Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 12 Issue 2

Komal distribution with properties and application in survival analysis

Rama Shanker

Department of Statistics, Assam University, Silchar, Assam, India

Correspondence: Department of Statistics,Assam University, Silchar, Assam, India

Received: April 05, 2023 | Published: April 25, 2023

Citation: Shanker R. Komal distribution with properties and application in survival analysis. Biom Biostat Int J. 2023;12(2):40-44. DOI: 10.15406/bbij.2023.12.00381

Download PDF

Abstract

The modeling and analysis of lifetime data are becoming a challenge for the statistician and policy makers because the lifetime data are in general stochastic in nature. During recent decades several one parameter lifetime distributions have been proposed by researchers but they are not suitable due to the nature of the distribution and the stochastic nature of the data. In this paper an attempt has been made to propose a new one parameter lifetime distribution named Komal distribution. The statistical properties, estimation of parameter and application of the distribution to a lifetime dataset have been presented.

Keywords: lifetime distributions, statistical properties, estimation of parameter, applications

Introduction

In the present era, modeling of lifetime data is a serious challenge because the lifetime data are stochastic in nature. It has been observed that policy makers are struggling to find a suitable distribution for lifetime data. During recent decades several one parameter lifetime distributions have been proposed in Statistics literature but due to distributional nature or the nature of the lifetime data, these proposed distributions do not give proper fit. Several researchers in the field of distribution theory are trying to propose a new lifetime distribution as per the stochastic nature of lifetime data. Upto 1958, there was only one lifetime distribution named exponential distribution which was in use for the analysis and modeling of lifetime data. Lindley1 proposed another lifetime distribution known as Lindley distribution and Ghitanty et al.2 after detailed study on its statistical properties and application observed that Lindley distribution gives much closure fit than exponential distribution. While working on the comparative study of exponential and Lindley distribution, Shanker et al.3 observed that exponential and Lindley distributions are competing well and there were some datasets where these two distributions do not provide good fit. Shanker4,5 proposed two new one parameter lifetime distributions namely Shanker distribution and Akash distribution which gave much better fit than both exponential and Lindley distribution. Shanker et al.6 provides a comparative study on applications of exponential, Lindley and Akash distribution. Further, Shanker & Hagos7 presented a detailed study on applications of exponential, Lindley, Shanker and Akash distribution and showed that still there are some datasets where these distributions did not provide better fit. Further, Shanker8 introduced Sujatha distribution which provides much better fit than exponential, Lindley, Shanker and Akash distribution. Again, Shanker9 proposed another one parameter lifetime distribution named Garima distribution to model data arising from behavioral sciences, but this also does not give good fit on several real lifetime datasets. Now the question is to search a distribution which is both flexible and tractable in nature to capture the variation in the datasets. When a distribution does not give good fit, then some researchers prefer to transform the dataset to satisfy the assumptions of the distribution but this is not a preferable method because the original nature of the dataset gets lost. Some researchers also prefer to modify the distribution by adding extra shape parameter or scale parameter distribution to suit the nature of the dataset. But, instead of transforming the original dataset or modifying the distribution suiting to dataset, it is better to search a new distribution which provides better fit for the given datasets when the existing distributions fails to provide good fit.

In the present paper an attempt has been made to propose a new one parameter lifetime distribution, named Komal distribution, which would provide a better fit over exponential, Lindley, Shanker, Akash and Sujatha distributions. Some of its statistical properties, estimation techniques of parameter and an application to a real lifetime dataset has been discussed and presented.

Komal distribution

Taking the convex combination of exponential ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdehacaGLOaGaayzkaaaaaa@3A4D@  and gamma ( 2,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG OmaiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3BB9@  distributions with respective mixing proportions θ( θ+1 ) θ 2 +θ+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq iUde3aaeWaaeaacqaH4oqCcqGHRaWkcaaIXaaacaGLOaGaayzkaaaa baGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqiUdeNaey 4kaSIaaGymaaaaaaa@448E@  and 1 θ 2 +θ+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeI7a XjabgUcaRiaaigdaaaaaaa@3EB7@ , a new probability density function (pdf) can be expressed as

f( x;θ )= θ 2 θ 2 +θ+1 ( 1+θ+x ) e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaakeaacqaH4oqCdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcqaH4oqCcqGHRaWkcaaIXaaaamaa bmaabaGaaGymaiabgUcaRiabeI7aXjabgUcaRiaadIhaaiaawIcaca GLPaaacaaMc8UaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaaGPa VlaadIhaaaGccaGG7aGaamiEaiabg6da+iaaicdacaGGSaGaeqiUde NaeyOpa4JaaGimaaaa@5DC9@

We would call this new distribution as ‘Komal distribution’. Like other one parameter lifetime distributions, Komal distribution has been derived as a convex combination of exponential distribution and gamma distribution, it is expected to give better fit over exponential and other one parameter distributions derived using convex combinations of exponential distribution and gamma distribution. The cumulative distribution function (cdf) of Komal distribution can thus be obtained as

F( x;θ )=1[ 1+ θx θ 2 +θ+1 ] e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaaGym aiabgkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaam iEaaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeI7a XjabgUcaRiaaigdaaaaacaGLBbGaayzxaaGaaGPaVlaadwgadaahaa WcbeqaaiabgkHiTiabeI7aXjaaykW7caWG4baaaOGaai4oaiaadIha cqGH+aGpcaaIWaGaaiilaiabeI7aXjabg6da+iaaicdaaaa@5C2F@

The behaviour of the pdf and the cdf of Komal distribution for varying values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@  have been presented in Figures 1 & 2 respectively.

Figure 1 Graphs of the pdf of Komal distribution for selected values of the parameter.

Figure 2 Graphs of the cdf of Komal distribution for selected values of the parameter.

Descriptive measures of Komal distribution

As we know that moments are essential to know the descriptive nature such as coefficient of variation, skewness, kurtosis and index of dispersion of any distribution. Following the approach of obtaining the r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3805@ th moment of Shanker distribution and Akash distribution by Shanker4,5, the r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3805@ th moment about origin μ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaaaa@3D10@ of Komal distribution can be obtained as

μ r =E( X r )= θ 2 θ 2 +θ+1 0 x r ( 1+θ+x ) e θx dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wk0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9iaadweadaqadaqaaiaadIfadaahaaWcbeqaaiaadkhaaaaakiaawI cacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaaCaaaleqabaGaaGOm aaaaaOqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeI 7aXjabgUcaRiaaigdaaaWaa8qCaeaacaWG4bWaaWbaaSqabeaacaWG YbaaaOWaaeWaaeaacaaIXaGaey4kaSIaeqiUdeNaey4kaSIaamiEaa GaayjkaiaawMcaaaWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOGa aGPaVlaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaaykW7caWG4b aaaOGaamizaiaadIhaaaa@6455@  

= r!( θ 2 +θ+r+1 ) θ r ( θ 2 +θ+1 ) ;r=1,2,3, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaamOCaiaacgcadaqadaqaaiabeI7aXnaaCaaaleqabaGaaGOm aaaakiabgUcaRiabeI7aXjabgUcaRiaadkhacqGHRaWkcaaIXaaaca GLOaGaayzkaaaabaGaeqiUde3aaWbaaSqabeaacaWGYbaaaOWaaeWa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH4oqCcq GHRaWkcaaIXaaacaGLOaGaayzkaaaaaiaacUdacaWGYbGaeyypa0Ja aGymaiaacYcacaaIYaGaaiilaiaaiodacaGGSaGaeyyXICTaeyyXIC TaeyyXICnaaa@5D29@   (3.1)

Substituting r=1,2,3,4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaaI0aaaaa@3E0D@ in (3.1), the first four moments about origin of Komal distribution can be obtained as

μ 1 = θ 2 +θ+2 θ( θ 2 +θ+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeq iUdeNaey4kaSIaaGOmaaqaaiabeI7aXnaabmaabaGaeqiUde3aaWba aSqabeaacaaIYaaaaOGaey4kaSIaeqiUdeNaey4kaSIaaGymaaGaay jkaiaawMcaaaaaaaa@4EE6@  , μ 2 = 2( θ 2 +θ+3 ) θ 2 ( θ 2 +θ+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOmamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaeqiUdeNaey4kaSIaaG4maaGaayjkaiaawMcaaaqa aiabeI7aXnaaCaaaleqabaGaaGOmaaaakmaabmaabaGaeqiUde3aaW baaSqabeaacaaIYaaaaOGaey4kaSIaeqiUdeNaey4kaSIaaGymaaGa ayjkaiaawMcaaaaaaaa@5220@

μ 3 = 6( θ 2 +θ+4 ) θ 3 ( θ 2 +θ+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOnamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaeqiUdeNaey4kaSIaaGinaaGaayjkaiaawMcaaaqa aiabeI7aXnaaCaaaleqabaGaaG4maaaakmaabmaabaGaeqiUde3aaW baaSqabeaacaaIYaaaaOGaey4kaSIaeqiUdeNaey4kaSIaaGymaaGa ayjkaiaawMcaaaaaaaa@5227@  , μ 4 = 24( θ 2 +θ+5 ) θ 4 ( θ 2 +θ+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOmaiaaisdadaqadaqaaiabeI7aXnaaCaaaleqaba GaaGOmaaaakiabgUcaRiabeI7aXjabgUcaRiaaiwdaaiaawIcacaGL PaaaaeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaGcdaqadaqaaiabeI 7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeI7aXjabgUcaRiaa igdaaiaawIcacaGLPaaaaaaaaa@52E4@ .

The moments about the mean of Komal distribution, using relationship between moments about the mean and the moments about the origin, can thus be obtained as

μ 2 = θ 4 +2 θ 3 +5 θ 2 +4θ+2 θ 2 ( θ 2 +θ+1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiUde3aaWbaaSqa beaacaaI0aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaG 4maaaakiabgUcaRiaaiwdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaI0aGaeqiUdeNaey4kaSIaaGOmaaqaaiabeI7aXnaaCa aaleqabaGaaGOmaaaakmaabmaabaGaeqiUde3aaWbaaSqabeaacaaI YaaaaOGaey4kaSIaeqiUdeNaey4kaSIaaGymaaGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaaaaaa@56F6@   

μ 3 = 2( θ 6 +3 θ 5 +9 θ 4 +13 θ 3 +12 θ 2 +6θ+2 ) θ 3 ( θ 2 +θ+1 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmamaabmaabaGa eqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaG4maiabeI7aXn aaCaaaleqabaGaaGynaaaakiabgUcaRiaaiMdacqaH4oqCdaahaaWc beqaaiaaisdaaaGccqGHRaWkcaaIXaGaaG4maiabeI7aXnaaCaaale qabaGaaG4maaaakiabgUcaRiaaigdacaaIYaGaeqiUde3aaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGOnaiabeI7aXjabgUcaRiaaikdaai aawIcacaGLPaaaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGcdaqa daqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeI7aXj abgUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaa aaaa@6351@  

μ 4 = 3( 3 θ 8 +12 θ 7 +42 θ 6 +84 θ 5 +119 θ 4 +112 θ 3 +76 θ 2 +32θ+8 ) θ 4 ( θ 2 +θ+1 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH8o qBjuaGdaWgaaWcbaqcLbsacaaI0aaaleqaaKqzGeGaeyypa0tcfa4a aSaaaOqaaKqzGeGaaG4maKqbaoaabmaakeaajugibiaaiodacqaH4o qCjuaGdaahaaWcbeqaaKqzGeGaaGioaaaacqGHRaWkcaaIXaGaaGOm aiabeI7aXLqbaoaaCaaaleqabaqcLbsacaaI3aaaaiabgUcaRiaais dacaaIYaGaeqiUdexcfa4aaWbaaSqabeaajugibiaaiAdaaaGaey4k aSIaaGioaiaaisdacqaH4oqCjuaGdaahaaWcbeqaaKqzGeGaaGynaa aacqGHRaWkcaaIXaGaaGymaiaaiMdacqaH4oqCjuaGdaahaaWcbeqa aKqzGeGaaGinaaaacqGHRaWkcaaIXaGaaGymaiaaikdacqaH4oqCju aGdaahaaWcbeqaaKqzGeGaaG4maaaacqGHRaWkcaaI3aGaaGOnaiab eI7aXLqbaoaaCaaaleqabaqcLbsacaaIYaaaaiabgUcaRiaaiodaca aIYaGaeqiUdeNaey4kaSIaaGioaaGccaGLOaGaayzkaaaabaqcLbsa cqaH4oqCjuaGdaahaaWcbeqaaKqzGeGaaGinaaaajuaGdaqadaGcba qcLbsacqaH4oqCjuaGdaahaaWcbeqaaKqzGeGaaGOmaaaacqGHRaWk cqaH4oqCcqGHRaWkcaaIXaaakiaawIcacaGLPaaajuaGdaahaaWcbe qaaKqzGeGaaGinaaaaaaaaaa@81E4@ .

The descriptive constants including coefficient of variation (CV), coefficient of skewness (CS), coefficient of kurtosis (CK) and the index of dispersion (ID) of Komal distribution are thus obtained as

CV= μ 2 μ 1 = θ 4 +2 θ 3 +5 θ 2 +4θ+2 θ 2 +θ+2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGwb Gaeyypa0ZaaSaaaeaadaGcaaqaaiabeY7aTnaaBaaaleaacaaIYaaa beaaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOWaaWbaaS qabeaakiadacUHYaIOaaaaaiabg2da9maalaaabaWaaOaaaeaacqaH 4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIYaGaeqiUde3aaW baaSqabeaacaaIZaaaaOGaey4kaSIaaGynaiabeI7aXnaaCaaaleqa baGaaGOmaaaakiabgUcaRiaaisdacqaH4oqCcqGHRaWkcaaIYaaale qaaaGcbaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqiU deNaey4kaSIaaGOmaaaaaaa@5A90@  

CS= μ 3 2 μ 2 3 = 4 ( θ 6 +3 θ 5 +9 θ 4 +13 θ 3 +12 θ 2 +6θ+2 ) 2 ( θ 4 +2 θ 3 +5 θ 2 +4θ+2 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGtb Gaeyypa0ZaaSaaaeaacqaH8oqBdaWgaaWcbaGaaG4maaqabaGcdaah aaWcbeqaaiaaikdaaaaakeaacqaH8oqBdaWgaaWcbaGaaGOmaaqaba GcdaahaaWcbeqaaiaaiodaaaaaaOGaeyypa0ZaaSaaaeaacaaI0aWa aeWaaeaacqaH4oqCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaIZa GaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey4kaSIaaGyoaiabeI7a XnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaigdacaaIZaGaeqiUde 3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGymaiaaikdacqaH4oqC daahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aGaeqiUdeNaey4kaS IaaGOmaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaOqaamaa bmaabaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOmai abeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiaaiwdacqaH4oqC daahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI0aGaeqiUdeNaey4kaS IaaGOmaaGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaaaaaa@7234@  

CK= μ 4 μ 2 2 = 3( 3 θ 8 +12 θ 7 +42 θ 6 +84 θ 5 +119 θ 4 +112 θ 3 +76 θ 2 +32θ+8 ) ( θ 4 +2 θ 3 +5 θ 2 +4θ+2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb Gaam4saiabg2da9KqbaoaalaaakeaajugibiabeY7aTLqbaoaaBaaa leaajugibiaaisdaaSqabaaakeaajugibiabeY7aTLqbaoaaBaaale aajugibiaaikdaaSqabaqcfa4aaWbaaSqabeaajugibiaaikdaaaaa aiabg2da9KqbaoaalaaakeaajugibiaaiodajuaGdaqadaGcbaqcLb sacaaIZaGaeqiUdexcfa4aaWbaaSqabeaajugibiaaiIdaaaGaey4k aSIaaGymaiaaikdacqaH4oqCjuaGdaahaaWcbeqaaKqzGeGaaG4naa aacqGHRaWkcaaI0aGaaGOmaiabeI7aXLqbaoaaCaaaleqabaqcLbsa caaI2aaaaiabgUcaRiaaiIdacaaI0aGaeqiUdexcfa4aaWbaaSqabe aajugibiaaiwdaaaGaey4kaSIaaGymaiaaigdacaaI5aGaeqiUdexc fa4aaWbaaSqabeaajugibiaaisdaaaGaey4kaSIaaGymaiaaigdaca aIYaGaeqiUdexcfa4aaWbaaSqabeaajugibiaaiodaaaGaey4kaSIa aG4naiaaiAdacqaH4oqCjuaGdaahaaWcbeqaaKqzGeGaaGOmaaaacq GHRaWkcaaIZaGaaGOmaiabeI7aXjabgUcaRiaaiIdaaOGaayjkaiaa wMcaaaqaaKqbaoaabmaakeaajugibiabeI7aXLqbaoaaCaaaleqaba qcLbsacaaI0aaaaiabgUcaRiaaikdacqaH4oqCjuaGdaahaaWcbeqa aKqzGeGaaG4maaaacqGHRaWkcaaI1aGaeqiUdexcfa4aaWbaaSqabe aajugibiaaikdaaaGaey4kaSIaaGinaiabeI7aXjabgUcaRiaaikda aOGaayjkaiaawMcaaKqbaoaaCaaaleqabaqcLbsacaaIYaaaaaaaaa a@92B9@  

  ID= μ 2 μ 1 = θ 4 +2 θ 3 +5 θ 2 +4θ+2 θ( θ 2 +θ+1 )( θ 2 +θ+2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacaWGeb Gaeyypa0ZaaSaaaeaacqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakeaa cqaH8oqBdaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaOGamai4gk diIcaaaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaisda aaGccqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey 4kaSIaaGynaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa isdacqaH4oqCcqGHRaWkcaaIYaaabaGaeqiUde3aaeWaaeaacqaH4o qCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH4oqCcqGHRaWkcaaI XaaacaGLOaGaayzkaaWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaik daaaGccqGHRaWkcqaH4oqCcqGHRaWkcaaIYaaacaGLOaGaayzkaaaa aaaa@65F5@ .

Behaviour of coefficient of variation (CV), coefficient of skewness (CS), coefficient of kurtosis (CK) and index of dispersion (ID) of Komal distribution for changing values of parameter are shown in the Figure 3. The coefficient of variation and the coefficient of skewness are non-decreasing whereas the coefficient of kurtosis and the index of dispersion are non-increasing.

Figure 3 Graph of CV, CS, CK and ID of Komal distribution for values of the parameter.

Reliability properties of Komal distribution

Hazard rate function

The hazard rate function of a random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@ having pdf f( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaaaaa@3CF4@ and cdf F( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaaaaa@3CD4@ is defined as

h( x,θ )= lim Δx0 P( X<x+Δx|X>x ) Δx = f( x;θ ) 1F( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhacaGGSaGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaCbe aeaaciGGSbGaaiyAaiaac2gaaSqaaiabgs5aejaadIhacqGHsgIRca aIWaaabeaakmaalaaabaGaamiuamaabmaabaWaaqGaaeaacaWGybGa eyipaWJaamiEaiabgUcaRiabgs5aejaadIhacaaMc8oacaGLiWoaca WGybGaeyOpa4JaamiEaaGaayjkaiaawMcaaaqaaiabgs5aejaadIha aaGaeyypa0ZaaSaaaeaacaWGMbWaaeWaaeaacaWG4bGaai4oaiabeI 7aXbGaayjkaiaawMcaaaqaaiaaigdacqGHsislcaWGgbWaaeWaaeaa caWG4bGaai4oaiabeI7aXbGaayjkaiaawMcaaaaaaaa@656E@  

Thus, the hazard rate function of Komal distribution can be obtained as

  h( x,θ )= θ 2 ( 1+θ+x ) ( θ 2 +θ+1+θx ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhacaGGSaGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiaaigdacq GHRaWkcqaH4oqCcqGHRaWkcaWG4baacaGLOaGaayzkaaaabaWaaeWa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH4oqCcq GHRaWkcaaIXaGaey4kaSIaeqiUdeNaamiEaaGaayjkaiaawMcaaaaa aaa@535D@ .

This gives h( 0,θ )= θ 2 ( θ+1 ) θ 2 +θ+1 =f( 0,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaaicdacaGGSaGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiabeI7aXj abgUcaRiaaigdaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaaWcbeqa aiaaikdaaaGccqGHRaWkcqaH4oqCcqGHRaWkcaaIXaaaaiabg2da9i aadAgadaqadaqaaiaaicdacaGGSaGaeqiUdehacaGLOaGaayzkaaaa aa@52B7@ . The behaviour of the hazard rate function of Komal distribution for various values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ is shown in the following Figure 4. The hazard rate of Komal distribution is monotonically non-decreasing. Further, as the values of parameter increases, the hazard rate of Komal distribution scaled up.

Figure 4 Graphs of the hazarad rate function of Komal distribution for selected values of the parameter.

Mean residual life function

Let X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@ be a random variable over the support ( 0, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG imaiaacYcacqGHEisPaiaawIcacaGLPaaaaaa@3B72@  representing the lifetime of a system. Mean Residual life (MRL) function measures the expected value of the remaining lifetime of the system, provided it has survived up to time x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ . Let us consider the conditional random variable X x =( Xx|X>x );x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaamiEaaqabaGccqGH9aqpdaqadaqaaiaadIfacqGHsislcaWG 4bGaaiiFaiaadIfacqGH+aGpcaWG4baacaGLOaGaayzkaaGaaGPaVl aacUdacaWG4bGaeyOpa4JaaGimaaaa@475F@ . Then, the MRL function, denoted by m( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaaaaa@3A86@ , is defined as

m( x )=E( X x )= 1 S( x ) x [ 1F( t ) ] dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGfbWaaeWaaeaacaWG ybWaaSbaaSqaaiaadIhaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaS aaaeaacaaIXaaabaGaam4uamaabmaabaGaamiEaaGaayjkaiaawMca aaaadaWdXbqaamaadmaabaGaaGymaiabgkHiTiaadAeadaqadaqaai aadshaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaSqaaiaadIhaaeaa cqGHEisPa0Gaey4kIipakiaaykW7caWGKbGaamiDaiaaykW7caaMc8 oaaa@5769@

The MRL function of Komal distribution can thus be obtained as

m( x )= 1 { θ 2 +θ+1+θx } e θx x t( θ 2 ( 1+θ+t ) ) e θt dtx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaa daGadaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeI 7aXjabgUcaRiaaigdacqGHRaWkcqaH4oqCcaaMc8UaamiEaaGaay5E aiaaw2haaiaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaa aaaOWaa8qCaeaacaWG0bGaaGPaVpaabmaabaGaeqiUde3aaWbaaSqa beaacaaIYaaaaOWaaeWaaeaacaaIXaGaey4kaSIaeqiUdeNaey4kaS IaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaWcbaGaamiEaaqa aiabg6HiLcqdcqGHRiI8aOGaaGPaVlaadwgadaahaaWcbeqaaiabgk HiTiabeI7aXjaadshaaaGccaaMc8UaamizaiaadshacqGHsislcaWG 4baaaa@6D34@   = θ 2 +θ+2+θx θ( θ 2 +θ+1+θx ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqiUdeNa ey4kaSIaaGOmaiabgUcaRiabeI7aXjaaykW7caWG4baabaGaeqiUde 3aaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH 4oqCcqGHRaWkcaaIXaGaey4kaSIaeqiUdeNaaGPaVlaadIhaaiaawI cacaGLPaaaaaaaaa@5360@ .

This gives m( 0 )= θ 2 +θ+2 θ( θ 2 +θ+1 ) = μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaaicdaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaa CaaaleqabaGaaGOmaaaakiabgUcaRiabeI7aXjabgUcaRiaaikdaae aacqaH4oqCdaqadaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiab gUcaRiabeI7aXjabgUcaRiaaigdaaiaawIcacaGLPaaaaaGaeyypa0 JaeqiVd02aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaakiadacUH YaIOaaaaaa@5321@ . The behaviour of the mean residual life function of Komal distribution for various values of parameter is shown in the following Figure 5. It is clear that the mean residual life function of Komal distribution is monotonically non-increasing.

Figure 5 Graphs of the mean residual life function of Komal distribution for values of parameter.

Stochastic ordering

In Probability theory and statistics, a stochastic order quantifies the concept of one random variable being bigger than another. A random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaaaa@380B@  is said to be smaller than a random variable Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywaaaa@380C@  in the

  1. Stochastic order ( X st Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGZbGa amiDaaWdaeqaaOWdbiaadMfaaiaawIcacaGLPaaaaaa@3EAB@ if F X ( x ) F Y ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaiabgwMiZkaadAeapaWaaSbaaSqaa8 qacaWGzbaapaqabaGcpeWaaeWaa8aabaWdbiaadMhaaiaawIcacaGL Paaaaaa@4278@  for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@
  2. Hazard rate order ( X hr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGObGa amOCaaWdaeqaaOWdbiaadMfaaiaawIcacaGLPaaaaaa@3E9E@ if h X ( x ) h Y ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaWgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaiabgwMiZkaadIgapaWaaSbaaSqaa8 qacaWGzbaapaqabaGcpeWaaeWaa8aabaWdbiaadMhaaiaawIcacaGL Paaaaaa@42BC@  for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@
  3. Mean residual life order ( X mrl Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGTbGa amOCaiaadYgaa8aabeaak8qacaWGzbaacaGLOaGaayzkaaaaaa@3F94@ if   m X ( x ) m Y ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaad2gapaWaaSbaaSqaa8qacaWGybaapaqabaGcpeWaaeWa a8aabaWdbiaadIhaaiaawIcacaGLPaaacqGHLjYScaWGTbWdamaaBa aaleaapeGaamywaaWdaeqaaOWdbmaabmaapaqaa8qacaWG5baacaGL OaGaayzkaaaaaa@43EA@  for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@  
  4. Likelihood ratio order ( X lr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGSbGa amOCaaWdaeqaaOWdbiaadMfaaiaawIcacaGLPaaaaaa@3EA2@ if f X ( x ) f Y ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadAgapaWaaSbaaSqaa8qacaWGybaapaqabaGc peWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaa8aabaWdbiaadA gapaWaaSbaaSqaa8qacaWGzbaapaqabaGcpeWaaeWaa8aabaWdbiaa dMhaaiaawIcacaGLPaaaaaaaaa@4140@  decrease in x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@

The following results due to Shaked & Shantikumar10 are well known for establishing stochastic ordering of distributions

  X < lr YX < hr YX < mrl Y X < st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaam iwaiabgYda8maaBaaaleaacaWGSbGaamOCaaqabaGccaWGzbGaeyO0 H4TaamiwaiabgYda8maaBaaaleaacaWGObGaamOCaaqabaGccaWGzb GaeyO0H4TaamiwaiabgYda8maaBaaaleaacaWGTbGaamOCaiaadYga aeqaaOGaamywaaWceaqabeaacqGHthY3aeaacaWGybGaeyipaWZaaS baaWqaaiaadohacaWG0baabeaaliaadMfaaaqabaaaaa@52D4@  

Theorem: Let X~ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacaGG+b aaaa@38ED@  Komal distribution ( θ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUde3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@3B3E@  and Y~ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfacaGG+b aaaa@38EE@  Komal ( θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUde3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3B3F@ . If   θ 1 > θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIXaaabeaakiabg6da+iabeI7aXnaaBaaaleaacaaIYaaa beaaaaa@3D5B@ , then X < lr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3BEB@  hence X < hr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3BE7@ , X < mrl Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaamyBaiaadkhacaWGSbaabeaakiaadMfaaaa@3CDD@  and X < st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamywaaaa@3BF4@ .

Proof: We have

f X ( x; θ 1 ) f Y ( x; θ 2 ) =[ θ 1 2 ( θ 2 2 + θ 2 +1 ) θ 2 2 ( θ 1 2 + θ 1 +1 ) ]( 1+ θ 1 +x 1+ θ 2 +x ) e ( θ 1 θ 2 )x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadAgapaWaaSbaaSqaa8qacaWGybaapaqabaGc peWaaeWaa8aabaWdbiaadIhacaGG7aGaeqiUde3aaSbaaSqaaiaaig daaeqaaaGccaGLOaGaayzkaaaapaqaa8qacaWGMbWdamaaBaaaleaa peGaamywaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4bGaai4oaiabeI 7aXnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaaacqGH9aqp paWaamWaaeaapeWaaSaaaeaapaGaeqiUde3aaSbaaSqaaiaaigdaae qaaOWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacqaH4oqCdaWgaaWc baGaaGOmaaqabaGcdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH4o qCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIXaaacaGLOaGaayzk aaaapeqaa8aacaaMc8UaeqiUde3aaSbaaSqaaiaaikdaaeqaaOWaaW baaSqabeaacaaIYaaaaOWaaeWaaeaacqaH4oqCdaWgaaWcbaGaaGym aaqabaGcdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH4oqCdaWgaa WcbaGaaGymaaqabaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaaGa ay5waiaaw2faamaabmaabaWaaSaaaeaacaaIXaGaey4kaSIaeqiUde 3aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamiEaaqaaiaaigdacqGH RaWkcqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWG4baaaa GaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiabgkHiTmaabmaabaGa eqiUde3aaSbaaWqaaiaaigdaaeqaaSGaaGPaVlabgkHiTiabeI7aXn aaBaaameaacaaIYaaabeaaaSGaayjkaiaawMcaaiaadIhaaaaaaa@82EA@ .

This gives

log[ f X ( x; θ 1 ) f Y ( x; θ 2 ) ]=log[ θ 1 2 ( θ 2 2 + θ 2 +1 ) θ 2 2 ( θ 1 2 + θ 1 +1 ) ]+log( 1+ θ 1 +x 1+ θ 2 +x )( θ 1 θ 2 )x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac+gacaGGNbWdamaadmaabaWdbmaalaaapaqaa8qacaWG MbWdamaaBaaaleaapeGaamiwaaWdaeqaaOWdbmaabmaapaqaa8qaca WG4bGaai4oaiabeI7aXnaaBaaaleaacaaIXaaabeaaaOGaayjkaiaa wMcaaaWdaeaapeGaamOza8aadaWgaaWcbaWdbiaadMfaa8aabeaak8 qadaqadaWdaeaapeGaamiEaiaacUdacqaH4oqCdaWgaaWcbaGaaGOm aaqabaaakiaawIcacaGLPaaaaaaapaGaay5waiaaw2faa8qacqGH9a qpciGGSbGaai4BaiaacEgapaWaamWaaeaapeWaaSaaaeaapaGaeqiU de3aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaaIYaaaaOWaae WaaeaacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaa ikdaaaGccqGHRaWkcqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccqGHRa WkcaaIXaaacaGLOaGaayzkaaaapeqaa8aacqaH4oqCdaWgaaWcbaGa aGOmaaqabaGcdaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiabeI7aXn aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaGOmaaaakiabgUca RiabeI7aXnaaBaaaleaacaaIXaaabeaakiabgUcaRiaaigdaaiaawI cacaGLPaaaaaaacaGLBbGaayzxaaGaey4kaSIaciiBaiaac+gacaGG NbWaaeWaaeaadaWcaaqaaiaaigdacqGHRaWkcqaH4oqCdaWgaaWcba GaaGymaaqabaGccqGHRaWkcaWG4baabaGaaGymaiabgUcaRiabeI7a XnaaBaaaleaacaaIYaaabeaakiabgUcaRiaadIhaaaaacaGLOaGaay zkaaGaeyOeI0IaaiikaiabeI7aXnaaBaaaleaacaaIXaaabeaakiab gkHiTiaaykW7cqaH4oqCdaWgaaWcbaGaaGOmaaqabaGccaGGPaGaam iEaaaa@8B96@  

Therefore, d dx log[ f X ( x; θ 1 ) f Y ( x; θ 2 ) ]= θ 2 θ 1 ( 1+ θ 1 +x )( 1+ θ 2 +x ) ( θ 1 θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsgaa8aabaGaamizaiaadIhaaaWdbiGacYga caGGVbGaai4za8aadaWadaqaa8qadaWcaaWdaeaapeGaamOza8aada WgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaapeGaamiEaiaa cUdacqaH4oqCdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaa8 aabaWdbiaadAgapaWaaSbaaSqaa8qacaWGzbaapaqabaGcpeWaaeWa a8aabaWdbiaadIhacaGG7aGaeqiUde3aaSbaaSqaaiaaikdaaeqaaa GccaGLOaGaayzkaaaaaaWdaiaawUfacaGLDbaacqGH9aqpdaWcaaqa aiabeI7aXnaaBaaaleaacaaIYaaabeaakiabgkHiTiabeI7aXnaaBa aaleaacaaIXaaabeaaaOqaamaabmaabaGaaGymaiabgUcaRiabeI7a XnaaBaaaleaacaaIXaaabeaakiabgUcaRiaadIhaaiaawIcacaGLPa aadaqadaqaaiaaigdacqGHRaWkcqaH4oqCdaWgaaWcbaGaaGOmaaqa baGccqGHRaWkcaWG4baacaGLOaGaayzkaaaaaiabgkHiTiaacIcacq aH4oqCdaWgaaWcbaGaaGymaaqabaGccqGHsislcaaMc8UaeqiUde3a aSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@70D1@

Thus, for θ 1 > θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIXaaabeaakiabg6da+iabeI7aXnaaBaaaleaacaaIYaaa beaaaaa@3D5B@ , d dx log[ f X ( x; θ 1 ) f Y ( x; θ 2 ) ]<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsgaa8aabaGaamizaiaadIhaaaWdbiGacYga caGGVbGaai4za8aadaWadaqaa8qadaWcaaWdaeaapeGaamOza8aada WgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaapeGaamiEaiaa cUdacqaH4oqCdaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaa8 aabaWdbiaadAgapaWaaSbaaSqaa8qacaWGzbaapaqabaGcpeWaaeWa a8aabaWdbiaadIhacaGG7aGaeqiUde3aaSbaaSqaaiaaikdaaeqaaa GccaGLOaGaayzkaaaaaaWdaiaawUfacaGLDbaacqGH8aapcaaIWaaa aa@51D7@ . this means that X < lr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3BEB@  hence X < hr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3BE7@ , X < mrl Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaamyBaiaadkhacaWGSbaabeaakiaadMfaaaa@3CDD@  and X < st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamywaaaa@3BF4@ .

Parameter estimation of Komal distribution

Method of moment estimate

 Since Komal distribution has one parameter, equating the population mean to the corresponding sample mean ( x ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGabm iEayaaraaacaGLOaGaayzkaaaaaa@39AC@ , we get the third-degree polynomial equation of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@  in the form

x ¯ θ 3 +( x ¯ 1 ) θ 2 +( x ¯ 1 )θ2=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIhagaqeai aaykW7cqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkdaqadaqa aiqadIhagaqeaiabgkHiTiaaigdaaiaawIcacaGLPaaacqaH4oqCda ahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqaaiqadIhagaqeaiab gkHiTiaaigdaaiaawIcacaGLPaaacqaH4oqCcqGHsislcaaIYaGaey ypa0JaaGimaaaa@4E70@   .

Solving this third-degree polynomial equation using Newton-Raphson method, we can easily get the moment estimate of the parameter.

Maximum likelihood estimate

Suppose ( x 1 , x 2 , x 3 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaaMc8UaamiEamaaBaaa leaacaaIYaaabeaakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIZa aabeaakiaacYcacaaMc8UaaGPaVlaac6cacaGGUaGaaiOlaiaaykW7 caaMc8UaaiilaiaadIhadaWgaaWcbaGaamOBaaqabaaakiaawIcaca GLPaaaaaa@4EA2@  be a random sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaaaa@3801@  from Komal distribution. The log likelihood function, logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadYeaaaa@3AAF@  of Komal distribution is given by

logL= i=1 n logf( x i ;θ ) =n{ 2logθlog( θ 2 +θ+1 ) }+ i=1 n log( 1+θ+ x i )nθ x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadYeacqGH9aqpdaaeWbqaaiGacYgacaGGVbGaai4zaiaa dAgadaqadaqaaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGG7aGaeq iUdehacaGLOaGaayzkaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaa d6gaa0GaeyyeIuoakiabg2da9iaad6gadaGadaqaaiaaikdaciGGSb Gaai4BaiaacEgacqaH4oqCcqGHsislciGGSbGaai4BaiaacEgadaqa daqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeI7aXj abgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUhacaGL9baacqGHRaWk daaeWbqaaiGacYgacaGGVbGaai4zamaabmaabaGaaGymaiabgUcaRi abeI7aXjabgUcaRiaadIhadaWgaaWcbaGaamyAaaqabaaakiaawIca caGLPaaacqGHsislcaWGUbGaaGPaVlabeI7aXjaaykW7ceWG4bGbae baaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaaa @7A43@  

The maximum likelihood estimate (MLE) ( θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaaaiaawIcacaGLPaaaaaa@3A5D@  of the parameters ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaGPaVdGaayjkaiaawMcaaaaa@3BD8@  of Komal distribution is the solution of the following log likelihood equation

dlogL dθ = 2n θ n( 2θ+1 ) θ 2 +θ+1 + i=1 n 1 1+θ+ x i n x ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiGacYgacaGGVbGaai4zaiaadYeaaeaacaWGKbGaeqiUdehaaiab g2da9maalaaabaGaaGOmaiaad6gaaeaacqaH4oqCaaGaeyOeI0YaaS aaaeaacaWGUbWaaeWaaeaacaaIYaGaeqiUdeNaey4kaSIaaGymaaGa ayjkaiaawMcaaaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgU caRiabeI7aXjabgUcaRiaaigdaaaGaey4kaSYaaabCaeaadaWcaaqa aiaaigdaaeaacaaIXaGaey4kaSIaeqiUdeNaey4kaSIaamiEamaaBa aaleaacaWGPbaabeaaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWG UbaaniabggHiLdGccqGHsislcaWGUbGaaGPaVlaaykW7ceWG4bGbae bacqGH9aqpcaaIWaaaaa@66CF@  

This gives

  i=1 n 1 1+θ+ x i + n( θ+2 ) θ( θ 2 +θ+1 ) n x ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqahabaWaaS aaaeaacaaIXaaabaGaaGymaiabgUcaRiabeI7aXjabgUcaRiaadIha daWgaaWcbaGaamyAaaqabaaaaaqaaiaadMgacqGH9aqpcaaIXaaaba GaamOBaaqdcqGHris5aOGaey4kaSYaaSaaaeaacaWGUbWaaeWaaeaa cqaH4oqCcqGHRaWkcaaIYaaacaGLOaGaayzkaaaabaGaeqiUde3aae WaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaH4oqC cqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaiabgkHiTiaad6gacaaMc8 UabmiEayaaraGaeyypa0JaaGimaaaa@5B27@ .

This is a non-linear equation in θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ . This can be solved using Newton-Raphson method available in R software to get the maximum likelihood estimate (MLE) of the parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@  by taking the moment estimate of the parameter as the initial value. It should be noted that the method of moment estimate of the parameter will not be the same as that of the MLE.

Application of Komal distribution

The application and the goodness of fit of Komal distribution has been discussed with a failure time dataset. Following failure time dataset has been considered.

Data set: The following skewed to right dataset relating to the failure times of 20 electric bulbs discussed by Murthy et al.11 is considered and the observations are:

1.32, 12.37, 6.56, 5.05, 11.58, 10.56, 21.82, 3.60, 1.33, 12.62, 5.36, 7.71, 3.53, 19.61, 36.63,

0.39, 21.35, 7.22, 12.42, 8.92.

The values ML estimates of parameter and its standard error in parenthesis, 2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C58@ , AIC (Akaike Information Criterion), AICC (Akaike Information Criterion corrected), BIC (Bayesian Information criterion), K-S (Kolmogorov-Smirnov) for the considered distributions for the given dataset have been computed and presented in table 2. The formulae for computing AIC, AICC, BIC and K-S Statistics are as follows:

  AIC=2logL+2k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaWGjb Gaam4qaiabg2da9abaaaaaaaaapeGaeyOeI0IaaGOmaiaadYgacaWG VbGaam4zaiaadYeapaGaey4kaSIaaGOmaiaadUgaaaa@4278@ , AICC=AIC+ 2k(k+1) nk1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaWGjb Gaam4qaiaadoeacqGH9aqpcaWGbbGaamysaiaadoeacqGHRaWkdaWc aaqaaiaaikdacaWGRbGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaa qaaiaad6gacqGHsislcaWGRbGaeyOeI0IaaGymaaaaaaa@4890@ , BIC=2logL+klogn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkeacaWGjb Gaam4qaiabg2da9abaaaaaaaaapeGaeyOeI0IaaGOmaiaadYgacaWG VbGaam4zaiaadYeapaGaey4kaSIaam4AaiaaykW7ciGGSbGaai4Bai aacEgacaWGUbaaaa@470B@ , D= Sup x | F n ( x ) F 0 ( x )| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseacqGH9a qpdaWfqaqaaiaadofacaWG1bGaamiCaaWcbaGaamiEaaqabaGccaGG 8bGaamOramaaBaaaleaacaWGUbaabeaakmaabmaabaGaamiEaaGaay jkaiaawMcaaiabgkHiTiaadAeadaWgaaWcbaGaaGimaaqabaGcdaqa daqaaiaadIhaaiaawIcacaGLPaaacaGG8baaaa@488C@  .

where k= number of parameter, n= sample size MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaae4DaiaabIgacaqGLbGaaeOCaiaabwgacaqGGaGaam4Aaiabg2da 9iaabccacaqGUbGaaeyDaiaab2gacaqGIbGaaeyzaiaabkhacaqGGa Gaae4BaiaabAgacaqGGaGaaeiCaiaabggacaqGYbGaaeyyaiaab2ga caqGLbGaaeiDaiaabwgacaqGYbGaaiilaiaabccacaWGUbGaeyypa0 JaaeiiaiaabohacaqGHbGaaeyBaiaabchacaqGSbGaaeyzaiaabcca caqGZbGaaeyAaiaabQhacaqGLbaaaa@5E19@

The pdf and the cdf of the fitted distributions are given in the Table 1.

Distributions

Pdf

Cdf

Garima

f( x;θ )= θ θ+2 ( 1+θ+θx ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCaeaacqaH4oqCcqGHRaWkcaaIYaaaamaabmaabaGaaG ymaiabgUcaRiabeI7aXjabgUcaRiabeI7aXjaaykW7caWG4baacaGL OaGaayzkaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaamiEaa aakiaaykW7aaa@535C@   F( x;θ )=1( 1+ θx θ+2 ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaaGym aiabgkHiTmaabmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaam iEaaqaaiabeI7aXjabgUcaRiaaikdaaaaacaGLOaGaayzkaaGaamyz amaaCaaaleqabaGaeyOeI0IaeqiUdeNaamiEaaaaaaa@4D76@  

Sujatha

f( x;θ )= θ 3 θ 2 +θ+2 ( 1+x+ x 2 ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaaakeaacqaH4oqCdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcqaH4oqCcqGHRaWkcaaIYaaaamaa bmaabaGaaGymaiabgUcaRiaadIhacqGHRaWkcaWG4bWaaWbaaSqabe aacaaIYaaaaaGccaGLOaGaayzkaaGaamyzamaaCaaaleqabaGaeyOe I0IaeqiUdeNaaGPaVlaadIhaaaaaaa@54CA@   F( x,θ )=1[ 1+ θx( θx+θ+2 ) θ 2 +θ+2 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGGSaGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaaGym aiabgkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaam iEamaabmaabaGaeqiUdeNaamiEaiabgUcaRiabeI7aXjabgUcaRiaa ikdaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaaWcbeqaaiaaikdaaa GccqGHRaWkcqaH4oqCcqGHRaWkcaaIYaaaaaGaay5waiaaw2faaiaa dwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaaaaaa@59CD@  

Akash

f( x;θ )= θ 3 θ 2 +2 ( 1+ x 2 ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaaakeaacqaH4oqCdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaaIYaaaamaabmaabaGaaGymaiab gUcaRiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaca WGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWG4baaaaaa@4EC8@   F( x;θ )=1[ 1+ θx( θx+2 ) θ 2 +2 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaaGym aiabgkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaam iEamaabmaabaGaeqiUdeNaaGPaVlaadIhacqGHRaWkcaaIYaaacaGL OaGaayzkaaaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaGOmaaaaaiaawUfacaGLDbaacaWGLbWaaWbaaSqabeaacqGHsisl cqaH4oqCcaWG4baaaaaa@5637@  

Shanker

f( x;θ )= θ 2 θ 2 +1 ( θ+x ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaakeaacqaH4oqCdaahaa WcbeqaaiaaikdaaaGccqGHRaWkcaaIXaaaamaabmaabaGaeqiUdeNa ey4kaSIaamiEaaGaayjkaiaawMcaaiaadwgadaahaaWcbeqaaiabgk HiTiabeI7aXjaadIhaaaaaaa@4ECE@   F( x;θ )=1( 1+ θx θ 2 +1 ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaaGym aiabgkHiTmaabmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaam iEaaqaaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigda aaaacaGLOaGaayzkaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiUde NaamiEaaaaaaa@4E68@  

Lindley

f( x;θ )= θ 2 θ+1 ( 1+x ) e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaikdaaaaakeaacqaH4oqCcqGHRa WkcaaIXaaaamaabmaabaGaaGymaiabgUcaRiaadIhaaiaawIcacaGL PaaacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWG4baaaOGaaG PaVlaaykW7aaa@5000@   F( x;θ )=1[ 1+ θx θ+1 ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaaGym aiabgkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaam iEaaqaaiabeI7aXjabgUcaRiaaigdaaaaacaGLBbGaayzxaaGaamyz amaaCaaaleqabaGaeyOeI0IaeqiUdeNaamiEaaaakiaaykW7caaMc8 oaaa@50FE@  

Exponential

f( x;θ )=θ e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaeqiU deNaamyzamaaCaaaleqabaGaeyOeI0IaeqiUdeNaamiEaaaaaaa@4467@   F( x;θ )=1 e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaaGym aiabgkHiTiaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaadIhaaa GccaaMc8oaaa@45CE@  

Table 1 The pdf and the Cdf of fitted distributions

 

The fitted plots of considered distributions for the given datasets have been presented in Figure 6. The goodness of fit in Table 2 and the fitted plots of distributions for the dataset in figure 6 show that Komal distribution provides best fit over exponential, Lindley, Shanker, Akash and Sujatha distributions and therefore Komal distribution can be considered as the most suitable lifetime distribution for modeling lifetime data from biomedical science and engineering.

Distributions

θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja aaaa@38D4@   2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C58@  

AIC

AICC

BIC

K-S

P-value

Komal

0.1745 (0.0275)

133.33

135.33

135.90

135.52

0.0992

0.9914

Garima

0.1408 (0.0273)

133.18

135.18

135.75

135.37

0.1255

0.9218

Sujatha

0.2689 (0.0345)

137.54

139.54

140.11

139.73

0.1294

0.9037

Akash

0.2786 (0.0355)

138.47

140.47

141.04

140.66

0.1607

0.6434

Shanker

0.1885 (0.0292)

134.65

136.65

137.22

136.84

0.1172

0.9539

Lindley

0.1762 (0.0280)

133.44

135.44

136.01

135.63

0.1122

0.9684

Exponential

0.0952 (0.0212)

134.04

136.04

136.61

136.23

0.1255

0.9218

Table 2 ML estimates, 2logL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C58@ , AIC, AICC, BIC, K-S of the distribution for the dataset

Figure 6 Fitted plots of distributions considered for dataset.

Conclusions and future works

In this paper a new lifetime distribution named Komal distribution for analysing and modeling lifetime data from biomedical science and engineering has been proposed. Some of its important statistical properties, estimation of parameter and application to a real lifetime dataset from survival analysis has been presented. Since the distribution is new one, it would be of great hope and expectation that this will capture the attention of researchers working in biomedical science, engineering and insurance to model lifetime data in their respective fields. As the distribution has flexibility, tractability and practicability, future of the distribution would be quite bright among researchers in biomedical sciences and engineering.

Acknowledgments

The author is thankful to the editor in chief of the journal and the anonymous reviewer of the paper for fruitful comments.

Conflicts of interest

The author declares that there are no conflicts of interest.

Funding

None.

References

Creative Commons Attribution License

©2023 Shanker. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.