Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 13 Issue 3

On weighted Amarendra distribution with properties and applications

Rama Shanker, Hosenur Rahman Prodhani

Department of Statistics, Assam University, Silchar, India

Correspondence: Rama Shanker, Department of Statistics, Assam University, Silchar, India

Received: July 01, 2024 | Published: July 15, 2024

Citation: Shanker R, Prodhani HR. On weighted Amarendra distribution with properties and applications. Biom Biostat Int J. 2024;13(3):76-85. DOI: 10.15406/bbij.2024.13.00418

Download PDF

Abstract

In this paper some statistical properties including nature of hazard function, mean residual life function, and moments based descriptive statistical constants including coefficient of variation, skweness, kurtosis and index of dispersion of the weighted Amarendra distribution has been discussed. Two methods of estimation, namely, maximum likelihood estimation and maximum product spacing estimation have been discussed. The simulation study has been presented to know the consistency of the estimator of parameters given by the two methods of estimation. Confidence intervals of the parameters are given. The goodness of fit of the distribution has been demonstrated with two real lifetime datasets and the goodness of fit shows that weighted Amarendra distribution provides better fit over weighted Pratibha distribution, weighted Komal distribution, weighted Lindley distribution, weighted Garima distribution, weighted Sujatha distribution, weighted Akash distribution and Gamma distribution.

Keywords: amarendra distribution, hazard function, mean residual life function, moments based measures, estimation of parameters, applications

Introduction

In distribution theory, it is very much useful and practical to add a shape parameter to an existing distribution using a weighted approach because the existing distribution exhibits increased flexibility and tractability tendencies with the inclusion of a shape parameter. Weighted distributions are used to model heterogeneity, clustered sampling, and extraneous variance in the dataset. Fisher1 was the first person to introduce the concept of weighted distributions and it was Rao2 who popularize the concept with several practical and real life examples with some mathematical treatment of weighted distributions. Generally, weighted versions of one parameter lifetime distributions have been derived by several researchers using the weight function w( x,α )= x α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaqada qaaiaadIhacaGGSaGaeqySdegacaGLOaGaayzkaaGaeyypa0JaamiE amaaCaaaleqabaGaeqySdeMaeyOeI0IaaGymaaaaaaa@4256@ or w( x,α )= x α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaqada qaaiaadIhacaGGSaGaeqySdegacaGLOaGaayzkaaGaeyypa0JaamiE amaaCaaaleqabaGaeqySdegaaaaa@40AE@ and α=1  or  α=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaigdaqaaaaaaaaaWdbiaacckacaGGGcWdaiaab+gacaqGYbWd biaacckacaGGGcWdaiabeg7aHjabg2da9iaaicdaaaa@4492@ thus the corresponding weighted distribution will reduce to the origina distribution for. For examples, Ghitany et al3 proposed weighted Lindley distribution (WLD) from Lindley distribution of Lindley,4 Shanker and Shukla5 proposed weighted Akash distribution (WAkD) from Akash distribution of Shanker,6 Eyob and Shanker7 suggested weighted Garima distribution (WGD) from Garima distribution of Shanker,8 Ganaie et al.9 suggested weighted Aradhana distribution (WArD) from Aradhana distribution of Shanker.10 It is to be noted that the WArD derived by Ganaie et al.9 was having some serious drawbacks and Shanker et al.11 pointed out those drawbacks of WArD and discussed several interesting properties of WArD and suggested some interesting applications. Further, Shanker and Shukla12 suggested weighted Sujatha distribution (WSD) from Sujatha distribution of Shanker,13 Shanker et al.14 suggested weighted Komal distribution (WKD) from Komal distribution of Shanker,15 Shanker et al.16 suggested weighted Uma distribution (WUD) from Uma distribution of Shanker,17 Prodhani and Shanker18 suggested weighted Pratibha distribution (WPD) from Pratibha distribution of Shanker,19 respectively. While testing the goodness of fit of these weighted distributions, it has been observed that in certain datasets, these weighted distributions do not provide a suitable fit due to either distributional nature of weighted distributions or the stochastic nature of the data. Therefore, there is a need for the further weighted version of the existing distribution. Keeping this in mind, an attempt has been made to have detailed study on weighted Amarendra distribution.

Shanker19 introduced a one parameter Amarendra distribution defined by its probability density function (pdf) and cumulative density function (cdf) as

f( x;θ )= θ 4 θ 3 + θ 2 +2θ+6 ( 1+x+ x 2 + x 3 ) x α1 e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaaakeaacqaH4oqCdaahaa WcbeqaaiaaiodaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIYaGaeqiUdeNaey4kaSIaaGOnaaaadaqadaqaai aaigdacqGHRaWkcaWG4bGaey4kaSIaamiEamaaCaaaleqabaGaaGOm aaaakiabgUcaRiaadIhadaahaaWcbeqaaiaaiodaaaaakiaawIcaca GLPaaacaWG4bWaaWbaaSqabeaacqaHXoqycqGHsislcaaIXaaaaOGa amyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaamiEaaaakiaacUdaca WG4bGaeyOpa4JaaGimaiaacYcacqaH4oqCcqGH+aGpcaaIWaaaaa@6624@ F( x;θ )=1[ 1+ θ 3 x 3 + θ 2 +( θ+2 ) x 2 +θ( θ 3 + θ 2 +2θ+6 )x θ 3 + θ 2 +2θ+6 ] e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaaGym aiabgkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUde3aaW baaSqabeaacaaIZaaaaOGaamiEamaaCaaaleqabaGaaG4maaaakiab gUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaaba GaeqiUdeNaey4kaSIaaGOmaaGaayjkaiaawMcaaiaadIhadaahaaWc beqaaiaaikdaaaGccqGHRaWkcqaH4oqCdaqadaqaaiabeI7aXnaaCa aaleqabaGaaG4maaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaikdacqaH4oqCcqGHRaWkcaaI2aaacaGLOaGaay zkaaGaamiEaaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUca RiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaH4o qCcqGHRaWkcaaI2aaaaaGaay5waiaaw2faaiaadwgadaahaaWcbeqa aiabgkHiTiabeI7aXjaadIhaaaGccaGG7aGaamiEaiabg6da+iaaic dacaGGSaGaeqiUdeNaeyOpa4JaaGimaaaa@7A6B@

Mohiuddin et al.21 derived weighted Amarendra distribution (WAD) using weighted technique with weight function w( x )= x α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaaWbaaSqabeaa cqaHXoqyaaaaaa@3DF9@ from Amarendra distribution and discussed it statistical properties such as survival function, hazard function, Mill’s ratio, moments based measure such as mean, variance, harmonic mean, moment generating function, characteristics function , order statistics, entropy measures, Bonferroni and Lorenz curves, likelihood ratio test, maximum likelihood estimation, and represent goodness of fit on two datasets and compared WAD with Amarendra distribution and concluded that WAD provides a better fit over Amarendra distribution.

It has been observed that there are several statistical properties of WAD which has not been studied by Mohiuddin et al.21 including moments based measures such as coefficient of skweness, kurtosis, index of dispersion; nature of hazard function and the mean residual life function. Further, there are two serious drawbacks of the WAD proposed by Mohiuddin et al.,21 namely (i) The goodness of fit was compared with Amarendra distribution which is not justifiable due to the fact that a comparison of weighted distribution with unweighted distribution is completely illogical, (ii) WAD was compared with Amarendra distribution without K-S and p-value, and concluded that WAD gives better fit over Amarendra distribution, which is unreasonable and such conclusion would never be acceptable to researchers in statistics.

In this paper, a WAD is proposed using weight function w( x )= x α1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaaWbaaSqabeaa cqaHXoqycqGHsislcaaIXaaaaaaa@3FA1@  from Amarendra distribution. Some of its important statistical properties such as hazard function, mean residual life function, moments based measures including coefficient of variation, skewness, kurtosis and index of dispersion have been derived and discussed. Parameters are estimated by the method of maximum likelihood estimation and maximum product spacing estimation. A simulation study is carried out to show the consistency of the estimator the parameters by maximum likelihood estimation and maximum product spacing estimation. Confidence interval of the parameters has been presented with profile plot of the parameters. Two real lifetime datasets have been presented to explain the applications of WAD and the goodness of fit of WAD has been compared with several weighted distributions including WPD, WKD, WLD, WGD, WSD, WAkD and gamma distribution (GD).

Weighted amarendra distribution

The weighted Amarendra distribution (WAD) can be obtained using weighted technique with weight function w( x )= x α1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaaWbaaSqabeaa cqaHXoqycqGHsislcaaIXaaaaaaa@3FA1@  from Amarendra distribution. The pdf and cdf of WAD can be expressed as

f( x;θ,α )= θ α+3 ( 1+x+ x 2 + x 3 ) x α1 e θx [ θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) ]Γ( α ) ;x>0,θ>0,α>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9maalaaabaGaeqiUde3aaWbaaSqabeaacqaHXoqycqGHRa WkcaaIZaaaaOWaaeWaaeaacaaIXaGaey4kaSIaamiEaiabgUcaRiaa dIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG4bWaaWbaaSqabe aacaaIZaaaaaGccaGLOaGaayzkaaGaamiEamaaCaaaleqabaGaeqyS deMaeyOeI0IaaGymaaaakiaadwgadaahaaWcbeqaaiabgkHiTiabeI 7aXjaadIhaaaaakeaadaWadaqaaiabeI7aXnaaCaaaleqabaGaaG4m aaaakiabgUcaRiabeg7aHjabeI7aXnaaCaaaleqabaGaaGOmaaaaki abgUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjk aiaawMcaaiabeI7aXjabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey 4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaeqySdeMaey4kaSIa aGOmaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabfo5ahnaabmaaba GaeqySdegacaGLOaGaayzkaaaaaiaacUdacaWG4bGaeyOpa4JaaGim aiaacYcacqaH4oqCcqGH+aGpcaaIWaGaaiilaiabeg7aHjabg6da+i aaicdaaaa@8737@ F( x;θ,α )=1 θ 3 Γ( α,θx )+ θ 2 Γ( α+1,θx )+θΓ( α+2,θx )+Γ( α+3,θx ) [ θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) ]Γ( α ) ;x>0,θ>0,α>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9iaaigdacqGHsisldaWcaaqaaiabeI7aXnaaCaaaleqaba GaaG4maaaakiabfo5ahnaabmaabaGaeqySdeMaaiilaiabeI7aXjaa dIhaaiaawIcacaGLPaaacqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaik daaaGccqqHtoWrdaqadaqaaiabeg7aHjabgUcaRiaaigdacaGGSaGa eqiUdeNaamiEaaGaayjkaiaawMcaaiabgUcaRiabeI7aXjaaykW7cq qHtoWrdaqadaqaaiabeg7aHjabgUcaRiaaikdacaGGSaGaeqiUdeNa amiEaaGaayjkaiaawMcaaiabgUcaRiabfo5ahnaabmaabaGaeqySde Maey4kaSIaaG4maiaacYcacqaH4oqCcaWG4baacaGLOaGaayzkaaaa baWaamWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcq aHXoqycqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqy daqadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaacqaH4o qCcqGHRaWkcqaHXoqydaqadaqaaiabeg7aHjabgUcaRiaaigdaaiaa wIcacaGLPaaadaqadaqaaiabeg7aHjabgUcaRiaaikdaaiaawIcaca GLPaaaaiaawUfacaGLDbaacqqHtoWrdaqadaqaaiabeg7aHbGaayjk aiaawMcaaaaacaGG7aGaamiEaiabg6da+iaaicdacaGGSaGaeqiUde NaeyOpa4JaaGimaiaacYcacqaHXoqycqGH+aGpcaaIWaaaaa@A070@

where θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@385E@ is a scale parameter and α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@3847@ is shape parameter of the distribution. If we take α=α+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iabeg7aHjabgUcaRiaaigdaaaa@3C89@ , we can get the weighted Amarendra distribution proposed by Mohiuddin et al.20 When α=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaigdaaaa@3A08@ ,WAD reduces to Amarendra distribution. The behaviours of the pdf and cdf of WAD are shown in the following Figures 1 & 2 respectively. For increasing values of shape parameter α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@3847@ , kurtosis is lower and the curve tends to zero at faster rate. This shows that it positively skewed distribution and becomes symmetrical for increasing values of shape parameter α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHbaa@3847@ .

Figure 1 pdf of WAD.

Figure 2 cdf of WAD.

Descriptive statistics

The r th moment about origin of WAD can be obtained as
μ r =E( X r )= 0 x r g( x;θ,α )dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9iaadweadaqadaqaaiaadIfadaahaaWcbeqaaiaadkhaaaaakiaawI cacaGLPaaacqGH9aqpdaWdXbqaaiaadIhadaahaaWcbeqaaiaadkha aaGccaWGNbWaaeWaaeaacaWG4bGaai4oaiabeI7aXjaacYcacqaHXo qyaiaawIcacaGLPaaacaWGKbGaamiEaaWcbaGaaGimaaqaaiabg6Hi LcqdcqGHRiI8aaaa@53EF@
= [ θ 3 +( α+r ) θ 2 +( α+r )( α+r+1 )θ+( α+r )( α+r+1 )( α+r+2 ) ]Γ( α+r ) θ r [ θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) ]Γ( α ) ;r=1,2,3... MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaWaamWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWk daqadaqaaiabeg7aHjabgUcaRiaadkhaaiaawIcacaGLPaaacqaH4o qCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiabeg7aHjab gUcaRiaadkhaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjabgUcaRi aadkhacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeqiUdeNaey4kaSYa aeWaaeaacqaHXoqycqGHRaWkcaWGYbaacaGLOaGaayzkaaWaaeWaae aacqaHXoqycqGHRaWkcaWGYbGaey4kaSIaaGymaaGaayjkaiaawMca amaabmaabaGaeqySdeMaey4kaSIaamOCaiabgUcaRiaaikdaaiaawI cacaGLPaaaaiaawUfacaGLDbaacqqHtoWrdaqadaqaaiabeg7aHjab gUcaRiaadkhaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaaWcbeqaai aadkhaaaGcdaWadaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiab gUcaRiabeg7aHjabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRi abeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMca aiabeI7aXjabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaG ymaaGaayjkaiaawMcaamaabmaabaGaeqySdeMaey4kaSIaaGOmaaGa ayjkaiaawMcaaaGaay5waiaaw2faaiabfo5ahnaabmaabaGaeqySde gacaGLOaGaayzkaaaaaiaacUdacaWGYbGaeyypa0JaaGymaiaacYca caaIYaGaaiilaiaaiodacaGGUaGaaiOlaiaac6caaaa@9B4E@

Putting r= 1,2,3,4 we obtain the first four moments about origin as follows μ 1 = α[ θ 3 +( α+1 ) θ 2 +( α+1 )( α+2 )θ+( α+1 )( α+2 )( α+3 ) ] θ[ θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySde2aamWaaeaacqaH4oqCdaahaaWcbeqaaiaaio daaaGccqGHRaWkdaqadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIca caGLPaaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqada qaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiab eg7aHjabgUcaRiaaikdaaiaawIcacaGLPaaacqaH4oqCcqGHRaWkda qadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqa aiabeg7aHjabgUcaRiaaikdaaiaawIcacaGLPaaadaqadaqaaiabeg 7aHjabgUcaRiaaiodaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaeaa cqaH4oqCdaWadaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgU caRiabeg7aHjabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiab eg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaai abeI7aXjabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGym aaGaayjkaiaawMcaamaabmaabaGaeqySdeMaey4kaSIaaGOmaaGaay jkaiaawMcaaaGaay5waiaaw2faaaaaaaa@87EA@ μ 2 = α( α+1 )[ θ 3 +( α+2 ) θ 2 +( α+2 )( α+3 )θ+( α+2 )( α+3 )( α+4 ) ] θ 2 [ θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaaca GLOaGaayzkaaWaamWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGc cqGHRaWkdaqadaqaaiabeg7aHjabgUcaRiaaikdaaiaawIcacaGLPa aacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiab eg7aHjabgUcaRiaaikdaaiaawIcacaGLPaaadaqadaqaaiabeg7aHj abgUcaRiaaiodaaiaawIcacaGLPaaacqaH4oqCcqGHRaWkdaqadaqa aiabeg7aHjabgUcaRiaaikdaaiaawIcacaGLPaaadaqadaqaaiabeg 7aHjabgUcaRiaaiodaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjab gUcaRiaaisdaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaeaacqaH4o qCdaahaaWcbeqaaiaaikdaaaGcdaWadaqaaiabeI7aXnaaCaaaleqa baGaaG4maaaakiabgUcaRiabeg7aHjabeI7aXnaaCaaaleqabaGaaG OmaaaakiabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGym aaGaayjkaiaawMcaaiabeI7aXjabgUcaRiabeg7aHnaabmaabaGaeq ySdeMaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaeqySdeMa ey4kaSIaaGOmaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaaaaa@8DA9@ μ 3 = α( α+1 )( α+2 )[ θ 3 +( α+3 ) θ 2 +( α+3 )( α+4 )θ+( α+3 )( α+4 )( α+5 ) ] θ 3 [ θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaaca GLOaGaayzkaaWaaeWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLOaGa ayzkaaWaamWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRa Wkdaqadaqaaiabeg7aHjabgUcaRiaaiodaaiaawIcacaGLPaaacqaH 4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiabeg7aHj abgUcaRiaaiodaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjabgUca RiaaisdaaiaawIcacaGLPaaacqaH4oqCcqGHRaWkdaqadaqaaiabeg 7aHjabgUcaRiaaiodaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjab gUcaRiaaisdaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjabgUcaRi aaiwdaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaeaacqaH4oqCdaah aaWcbeqaaiaaiodaaaGcdaWadaqaaiabeI7aXnaaCaaaleqabaGaaG 4maaaakiabgUcaRiabeg7aHjabeI7aXnaaCaaaleqabaGaaGOmaaaa kiabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaay jkaiaawMcaaiabeI7aXjabgUcaRiabeg7aHnaabmaabaGaeqySdeMa ey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaeqySdeMaey4kaS IaaGOmaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaaaaa@9277@ μ 4 = α( α+1 )( α+2 )( α+3 )[ θ 3 +( α+4 ) θ 2 +( α+4 )( α+5 )θ+( α+4 )( α+5 )( α+6 ) ] θ 4 [ θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaaca GLOaGaayzkaaWaaeWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLOaGa ayzkaaWaaeWaaeaacqaHXoqycqGHRaWkcaaIZaaacaGLOaGaayzkaa WaamWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkdaqa daqaaiabeg7aHjabgUcaRiaaisdaaiaawIcacaGLPaaacqaH4oqCda ahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiabeg7aHjabgUca RiaaisdaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjabgUcaRiaaiw daaiaawIcacaGLPaaacqaH4oqCcqGHRaWkdaqadaqaaiabeg7aHjab gUcaRiaaisdaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjabgUcaRi aaiwdaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjabgUcaRiaaiAda aiaawIcacaGLPaaaaiaawUfacaGLDbaaaeaacqaH4oqCdaahaaWcbe qaaiaaisdaaaGcdaWadaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaa kiabgUcaRiabeg7aHjabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgU caRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaa wMcaaiabeI7aXjabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaS IaaGymaaGaayjkaiaawMcaamaabmaabaGaeqySdeMaey4kaSIaaGOm aaGaayjkaiaawMcaaaGaay5waiaaw2faaaaaaaa@9746@

Now using the relationship between raw moments and central moments we obtain the central moments of WAD as μ 2 = α( α 6 +2 α 5 θ+3 α 4 θ 2 +4 α 3 θ 3 +3 α 2 θ 4 +2α θ 5 + θ 6 +9 α 5 +14 α 4 θ+18 α 3 θ 2 +24 α 2 θ 3 +9α θ 4 +2 θ 5 +31 α 4 +34 α 3 θ+33 α 2 θ 2 +44α θ 3 +6 θ 4 +51 α 3 +34 α 2 θ+18α θ 2 +24 θ 3 +40 α 2 +12αθ+12α ) θ 2 ( α 3 + α 2 θ+α θ 2 + θ 3 +3 α 2 +αθ+2α ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqySde2aaeWaaqaa beqaaiabeg7aHnaaCaaaleqabaGaaGOnaaaakiabgUcaRiaaikdacq aHXoqydaahaaWcbeqaaiaaiwdaaaGccqaH4oqCcqGHRaWkcaaIZaGa eqySde2aaWbaaSqabeaacaaI0aaaaOGaeqiUde3aaWbaaSqabeaaca aIYaaaaOGaey4kaSIaaGinaiabeg7aHnaaCaaaleqabaGaaG4maaaa kiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaiodacqaHXo qydaahaaWcbeqaaiaaikdaaaGccqaH4oqCdaahaaWcbeqaaiaaisda aaGccqGHRaWkcaaIYaGaeqySdeMaeqiUde3aaWbaaSqabeaacaaI1a aaaOGaey4kaSIaeqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4kaSIa aGyoaiabeg7aHnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaigdaca aI0aGaeqySde2aaWbaaSqabeaacaaI0aaaaOGaeqiUdeNaey4kaSIa aGymaiaaiIdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccqaH4oqCda ahaaWcbeqaaiaaikdaaaaakeaacqGHRaWkcaaIYaGaaGinaiabeg7a HnaaCaaaleqabaGaaGOmaaaakiabeI7aXnaaCaaaleqabaGaaG4maa aakiabgUcaRiaaiMdacqaHXoqycqaH4oqCdaahaaWcbeqaaiaaisda aaGccqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey 4kaSIaaG4maiaaigdacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqGH RaWkcaaIZaGaaGinaiabeg7aHnaaCaaaleqabaGaaG4maaaakiabeI 7aXjabgUcaRiaaiodacaaIZaGaeqySde2aaWbaaSqabeaacaaIYaaa aOGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGinaiaais dacqaHXoqycqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI 2aGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGynaiaaig dacqaHXoqydaahaaWcbeqaaiaaiodaaaaakeaacqGHRaWkcaaIZaGa aGinaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabeI7aXjabgUcaRi aaigdacaaI4aGaeqySdeMaeqiUde3aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaaGOmaiaaisdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccq GHRaWkcaaI0aGaaGimaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaigdacaaIYaGaeqySdeMaeqiUdeNaey4kaSIaaGymaiaaik dacqaHXoqyaaGaayjkaiaawMcaaaqaaiabeI7aXnaaCaaaleqabaGa aGOmaaaakmaabmaabaGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaey 4kaSIaeqySde2aaWbaaSqabeaacaaIYaaaaOGaeqiUdeNaey4kaSIa eqySdeMaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqiUde 3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4maiabeg7aHnaaCaaa leqabaGaaGOmaaaakiabgUcaRiabeg7aHjabeI7aXjabgUcaRiaaik dacqaHXoqyaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaaaa @ED92@ μ 3 = 2α( α 9 +3 α 8 θ+6 α 7 θ 2 +10 α 6 θ 3 +12 α 5 θ 4 +12 α 4 θ 5 +10 α 3 θ 6 +6 α 2 θ 7 +3α θ 8 + θ 9 +12 α 8 +30 α 7 θ+51 α 6 θ 2 +74 α 5 θ 3 +81 α 4 θ 4 +78 α 3 θ 5 +61 α 2 θ 6 +18α θ 7 +3 θ 8 +60 α 7 +120 α 6 θ+165 α 5 θ 2 +198 α 4 θ 3 +180 α 3 θ 4 +150 α 2 θ 5 +111α θ 6 +12 θ 7 +162 α 6 +246 α 5 θ+255 α 4 θ 2 +238 α 3 θ 3 +153 α 2 θ 4 +84α θ 5 +60 θ 6 +255 α 5 +273 α 4 θ+189 α 3 θ 2 +128 α 2 θ 3 +42α θ 4 +234 α 4 +156 α 3 θ+54 α 2 θ 2 +24α θ 3 +116 α 3 +36 α 2 θ+24 α 2 ) θ 3 ( α 3 + α 2 θ+α θ 2 + θ 3 +3 α 2 +αθ+2α ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmaiabeg7aHnaa bmaaeaqabeaacqaHXoqydaahaaWcbeqaaiaaiMdaaaGccqGHRaWkca aIZaGaeqySde2aaWbaaSqabeaacaaI4aaaaOGaeqiUdeNaey4kaSIa aGOnaiabeg7aHnaaCaaaleqabaGaaG4naaaakiabeI7aXnaaCaaale qabaGaaGOmaaaakiabgUcaRiaaigdacaaIWaGaeqySde2aaWbaaSqa beaacaaI2aaaaOGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaS IaaGymaiaaikdacqaHXoqydaahaaWcbeqaaiaaiwdaaaGccqaH4oqC daahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIXaGaaGOmaiabeg7aHn aaCaaaleqabaGaaGinaaaakiabeI7aXnaaCaaaleqabaGaaGynaaaa kiabgUcaRiaaigdacaaIWaGaeqySde2aaWbaaSqabeaacaaIZaaaaO GaeqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaGOnaiabeg7a HnaaCaaaleqabaGaaGOmaaaakiabeI7aXnaaCaaaleqabaGaaG4naa aakiabgUcaRiaaiodacqaHXoqycqaH4oqCdaahaaWcbeqaaiaaiIda aaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaiMdaaaaakeaacqGHRa WkcaaIXaGaaGOmaiabeg7aHnaaCaaaleqabaGaaGioaaaakiabgUca RiaaiodacaaIWaGaeqySde2aaWbaaSqabeaacaaI3aaaaOGaeqiUde Naey4kaSIaaGynaiaaigdacqaHXoqydaahaaWcbeqaaiaaiAdaaaGc cqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI3aGaaGinai abeg7aHnaaCaaaleqabaGaaGynaaaakiabeI7aXnaaCaaaleqabaGa aG4maaaakiabgUcaRiaaiIdacaaIXaGaeqySde2aaWbaaSqabeaaca aI0aaaaOGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG4n aiaaiIdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccqaH4oqCdaahaa WcbeqaaiaaiwdaaaGccqGHRaWkcaaI2aGaaGymaiabeg7aHnaaCaaa leqabaGaaGOmaaaakiabeI7aXnaaCaaaleqabaGaaGOnaaaakiabgU caRiaaigdacaaI4aGaeqySdeMaeqiUde3aaWbaaSqabeaacaaI3aaa aOGaey4kaSIaaG4maiabeI7aXnaaCaaaleqabaGaaGioaaaaaOqaai abgUcaRiaaiAdacaaIWaGaeqySde2aaWbaaSqabeaacaaI3aaaaOGa ey4kaSIaaGymaiaaikdacaaIWaGaeqySde2aaWbaaSqabeaacaaI2a aaaOGaeqiUdeNaey4kaSIaaGymaiaaiAdacaaI1aGaeqySde2aaWba aSqabeaacaaI1aaaaOGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGymaiaaiMdacaaI4aGaeqySde2aaWbaaSqabeaacaaI0aaa aOGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGymaiaaiI dacaaIWaGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaeqiUde3aaWba aSqabeaacaaI0aaaaOGaey4kaSIaaGymaiaaiwdacaaIWaGaeqySde 2aaWbaaSqabeaacaaIYaaaaOGaeqiUde3aaWbaaSqabeaacaaI1aaa aOGaey4kaSIaaGymaiaaigdacaaIXaGaeqySdeMaeqiUde3aaWbaaS qabeaacaaI2aaaaOGaey4kaSIaaGymaiaaikdacqaH4oqCdaahaaWc beqaaiaaiEdaaaaakeaacqGHRaWkcaaIXaGaaGOnaiaaikdacqaHXo qydaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaIYaGaaGinaiaaiAda cqaHXoqydaahaaWcbeqaaiaaiwdaaaGccqaH4oqCcqGHRaWkcaaIYa GaaGynaiaaiwdacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqaH4oqC daahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaG4maiaaiIdacq aHXoqydaahaaWcbeqaaiaaiodaaaGccqaH4oqCdaahaaWcbeqaaiaa iodaaaGccqGHRaWkcaaIXaGaaGynaiaaiodacqaHXoqydaahaaWcbe qaaiaaikdaaaGccqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWk caaI4aGaaGinaiabeg7aHjabeI7aXnaaCaaaleqabaGaaGynaaaaki abgUcaRiaaiAdacaaIWaGaeqiUde3aaWbaaSqabeaacaaI2aaaaOGa ey4kaSIaaGOmaiaaiwdacaaI1aGaeqySde2aaWbaaSqabeaacaaI1a aaaaGcbaGaey4kaSIaaGOmaiaaiEdacaaIZaGaeqySde2aaWbaaSqa beaacaaI0aaaaOGaeqiUdeNaey4kaSIaaGymaiaaiIdacaaI5aGaeq ySde2aaWbaaSqabeaacaaIZaaaaOGaeqiUde3aaWbaaSqabeaacaaI YaaaaOGaey4kaSIaaGymaiaaikdacaaI4aGaeqySde2aaWbaaSqabe aacaaIYaaaaOGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIa aGinaiaaikdacqaHXoqycqaH4oqCdaahaaWcbeqaaiaaisdaaaGccq GHRaWkcaaIYaGaaG4maiaaisdacqaHXoqydaahaaWcbeqaaiaaisda aaGccqGHRaWkcaaIXaGaaGynaiaaiAdacqaHXoqydaahaaWcbeqaai aaiodaaaGccqaH4oqCcqGHRaWkcaaI1aGaaGinaiabeg7aHnaaCaaa leqabaGaaGOmaaaakiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgU caRiaaikdacaaI0aGaeqySdeMaeqiUde3aaWbaaSqabeaacaaIZaaa aaGcbaGaey4kaSIaaGymaiaaigdacaaI2aGaeqySde2aaWbaaSqabe aacaaIZaaaaOGaey4kaSIaaG4maiaaiAdacqaHXoqydaahaaWcbeqa aiaaikdaaaGccqaH4oqCcqGHRaWkcaaIYaGaaGinaiabeg7aHnaaCa aaleqabaGaaGOmaaaaaaGccaGLOaGaayzkaaaabaGaeqiUde3aaWba aSqabeaacaaIZaaaaOWaaeWaaeaacqaHXoqydaahaaWcbeqaaiaaio daaaGccqGHRaWkcqaHXoqydaahaaWcbeqaaiaaikdaaaGccqaH4oqC cqGHRaWkcqaHXoqycqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRa WkcqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIZaGaeqyS de2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqySdeMaeqiUdeNaey 4kaSIaaGOmaiabeg7aHbGaayjkaiaawMcaamaaCaaaleqabaGaaG4m aaaaaaaaaa@9753@ μ 4 = 3α( α 13 +4 α 12 θ+10 α 11 θ 2 +20 α 10 θ 3 +31 α 9 θ 4 +40 α 8 θ 5 +44 α 7 θ 6 +40 α 6 θ 7 +31 α 5 θ 8 +20 α 4 θ 9 +10 α 3 θ 10 +4 α 2 θ 11 +α θ 12 + θ 13 +20 α 12 +72 α 11 θ+166 α 10 θ 2 +316 α 9 θ 3 +450 α 8 θ 4 +528 α 7 θ 5 +524 α 6 θ 6 +408 α 5 θ 7 +264 α 4 θ 8 +136 α 3 θ 9 +46 α 2 θ 10 +12α θ 11 +2 θ 12 +173 α 11 +548 α 10 θ+1136 α 9 θ 2 +2016 α 8 θ 3 +2550 α 7 θ 4 +2640 α 6 θ 5 +2332 α 5 θ 6 +1560 α 4 θ 7 +885 α 3 θ 8 +396 α 2 θ 9 +76α θ 10 +8 θ 11 +856 α 10 +2328 α 9 θ +4220 α 8 θ 2 +6856 α 7 θ 3 +7396 α 6 θ 4 +6464 α 5 θ 5 +4908 α 4 θ 6 +2648 α 3 θ 7 +1268 α 2 θ 8 +520α θ 9 +40 θ 10 +2691 α 9 +6108 α 8 θ+9362 α 7 θ 2 +13700 α 6 θ 3 +11955 α 5 θ 4 +8264 α 4 θ 5 +5136 α 3 θ 6 +1904 α 2 θ 7 +616α θ 8 +240 θ 9 +5628 α 8 +1029 α 7 θ+12758 α 6 θ 2 +16572 α 5 θ 3 +10834 α 4 θ 4 +5296 α 3 θ 5 +2560 α 2 θ 6 +3448α θ 7 +7943 α 7 +11180 α 6 θ+10468 α 5 θ 2 +1912 α 4 θ 3 +5120 α 3 θ 4 +1344 α 2 θ 5 +480α θ 6 +7480 α 6 +7560 α 5 θ+4744 α 4 θ 2 +4672 α 3 θ 3 +976 α 2 θ 4 +4504 α 5 +2896 α 4 θ+912 α 3 θ 2 +768 α 2 θ 3 +1568 α 4 +480 α 3 θ+240 α 3 ) θ 4 ( α 3 + α 2 θ+α θ 2 + θ 3 +3 α 2 +αθ+2α ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakiabg2da9maalaaabaGaaG4maiabeg7aHnaa bmaaeaqabeaacqaHXoqydaahaaWcbeqaaiaaigdacaaIZaaaaOGaey 4kaSIaaGinaiabeg7aHnaaCaaaleqabaGaaGymaiaaikdaaaGccqaH 4oqCcqGHRaWkcaaIXaGaaGimaiabeg7aHnaaCaaaleqabaGaaGymai aaigdaaaGccqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI YaGaaGimaiabeg7aHnaaCaaaleqabaGaaGymaiaaicdaaaGccqaH4o qCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIZaGaaGymaiabeg7a HnaaCaaaleqabaGaaGyoaaaakiabeI7aXnaaCaaaleqabaGaaGinaa aakiabgUcaRiaaisdacaaIWaGaeqySde2aaWbaaSqabeaacaaI4aaa aOGaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey4kaSIaaGinaiaais dacqaHXoqydaahaaWcbeqaaiaaiEdaaaGccqaH4oqCdaahaaWcbeqa aiaaiAdaaaGccqGHRaWkcaaI0aGaaGimaiabeg7aHnaaCaaaleqaba GaaGOnaaaakiabeI7aXnaaCaaaleqabaGaaG4naaaakiabgUcaRiaa iodacaaIXaGaeqySde2aaWbaaSqabeaacaaI1aaaaOGaeqiUde3aaW baaSqabeaacaaI4aaaaaGcbaGaey4kaSIaaGOmaiaaicdacqaHXoqy daahaaWcbeqaaiaaisdaaaGccqaH4oqCdaahaaWcbeqaaiaaiMdaaa GccqGHRaWkcaaIXaGaaGimaiabeg7aHnaaCaaaleqabaGaaG4maaaa kiabeI7aXnaaCaaaleqabaGaaGymaiaaicdaaaGccqGHRaWkcaaI0a GaeqySde2aaWbaaSqabeaacaaIYaaaaOGaeqiUde3aaWbaaSqabeaa caaIXaGaaGymaaaakiabgUcaRiabeg7aHjabeI7aXnaaCaaaleqaba GaaGymaiaaikdaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaigda caaIZaaaaOGaey4kaSIaaGOmaiaaicdacqaHXoqydaahaaWcbeqaai aaigdacaaIYaaaaOGaey4kaSIaaG4naiaaikdacqaHXoqydaahaaWc beqaaiaaigdacaaIXaaaaOGaeqiUdeNaey4kaSIaaGymaiaaiAdaca aI2aGaeqySde2aaWbaaSqabeaacaaIXaGaaGimaaaakiabeI7aXnaa CaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacaaIXaGaaGOnaiabeg 7aHnaaCaaaleqabaGaaGyoaaaakiabeI7aXnaaCaaaleqabaGaaG4m aaaaaOqaaiabgUcaRiaaisdacaaI1aGaaGimaiabeg7aHnaaCaaale qabaGaaGioaaaakiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUca RiaaiwdacaaIYaGaaGioaiabeg7aHnaaCaaaleqabaGaaG4naaaaki abeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaiwdacaaIYaGa aGinaiabeg7aHnaaCaaaleqabaGaaGOnaaaakiabeI7aXnaaCaaale qabaGaaGOnaaaakiabgUcaRiaaisdacaaIWaGaaGioaiabeg7aHnaa CaaaleqabaGaaGynaaaakiabeI7aXnaaCaaaleqabaGaaG4naaaaki abgUcaRiaaikdacaaI2aGaaGinaiabeg7aHnaaCaaaleqabaGaaGin aaaakiabeI7aXnaaCaaaleqabaGaaGioaaaakiabgUcaRiaaigdaca aIZaGaaGOnaiabeg7aHnaaCaaaleqabaGaaG4maaaakiabeI7aXnaa CaaaleqabaGaaGyoaaaakiabgUcaRiaaisdacaaI2aGaeqySde2aaW baaSqabeaacaaIYaaaaOGaeqiUde3aaWbaaSqabeaacaaIXaGaaGim aaaaaOqaaiabgUcaRiaaigdacaaIYaGaeqySdeMaeqiUde3aaWbaaS qabeaacaaIXaGaaGymaaaakiabgUcaRiaaikdacqaH4oqCdaahaaWc beqaaiaaigdacaaIYaaaaOGaey4kaSIaaGymaiaaiEdacaaIZaGaeq ySde2aaWbaaSqabeaacaaIXaGaaGymaaaakiabgUcaRiaaiwdacaaI 0aGaaGioaiabeg7aHnaaCaaaleqabaGaaGymaiaaicdaaaGccqaH4o qCcqGHRaWkcaaIXaGaaGymaiaaiodacaaI2aGaeqySde2aaWbaaSqa beaacaaI5aaaaOGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaGOmaiaaicdacaaIXaGaaGOnaiabeg7aHnaaCaaaleqabaGaaGio aaaakiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaikdaca aI1aGaaGynaiaaicdacqaHXoqydaahaaWcbeqaaiaaiEdaaaGccqaH 4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaaGOnaiaais dacaaIWaGaeqySde2aaWbaaSqabeaacaaI2aaaaOGaeqiUde3aaWba aSqabeaacaaI1aaaaaGcbaGaey4kaSIaaGOmaiaaiodacaaIZaGaaG Omaiabeg7aHnaaCaaaleqabaGaaGynaaaakiabeI7aXnaaCaaaleqa baGaaGOnaaaakiabgUcaRiaaigdacaaI1aGaaGOnaiaaicdacqaHXo qydaahaaWcbeqaaiaaisdaaaGccqaH4oqCdaahaaWcbeqaaiaaiEda aaGccqGHRaWkcaaI4aGaaGioaiaaiwdacqaHXoqydaahaaWcbeqaai aaiodaaaGccqaH4oqCdaahaaWcbeqaaiaaiIdaaaGccqGHRaWkcaaI ZaGaaGyoaiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqaH4o qCdaahaaWcbeqaaiaaiMdaaaGccqGHRaWkcaaI3aGaaGOnaiabeg7a HjabeI7aXnaaCaaaleqabaGaaGymaiaaicdaaaGccqGHRaWkcaaI4a GaeqiUde3aaWbaaSqabeaacaaIXaGaaGymaaaakiabgUcaRiaaiIda caaI1aGaaGOnaiabeg7aHnaaCaaaleqabaGaaGymaiaaicdaaaGccq GHRaWkcaaIYaGaaG4maiaaikdacaaI4aGaeqySde2aaWbaaSqabeaa caaI5aaaaOGaeqiUdehabaGaey4kaSIaaGinaiaaikdacaaIYaGaaG imaiabeg7aHnaaCaaaleqabaGaaGioaaaakiabeI7aXnaaCaaaleqa baGaaGOmaaaakiabgUcaRiaaiAdacaaI4aGaaGynaiaaiAdacqaHXo qydaahaaWcbeqaaiaaiEdaaaGccqaH4oqCdaahaaWcbeqaaiaaioda aaGccqGHRaWkcaaI3aGaaG4maiaaiMdacaaI2aGaeqySde2aaWbaaS qabeaacaaI2aaaaOGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4k aSIaaGOnaiaaisdacaaI2aGaaGinaiabeg7aHnaaCaaaleqabaGaaG ynaaaakiabeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaisda caaI5aGaaGimaiaaiIdacqaHXoqydaahaaWcbeqaaiaaisdaaaGccq aH4oqCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaIYaGaaGOnaiaa isdacaaI4aGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaeqiUde3aaW baaSqabeaacaaI3aaaaaGcbaGaey4kaSIaaGymaiaaikdacaaI2aGa aGioaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabeI7aXnaaCaaale qabaGaaGioaaaakiabgUcaRiaaiwdacaaIYaGaaGimaiabeg7aHjab eI7aXnaaCaaaleqabaGaaGyoaaaakiabgUcaRiaaisdacaaIWaGaeq iUde3aaWbaaSqabeaacaaIXaGaaGimaaaakiabgUcaRiaaikdacaaI 2aGaaGyoaiaaigdacqaHXoqydaahaaWcbeqaaiaaiMdaaaGccqGHRa WkcaaI2aGaaGymaiaaicdacaaI4aGaeqySde2aaWbaaSqabeaacaaI 4aaaaOGaeqiUdeNaey4kaSIaaGyoaiaaiodacaaI2aGaaGOmaiabeg 7aHnaaCaaaleqabaGaaG4naaaakiabeI7aXnaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaigdacaaIZaGaaG4naiaaicdacaaIWaGaeqySde 2aaWbaaSqabeaacaaI2aaaaOGaeqiUde3aaWbaaSqabeaacaaIZaaa aaGcbaGaey4kaSIaaGymaiaaigdacaaI5aGaaGynaiaaiwdacqaHXo qydaahaaWcbeqaaiaaiwdaaaGccqaH4oqCdaahaaWcbeqaaiaaisda aaGccqGHRaWkcaaI4aGaaGOmaiaaiAdacaaI0aGaeqySde2aaWbaaS qabeaacaaI0aaaaOGaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey4k aSIaaGynaiaaigdacaaIZaGaaGOnaiabeg7aHnaaCaaaleqabaGaaG 4maaaakiabeI7aXnaaCaaaleqabaGaaGOnaaaakiabgUcaRiaaigda caaI5aGaaGimaiaaisdacqaHXoqydaahaaWcbeqaaiaaikdaaaGccq aH4oqCdaahaaWcbeqaaiaaiEdaaaGccqGHRaWkcaaI2aGaaGymaiaa iAdacqaHXoqycqaH4oqCdaahaaWcbeqaaiaaiIdaaaGccqGHRaWkca aIYaGaaGinaiaaicdacqaH4oqCdaahaaWcbeqaaiaaiMdaaaGccqGH RaWkcaaI1aGaaGOnaiaaikdacaaI4aGaeqySde2aaWbaaSqabeaaca aI4aaaaaGcbaGaey4kaSIaaGymaiaaicdacaaIYaGaaGyoaiabeg7a HnaaCaaaleqabaGaaG4naaaakiabeI7aXjabgUcaRiaaigdacaaIYa GaaG4naiaaiwdacaaI4aGaeqySde2aaWbaaSqabeaacaaI2aaaaOGa eqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaiAdaca aI1aGaaG4naiaaikdacqaHXoqydaahaaWcbeqaaiaaiwdaaaGccqaH 4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIXaGaaGimaiaaiI dacaaIZaGaaGinaiabeg7aHnaaCaaaleqabaGaaGinaaaakiabeI7a XnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiwdacaaIYaGaaGyoai aaiAdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccqaH4oqCdaahaaWc beqaaiaaiwdaaaGccqGHRaWkcaaIYaGaaGynaiaaiAdacaaIWaGaeq ySde2aaWbaaSqabeaacaaIYaaaaOGaeqiUde3aaWbaaSqabeaacaaI 2aaaaaGcbaGaey4kaSIaaG4maiaaisdacaaI0aGaaGioaiabeg7aHj abeI7aXnaaCaaaleqabaGaaG4naaaakiabgUcaRiaaiEdacaaI5aGa aGinaiaaiodacqaHXoqydaahaaWcbeqaaiaaiEdaaaGccqGHRaWkca aIXaGaaGymaiaaigdacaaI4aGaaGimaiabeg7aHnaaCaaaleqabaGa aGOnaaaakiabeI7aXjabgUcaRiaaigdacaaIWaGaaGinaiaaiAdaca aI4aGaeqySde2aaWbaaSqabeaacaaI1aaaaOGaeqiUde3aaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGymaiaaiMdacaaIXaGaaGOmaiabeg 7aHnaaCaaaleqabaGaaGinaaaakiabeI7aXnaaCaaaleqabaGaaG4m aaaakiabgUcaRiaaiwdacaaIXaGaaGOmaiaaicdacqaHXoqydaahaa WcbeqaaiaaiodaaaGccqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGH RaWkcaaIXaGaaG4maiaaisdacaaI0aGaeqySde2aaWbaaSqabeaaca aIYaaaaOGaeqiUde3aaWbaaSqabeaacaaI1aaaaaGcbaGaey4kaSIa aGinaiaaiIdacaaIWaGaeqySdeMaeqiUde3aaWbaaSqabeaacaaI2a aaaOGaey4kaSIaaG4naiaaisdacaaI4aGaaGimaiabeg7aHnaaCaaa leqabaGaaGOnaaaakiabgUcaRiaaiEdacaaI1aGaaGOnaiaaicdacq aHXoqydaahaaWcbeqaaiaaiwdaaaGccqaH4oqCcqGHRaWkcaaI0aGa aG4naiaaisdacaaI0aGaeqySde2aaWbaaSqabeaacaaI0aaaaOGaeq iUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGinaiaaiAdacaaI 3aGaaGOmaiabeg7aHnaaCaaaleqabaGaaG4maaaakiabeI7aXnaaCa aaleqabaGaaG4maaaakiabgUcaRiaaiMdacaaI3aGaaGOnaiabeg7a HnaaCaaaleqabaGaaGOmaaaakiabeI7aXnaaCaaaleqabaGaaGinaa aakiabgUcaRiaaisdacaaI1aGaaGimaiaaisdacqaHXoqydaahaaWc beqaaiaaiwdaaaaakeaacqGHRaWkcaaIYaGaaGioaiaaiMdacaaI2a GaeqySde2aaWbaaSqabeaacaaI0aaaaOGaeqiUdeNaey4kaSIaaGyo aiaaigdacaaIYaGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaeqiUde 3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG4naiaaiAdacaaI4aGa eqySde2aaWbaaSqabeaacaaIYaaaaOGaeqiUde3aaWbaaSqabeaaca aIZaaaaOGaey4kaSIaaGymaiaaiwdacaaI2aGaaGioaiabeg7aHnaa CaaaleqabaGaaGinaaaakiabgUcaRiaaisdacaaI4aGaaGimaiabeg 7aHnaaCaaaleqabaGaaG4maaaakiabeI7aXjabgUcaRiaaikdacaaI 0aGaaGimaiabeg7aHnaaCaaaleqabaGaaG4maaaaaaGccaGLOaGaay zkaaaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOWaaeWaaeaacqaH XoqydaahaaWcbeqaaiaaiodaaaGccqGHRaWkcqaHXoqydaahaaWcbe qaaiaaikdaaaGccqaH4oqCcqGHRaWkcqaHXoqycqaH4oqCdaahaaWc beqaaiaaikdaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaiodaaa GccqGHRaWkcaaIZaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey4k aSIaeqySdeMaeqiUdeNaey4kaSIaaGOmaiabeg7aHbGaayjkaiaawM caamaaCaaaleqabaGaaGinaaaaaaaaaa@173F@

Thus, the coefficient of variation (C.V), coefficient of skewness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaO aaaeaacqaHYoGydaWgaaWcbaGaaGymaaqabaaabeaaaOGaayjkaiaa wMcaaaaa@3AD2@ , coefficient of kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq OSdi2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3AC3@ , and index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4SdCgacaGLOaGaayzkaaaaaa@39D7@ of WAD are obtained as CV= μ 2 μ 1 = α( α 6 +2 α 5 θ+3 α 4 θ 2 +4 α 3 θ 3 +3 α 2 θ 4 +2α θ 5 + θ 6 +9 α 5 +14 α 4 θ+18 α 3 θ 2 +24 α 2 θ 3 +9α θ 4 +2 θ 5 +31 α 4 +34 α 3 θ+33 α 2 θ 2 +44α θ 3 +6 θ 4 +51 α 3 +34 α 2 θ+18α θ 2 +24 θ 3 +40 α 2 +12αθ+12α ) α[ θ 3 +( α+1 ) θ 2 +( α+1 )( α+2 )θ+( α+1 )( α+2 )( α+3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGwb Gaeyypa0ZaaSaaaeaadaGcaaqaaiabeY7aTnaaBaaaleaacaaIYaaa beaaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOWaaWbaaS qabeaakiadacUHYaIOaaaaaiabg2da9maalaaabaWaaOaaaeaacqaH XoqydaqadaabaeqabaGaeqySde2aaWbaaSqabeaacaaI2aaaaOGaey 4kaSIaaGOmaiabeg7aHnaaCaaaleqabaGaaGynaaaakiabeI7aXjab gUcaRiaaiodacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqaH4oqCda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI0aGaeqySde2aaWbaaSqa beaacaaIZaaaaOGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaS IaaG4maiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabeI7aXnaaCaaa leqabaGaaGinaaaakiabgUcaRiaaikdacqaHXoqycqaH4oqCdaahaa WcbeqaaiaaiwdaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaiAda aaGccqGHRaWkcaaI5aGaeqySde2aaWbaaSqabeaacaaI1aaaaOGaey 4kaSIaaGymaiaaisdacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqaH 4oqCcqGHRaWkcaaIXaGaaGioaiabeg7aHnaaCaaaleqabaGaaG4maa aakiabeI7aXnaaCaaaleqabaGaaGOmaaaaaOqaaiabgUcaRiaaikda caaI0aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaeqiUde3aaWbaaS qabeaacaaIZaaaaOGaey4kaSIaaGyoaiabeg7aHjabeI7aXnaaCaaa leqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaai aaiwdaaaGccqGHRaWkcaaIZaGaaGymaiabeg7aHnaaCaaaleqabaGa aGinaaaakiabgUcaRiaaiodacaaI0aGaeqySde2aaWbaaSqabeaaca aIZaaaaOGaeqiUdeNaey4kaSIaaG4maiaaiodacqaHXoqydaahaaWc beqaaiaaikdaaaGccqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaaI0aGaaGinaiabeg7aHjabeI7aXnaaCaaaleqabaGaaG4maaaa kiabgUcaRiaaiAdacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRa WkcaaI1aGaaGymaiabeg7aHnaaCaaaleqabaGaaG4maaaaaOqaaiab gUcaRiaaiodacaaI0aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaeq iUdeNaey4kaSIaaGymaiaaiIdacqaHXoqycqaH4oqCdaahaaWcbeqa aiaaikdaaaGccqGHRaWkcaaIYaGaaGinaiabeI7aXnaaCaaaleqaba GaaG4maaaakiabgUcaRiaaisdacaaIWaGaeqySde2aaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaGymaiaaikdacqaHXoqycqaH4oqCcqGHRa WkcaaIXaGaaGOmaiabeg7aHbaacaGLOaGaayzkaaaaleqaaaGcbaGa eqySde2aamWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRa Wkdaqadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaacqaH 4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiabeg7aHj abgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjabgUca RiaaikdaaiaawIcacaGLPaaacqaH4oqCcqGHRaWkdaqadaqaaiabeg 7aHjabgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjab gUcaRiaaikdaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjabgUcaRi aaiodaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaaaaa@FEF4@ β 1 = μ 3 μ 2 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaeq OSdi2aaSbaaSqaaiaaigdaaeqaaaqabaGccqGH9aqpdaWcaaqaaiab eY7aTnaaBaaaleaacaaIZaaabeaaaOqaaiabeY7aTnaaBaaaleaaca aIYaaabeaakmaaCaaaleqabaWaaSaaaeaacaaIZaaabaGaaGOmaaaa aaaaaaaa@4166@ = 2α( α 9 +3 α 8 θ+6 α 7 θ 2 +10 α 6 θ 3 +12 α 5 θ 4 +12 α 4 θ 5 +10 α 3 θ 6 +6 α 2 θ 7 +3α θ 8 + θ 9 +12 α 8 +30 α 7 θ+51 α 6 θ 2 +74 α 5 θ 3 +81 α 4 θ 4 +78 α 3 θ 5 +61 α 2 θ 6 +18α θ 7 +3 θ 8 +60 α 7 +120 α 6 θ+165 α 5 θ 2 +198 α 4 θ 3 +180 α 3 θ 4 +150 α 2 θ 5 +111α θ 6 +12 θ 7 +162 α 6 +246 α 5 θ+255 α 4 θ 2 +238 α 3 θ 3 +153 α 2 θ 4 +84α θ 5 +60 θ 6 +255 α 5 +273 α 4 θ+189 α 3 θ 2 +128 α 2 θ 3 +42α θ 4 +234 α 4 +156 α 3 θ+54 α 2 θ 2 +24 α 3 +116 α 3 +36 α 2 θ+24 α 2 ) [ α( α 6 +2 α 5 θ+3 α 4 θ 2 +4 α 3 θ 3 +3 α 2 θ 4 +2α θ 5 + θ 6 +9 α 5 +14 α 4 θ+18 α 3 θ 2 +24 α 2 θ 3 +9α θ 4 +2 θ 5 +31 α 4 +34 α 3 θ+33 α 2 θ 2 +44α θ 3 +6 θ 4 +51 α 3 +34 α 2 θ+18α θ 2 +24 θ 3 +40 α 2 +12αθ+12α ) ] 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaaGOmaiabeg7aHnaabmaaeaqabeaacqaHXoqydaahaaWcbeqa aiaaiMdaaaGccqGHRaWkcaaIZaGaeqySde2aaWbaaSqabeaacaaI4a aaaOGaeqiUdeNaey4kaSIaaGOnaiabeg7aHnaaCaaaleqabaGaaG4n aaaakiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaca aIWaGaeqySde2aaWbaaSqabeaacaaI2aaaaOGaeqiUde3aaWbaaSqa beaacaaIZaaaaOGaey4kaSIaaGymaiaaikdacqaHXoqydaahaaWcbe qaaiaaiwdaaaGccqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWk caaIXaGaaGOmaiabeg7aHnaaCaaaleqabaGaaGinaaaakiabeI7aXn aaCaaaleqabaGaaGynaaaakiabgUcaRiaaigdacaaIWaGaeqySde2a aWbaaSqabeaacaaIZaaaaOGaeqiUde3aaWbaaSqabeaacaaI2aaaaO Gaey4kaSIaaGOnaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabeI7a XnaaCaaaleqabaGaaG4naaaakiabgUcaRiaaiodacqaHXoqycqaH4o qCdaahaaWcbeqaaiaaiIdaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqa aiaaiMdaaaaakeaacqGHRaWkcaaIXaGaaGOmaiabeg7aHnaaCaaale qabaGaaGioaaaakiabgUcaRiaaiodacaaIWaGaeqySde2aaWbaaSqa beaacaaI3aaaaOGaeqiUdeNaey4kaSIaaGynaiaaigdacqaHXoqyda ahaaWcbeqaaiaaiAdaaaGccqaH4oqCdaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaI3aGaaGinaiabeg7aHnaaCaaaleqabaGaaGynaaaaki abeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaiIdacaaIXaGa eqySde2aaWbaaSqabeaacaaI0aaaaOGaeqiUde3aaWbaaSqabeaaca aI0aaaaOGaey4kaSIaaG4naiaaiIdacqaHXoqydaahaaWcbeqaaiaa iodaaaGccqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaI2a GaaGymaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabeI7aXnaaCaaa leqabaGaaGOnaaaakiabgUcaRiaaigdacaaI4aGaeqySdeMaeqiUde 3aaWbaaSqabeaacaaI3aaaaOGaey4kaSIaaG4maiabeI7aXnaaCaaa leqabaGaaGioaaaaaOqaaiabgUcaRiaaiAdacaaIWaGaeqySde2aaW baaSqabeaacaaI3aaaaOGaey4kaSIaaGymaiaaikdacaaIWaGaeqyS de2aaWbaaSqabeaacaaI2aaaaOGaeqiUdeNaey4kaSIaaGymaiaaiA dacaaI1aGaeqySde2aaWbaaSqabeaacaaI1aaaaOGaeqiUde3aaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaiMdacaaI4aGaeqySde 2aaWbaaSqabeaacaaI0aaaaOGaeqiUde3aaWbaaSqabeaacaaIZaaa aOGaey4kaSIaaGymaiaaiIdacaaIWaGaeqySde2aaWbaaSqabeaaca aIZaaaaOGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGym aiaaiwdacaaIWaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaeqiUde 3aaWbaaSqabeaacaaI1aaaaOGaey4kaSIaaGymaiaaigdacaaIXaGa eqySdeMaeqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaGymai aaikdacqaH4oqCdaahaaWcbeqaaiaaiEdaaaaakeaacqGHRaWkcaaI XaGaaGOnaiaaikdacqaHXoqydaahaaWcbeqaaiaaiAdaaaGccqGHRa WkcaaIYaGaaGinaiaaiAdacqaHXoqydaahaaWcbeqaaiaaiwdaaaGc cqaH4oqCcqGHRaWkcaaIYaGaaGynaiaaiwdacqaHXoqydaahaaWcbe qaaiaaisdaaaGccqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWk caaIYaGaaG4maiaaiIdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccq aH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIXaGaaGynaiaa iodacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqaH4oqCdaahaaWcbe qaaiaaisdaaaGccqGHRaWkcaaI4aGaaGinaiabeg7aHjabeI7aXnaa CaaaleqabaGaaGynaaaakiabgUcaRiaaiAdacaaIWaGaeqiUde3aaW baaSqabeaacaaI2aaaaOGaey4kaSIaaGOmaiaaiwdacaaI1aGaeqyS de2aaWbaaSqabeaacaaI1aaaaaGcbaGaey4kaSIaaGOmaiaaiEdaca aIZaGaeqySde2aaWbaaSqabeaacaaI0aaaaOGaeqiUdeNaey4kaSIa aGymaiaaiIdacaaI5aGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaeq iUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaikdacaaI 4aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaeqiUde3aaWbaaSqabe aacaaIZaaaaOGaey4kaSIaaGinaiaaikdacqaHXoqycqaH4oqCdaah aaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaaG4maiaaisdacqaHXo qydaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIXaGaaGynaiaaiAda cqaHXoqydaahaaWcbeqaaiaaiodaaaGccqaH4oqCcqGHRaWkcaaI1a GaaGinaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabeI7aXnaaCaaa leqabaGaaGOmaaaakiabgUcaRiaaikdacaaI0aGaeqySde2aaWbaaS qabeaacaaIZaaaaaGcbaGaey4kaSIaaGymaiaaigdacaaI2aGaeqyS de2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4maiaaiAdacqaHXo qydaahaaWcbeqaaiaaikdaaaGccqaH4oqCcqGHRaWkcaaIYaGaaGin aiabeg7aHnaaCaaaleqabaGaaGOmaaaaaaGccaGLOaGaayzkaaaaba WaamWaaeaacqaHXoqydaqadaabaeqabaGaeqySde2aaWbaaSqabeaa caaI2aaaaOGaey4kaSIaaGOmaiabeg7aHnaaCaaaleqabaGaaGynaa aakiabeI7aXjabgUcaRiaaiodacqaHXoqydaahaaWcbeqaaiaaisda aaGccqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI0aGaeq ySde2aaWbaaSqabeaacaaIZaaaaOGaeqiUde3aaWbaaSqabeaacaaI ZaaaaOGaey4kaSIaaG4maiabeg7aHnaaCaaaleqabaGaaGOmaaaaki abeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacqaHXoqy cqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcqaH4oqCdaahaa WcbeqaaiaaiAdaaaGccqGHRaWkcaaI5aGaeqySde2aaWbaaSqabeaa caaI1aaaaOGaey4kaSIaaGymaiaaisdacqaHXoqydaahaaWcbeqaai aaisdaaaGccqaH4oqCcqGHRaWkcaaIXaGaaGioaiabeg7aHnaaCaaa leqabaGaaG4maaaakiabeI7aXnaaCaaaleqabaGaaGOmaaaaaOqaai abgUcaRiaaikdacaaI0aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGa eqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGyoaiabeg7aHj abeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaikdacqaH4oqC daahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaIZaGaaGymaiabeg7aHn aaCaaaleqabaGaaGinaaaakiabgUcaRiaaiodacaaI0aGaeqySde2a aWbaaSqabeaacaaIZaaaaOGaeqiUdeNaey4kaSIaaG4maiaaiodacq aHXoqydaahaaWcbeqaaiaaikdaaaGccqaH4oqCdaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcaaI0aGaaGinaiabeg7aHjabeI7aXnaaCaaale qabaGaaG4maaaakiabgUcaRiaaiAdacqaH4oqCdaahaaWcbeqaaiaa isdaaaGccqGHRaWkcaaI1aGaaGymaiabeg7aHnaaCaaaleqabaGaaG 4maaaaaOqaaiabgUcaRiaaiodacaaI0aGaeqySde2aaWbaaSqabeaa caaIYaaaaOGaeqiUdeNaey4kaSIaaGymaiaaiIdacqaHXoqycqaH4o qCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaGinaiabeI7a XnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaisdacaaIWaGaeqySde 2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaikdacqaHXoqy cqaH4oqCcqGHRaWkcaaIXaGaaGOmaiabeg7aHbaacaGLOaGaayzkaa aacaGLBbGaayzxaaWaaWbaaSqabeaadaWcaaqaaiaaiodaaeaacaaI Yaaaaaaaaaaaaa@075F@ = 3α( α 13 +4 α 12 θ+10 α 11 θ 2 +20 α 10 θ 3 +31 α 9 θ 4 +40 α 8 θ 5 +44 α 7 θ 6 +40 α 6 θ 7 +31 α 5 θ 8 +20 α 4 θ 9 +10 α 3 θ 10 +4 α 2 θ 11 +α θ 12 + θ 13 +20 α 12 +72 α 11 θ+166 α 10 θ 2 +316 α 9 θ 3 +450 α 8 θ 4 +528 α 7 θ 5 +524 α 6 θ 6 +408 α 5 θ 7 +264 α 4 θ 8 +136 α 3 θ 9 +46 α 2 θ 10 +12α θ 11 +2 θ 12 +173 α 11 +548 α 10 θ+1136 α 9 θ 2 +2016 α 8 θ 3 +2550 α 7 θ 4 +2640 α 6 θ 5 +2332 α 5 θ 6 +1560 α 4 θ 7 +885 α 3 θ 8 +396 α 2 θ 9 +76α θ 10 +8 θ 11 +856 α 10 +2328 α 9 θ +4220 α 8 θ 2 +6856 α 7 θ 3 +7396 α 6 θ 4 +6464 α 5 θ 5 +4908 α 4 θ 6 +2648 α 3 θ 7 +1268 α 2 θ 8 +520α θ 9 +40 θ 10 +2691 α 9 +6108 α 8 θ+9362 α 7 θ 2 +13700 α 6 θ 3 +11955 α 5 θ 4 +8264 α 4 θ 5 +5136 α 3 θ 6 +1904 α 2 θ 7 +616α θ 8 +240 θ 9 +5628 α 8 +1029 α 7 θ+12758 α 6 θ 2 +16572 α 5 θ 3 +10834 α 4 θ 4 +5296 α 3 θ 5 +2560 α 2 θ 6 +3448α θ 7 +7943 α 7 +11180 α 6 θ+10468 α 5 θ 2 +1912 α 4 θ 3 +5120 α 3 θ 4 +1344 α 2 θ 5 +480α θ 6 +7480 α 6 +7560 α 5 θ+4744 α 4 θ 2 +4672 α 3 θ 3 +976 α 2 θ 4 +4504 α 5 +2896 α 4 θ+912 α 3 θ 2 +768 α 2 θ 3 +1568 α 4 +480 α 3 θ+240 α 3 ) [ α( α 6 +2 α 5 θ+3 α 4 θ 2 +4 α 3 θ 3 +3 α 2 θ 4 +2α θ 5 + θ 6 +9 α 5 +14 α 4 θ+18 α 3 θ 2 +24 α 2 θ 3 +9α θ 4 +2 θ 5 +31 α 4 +34 α 3 θ+33 α 2 θ 2 +44α θ 3 +6 θ 4 +51 α 3 +34 α 2 θ+18α θ 2 +24 θ 3 +40 α 2 +12αθ+12α ) ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaaG4maiabeg7aHnaabmaaeaqabeaacqaHXoqydaahaaWcbeqa aiaaigdacaaIZaaaaOGaey4kaSIaaGinaiabeg7aHnaaCaaaleqaba GaaGymaiaaikdaaaGccqaH4oqCcqGHRaWkcaaIXaGaaGimaiabeg7a HnaaCaaaleqabaGaaGymaiaaigdaaaGccqaH4oqCdaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIYaGaaGimaiabeg7aHnaaCaaaleqabaGa aGymaiaaicdaaaGccqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRa WkcaaIZaGaaGymaiabeg7aHnaaCaaaleqabaGaaGyoaaaakiabeI7a XnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaisdacaaIWaGaeqySde 2aaWbaaSqabeaacaaI4aaaaOGaeqiUde3aaWbaaSqabeaacaaI1aaa aOGaey4kaSIaaGinaiaaisdacqaHXoqydaahaaWcbeqaaiaaiEdaaa GccqaH4oqCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaI0aGaaGim aiabeg7aHnaaCaaaleqabaGaaGOnaaaakiabeI7aXnaaCaaaleqaba GaaG4naaaakiabgUcaRiaaiodacaaIXaGaeqySde2aaWbaaSqabeaa caaI1aaaaOGaeqiUde3aaWbaaSqabeaacaaI4aaaaaGcbaGaey4kaS IaaGOmaiaaicdacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqaH4oqC daahaaWcbeqaaiaaiMdaaaGccqGHRaWkcaaIXaGaaGimaiabeg7aHn aaCaaaleqabaGaaG4maaaakiabeI7aXnaaCaaaleqabaGaaGymaiaa icdaaaGccqGHRaWkcaaI0aGaeqySde2aaWbaaSqabeaacaaIYaaaaO GaeqiUde3aaWbaaSqabeaacaaIXaGaaGymaaaakiabgUcaRiabeg7a HjabeI7aXnaaCaaaleqabaGaaGymaiaaikdaaaGccqGHRaWkcqaH4o qCdaahaaWcbeqaaiaaigdacaaIZaaaaOGaey4kaSIaaGOmaiaaicda cqaHXoqydaahaaWcbeqaaiaaigdacaaIYaaaaOGaey4kaSIaaG4nai aaikdacqaHXoqydaahaaWcbeqaaiaaigdacaaIXaaaaOGaeqiUdeNa ey4kaSIaaGymaiaaiAdacaaI2aGaeqySde2aaWbaaSqabeaacaaIXa GaaGimaaaakiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa iodacaaIXaGaaGOnaiabeg7aHnaaCaaaleqabaGaaGyoaaaakiabeI 7aXnaaCaaaleqabaGaaG4maaaaaOqaaiabgUcaRiaaisdacaaI1aGa aGimaiabeg7aHnaaCaaaleqabaGaaGioaaaakiabeI7aXnaaCaaale qabaGaaGinaaaakiabgUcaRiaaiwdacaaIYaGaaGioaiabeg7aHnaa CaaaleqabaGaaG4naaaakiabeI7aXnaaCaaaleqabaGaaGynaaaaki abgUcaRiaaiwdacaaIYaGaaGinaiabeg7aHnaaCaaaleqabaGaaGOn aaaakiabeI7aXnaaCaaaleqabaGaaGOnaaaakiabgUcaRiaaisdaca aIWaGaaGioaiabeg7aHnaaCaaaleqabaGaaGynaaaakiabeI7aXnaa CaaaleqabaGaaG4naaaakiabgUcaRiaaikdacaaI2aGaaGinaiabeg 7aHnaaCaaaleqabaGaaGinaaaakiabeI7aXnaaCaaaleqabaGaaGio aaaakiabgUcaRiaaigdacaaIZaGaaGOnaiabeg7aHnaaCaaaleqaba GaaG4maaaakiabeI7aXnaaCaaaleqabaGaaGyoaaaakiabgUcaRiaa isdacaaI2aGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaeqiUde3aaW baaSqabeaacaaIXaGaaGimaaaaaOqaaiabgUcaRiaaigdacaaIYaGa eqySdeMaeqiUde3aaWbaaSqabeaacaaIXaGaaGymaaaakiabgUcaRi aaikdacqaH4oqCdaahaaWcbeqaaiaaigdacaaIYaaaaOGaey4kaSIa aGymaiaaiEdacaaIZaGaeqySde2aaWbaaSqabeaacaaIXaGaaGymaa aakiabgUcaRiaaiwdacaaI0aGaaGioaiabeg7aHnaaCaaaleqabaGa aGymaiaaicdaaaGccqaH4oqCcqGHRaWkcaaIXaGaaGymaiaaiodaca aI2aGaeqySde2aaWbaaSqabeaacaaI5aaaaOGaeqiUde3aaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGOmaiaaicdacaaIXaGaaGOnaiabeg 7aHnaaCaaaleqabaGaaGioaaaakiabeI7aXnaaCaaaleqabaGaaG4m aaaakiabgUcaRiaaikdacaaI1aGaaGynaiaaicdacqaHXoqydaahaa WcbeqaaiaaiEdaaaGccqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGH RaWkcaaIYaGaaGOnaiaaisdacaaIWaGaeqySde2aaWbaaSqabeaaca aI2aaaaOGaeqiUde3aaWbaaSqabeaacaaI1aaaaaGcbaGaey4kaSIa aGOmaiaaiodacaaIZaGaaGOmaiabeg7aHnaaCaaaleqabaGaaGynaa aakiabeI7aXnaaCaaaleqabaGaaGOnaaaakiabgUcaRiaaigdacaaI 1aGaaGOnaiaaicdacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqaH4o qCdaahaaWcbeqaaiaaiEdaaaGccqGHRaWkcaaI4aGaaGioaiaaiwda cqaHXoqydaahaaWcbeqaaiaaiodaaaGccqaH4oqCdaahaaWcbeqaai aaiIdaaaGccqGHRaWkcaaIZaGaaGyoaiaaiAdacqaHXoqydaahaaWc beqaaiaaikdaaaGccqaH4oqCdaahaaWcbeqaaiaaiMdaaaGccqGHRa WkcaaI3aGaaGOnaiabeg7aHjabeI7aXnaaCaaaleqabaGaaGymaiaa icdaaaGccqGHRaWkcaaI4aGaeqiUde3aaWbaaSqabeaacaaIXaGaaG ymaaaakiabgUcaRiaaiIdacaaI1aGaaGOnaiabeg7aHnaaCaaaleqa baGaaGymaiaaicdaaaGccqGHRaWkcaaIYaGaaG4maiaaikdacaaI4a GaeqySde2aaWbaaSqabeaacaaI5aaaaOGaeqiUdehabaGaey4kaSIa aGinaiaaikdacaaIYaGaaGimaiabeg7aHnaaCaaaleqabaGaaGioaa aakiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdacaaI 4aGaaGynaiaaiAdacqaHXoqydaahaaWcbeqaaiaaiEdaaaGccqaH4o qCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI3aGaaG4maiaaiMda caaI2aGaeqySde2aaWbaaSqabeaacaaI2aaaaOGaeqiUde3aaWbaaS qabeaacaaI0aaaaOGaey4kaSIaaGOnaiaaisdacaaI2aGaaGinaiab eg7aHnaaCaaaleqabaGaaGynaaaakiabeI7aXnaaCaaaleqabaGaaG ynaaaakiabgUcaRiaaisdacaaI5aGaaGimaiaaiIdacqaHXoqydaah aaWcbeqaaiaaisdaaaGccqaH4oqCdaahaaWcbeqaaiaaiAdaaaGccq GHRaWkcaaIYaGaaGOnaiaaisdacaaI4aGaeqySde2aaWbaaSqabeaa caaIZaaaaOGaeqiUde3aaWbaaSqabeaacaaI3aaaaaGcbaGaey4kaS IaaGPaVlaaigdacaaIYaGaaGOnaiaaiIdacqaHXoqydaahaaWcbeqa aiaaikdaaaGccqaH4oqCdaahaaWcbeqaaiaaiIdaaaGccqGHRaWkca aI1aGaaGOmaiaaicdacqaHXoqycqaH4oqCdaahaaWcbeqaaiaaiMda aaGccqGHRaWkcaaI0aGaaGimaiabeI7aXnaaCaaaleqabaGaaGymai aaicdaaaGccqGHRaWkcaaIYaGaaGOnaiaaiMdacaaIXaGaeqySde2a aWbaaSqabeaacaaI5aaaaOGaey4kaSIaaGOnaiaaigdacaaIWaGaaG ioaiabeg7aHnaaCaaaleqabaGaaGioaaaakiabeI7aXjabgUcaRiaa iMdacaaIZaGaaGOnaiaaikdacqaHXoqydaahaaWcbeqaaiaaiEdaaa GccqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaGaaG4m aiaaiEdacaaIWaGaaGimaiabeg7aHnaaCaaaleqabaGaaGOnaaaaki abeI7aXnaaCaaaleqabaGaaG4maaaaaOqaaiabgUcaRiaaigdacaaI XaGaaGyoaiaaiwdacaaI1aGaeqySde2aaWbaaSqabeaacaaI1aaaaO GaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGioaiaaikda caaI2aGaaGinaiabeg7aHnaaCaaaleqabaGaaGinaaaakiabeI7aXn aaCaaaleqabaGaaGynaaaakiabgUcaRiaaiwdacaaIXaGaaG4maiaa iAdacqaHXoqydaahaaWcbeqaaiaaiodaaaGccqaH4oqCdaahaaWcbe qaaiaaiAdaaaGccqGHRaWkcaaIXaGaaGyoaiaaicdacaaI0aGaeqyS de2aaWbaaSqabeaacaaIYaaaaOGaeqiUde3aaWbaaSqabeaacaaI3a aaaOGaey4kaSIaaGOnaiaaigdacaaI2aGaeqySdeMaeqiUde3aaWba aSqabeaacaaI4aaaaOGaey4kaSIaaGOmaiaaisdacaaIWaGaeqiUde 3aaWbaaSqabeaacaaI5aaaaOGaey4kaSIaaGynaiaaiAdacaaIYaGa aGioaiabeg7aHnaaCaaaleqabaGaaGioaaaaaOqaaiabgUcaRiaaig dacaaIWaGaaGOmaiaaiMdacqaHXoqydaahaaWcbeqaaiaaiEdaaaGc cqaH4oqCcqGHRaWkcaaIXaGaaGOmaiaaiEdacaaI1aGaaGioaiabeg 7aHnaaCaaaleqabaGaaGOnaaaakiabeI7aXnaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaigdacaaI2aGaaGynaiaaiEdacaaIYaGaeqySde 2aaWbaaSqabeaacaaI1aaaaOGaeqiUde3aaWbaaSqabeaacaaIZaaa aOGaey4kaSIaaGymaiaaicdacaaI4aGaaG4maiaaisdacqaHXoqyda ahaaWcbeqaaiaaisdaaaGccqaH4oqCdaahaaWcbeqaaiaaisdaaaGc cqGHRaWkcaaI1aGaaGOmaiaaiMdacaaI2aGaeqySde2aaWbaaSqabe aacaaIZaaaaOGaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey4kaSIa aGOmaiaaiwdacaaI2aGaaGimaiabeg7aHnaaCaaaleqabaGaaGOmaa aakiabeI7aXnaaCaaaleqabaGaaGOnaaaaaOqaaiabgUcaRiaaioda caaI0aGaaGinaiaaiIdacqaHXoqycqaH4oqCdaahaaWcbeqaaiaaiE daaaGccqGHRaWkcaaI3aGaaGyoaiaaisdacaaIZaGaeqySde2aaWba aSqabeaacaaI3aaaaOGaey4kaSIaaGymaiaaigdacaaIXaGaaGioai aaicdacqaHXoqydaahaaWcbeqaaiaaiAdaaaGccqaH4oqCcqGHRaWk caaIXaGaaGimaiaaisdacaaI2aGaaGioaiabeg7aHnaaCaaaleqaba GaaGynaaaakiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa igdacaaI5aGaaGymaiaaikdacqaHXoqydaahaaWcbeqaaiaaisdaaa GccqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI1aGaaGym aiaaikdacaaIWaGaeqySde2aaWbaaSqabeaacaaIZaaaaOGaeqiUde 3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGymaiaaiodacaaI0aGa aGinaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabeI7aXnaaCaaale qabaGaaGynaaaaaOqaaiabgUcaRiaaisdacaaI4aGaaGimaiabeg7a HjabeI7aXnaaCaaaleqabaGaaGOnaaaakiabgUcaRiaaiEdacaaI0a GaaGioaiaaicdacqaHXoqydaahaaWcbeqaaiaaiAdaaaGccqGHRaWk caaI3aGaaGynaiaaiAdacaaIWaGaeqySde2aaWbaaSqabeaacaaI1a aaaOGaeqiUdeNaey4kaSIaaGinaiaaiEdacaaI0aGaaGinaiabeg7a HnaaCaaaleqabaGaaGinaaaakiabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaisdacaaI2aGaaG4naiaaikdacqaHXoqydaahaaWc beqaaiaaiodaaaGccqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRa WkcaaI5aGaaG4naiaaiAdacqaHXoqydaahaaWcbeqaaiaaikdaaaGc cqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI0aGaaGynai aaicdacaaI0aGaeqySde2aaWbaaSqabeaacaaI1aaaaaGcbaGaey4k aSIaaGOmaiaaiIdacaaI5aGaaGOnaiabeg7aHnaaCaaaleqabaGaaG inaaaakiabeI7aXjabgUcaRiaaiMdacaaIXaGaaGOmaiabeg7aHnaa CaaaleqabaGaaG4maaaakiabeI7aXnaaCaaaleqabaGaaGOmaaaaki abgUcaRiaaiEdacaaI2aGaaGioaiabeg7aHnaaCaaaleqabaGaaGOm aaaakiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaigdaca aI1aGaaGOnaiaaiIdacqaHXoqydaahaaWcbeqaaiaaisdaaaGccqGH RaWkcaaI0aGaaGioaiaaicdacqaHXoqydaahaaWcbeqaaiaaiodaaa GccqaH4oqCcqGHRaWkcaaIYaGaaGinaiaaicdacqaHXoqydaahaaWc beqaaiaaiodaaaaaaOGaayjkaiaawMcaaaqaamaadmaabaGaeqySde 2aaeWaaqaabeqaaiabeg7aHnaaCaaaleqabaGaaGOnaaaakiabgUca RiaaikdacqaHXoqydaahaaWcbeqaaiaaiwdaaaGccqaH4oqCcqGHRa WkcaaIZaGaeqySde2aaWbaaSqabeaacaaI0aaaaOGaeqiUde3aaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGinaiabeg7aHnaaCaaaleqaba GaaG4maaaakiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaa iodacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqaH4oqCdaahaaWcbe qaaiaaisdaaaGccqGHRaWkcaaIYaGaeqySdeMaeqiUde3aaWbaaSqa beaacaaI1aaaaOGaey4kaSIaeqiUde3aaWbaaSqabeaacaaI2aaaaO Gaey4kaSIaaGyoaiabeg7aHnaaCaaaleqabaGaaGynaaaakiabgUca RiaaigdacaaI0aGaeqySde2aaWbaaSqabeaacaaI0aaaaOGaeqiUde Naey4kaSIaaGymaiaaiIdacqaHXoqydaahaaWcbeqaaiaaiodaaaGc cqaH4oqCdaahaaWcbeqaaiaaikdaaaaakeaacqGHRaWkcaaIYaGaaG inaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabeI7aXnaaCaaaleqa baGaaG4maaaakiabgUcaRiaaiMdacqaHXoqycqaH4oqCdaahaaWcbe qaaiaaisdaaaGccqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaacaaI 1aaaaOGaey4kaSIaaG4maiaaigdacqaHXoqydaahaaWcbeqaaiaais daaaGccqGHRaWkcaaIZaGaaGinaiabeg7aHnaaCaaaleqabaGaaG4m aaaakiabeI7aXjabgUcaRiaaiodacaaIZaGaeqySde2aaWbaaSqabe aacaaIYaaaaOGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIa aGinaiaaisdacqaHXoqycqaH4oqCdaahaaWcbeqaaiaaiodaaaGccq GHRaWkcaaI2aGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIa aGynaiaaigdacqaHXoqydaahaaWcbeqaaiaaiodaaaaakeaacqGHRa WkcaaIZaGaaGinaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabeI7a XjabgUcaRiaaigdacaaI4aGaeqySdeMaeqiUde3aaWbaaSqabeaaca aIYaaaaOGaey4kaSIaaGOmaiaaisdacqaH4oqCdaahaaWcbeqaaiaa iodaaaGccqGHRaWkcaaI0aGaaGimaiabeg7aHnaaCaaaleqabaGaaG OmaaaakiabgUcaRiaaigdacaaIYaGaeqySdeMaeqiUdeNaey4kaSIa aGymaiaaikdacqaHXoqyaaGaayjkaiaawMcaaaGaay5waiaaw2faam aaCaaaleqabaGaaGOmaaaaaaaaaa@89BD@ γ= μ 2 μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maalaaabaGaeqiVd02aaSbaaSqaaiaaikdaaeqaaaGcbaGaeqiV d02aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaakiadacUHYaIOaa aaaaaa@41D2@ = α( α 6 +2 α 5 θ+3 α 4 θ 2 +4 α 3 θ 3 +3 α 2 θ 4 +2α θ 5 + θ 6 +9 α 5 +14 α 4 θ+18 α 3 θ 2 +24 α 2 θ 3 +9α θ 4 +2 θ 5 +31 α 4 +34 α 3 θ+33 α 2 θ 2 +44α θ 3 +6 θ 4 +51 α 3 +34 α 2 θ+18α θ 2 +24 θ 3 +40 α 2 +12αθ+12α ) θα( α 3 + α 2 θ+α θ 2 + θ 3 +3 α 2 +αθ+2α )[ θ 3 +( α+1 ) θ 2 +( α+1 )( α+2 )θ+( α+1 )( α+2 )( α+3 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqySde2aaeWaaqaabeqaaiabeg7aHnaaCaaaleqabaGaaGOn aaaakiabgUcaRiaaikdacqaHXoqydaahaaWcbeqaaiaaiwdaaaGccq aH4oqCcqGHRaWkcaaIZaGaeqySde2aaWbaaSqabeaacaaI0aaaaOGa eqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGinaiabeg7aHn aaCaaaleqabaGaaG4maaaakiabeI7aXnaaCaaaleqabaGaaG4maaaa kiabgUcaRiaaiodacqaHXoqydaahaaWcbeqaaiaaikdaaaGccqaH4o qCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeqySdeMaeqiU de3aaWbaaSqabeaacaaI1aaaaOGaey4kaSIaeqiUde3aaWbaaSqabe aacaaI2aaaaOGaey4kaSIaaGyoaiabeg7aHnaaCaaaleqabaGaaGyn aaaakiabgUcaRiaaigdacaaI0aGaeqySde2aaWbaaSqabeaacaaI0a aaaOGaeqiUdeNaey4kaSIaaGymaiaaiIdacqaHXoqydaahaaWcbeqa aiaaiodaaaGccqaH4oqCdaahaaWcbeqaaiaaikdaaaaakeaacqGHRa WkcaaIYaGaaGinaiabeg7aHnaaCaaaleqabaGaaGOmaaaakiabeI7a XnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaiMdacqaHXoqycqaH4o qCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeqiUde3aaWba aSqabeaacaaI1aaaaOGaey4kaSIaaG4maiaaigdacqaHXoqydaahaa WcbeqaaiaaisdaaaGccqGHRaWkcaaIZaGaaGinaiabeg7aHnaaCaaa leqabaGaaG4maaaakiabeI7aXjabgUcaRiaaiodacaaIZaGaeqySde 2aaWbaaSqabeaacaaIYaaaaOGaeqiUde3aaWbaaSqabeaacaaIYaaa aOGaey4kaSIaaGinaiaaisdacqaHXoqycqaH4oqCdaahaaWcbeqaai aaiodaaaGccqGHRaWkcaaI2aGaeqiUde3aaWbaaSqabeaacaaI0aaa aOGaey4kaSIaaGynaiaaigdacqaHXoqydaahaaWcbeqaaiaaiodaaa aakeaacqGHRaWkcaaIZaGaaGinaiabeg7aHnaaCaaaleqabaGaaGOm aaaakiabeI7aXjabgUcaRiaaigdacaaI4aGaeqySdeMaeqiUde3aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaisdacqaH4oqCdaah aaWcbeqaaiaaiodaaaGccqGHRaWkcaaI0aGaaGimaiabeg7aHnaaCa aaleqabaGaaGOmaaaakiabgUcaRiaaigdacaaIYaGaeqySdeMaeqiU deNaey4kaSIaaGymaiaaikdacqaHXoqyaaGaayjkaiaawMcaaaqaai abeI7aXjabeg7aHnaabmaabaGaeqySde2aaWbaaSqabeaacaaIZaaa aOGaey4kaSIaeqySde2aaWbaaSqabeaacaaIYaaaaOGaeqiUdeNaey 4kaSIaeqySdeMaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIa eqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4maiabeg7aHn aaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg7aHjabeI7aXjabgUca RiaaikdacqaHXoqyaiaawIcacaGLPaaadaWadaqaaiabeI7aXnaaCa aaleqabaGaaG4maaaakiabgUcaRmaabmaabaGaeqySdeMaey4kaSIa aGymaaGaayjkaiaawMcaaiabeI7aXnaaCaaaleqabaGaaGOmaaaaki abgUcaRmaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMca amaabmaabaGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaawMcaaiabeI 7aXjabgUcaRmaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaa wMcaamaabmaabaGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaawMcaam aabmaabaGaeqySdeMaey4kaSIaaG4maaGaayjkaiaawMcaaaGaay5w aiaaw2faaaaaaaa@12EF@

The behaviors of coefficien of variation, coefficient of skewness, coefficient of kurtosis, index of dispersion for differnet values of the parameters of WAD are presented in the Figure 3. For fixed value of α and increasing values of θ, coefficient of variation and coefficient of kurtosis are increasing, and for fixed value of θand increasing values of αcoefficient of variation decreases and coefficient of kurtosis is first decreases after that increases like U-shape. For all values of the parameter θ and α , coefficient of skewness and index of dispersion are always decreasing.

Figure 3 Graph of coefficien of variation, coefficient of skewness, coefficient of kurtosis, index of dispersion for differnet values of the parameters of WAD.

Reliabilty properties

Reliability function

The survival function of the reliability function of WAD can be obtained as
R( x;θ,α )=1F( x;θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9iaaigdacqGHsislcaWGgbWaaeWaaeaacaWG4bGaai4oai abeI7aXjaacYcacqaHXoqyaiaawIcacaGLPaaaaaa@498B@ = θ 3 Γ( α,θx )+ θ 2 Γ( α+1,θx )+θΓ( α+2,θx )+Γ( α+3,θx ) [ θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) ]Γ( α ) ;x>0,θ>0,α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaeu4KdC0aaeWaaeaa cqaHXoqycaGGSaGaeqiUdeNaamiEaaGaayjkaiaawMcaaiabgUcaRi abeI7aXnaaCaaaleqabaGaaGOmaaaakiabfo5ahnaabmaabaGaeqyS deMaey4kaSIaaGymaiaacYcacqaH4oqCcaWG4baacaGLOaGaayzkaa Gaey4kaSIaeqiUdeNaeu4KdC0aaeWaaeaacqaHXoqycqGHRaWkcaaI YaGaaiilaiabeI7aXjaadIhaaiaawIcacaGLPaaacqGHRaWkcqqHto Wrdaqadaqaaiabeg7aHjabgUcaRiaaiodacaGGSaGaeqiUdeNaamiE aaGaayjkaiaawMcaaaqaamaadmaabaGaeqiUde3aaWbaaSqabeaaca aIZaaaaOGaey4kaSIaeqySdeMaeqiUde3aaWbaaSqabeaacaaIYaaa aOGaey4kaSIaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaaca GLOaGaayzkaaGaeqiUdeNaey4kaSIaeqySde2aaeWaaeaacqaHXoqy cqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacqaHXoqycqGHRa WkcaaIYaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeu4KdC0aaeWa aeaacqaHXoqyaiaawIcacaGLPaaaaaGaai4oaiaadIhacqGH+aGpca aIWaGaaiilaiabeI7aXjabg6da+iaaicdacaGGSaGaeqySdeMaeyOp a4JaaGimaaaa@9527@

The graphical representation of reliability function is presented in Figure 4.

Figure 4 Survival function of WAD.

Hazard function

The hazard function of WAD can be obtained as
h( x;θ,α )= f( x;θ,α ) R( x;θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9maalaaabaGaamOzamaabmaabaGaamiEaiaacUdacqaH4o qCcaGGSaGaeqySdegacaGLOaGaayzkaaaabaGaamOuamaabmaabaGa amiEaiaacUdacqaH4oqCcaGGSaGaeqySdegacaGLOaGaayzkaaaaaa aa@504A@ = θ α+3 ( 1+x+ x 2 + x 3 ) x α1 e θx θ 3 Γ( α,θx )+ θ 2 Γ( α+1,θx )+θΓ( α+2,θx )+Γ( α+3,θx ) ;x>0,θ>0,α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacqaHXoqycqGHRaWkcaaIZaaaaOWa aeWaaeaacaaIXaGaey4kaSIaamiEaiabgUcaRiaadIhadaahaaWcbe qaaiaaikdaaaGccqGHRaWkcaWG4bWaaWbaaSqabeaacaaIZaaaaaGc caGLOaGaayzkaaGaamiEamaaCaaaleqabaGaeqySdeMaeyOeI0IaaG ymaaaakiaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaaaa keaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqqHtoWrdaqadaqaai abeg7aHjaacYcacqaH4oqCcaWG4baacaGLOaGaayzkaaGaey4kaSIa eqiUde3aaWbaaSqabeaacaaIYaaaaOGaeu4KdC0aaeWaaeaacqaHXo qycqGHRaWkcaaIXaGaaiilaiabeI7aXjaadIhaaiaawIcacaGLPaaa cqGHRaWkcqaH4oqCcqqHtoWrdaqadaqaaiabeg7aHjabgUcaRiaaik dacaGGSaGaeqiUdeNaamiEaaGaayjkaiaawMcaaiabgUcaRiabfo5a hnaabmaabaGaeqySdeMaey4kaSIaaG4maiaacYcacqaH4oqCcaWG4b aacaGLOaGaayzkaaaaaiaacUdacaWG4bGaeyOpa4JaaGimaiaacYca cqaH4oqCcqGH+aGpcaaIWaGaaiilaiabeg7aHjabg6da+iaaicdaaa a@89F8@

The graphical representation of hazard function is presented in Figure 5.

Figure 5 Hazard function of WAD.

From the Figure 5, it is clear that for any value of θ and α<1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabgY da8iaaigdaaaa@3A05@ , it has V-shaped hazard function and for any values of θ and α1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabgw MiZkaaigdaaaa@3AC7@ it has increasing hazard function.

Reverse hazard function

The reverse hazard function of WAD can be obtained as

r( x;θ,α )= f( x;θ,α ) F( x;θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9maalaaabaGaamOzamaabmaabaGaamiEaiaacUdacqaH4o qCcaGGSaGaeqySdegacaGLOaGaayzkaaaabaGaamOramaabmaabaGa amiEaiaacUdacqaH4oqCcaGGSaGaeqySdegacaGLOaGaayzkaaaaaa aa@5048@ = θ α+3 ( 1+x+ x 2 + x 3 ) x α1 e θx [ { θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) }Γ( α ) { θ 3 Γ( α,θx )+ θ 2 Γ( α+1,θx )+θΓ( α+2,θx )+Γ( α+3,θx ) } ] ;x>0,θ>0,α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacqaHXoqycqGHRaWkcaaIZaaaaOWa aeWaaeaacaaIXaGaey4kaSIaamiEaiabgUcaRiaadIhadaahaaWcbe qaaiaaikdaaaGccqGHRaWkcaWG4bWaaWbaaSqabeaacaaIZaaaaaGc caGLOaGaayzkaaGaamiEamaaCaaaleqabaGaeqySdeMaeyOeI0IaaG ymaaaakiaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaaaa keaadaWadaabaeqabaWaaiWaaeaacqaH4oqCdaahaaWcbeqaaiaaio daaaGccqGHRaWkcqaHXoqycqaH4oqCdaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcqaHXoqydaqadaqaaiabeg7aHjabgUcaRiaaigdaaiaawI cacaGLPaaacqaH4oqCcqGHRaWkcqaHXoqydaqadaqaaiabeg7aHjab gUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjabgUcaRi aaikdaaiaawIcacaGLPaaaaiaawUhacaGL9baacqqHtoWrdaqadaqa aiabeg7aHbGaayjkaiaawMcaaaqaaiabgkHiTmaacmaabaGaeqiUde 3aaWbaaSqabeaacaaIZaaaaOGaeu4KdC0aaeWaaeaacqaHXoqycaGG SaGaeqiUdeNaamiEaaGaayjkaiaawMcaaiabgUcaRiabeI7aXnaaCa aaleqabaGaaGOmaaaakiabfo5ahnaabmaabaGaeqySdeMaey4kaSIa aGymaiaacYcacqaH4oqCcaWG4baacaGLOaGaayzkaaGaey4kaSIaeq iUdeNaeu4KdC0aaeWaaeaacqaHXoqycqGHRaWkcaaIYaGaaiilaiab eI7aXjaadIhaaiaawIcacaGLPaaacqGHRaWkcqqHtoWrdaqadaqaai abeg7aHjabgUcaRiaaiodacaGGSaGaeqiUdeNaamiEaaGaayjkaiaa wMcaaaGaay5Eaiaaw2haaaaacaGLBbGaayzxaaaaaiaacUdacaWG4b GaeyOpa4JaaGimaiaacYcacqaH4oqCcqGH+aGpcaaIWaGaaiilaiab eg7aHjabg6da+iaaicdaaaa@B2AC@

Mean residual life function

The mean residual life function of WAD can be obtained as

m( x;θ,α )= 1 S( x;θ,α ) x tf( t;θ,α ) dtx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhacaGG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMca aiabg2da9maalaaabaGaaGymaaqaaiaadofadaqadaqaaiaadIhaca GG7aGaeqiUdeNaaiilaiabeg7aHbGaayjkaiaawMcaaaaadaWdXbqa aiaadshacaWGMbWaaeWaaeaacaWG0bGaai4oaiabeI7aXjaacYcacq aHXoqyaiaawIcacaGLPaaaaSqaaiaadIhaaeaacqGHEisPa0Gaey4k IipakiaadsgacaWG0bGaeyOeI0IaamiEaaaa@5AAD@

= θ 3 Γ( α+1,θx )+ θ 2 Γ( α+2,θx )+θΓ( α+3,θx )+Γ( α+4,θx ) θ 3 Γ( α,θx )+ θ 2 Γ( α+1,θx )+θΓ( α+2,θx )+Γ( α+3,θx ) x;x>0,θ>0,α>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaeu4KdC0aaeWaaeaa cqaHXoqycqGHRaWkcaaIXaGaaiilaiabeI7aXjaadIhaaiaawIcaca GLPaaacqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqqHtoWr daqadaqaaiabeg7aHjabgUcaRiaaikdacaGGSaGaeqiUdeNaamiEaa GaayjkaiaawMcaaiabgUcaRiabeI7aXjabfo5ahnaabmaabaGaeqyS deMaey4kaSIaaG4maiaacYcacqaH4oqCcaWG4baacaGLOaGaayzkaa Gaey4kaSIaeu4KdC0aaeWaaeaacqaHXoqycqGHRaWkcaaI0aGaaiil aiabeI7aXjaadIhaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaaWcbe qaaiaaiodaaaGccqqHtoWrdaqadaqaaiabeg7aHjaacYcacqaH4oqC caWG4baacaGLOaGaayzkaaGaey4kaSIaeqiUde3aaWbaaSqabeaaca aIYaaaaOGaeu4KdC0aaeWaaeaacqaHXoqycqGHRaWkcaaIXaGaaiil aiabeI7aXjaadIhaaiaawIcacaGLPaaacqGHRaWkcqaH4oqCcqqHto Wrdaqadaqaaiabeg7aHjabgUcaRiaaikdacaGGSaGaeqiUdeNaamiE aaGaayjkaiaawMcaaiabgUcaRiabfo5ahnaabmaabaGaeqySdeMaey 4kaSIaaG4maiaacYcacqaH4oqCcaWG4baacaGLOaGaayzkaaaaaiab gkHiTiaadIhacaGG7aGaamiEaiabg6da+iaaicdacaGGSaGaeqiUde NaeyOpa4JaaGimaiaacYcacqaHXoqycqGH+aGpcaaIWaaaaa@A3A8@

The graphical representation of mean residual life function is presented in Figure 6.

Figure 6 Mean residual life function of WAD.

!--Hedding content start-->

Method of estimation of the parameters

Maximum Likelihood Estimation

Let ( x 1 , x 2 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugqbiaadIhajuaGdaWgaaWcbaqcLbuacaaIXaaaleqaaKqzafGa aiilaiaadIhajuaGdaWgaaWcbaqcLbuacaaIYaaaleqaaKqzafGaai ilaiaac6cacaGGUaGaaiOlaiaacYcacaWG4bqcfa4aaSbaaSqaaKqz afGaamOBaaWcbeaaaOGaayjkaiaawMcaaaaa@48C2@ be a random sample from WAD. The log-likelihood function of WAD can be expressed as

logL=n[ ( α+3 )logηlog( θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) ) ] nlog( Γ( α ) )+ i=1 n log( 1+ x i + x i 2 + x i 3 ) +( α1 ) i=1 n log( x i ) θ x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabceqabaanefaaju gqbiGacYgacaGGVbGaai4zaiaadYeacqGH9aqpcaWGUbqcfa4aamWa aOqaaKqbaoaabmaabaGaeqySdeMaey4kaSIaaG4maaGaayjkaiaawM caaKqzafGaciiBaiaac+gacaGGNbGaeq4TdGMaeyOeI0IaciiBaiaa c+gacaGGNbqcfa4aaeWaaeaacqaH4oqCdaahaaqabeaacaaIZaaaaK qzafGaey4kaSIaeqySdeMaeqiUdexcfa4aaWbaaeqabaGaaGOmaaaa jugqbiabgUcaRiabeg7aHLqbaoaabmaabaqcLbuacqaHXoqycqGHRa WkcaaIXaaajuaGcaGLOaGaayzkaaGaeqiUdeNaey4kaSscLbuacqaH XoqyjuaGdaqadaqaaKqzafGaeqySdeMaey4kaSIaaGymaaqcfaOaay jkaiaawMcaamaabmaabaqcLbuacqaHXoqycqGHRaWkcaaIYaaajuaG caGLOaGaayzkaaaacaGLOaGaayzkaaaakiaawUfacaGLDbaaaeaaju aGcqGHsislcaWGUbGaciiBaiaac+gacaGGNbWaaeWaaeaacqqHtoWr daqadaqaaKqzafGaeqySdegajuaGcaGLOaGaayzkaaaacaGLOaGaay zkaaqcLbuacqGHRaWkjuaGdaaeWbGcbaqcLbuaciGGSbGaai4Baiaa cEgajuaGdaqadaqaaKqzafGaaGymaiabgUcaRiaadIhajuaGdaWgaa qaaiaadMgaaeqaaKqzafGaey4kaSIaaGzaVlaaygW7caWG4bqcfa4a aSbaaeaacaWGPbaabeaadaahaaqabeaacaaIYaaaaiabgUcaRKqzaf GaamiEaKqbaoaaBaaabaGaamyAaaqabaWaaWbaaeqabaGaaG4maaaa aiaawIcacaGLPaaaaSqaaKqzafGaamyAaiabg2da9iaaigdaaSqaaK qzafGaamOBaaGaeyyeIuoajuaGcqGHRaWkdaqadaqaaKqzafGaeqyS deMaeyOeI0IaaGymaaqcfaOaayjkaiaawMcaamaaqahakeaajugqbi GacYgacaGGVbGaai4zaKqbaoaabmaabaqcLbuacaWG4bqcfa4aaSba aeaacaWGPbaabeaaaiaawIcacaGLPaaaaSqaaKqzafGaamyAaiabg2 da9iaaigdaaSqaaKqzafGaamOBaaGaeyyeIuoacqGHsislcqaH4oqC ceWG4bGbaebaaaaa@BD78@

This gives
logL θ = n( α+3 ) θ n{ 3 θ 2 +2αθ+α( α+1 ) } θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) n x ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb uacqGHciITciGGSbGaai4BaiaacEgacaWGmbaakeaajugqbiabgkGi 2kabeI7aXbaacqGH9aqpkmaalaaabaqcLbuacaWGUbGcdaqadaqaai abeg7aHjabgUcaRiaaiodaaiaawIcacaGLPaaaaeaacqaH4oqCaaqc LbuacqGHsislkmaalaaabaGaamOBamaacmaabaGaaG4maiabeI7aXn aaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacqaHXoqycqaH4oqC cqGHRaWkcqaHXoqydaqadaqaaiabeg7aHjabgUcaRiaaigdaaiaawI cacaGLPaaaaiaawUhacaGL9baaaeaacqaH4oqCdaahaaWcbeqaaiaa iodaaaGccqGHRaWkcqaHXoqycqaH4oqCdaahaaWcbeqaaiaaikdaaa GccqGHRaWkcqaHXoqydaqadaqaaiabeg7aHjabgUcaRiaaigdaaiaa wIcacaGLPaaacqaH4oqCcqGHRaWkcqaHXoqydaqadaqaaiabeg7aHj abgUcaRiaaigdaaiaawIcacaGLPaaadaqadaqaaiabeg7aHjabgUca RiaaikdaaiaawIcacaGLPaaaaaGaeyOeI0IaamOBaiqadIhagaqeai abg2da9iaaicdaaaa@7F95@ logL α =nlogθ n{ θ 2 +( 2α+1 )θ+( 3 α 2 +6α+2 ) } θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) +nψ( α )+ i=1 n log x i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb uacqGHciITciGGSbGaai4BaiaacEgacaWGmbaakeaajugqbiabgkGi 2kabeg7aHbaacqGH9aqpcaWGUbGaciiBaiaac+gacaGGNbGaeqiUde NaeyOeI0IcdaWcaaqaaiaad6gadaGadaqaaiabeI7aXnaaCaaaleqa baGaaGOmaaaakiabgUcaRmaabmaabaGaaGOmaiabeg7aHjabgUcaRi aaigdaaiaawIcacaGLPaaacqaH4oqCcqGHRaWkdaqadaqaaiaaioda cqaHXoqydaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aGaeqySde Maey4kaSIaaGOmaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiab eI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeg7aHjabeI7aXn aaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg7aHnaabmaabaGaeqyS deMaey4kaSIaaGymaaGaayjkaiaawMcaaiabeI7aXjabgUcaRiabeg 7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaamaa bmaabaGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaawMcaaaaacqGHRa WkcaWGUbGaeqiYdK3aaeWaaeaacqaHXoqyaiaawIcacaGLPaaacqGH RaWkdaaeWbqaaiGacYgacaGGVbGaai4zaiaadIhadaWgaaWcbaGaam yAaaqabaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHi LdGccqGH9aqpcaaIWaaaaa@9143@

The log-likelihood equations presented here are not readily solvable because it is not in closed form, necessitating the use of maximization techniques using R software. Iterative solutions are employed to optimize the likelihood function until sufficiently close parameter values are achieved. These equations can be solved using Fisher’s scoring method. For Fisher's scoring method, the following approach is undertaken
2 logL θ 2 = n( α+3 ) θ 2 n[ { θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) }( 6θ+2α ) { 3 θ 2 +2αθ+α( α+1 ) } 2 ] [ θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb uacqGHciITkmaaCaaaleqabaGaaGOmaaaajugqbiGacYgacaGGVbGa ai4zaiaadYeaaOqaaKqzafGaeyOaIyRaeqiUdeNcdaahaaWcbeqaai aaikdaaaaaaKqzafGaeyypa0JaeyOeI0IcdaWcaaqaaKqzafGaamOB aOWaaeWaaeaacqaHXoqycqGHRaWkcaaIZaaacaGLOaGaayzkaaaaba GaeqiUde3aaWbaaSqabeaacaaIYaaaaaaajugqbiabgkHiTOWaaSaa aeaacaWGUbWaamWaaeaadaGadaqaaiabeI7aXnaaCaaaleqabaGaaG 4maaaakiabgUcaRiabeg7aHjabeI7aXnaaCaaaleqabaGaaGOmaaaa kiabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey4kaSIaaGymaaGaay jkaiaawMcaaiabeI7aXjabgUcaRiabeg7aHnaabmaabaGaeqySdeMa ey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGaeqySdeMaey4kaS IaaGOmaaGaayjkaiaawMcaaaGaay5Eaiaaw2haamaabmaabaGaaGOn aiabeI7aXjabgUcaRiaaikdacqaHXoqyaiaawIcacaGLPaaacqGHsi sldaGadaqaaiaaiodacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaaIYaGaeqySdeMaeqiUdeNaey4kaSIaeqySde2aaeWaaeaacq aHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaaacaGL7bGaayzFaaWa aWbaaSqabeaacaaIYaaaaaGccaGLBbGaayzxaaaabaWaamWaaeaacq aH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcqaHXoqycqaH4oqC daahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqydaqadaqaaiabeg 7aHjabgUcaRiaaigdaaiaawIcacaGLPaaacqaH4oqCcqGHRaWkcqaH Xoqydaqadaqaaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaada qadaqaaiabeg7aHjabgUcaRiaaikdaaiaawIcacaGLPaaaaiaawUfa caGLDbaadaahaaWcbeqaaiaaikdaaaaaaaaa@ACF0@ 2 logL θα = n θ n[ { θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) }( 2θ+2α+1 ) n{ 3 θ 2 +2αθ+α( α+1 ) }{ θ 2 +( 2α+1 )+( 3 α 2 +6α+2 ) } ] [ θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) ] 2 = 2 logL αθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb uacqGHciITkmaaCaaaleqabaGaaGOmaaaajugqbiGacYgacaGGVbGa ai4zaiaadYeaaOqaaKqzafGaeyOaIyRaeqiUdeNaeyOaIyRaeqySde gaaiabg2da9iabgkHiTOWaaSaaaeaajugqbiaad6gaaOqaaiabeI7a XbaajugqbiabgkHiTOWaaSaaaeaacaWGUbWaamWaaqaabeqaamaacm aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaeqySdeMa eqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqySde2aaeWaae aacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeqiUdeNaey4k aSIaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaay zkaaWaaeWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLOaGaayzkaaaa caGL7bGaayzFaaWaaeWaaeaacaaIYaGaeqiUdeNaey4kaSIaaGOmai abeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaaaeaacqGHsislcaWG UbWaaiWaaeaacaaIZaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGOmaiabeg7aHjabeI7aXjabgUcaRiabeg7aHnaabmaabaGa eqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaaaGaay5Eaiaaw2haam aacmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaeWa aeaacaaIYaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaaiabgU caRmaabmaabaGaaG4maiabeg7aHnaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaiAdacqaHXoqycqGHRaWkcaaIYaaacaGLOaGaayzkaaaaca GL7bGaayzFaaaaaiaawUfacaGLDbaaaeaadaWadaqaaiabeI7aXnaa CaaaleqabaGaaG4maaaakiabgUcaRiabeg7aHjabeI7aXnaaCaaale qabaGaaGOmaaaakiabgUcaRiabeg7aHnaabmaabaGaeqySdeMaey4k aSIaaGymaaGaayjkaiaawMcaaiabeI7aXjabgUcaRiabeg7aHnaabm aabaGaeqySdeMaey4kaSIaaGymaaGaayjkaiaawMcaamaabmaabaGa eqySdeMaey4kaSIaaGOmaaGaayjkaiaawMcaaaGaay5waiaaw2faam aaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpdaWcaaqaaKqzafGaeyOa IyRcdaahaaWcbeqaaiaaikdaaaqcLbuaciGGSbGaai4BaiaacEgaca WGmbaakeaajugqbiabgkGi2kabeg7aHjabgkGi2kabeI7aXbaaaaa@CF6B@ 2 logL α 2 = n[ { θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) }( 2θ+6α+6 ) { θ 2 +( 2α+1 )+( 3 α 2 +6α+2 ) } 2 ] [ θ 3 +α θ 2 +α( α+1 )θ+α( α+1 )( α+2 ) ] 2 +n ψ ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb uacqGHciITkmaaCaaaleqabaGaaGOmaaaajugqbiGacYgacaGGVbGa ai4zaiaadYeaaOqaaKqzafGaeyOaIyRaeqySdeMcdaahaaWcbeqaai aaikdaaaaaaKqzafGaeyypa0JaeyOeI0IcdaWcaaqaaiaad6gadaWa daqaamaacmaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaS IaeqySdeMaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqyS de2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeq iUdeNaey4kaSIaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaa caGLOaGaayzkaaWaaeWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLOa GaayzkaaaacaGL7bGaayzFaaWaaeWaaeaacaaIYaGaeqiUdeNaey4k aSIaaGOnaiabeg7aHjabgUcaRiaaiAdaaiaawIcacaGLPaaacqGHsi sldaGadaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRmaa bmaabaGaaGOmaiabeg7aHjabgUcaRiaaigdaaiaawIcacaGLPaaacq GHRaWkdaqadaqaaiaaiodacqaHXoqydaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaI2aGaeqySdeMaey4kaSIaaGOmaaGaayjkaiaawMcaaa Gaay5Eaiaaw2haamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2fa aaqaamaadmaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaS IaeqySdeMaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqyS de2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeq iUdeNaey4kaSIaeqySde2aaeWaaeaacqaHXoqycqGHRaWkcaaIXaaa caGLOaGaayzkaaWaaeWaaeaacqaHXoqycqGHRaWkcaaIYaaacaGLOa GaayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaacaaIYaaaaaaakiab gUcaRiaad6gacuaHipqEgaqbamaabmaabaGaeqySdegacaGLOaGaay zkaaaaaa@AE9A@

For finding the MLEs ( θ ^ , α ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaacaGGSaGafqySdeMbaKaaaiaawIcacaGLPaaaaaa@3C55@ of parameters ( θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHbGaayjkaiaawMcaaaaa@3C35@ of WAD, following equations can be solved
( 2 logL θ 2 2 logL θα 2 logL θα 2 logL α 2 ) θ ^ = θ 0 α ^ = α 0 ( θ ^ θ 0 α ^ α 0 )=( logL θ logL α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiGaaaqaamaalaaabaqcLbuacqGHciITkmaaCaaaleqabaGaaGOm aaaajugqbiGacYgacaGGVbGaai4zaiaadYeaaOqaaKqzafGaeyOaIy RaeqiUdeNcdaahaaWcbeqaaiaaikdaaaaaaaGcbaWaaSaaaeaajugq biabgkGi2QWaaWbaaSqabeaacaaIYaaaaKqzafGaciiBaiaac+gaca GGNbGaamitaaGcbaqcLbuacqGHciITcqaH4oqCcaaMc8UaeyOaIyRa eqySdegaaaGcbaWaaSaaaeaajugqbiabgkGi2QWaaWbaaSqabeaaca aIYaaaaKqzafGaciiBaiaac+gacaGGNbGaamitaaGcbaqcLbuacqGH ciITcqaH4oqCcaaMc8UaeyOaIyRaeqySdegaaaGcbaWaaSaaaeaaju gqbiabgkGi2QWaaWbaaSqabeaacaaIYaaaaKqzafGaciiBaiaac+ga caGGNbGaamitaaGcbaqcLbuacqGHciITcqaHXoqykmaaCaaaleqaba GaaGOmaaaaaaaaaaGccaGLOaGaayzkaaWaaSbaaSabaeqabaGafqiU deNbaKaacqGH9aqpcqaH4oqCdaWgaaadbaGaaGimaaqabaaaleaacu aHXoqygaqcaiabg2da9iabeg7aHnaaBaaameaacaaIWaaabeaaaaWc beaakmaabmaaeaqabeaacuaH4oqCgaqcaiabgkHiTiabeI7aXnaaBa aaleaacaaIWaaabeaaaOqaaiqbeg7aHzaajaGaeyOeI0IaeqySde2a aSbaaSqaaiaaicdaaeqaaaaakiaawIcacaGLPaaacqGH9aqpdaqada abaeqabaWaaSaaaeaajugqbiabgkGi2kGacYgacaGGVbGaai4zaiaa dYeaaOqaaKqzafGaeyOaIyRaeqiUdehaaaGcbaWaaSaaaeaajugqbi abgkGi2kGacYgacaGGVbGaai4zaiaadYeaaOqaaKqzafGaeyOaIyRa eqySdegaaaaakiaawIcacaGLPaaaaaa@9D1F@

where θ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIWaaabeaaaaa@3943@ and are the initial values of θ and α;. These equations are solved iteratively till close estimates of parameters are obtained.

Maximum product spacing estimation

The maximum product spacing estimates (MPSE) ( θ ^ , α ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaacaGGSaGafqySdeMbaKaaaiaawIcacaGLPaaaaaa@3C55@ of parameters ( θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaiilaiabeg7aHbGaayjkaiaawMcaaaaa@3C35@ can be obtained numerically by maximizing the following function with respect to θ and α.
MPSE= 1 n+1 i=1 n+1 log[ F( x i ,θ,α )F( x i1 ,θ,α ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytaiaadc facaWGtbGaamyraiabg2da9maalaaabaGaaGymaaqaaiaad6gacqGH RaWkcaaIXaaaamaaqahabaGaciiBaiaac+gacaGGNbWaamWaaeaaca WGgbWaaeWaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiab eI7aXjaacYcacqaHXoqyaiaawIcacaGLPaaacqGHsislcaWGgbWaae WaaeaacaWG4bWaaSbaaSqaaiaadMgacqGHsislcaaIXaaabeaakiaa cYcacqaH4oqCcaGGSaGaeqySdegacaGLOaGaayzkaaaacaGLBbGaay zxaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6gacqGHRaWkcaaI XaaaniabggHiLdaaaa@5ECD@

The simulation study

To assess the consistency of maximum likelihood estimators (MLE) and maximum product spacing estimators (MPSE) for WAD, a simulation study has been conducted. The investigation involved examining mean estimates, biases (B), mean square errors (MSEs), and variances of the MLE and MPSE for WAD, utilizing the specified formulas.

Mean= 1 n i=1 n H ^ i ,  B= 1 n i=1 n ( H ^ i H ) ,  MSE= 1 n i=1 n ( H ^ i H ) 2 , Variance=MSE B 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaaeytai aabwgacaqGHbGaaeOBaiabg2da9maalaaabaGaaGymaaqaaiaad6ga aaWaaabCaeaaceWGibGbaKaadaWgaaWcbaGaamyAaaqabaaabaGaam yAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGccaGGSaaeaaaa aaaaa8qacaGGGcWdaiaaygW7peGaaiiOa8aacaWGcbGaeyypa0ZaaS aaaeaacaaIXaaabaGaamOBaaaadaaeWbqaamaabmaabaGabmisayaa jaWaaSbaaSqaaiaadMgaaeqaaOGaeyOeI0IaamisaaGaayjkaiaawM caaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGc caGGSaWdbiaacckacaGGGcWdaiaab2eacaqGtbGaaeyraiabg2da9m aalaaabaGaaGymaaqaaiaad6gaaaWaaabCaeaadaqadaqaaiqadIea gaqcamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadIeaaiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigda aeaacaWGUbaaniabggHiLdGccaGGSaaabaGaaeOvaiaabggacaqGYb GaaeyAaiaabggacaqGUbGaae4yaiaabwgacqGH9aqpcaWGnbGaam4u aiaadweacqGHsislcaWGcbWaaWbaaSqabeaacaaIYaaaaaaaaa@7AC7@

where H=( θ,α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzafGaamisai abg2da9KqbaoaabmaakeaacqaH4oqCcaGGSaGaeqySdegacaGLOaGa ayzkaaaaaa@3F4F@ and H ^ i =( θ ^ i , α ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIeagaqcam aaBaaaleaacaWGPbaabeaakiabg2da9KqbaoaabmaakeaacuaH4oqC gaqcamaaBaaaleaacaWGPbaabeaakiaacYcacuaHXoqygaqcamaaBa aaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@423C@ .

The acceptance-rejection method of simulation study has been employed to generate data. This method is commonly used in simulation studies to produce random samples from a target distribution. The method for generating random samples from the WAD involves the following steps:

  1. Generate Y from exponential ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdehacaGLOaGaayzkaaaaaa@39E6@ distribution
  2. Generates U from Uniform (0,1) distribution
  3. If U f(y) Mg(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfacqGHKj YOdaWcaaqaaiaadAgacaGGOaGaamyEaiaacMcaaeaacaWGnbGaam4z aiaacIcacaWG5bGaaiykaaaaaaa@409D@ , then set X=Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH9a qpcaWGzbaaaa@3968@ (“accept the sample”); otherwise (“reject the sample”) and if reject then repeat the process: step (a-c) until getting the required samples. Where M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaad2eaaa a@37E2@ is a constant.
  4. Each sample size is replicated 10000 times

The biases and MSEs of the MLE and MPSE of the parameters decreases for increasing sample size as evident in Table 1. This supports the first-order asymptotic theory of MLE. From the Table 1, it observed that in case of the parameter θ , MLE provides the better estimate as compared to MPSE and in case of the parameter α, MPSE provides the better estimate as compared to MLE.

Parameter

Sample size

                        MLE

                   MPSE

Mean

Biased

MSE

Mean

Biased

MSE

θ=1.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaigdacaGGUaGaaGynaaaa@3B8F@  

20

40

60

80

100

1.48704

1.48878

1.49006

1.49189

1.49376

-0.01295

-0.01121

-0.00993

-0.00810

-0.00623

 

0.00034

0.00027

0.00026

0.00021

0.00017

1.48465

1.48806

1.48906

1.49116

1.49304

-0.01534

-0.01193

-0.01093

-0.00883

-0.00695

0.00037

0.00028

0.00026

0.00021

0.00018

α=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaigdaaaa@3A07@  

20

40

60

80

100

0.98180

0.98481

0.98619

0.98940

0.99162

-0.01819

-0.01518

-0.01380

-0.01059

-0.00837

0.00052

0.00040

0.00036

0.00031

0.00026

0.98250

0.98499

0.98639

0.98967

0.99167

-0.01749

-0.01500

-0.01360

-0.01032

-0.00832

0.00038

0.00032

0.00027

0.00022

0.00020

θ=1.7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaigdacaGGUaGaaG4naaaa@3B91@  

20

40

60

80

100

1.69411

1.69488

1.69756

1.69853

1.69967

-0.00588

-0.00511

-0.00243

-0.00146

-0.00032

0.00038

0.00029

0.00026

0.00023

0.00020

1.68324

1.68611

1.68800

1.69117

1.69298

-0.01675

-0.01388

-0.01199

-0.00882

-0.00701

0.00090

0.00059

0.00049

0.00038

0.00031

α=2.3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHjabg2 da9iaaikdacaGGUaGaaG4maaaa@3B77@  

20

40

60

80

100

2.29306

2.29351

2.29465

2.29503

 2.29610

-0.00693

-0.00649

-0.00534

-0.00496

-0.00389

0.00134

0.00100

0.00086

0.00076

0.00066

2.29615

2.29672

2.29773

2.29857

2.29894

-0.00384

-0.00327

-0.00226

-0.00142

-0.00105

0.00306

0.00203

0.00147

0.00129

0.00108

Table 1 Descriptive constants of the parameters of WAD

Variance-Covariance matrix for the parameters θ=1.5,  α=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaceaa0qKaeqiUde Naeyypa0JaaGymaiaac6cacaaI1aGaaiilaabaaaaaaaaapeGaaiiO aiaacckapaGaeqySdeMaeyypa0JaaGymaaaa@4292@ and θ=1.7,  α=2.3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaigdacaGGUaGaaG4naiaacYcaqaaaaaaaaaWdbiaacckacaGG GcWdaiabeg7aHjabg2da9iaaikdacaGGUaGaaG4maaaa@4388@ are given by

          θ               α θ α ( 0.00013 0.00006 0.00006 0.00020 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabceqabaanefaaqa aaaaaaaaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckapaGaeqiUde3dbiaacckacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOa8aacqaHXoqyaeaafaqabeGaba aabaGaeqiUdehabaGaeqySdegaamaabmaabaqbaeqabiGaaaqaaiaa bcdacaqGUaGaaeimaiaabcdacaqGWaGaaeymaiaabodaaeaacaqGWa GaaeOlaiaabcdacaqGWaGaaeimaiaabcdacaqG2aaabaGaaeimaiaa b6cacaqGWaGaaeimaiaabcdacaqGWaGaaeOnaaqaaiaaicdacaGGUa GaaGimaiaaicdacaaIWaGaaGOmaiaaicdaaaaacaGLOaGaayzkaaaa aaa@7014@ and            θ               α θ α ( 0.00020 0.00003 0.00003 0.00066 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabceqabaanefaaqa aaaaaaaaWdbiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcWdaiabeI7aX9qacaGGGcGaai iOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGG GcGaaiiOaiaacckacaGGGcGaaiiOaiaacckapaGaeqySdegabaqbae qabiqaaaqaaiabeI7aXbqaaiabeg7aHbaadaqadaqaauaabeqaciaa aeaacaqGWaGaaeOlaiaabcdacaqGWaGaaeimaiaabkdacaqGWaaaba Gaaeimaiaab6cacaqGWaGaaeimaiaabcdacaqGWaGaae4maaqaaiaa bcdacaqGUaGaaeimaiaabcdacaqGWaGaaeimaiaabodaaeaacaaIWa GaaiOlaiaaicdacaaIWaGaaGimaiaaiAdacaaI2aaaaaGaayjkaiaa wMcaaaaaaa@713A@

Applications and data analysis

To test the goodness of fit of WAD , we have considered following two real lifetime datasets.

Dataset 1: The following symmetric data, discussed by Murthy et al,21 relating to the failure times of windshields. The values are as follows.

0.04, 0.3, 0.31, 0.557, 0.943, 1.07, 1.124, 1.248, 1.281, 1.281, 1.303, 1.432, 1.48, 1.51, 1.51,1.568, 1.615, 1.619, 1.652, 1.652, 1.757, 1.795, 1.866, 1.876, 1.899, 1.911, 1.912, 1.9141,0.981, 2.010, 2.038, 2.085, 2.089, 2.097, 2.135, 2.154, 2.190, 2.194, 2.223, 2.224, 2.23, 2.3,2.324, 2.349, 2.385, 2.481, 2.610, 2.625, 2.632, 2.646, 2.661, 2.688, 2.823, 2.89, 2.9, 2.934,2.962, 2.964, 3, 3.1, 3.114, 3.117, 3.166, 3.344, 3.376, 3.385, 3.443, 3.467, 3.478, 3.578,3.595, 3.699, 3.779, 3.924, 4.035, 4.121, 4.167, 4.240, 4.255, 4.278, 4.305, 4.376, 4.449,4.485, 4.570, 4.602, 4.663, 4.694.

The total time to test (TTT) plots and the histogram of the original dataset 1 and the corresponding simulated dataset are shown in the Figure 7.

Figure 7 TTT-plot and histogram of the observed and theoretical values of the dataset-1.

Dataset-2: The following bi-modal, a set of complete data discussed by Murthy et al22 reports the lifetimes of 20 electronic components. The observations are:

0.03, 0.12, 0.22, 0.35, 0.73, 0.79, 1.25, 1.41, 1.52, 1.79, 1.80, 1.94, 2.38, 2.40, 2.87, 2.99,3.14, 3.17, 4.72, 5.09.

The total time to test (TTT) plots and the histogram of the original dataset 2 and the corresponding simulated dataset are shown in the Figure 8.

Figure 8 TTT-plot and histogram of the observed and theoretical values of the dataset-2.

In order to compare lifetime distributions, values of 2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3BF1@ , Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Consistent Akaike Information Criterion (CAIC), Hannan-Quinn Information Criterion (HQIC), Kolmogorov-Smirnov Statistics (K-S) and the corresponding probability value (p-value) for the above data set has been computed. The formulae for computing AIC, BIC, CAIC, HQIC and K-S are as follows:

AIC=2logL+2p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaWGjb Gaam4qaiabg2da9iabgkHiTiaaikdaciGGSbGaai4BaiaacEgacaWG mbGaey4kaSIaaGOmaiaadchaaaa@41E6@ , BIC=2logL+plog( n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeacaWGjb Gaam4qaiabg2da9iabgkHiTiaaikdaciGGSbGaai4BaiaacEgacaWG mbGaey4kaSIaamiCaiGacYgacaGGVbGaai4zamaabmaabaGaamOBaa GaayjkaiaawMcaaaaa@4677@ , CAIC=2logL+ 2pn np1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGbb GaamysaiaadoeacqGH9aqpcqGHsislcaaIYaGaciiBaiaac+gacaGG NbGaamitaiabgUcaRmaalaaabaGaaGOmaiaadchacaWGUbaabaGaam OBaiabgkHiTiaadchacqGHsislcaaIXaaaaaaa@482E@

HQIC=2logL+2plog[ log( n ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIeacaWGrb GaamysaiaadoeacqGH9aqpcqGHsislcaaIYaGaciiBaiaac+gacaGG NbGaamitaiabgUcaRiaaikdacaWGWbGaciiBaiaac+gacaGGNbWaam WaaeaaciGGSbGaai4BaiaacEgadaqadaqaaiaad6gaaiaawIcacaGL PaaaaiaawUfacaGLDbaaaaa@4CD1@ , K-S= Sup x | F m ( x ) F o ( x )| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzafGaam4sai aab2cacaWGtbGaeyypa0tcfa4aaCbeaOqaaKqzafGaam4uaiaadwha caWGWbaaleaajugqbiaadIhaaSqabaqcLbuacaGG8bGaamOraKqbao aaBaaaleaacaWGTbaabeaajuaGdaqadaGcbaqcLbuacaWG4baakiaa wIcacaGLPaaajugqbiabgkHiTiaadAeajuaGdaWgaaWcbaGaam4Baa qabaqcfa4aaeWaaOqaaKqzafGaamiEaaGccaGLOaGaayzkaaqcLbua caGG8baaaa@524A@

where,p= number of parameters, n= sample size, F m ( x )= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaamyBaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH 9aqpaaa@3C26@ empirical cdf of considered distribution and F o ( x )= MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaam4BaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH 9aqpaaa@3C28@ cdf of considered distribution.

The ML estimates and the MPS estimates of the parameters along with their standard errors (in parenthesis) of the considered distributions for datasets 1 and 2 are given in Tables 2 & 3 respectively. The goodness of fit measures for the datasets 1 and 2 for the considered distributions are presented in Tables 4 & 5 respectively. It is clear from tables 4 and 5 that WAD has the least, AIC, BIC, CAIC, HQIC and K-S values as compared to the WPD, WKD, WLD, WGD, WSD, WAkD and GD, therefore WAD provides the best fit as compared to these considered distributions for the two datasets. The fitted plot of the considered distributions, Q-Q plot, P-P plot and ECDF plot of the dataset-1 and 2 are shown in the Figure 9, which also support the hypothesis that WAD provides best fit among the considered distributions. The confidence Interval of the parameters of WAD for the dataset-1 & 2 are given in Table 6. The profile plots of WAD for the datasets 1 and 2 are given in Figure 10.

Distributions

 MLE

MPSE

θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja aaaa@386D@  

α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja aaaa@3856@  

θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja aaaa@386D@  

α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja aaaa@3856@  

WAD

1.7924 (0.2066)

2.3564 (0.4593)

1.6634 (0.1912)

2.0582 (0.4179)

WPD

1.6158 (0.2149)

2.8242 (0.5245)

1.4798 (0.2004)

2.4801 (0.4863)

WKD

1.4528 (0.2084)

3.2582 (0.5113)

1.3282 (0.1945)

2.9428 (0.4763)

WLD

1.4583 (0.2099)

3.0683 (0.4945)

1.3318 (0.1956)

2.7609 (0.4589)

WGD

1.4721 (0.2104)

3.2138 (0.4846)

1.3490 (0.1964)

2.9218 (0.4491)

WSD

1.6075 (0.2089)

2.6928 (0.4807)

1.4115 (0.2150)

3.7482 (0.5559)

WAkD

1.6750 (0.2084)

2.7341 (0.4712)

1.9195 (0.2251)

3.3442 (0.5249)

GD

1.3556 (0.2101)

3.4823 (0.5018)

1.2333 (0.1961)

3.1818 (0.46781)

Table 2 ML estimates and MPS estimates of parameters with their standard errors (in parenthesis) of the parameters of the considered distribution of the dataset-1

Distributions

MLE

 

MPSE

 

  θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja aaaa@386D@   α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja aaaa@3856@   θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja aaaa@386D@   α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja aaaa@3856@  

WAD

1.3253 (0.2375)

1.3253 (0.2375)

0.7877 (0.2795)

0.7877 (0.2795)

1.1598 (0.2025)

1.1598 (0.2025)

0.5902 (0.2177)

0.5902 (0.2177)

WPD

1.0191 (0.2206)

0.8391 (0.3227)

0.8574 (0.1833)

0.5973 (0.2486)

WKD

0.7510 (0.2096)

1.0218 (0.3258)

0.5978 (0.1719)

0.7814 (0.2601)

WLD

0.7762 (0.2164)

0.9515 (0.3079)

0.6197 (0.1779)

0.7277 (0.2441)

WGD

0.75425 (0.2250)

1.0728 (0.3071)

0.5923 (0.1883)

0.8547 (0.2479)

WSD

1.0260   (0.2259)

0.8422 (0.2908)

1.1353 (0.2071)

2.2794 (0.2527)

WAkD

1.1117 (0.2352)

0.9511 (0.3011)

1.9573 (0.2530)

2.2681 (0.2449)

GD

0.6007 (0.2103)

1.1627 (0.3280)

0.4481 (0.1705)

0.9240 (0.2672)

Table 3 ML estimates and MPS estimates of parameters with their standard errors (in parenthesis) of the parameters of the considered distribution of the dataset-2

Distributions

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3BF1@  

AIC

BIC

CAIC

HQIC

K-S

P-value

WAD

278.73

282.73

295.75

282.87

284.72

0.07

0.74

WPD

282.87

286.87

299.89

287.01

288.86

0.13

0.08

WKD

286.46

290.46

303.48

290.6

292.45

0.11

0.26

WLD

285.49

289.49

302.51

289.63

291.48

0.12

0.17

WGD

286.02

290.02

303.04

290.16

292.01

0.14

0.07

WSD

282.27

286.27

299.29

286.41

288.26

0.14

0.07

WAkD

280.78

286.78

297.8

284.92

286.77

0.14

0.09

GD

287.88

291.88

304.9

292.02

293.87

0.11

0.21

Table 4 Goodness of fit of the dataset-1

Distributions

2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3BF1@  

AIC

BIC

CAIC

HQIC

K-S

P-value

WAD

63.18

67.18

80.20

67.88

67.56

0.09

0.99

WPD

64.03

68.03

81.05

68.73

68.41

0.17

0.6

WKD

65.33

69.33

82.35

70.04

69.72

0.14

0.74

WLD

65.07

69.07

82.09

69.77

69.45

0.16

0.66

WGD

65.48

69.48

82.5

70.18

69.86

0.18

0.43

WSD

64.02

68.02

81.04

68.72

68.4

0.17

0.57

WAkD

63.62

67.62

80.64

68.32

68.01

0.16

0.68

GD

66.14

70.14

83.16

70.84

70.53

0.14

0.83

Table 5 Goodness of fit of the dataset-2

Datasets

Parameters

90% CI

95% CI

99% CI

 

 

(Lower, Upper)

(Lower, Upper)

(Lower, Upper)

1

θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja aaaa@386D@     

1.4806, 2.1618

1.4270, 2.2395

1.3279, 2.3978

 

α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja aaaa@3856@  

1.6769, 3.1895

1.5637, 3.3670

1.3580, 3.7307

2

θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja aaaa@386D@  

0.9835, 1.771

0.9284, 1.8706

0.8287, 2.0775

 

α ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbbG8qqFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg7aHzaaja aaaa@3856@  

0.4189, 1.3496

0.3676, 1.4816

0.2827, 1.7634

Table 6 Confidence interval of the parameters of WAD for the dataset-1 and 2

Figure 9 Fitted plot of the considered distributions, Q-Q plot, P-P plot and ECDF plot of the dataset-1 and 2 respectively.

Figure 10 Profile plot of WAD for the dataset-1 and 2.

Conclusion

In this paper, a weighted Amarendra distribution (WAD) has been suggested which contains Amarendra distribution. Its statistical properties including moments based measures such as moments about origin, moments about mean, coefficient of variation, skewness, kurtosis, index of dispersion, reliability function, hazard function, reverse hazard function, mean residual life function have been discussed with graphical representation. Parameters are estimated by the method of maximum likelihood estimation and maximum product spacing estimation. A simulation study is carried out to show the consistency of the estimaor of the parameters by maximum likelihood estimation and maximum product spacing estimation. Confidence interval of the parameters has been presented with profile plot of the parameters. Finally, in application portion, goodness of fit demonstrated on two real lifetime datasets from engineering field and fitted plot of the considered distributions, P-P plot, Q-Q plot, and ECDF plot of dataset-1 and 2 are presented. Its shows that WAD provides a better fit as compared with WPD, WKD, WLD, WGD, WSD, WAkD and GD.

Acknowledgments

Authors are grateful to the editor in chief and the anonymous reviewer for some minor comments which improved both the quality and the presentation.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Funding

None.

References

  1. Fisher RA. The effects of methods of ascertainment upon the estimation of frequencies. The Annals of Eugenics. 1934;6:13–25.
  2. Rao CR. On discrete distributions arising out of methods of ascertainment. Sankhyā: The Indian Journal of Statistics, Series A. 1965;(27):311–324.
  3. Ghitany ME, Alqallaf F, Al-Mutairi DK, et al. A two-parameter weighted Lindley distribution and its applications to survival data. Mathematics and Computers in Simulation. 2011;81(6):1190–1201.
  4. Lindley DV. Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society, Series B. 1958;20(1):102–107.
  5. Shanker R, Shukla KK. Weighted Akash distribution and its application to model lifetime data. International Journal of Statistics. 2016;39(2):1138–1147.
  6. Shanker R. Akash distribution and its application. International Journal of Probability and Statistics. 2015;4(3):65–75.
  7. Eyob T, Shanker R. A two-parameter weighted Garima distribution with properties and application. Biom Biostat Int J. 2018;7(3):234–242.
  8. Shanker R. Garima distribution and Its Application to model behavioural science data. Biom Biostat Int J. 2016(a);4(7):275–281.
  9. Ganaie RA, Rajagopalan V, Rather AA. Weighted Aradhana distribution: properties and applications. Journal of Information and Computational Science. 2019;9(8):392–406.
  10. Shanker R. Aradhana distribution and its applications. International Journal of Statistics and Applications. 2016(b);6(1):23–34.
  11. Shanker R. Uma distribution with properties and applications. Biom Biostat Int J. 2022;11(5):165–169.
  12. Shanker R, Shukla KK. A two -parameter weighted Sujatha distribution and its application to model life time data. International Journal of Mathematics and Statistics. 2018;57(3):106–121.
  13. Shanker R. Sujatha distribution and its application. Statistics in Transition New Series. 2016(c);17(3):391–410.
  14. Shanker R, Ray M, Prodhani HR. Weighted Komal distribution with properties and applications. International Journal of Statistics and Reliability Engineering. 2023;10(3):541–551.
  15. Shanker R. Komal distribution with properties and application in survival analysis. Biom Biostat Int J. 2023;12(2):40–44.
  16. Shanker R, Shukla KK, Shanker R. A note on weighted Aradhana distribution with an application. Biom Biostat Int J. 2022;11(1):22–26.
  17. Prodhani HR, Shanker R. Weighted Pratibha distribution with properties and application in flood dataset. Biom Biostat Int J. 2024;13(2):52–57.
  18. Shanker R. Pratibha distribution with statistical properties and application. Biom Biostat Int J. 2023;12(5):136–142.  
  19. Shanker R. Amarendra distribution and its applications. American Journal of Mathematics and Statistics. 2016d;6:44–56.
  20. Mohiuddin M, Dar SA, Khan AA, et al. Weighted Amarendra distribution: properties and application to model real-life data. J Stat Appl Pro. 2022;11(3):1075–1093.
  21. Murthy DNP, Xie M, Jiang R. Weibull models. John Wiley & Sons Inc, Hoboken. 2004.
Creative Commons Attribution License

©2024 Shanker, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.