiaadweadaWgaaWcbaGaam4Aaaqabaaaaa@4B87@

here k is the index, ε mk E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqaH1oqzdaqhaaWcbaGaamyBaiaadUgaaeaacaWGfbaaaaaa @40C2@ is the permittivity. The direct coefficient of piezoengine at voltage control has the form

k d = d mi S 0 / ( δ s ij E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGRbWaaSbaaSqaaiaadsgaaeqaaOGaeyypa0ZaaSGbaeaa caWGKbWcdaWgaaqaaiaad2gacaWGPbaabeaakiaadofalmaaBaaaba Gaaeimaaqabaaakeaadaqadaqaaiabes7aKjaadohadaqhaaWcbaGa amyAaiaadQgaaeaacaWGfbaaaaGccaGLOaGaayzkaaaaaaaa@4B31@

At voltage control on Figure 2 the transform of the voltage for two feedbacks is obtained in the form

Figure 2 Structural scheme piezoengine.

U d ( s )= k d R Ξ n ( s ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGvbWaaSbaaSqaaiaadsgaaeqaaOWaaeWaaeaacaWGZbaa caGLOaGaayzkaaGaeyypa0Jaam4AamaaBaaaleaacaWGKbaabeaaki aadkfadaWfGaqaaiabf65aybWcbeqaaiaackciaaWaaSbaaeaadaWg aaqaaiaad6gaaeqaaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPa aacaGGSaaaaa@4BAB@ n=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGUbGaeyypa0JaaeymaiaabYcacaaMe8UaaeOmaaaa@41E0@

The structural scheme of piezoengine on Figure 3 is obtained at voltage control of piezoengine with elastic inertial load and first fixed end.

Figure 3 Structural scheme piezoengine with elastic inertial load.

At voltage control of piezoengine with elastic inertial load and fixed first end on Figure 3 is determined

W( s )= Ξ 2 ( s )/ U( s ) = k r / ( a 3 p 3 + a 2 p 2 + a 1 p+ a 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGxbWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyypa0Za aSGbaeaacqqHEoawdaWgaaWcbaGaaeOmaaqabaGcdaqadaqaaiaado haaiaawIcacaGLPaaaaeaacaWGvbWaaeWaaeaacaWGZbaacaGLOaGa ayzkaaaaaiabg2da9maalyaabaGaam4AamaaBaaaleaacaWGYbaabe aaaOqaamaabmaabaGaamyyamaaBaaaleaacaqGZaaabeaakiaadcha lmaaCaaabeqaaiaabodaaaGccqGHRaWkcaWGHbWaaSbaaSqaaiaabk daaeqaaOGaamiCaSWaaWbaaeqabaGaaeOmaaaacqGHRaWkkiaadgga daWgaaWcbaGaaeymaaqabaGccaWGWbGaey4kaSIaamyyamaaBaaale aacaqGWaaabeaaaOGaayjkaiaawMcaaaaaaaa@5C68@ , a 3 =R C 0 M 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGHbWaaSbaaSqaaiaabodaaeqaaOGaeyypa0JaamOuaiaa doealmaaBaaabaGaaeimaaqabaGccaWGnbWaaSbaaSqaaiaabkdaae qaaOGaaiilaaaa@440F@ a 2 = M 2 +R C 0 k v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGHbWaaSbaaSqaaiaabkdaaeqaaOGaeyypa0Jaamytamaa BaaaleaacaqGYaaabeaakiabgUcaRiaadkfacaWGdbWaaSbaaSqaai aabcdaaeqaaOGaam4AamaaBaaaleaacaWG2baabeaaaaa@4657@ a 1 = k v +R C 0 C + ij R C 0 C + e R k r 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGHbWaaSbaaSqaaiaabgdaaeqaaOGaeyypa0Jaam4Aamaa BaaaleaacaWG2baabeaakiabgUcaRiaadkfacaWGdbWaaSbaaSqaai aabcdaaeqaaOGaam4qaSWaaSraaeaacaWGPbGaamOAaaqabaGccqGH RaWkcaWGsbGaam4qamaaBaaaleaacaqGWaaabeaakiaadoealmaaBe aabaGaamyzaaqabaGccqGHRaWkcaWGsbGaam4AamaaDaaaleaacaWG YbaabaGaaeOmaaaakiaacYcaaaa@520E@ a 0 =C + e C ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGHbWaaSbaaSqaaiaabcdaaeqaaOGaeyypa0Jaam4qaSWa aSraaeaacaWGLbaabeaakiabgUcaRiaadoealmaaBeaabaGaamyAai aadQgaaeqaaaaa@44B4@ , k r = k d = d mi S 0 / ( δ s ij E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGRbWaaSbaaSqaaiaadkhaaeqaaOGaeyypa0Jaam4Aamaa BaaaleaacaWGKbaabeaakiabg2da9maalyaabaGaamizaSWaaSbaae aacaWGTbGaamyAaaqabaGccaWGtbWcdaWgaaqaaiaabcdaaeqaaaGc baWaaeWaaeaacqaH0oazcaWGZbWaa0baaSqaaiaadMgacaWGQbaaba GaamyraaaaaOGaayjkaiaawMcaaaaaaaa@4E54@

here k r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGRbWaaSbaaSqaaiaadkhaaeqaaaaa@3E55@ - the reverse coefficient of piezoengine at voltage control.

At R=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjY=Mj0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabg2da9i aaicdaaaa@39D4@ the transfer function of PZT engine is founded

W( s )= Ξ( s ) U( s ) = k 31 U T t 2 s 2 +2 T t ξ t s+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGxbWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyypa0Za aSaaaeaacqqHEoawdaqadaqaaiaadohaaiaawIcacaGLPaaaaeaaca WGvbWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaiabg2da9maalaaa baGaam4AamaaDaaaleaacaqGZaGaaeymaaqaaiaadwfaaaaakeaaca aMe8UaamivaSWaa0baaeaacaWG0baabaGaaeOmaaaakiaadohalmaa CaaabeqaaiaabkdaaaGccqGHRaWkcaqGYaGaamivaSWaaSbaaeaaca WG0baabeaakiabe67a4TWaaSbaaeaacaWG0baabeaakiaadohacqGH RaWkcaqGXaaaaaaa@5BE4@ , k 31 U = d 31 ( h/δ )/ ( 1+ C e / C 11 E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGRbWaa0baaSqaaiaabodacaqGXaaabaGaamyvaaaakiab g2da9maalyaabaqcLbuacaWGKbWcdaWgaaqaaKqzadGaae4maiaabg daaSqabaGcdaqadaqaamaalyaabaGaamiAaaqaaiabes7aKbaaaiaa wIcacaGLPaaaaeaadaqadaqaaiaabgdacqGHRaWkdaWcgaqaaiaado eadaWgaaWcbaGaamyzaaqabaaakeaacaWGdbWaa0baaSqaaiaabgda caqGXaaabaGaamyraaaaaaaakiaawIcacaGLPaaaaaaaaa@51B9@ , T t = M 2 / ( C e + C 11 E ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGubWaaSbaaSqaaiaadshaaeqaaOGaeyypa0ZaaOaaaeaa daWcgaqaaKqzafGaamytaOWaaSbaaSqaaiaabkdaaKqzafqabaaake aadaqadaqaaiaadoeadaWgaaWcbaGaamyzaaqabaGccqGHRaWkcaWG dbWcdaqhaaqaaKqzadGaaeymaiaabgdaaSqaaKqzadGaamyraaaaaO GaayjkaiaawMcaaaaaaSqabaGccaGGSaaaaa@4D4B@ ω t =1/ T t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacqaHjpWDlmaaBaaabaGaamiDaaqabaGccqGH9aqpdaWcgaqa aiaabgdaaeaacaWGubWaaSbaaSqaaiaadshaaeqaaaaaaaa@430C@

At PZT engine M 2 =0.25kg, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGnbWaaSbaaSqaaiaabkdaaeqaaOGaaGPaVdbaaaaaaaaa peGaeyypa0Jaaeimaiaab6cacaqGYaGaaeynaiaabUgacaqGNbGaai ilaaaa@4609@ C e =0.2× 10 7 N/m, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGdbWcdaWgaaqaaiaadwgaaeqaaiaaykW7kabaaaaaaaaa peGaeyypa0Jaaeimaiaab6cacaqGYaGaey41aqRaaeymaiaabcdapa WaaWbaaSqabeaapeGaae4naaaakiaab6eacaqGVaGaaeyBaiaacYca aaa@4AA5@ C 11 E =1.4× 10 7 N/m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGdbWcdaqhaaqaaiaabgdacaqGXaaabaGaamyraaaacqGH 9aqpcaaMc8UaaGPaVRaeaaaaaaaaa8qacaqGXaGaaeOlaiaabsdacq GHxdaTcaqGXaGaaeima8aadaahaaWcbeqaa8qacaqG3aaaaOGaaeOt aiaab+cacaqGTbaaaa@4CCC@ its time constant is obtained T t = 0.125× 10 -3 s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGubWcdaWgaaqaaiaadshaaeqaaOaeaaaaaaaaa8qacqGH 9aqpcaqGGaGaaeimaiaab6cacaqGXaGaaeOmaiaabwdacqGHxdaTca qGXaGaaeima8aadaahaaWcbeqaa8qacaGGTaGaae4maaaakiaaboha aaa@49C9@ with 10% error. At d 31 = 0.2 nm/V, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGKbWcdaWgaaqaaiaabodacaqGXaaabeaacaaMc8Ucqaaa aaaaaaWdbiabg2da9iaabccacaqGWaGaaeOlaiaabkdacaqGGaGaae OBaiaab2gacaGGVaGaaeOvaiaacYcaaaa@48F8@ h/δ = 20, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaWcgaqaaiaadIgaaeaacqaH0oazaaaeaaaaaaaaa8qacqGH 9aqpcaqGGaGaaeOmaiaabcdacaGGSaaaaa@42CB@ C e / C 11 E = 0.14 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaadaWcgaqaaiaadoealmaaBaaabaqcLbmacaWGLbaaleqaaaGc baGaam4qamaaDaaaleaacaqGXaGaaeymaaqaaiaadweaaaaaaOaeaa aaaaaaa8qacqGH9aqpcaqGGaGaaeimaiaab6cacaqGXaGaaeinaaaa @4742@ its transfer coefficient is determined k 31 U = 3.5 nm/V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbujxzIv3yOvgDG00uaerbd9wD YLwzYbItLDharqqtubsr4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbb f9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq =He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeaadaabaeaafa aakeaacaWGRbWaa0baaSqaaiaabodacaqGXaaabaGaamyvaaaakaba aaaaaaaapeGaeyypa0JaaeiiaiaabodacaqGUaGaaeynaiaabccaca qGUbGaaeyBaiaab+cacaqGwbaaaa@47A4@ with 10% error.

Discussion

An electroelastic engine micro and nano displacement is used for applied bionics and biomechanics in system of adaptive optics and scanning microscopy. The structural scheme of electroelastic engine for micro and nano displacement is determined by method mathematical physics. For an electroelastic engine its displacement matrix is constracted. The schemes piezoengines at the voltage control are obtained with the feedbacks. The structural scheme of piezoengine for applied bionics and biomechanics are constructed from equations of piezoeffects for the longitudinal, transverse and shift displacements and decision the ordinary differential equation piezoengine.

We have the general structural scheme, the transfer functions in matrix form of electroelastic engine micro and nano displacement from the solution this ordinary differential equation and the equation of electroelastic effect. The piezoengine at the transverse piezoeffect has greater range its displacement then the piezoengine at the longitudinal piezoeffect.

Conclusion

The general electroelastic engine micro and nano displacement are obtained for applied bionics and biomechanics. The systems of equations are determined for the structural model of electroelastic engine for applied bionics and biomechanics. The structural scheme of electroelastic engine and its transfer functions in matrix form are determined. The displacement matrix of electroelastic engine is obtained. At voltage control of piezoengine with elastic inertial load and fixed first end the structural scheme is determined with feedbacks. The structural scheme of PZT engine is determined. The structural model and scheme of electroelastic engine for micro and nano displacement are constructed. The matrix of the deformations of electroelastic engine is obtained. The parameters of PZT engine are determined at voltage control with elastic inertial load and fixed first end for applied bionics and biomechanics.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The author declares that there is no conflict of interest.

References

  1. Schultz J, Ueda J, Asada H. Cellular actuators. Butterworth-Heinemann Publisher, Oxford. 2017;382.
  2. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Dokl Math. 2006;74(3):943–948.
  3. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher. 1997;350.
  4. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Dokl Phys. 2005;50(2):77–82.
  5. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Dokl Phys. 2008;53(3):137–143.
  6. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Dokl Math. 2006;73(2):307–313.
  7. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. McGraw-Hill Book Company, New York, London. 1946;806.
  8. Mason W. Physical Acoustics: Principles and methods. Vol. 1. Part A. Methods and Devices. Academic Press, New York. 1964:515p.
  9. Zhao C, Li Z, Xu F, et al. Design of a novel three-degree-of-freedom piezoelectric-driven micro-positioning platform with compact structure. Actuators. 2024;13(7):248.
  10. Zwillinger D. Handbook of differential equations. Academic Press, Boston, 1989;673.
  11. Afonin SM. A generalized structural–parametric model of an elecromagnetoelastic converter for nano– and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano– and micrometric movement control systems. J Comput Sys Sci Int.2006;45(6):317–325.
  12. Afonin SM. Generalized structural-parametric model of an electromagnetoelastic converter for control systems of nano-and micrometric movements: IV. Investigation and calculation of characteristics of step-piezodrive of nano-and micrometric movements. J Comput Syst Sci Int. 2006;45(6):1006–1013.
  13. Afonin SM. Decision wave equation and block diagram of electromagnetoelastic actuator nano- and microdisplacement for communications systems. Int J Info Comm Sci. 2016;1(2):22–29.
  14. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. Ed. Parinov IA. Nova Science, New York. 2015;225–242.
  15. Afonin SM. A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Chapter 8 in Advances in Nanotechnology. Volume 19. Eds. Bartul Z, Trenor J, Nova Science, New York, 2017;259–284.
  16. Afonin SM. Electromagnetoelastic nano- and microactuators for mechatronic systems. Russ Engin Res. 2018;38(12):938–944.
  17. Afonin SM. Nano- and micro-scale piezomotors. Russ Engin Res. 2012;32(7–8):519–522.
  18. Afonin SM. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mech Solids. 2007;42(1):43–49.
  19. Afonin SM. Stability of strain control systems of nano-and microdisplacement piezotransducers. Mech Solids. 2014;49(2):196–207.
  20. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. Int J Phys. 2017;5(1):9–15.
  21. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. Int J Phys. 2019;7(2):50–57.
  22. Afonin SM. Calculation deformation of an engine for nano biomedical research. Int J Biomed Res. 2021;1(5):1–4.
  23. Afonin SM. Precision engine for nanobiomedical research. Biomed Res Clinic Rev. 2021;3(4):1–5.
  24. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano- and microdisplacement. Int J Math Analy Appl. 2016;3(4):31–38.
  25. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):6.
  26. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):52.
  27. Afonin SM. Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and microdisplacement for mechatronic systems. Int J Theor Appl Math. 2016;2(2):52–59.
  28. Afonin SM. Design static and dynamic characteristics of a piezoelectric nanomicrotransducers. Mech Solids. 2010;45(1):123–132.
  29. Afonin SM. Electromagnetoelastic actuator for nanomechanics. Global J Res Engin: A Mech Mechanics Engin. 2018;18(2):19–23.
  30. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. Proceedings of the 2018 IEEE Conference EIConRus. 2018;1698–1701.
  31. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Trans Netw Comm. 2018;6(3):1–9.
  32. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems. Trans Netw Comm. 2019;7(3):11–21.
  33. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Trans Netw Comm. 2020;8(1):8–15.
  34. Afonin SM. A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Trans Machine Learn Artif Intel. 2020;8(4):23–33.
  35. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Appl Sys Innov. 2020;3(4):53.
  36. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Appl Sys Innov. 2021;4(3):47.
  37. Afonin SM. Structural scheme actuator for nano research. COJ Rev Res. 2020;2(5):1–3.
  38. Afonin SM. Structural–parametric model electroelastic actuator nano- and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Eco Environ Sci. 2018;3(5):306‒309.
  39. Afonin SM. Deformation of electromagnetoelastic actuator for nano robotics system. Int Rob Auto J. 2020;6(2):84–86.
  40. Afonin SM. Correction of characteristics compound longitudinal piezodrive at elastic inertial load for nanorobotics research. Int Rob Auto J. 2024;10(3):103–106.
  41. Afonin SM. A multi-layer electro elastic drive for micro and nano robotics. Int Rob Auto J. 2024;10(2):73–76.
  42. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeron Aero Open Access J. 2018;2(5):270–272.
  43. Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surg Case Stud Open Access J. 2019;3(3):307–309.
  44. Afonin SM. Piezo actuators for nanomedicine research. MOJ App Bio Biomech. 2019;3(2):56–57.
  45. Afonin SM. Frequency criterion absolute stability of electromagnetoelastic system for nano and micro displacement in biomechanics. MOJ App Bio Biomech. 2019;3(6):137–140.
  46. Afonin SM. Multilayer piezo engine for nanomedicine research. MOJ App Bio Biomech. 2020;4(2):30–31.
  47. Afonin SM. Structural scheme of electromagnetoelastic actuator for nano biomechanics. MOJ App Bio Biomech. 2021;5(2):36–39.
  48. Afonin SM. Parallel and coded control of multi layered longitudinal piezo engine for nano biomedical research. MOJ App Bio Biomech. 2024;8(1):62–65.
  49. Afonin SM. DAC electro elastic engine for nanomedicine. MOJ App Bio Biomech. 2024;8(1):38–40.
  50. Afonin SM. Multilayer engine for microsurgery and nano biomedicine. Surg Case Stud Open Access J. 2020;4(4):423–425.
  51. Afonin SM. A structural-parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology. Chapter 7 in Advances in Nanotechnology. Volume 22. Eds. Bartul Z, Trenor J, Nova Science, New York. 2019;169–186.
  52. Afonin SM. Electroelastic digital-to-analog converter actuator nano and microdisplacement for nanotechnology. Chapter 6 in Advances in Nanotechnology. Volume 24. Eds. Bartul Z, Trenor J, Nova Science, New York. 2020;205–218.
  53. Afonin SM. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. Chapter 8 in Advances in Nanotechnology. Volume 25. Eds. Bartul Z, Trenor J, Nova Science, New York. 2021;251–266.
  54. Afonin SM. An absolute stability of nanomechatronics system with electroelastic actuator. Chapter 9 in Advances in Nanotechnology. Volume 27. Eds. Bartul Z, Trenor J, Nova Science, New York. 2022;183–198.
  55. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russ Engin Res. 2021;41(4):285–288.
  56. Afonin SM. Structural scheme of an electromagnetoelastic actuator for nanotechnology research. Chapter 45 in Physics and Mechanics of New Materials and Their Applications. PHENMA 2023. Springer Proceedings in Materials. Volume 41. Eds. Parinov I.A., Chang S.H., Putri E.P., Springer, Cham. 2024;486–501.
  57. Nalwa HS, editor. Encyclopedia of nanoscience and nanotechnology. USA: American Scientific Publishers. 25 Volumes. 2019.
  58. Bhushan B, editor. Springer handbook of nanotechnology. Germany: Springer. 2017;1500.
Creative Commons Attribution License

©2025 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.