Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 13 Issue 2

Weighted Pratibha distribution with properties and application in flood dataset

Hosenur Rahman Prodhani, Rama Shanker

Department of Statistics, Assam University, Silchar, Assam, India

Correspondence: Rama Shanker, Department of Statistics, Assam University, Silchar, India

Received: May 04, 2024 | Published: May 21, 2024

Citation: Prodhani HR, Shanker R. Weighted Pratibha distribution with properties and application in flood dataset. Biom Biostat Int J. 2024;13(2):52-57. DOI: 10.15406/bbij.2024.13.00414

Download PDF

Abstract

In this paper, a weighted Pratibha distribution introduced to modelling life time data using the weighted transformation technique in Pratibha distribution. Its statistical properties including survival function, hazard function, reverse hazard function, mean residual life function stochastic ordering, moments related measures such as moments about origin, moments about mean, coefficient of variation, skewness, kurtosis, index of dispersion have been studied. Parameters are estimated by method of maximum likelihood estimation. A simulation study has been carried out to test the consistency of the parameters obtained through the maximum likelihood method. The goodness of fit of the distribution has been presented with a real lifetime dataset and the goodness of fit shows better fit over weighted Sujatha distribution, weighted Komal distribution, weighted Lindley distribution, weighted Garima distribution and weighted Aradhana distribution.

Keywords: Pratibha distribution, statistical properties, maximum likelihood estimation, simulation, application

Introduction

Fisher1 initially developed the concept of weighted distributions to represent the ascertainment bias. Subsequently, Rao2 extended this idea cohesively while modelling statistical data in which standard distributions were not appropriate for recording these observations with equal probability. To capture the observations in such instances’, weighted models were created using a weighted function. Biased data will arise from the frequency distribution of data recorded such as at least one boy child per family, at least one girl child per family, at least one migration per family, etc.

Assume that the original observation y is based on a distribution with probability density function (pdf) g y ( x, η 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zamaaBa aaleaacaWG5baabeaakmaabmaabaGaamiEaiaacYcacqaH3oaAdaWg aaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacaaMc8UaaGPaVdaa@40FF@ , where η 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaS baaSqaaiaaigdaaeqaaaaa@3889@  may be a vector of parameters and that the observation x is recorded based on a probability that is re-weighted by weight function w( x, η 2 )>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Damaabm aabaGaamiEaiaacYcacqaH3oaAdaWgaaWcbaGaaGOmaaqabaaakiaa wIcacaGLPaaacaaMc8UaaGPaVlabg6da+iaaicdaaaa@419E@ , where η 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaS baaSqaaiaaikdaaeqaaaaa@388A@  is a new parameter vector.

f( x; η 1 , η 2 )=Dw( x; η 2 ) g y ( x; η 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm aabaGaamiEaiaacUdacqaH3oaAdaWgaaWcbaGaaGymaaqabaGccaGG SaGaeq4TdG2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaey ypa0JaamiraiaaykW7caWG3bWaaeWaaeaacaWG4bGaai4oaiabeE7a OnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiaaykW7caWGNb WaaSbaaSqaaiaadMhaaeqaaOWaaeWaaeaacaWG4bGaai4oaiabeE7a OnaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiaaykW7aaa@5562@

where D is a constant used to normalize. Note that these kinds of distributions are referred to as weighted distributions. The simple size-biased distributions or length-biased distributions are the weighted distributions with the weight function w( x )=x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bWdamaabmaabaWdbiaadIhaa8aacaGLOaGaayzkaaWdbiab g2da9iaadIhaaaa@3BD9@ . A few broad probability models that produce weighted probability distributions were examined by Patil3 and Rao,4 along with applications and the fact that w( x )=x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bWdamaabmaabaWdbiaadIhaa8aacaGLOaGaayzkaaWdbiab g2da9iaadIhaaaa@3BD9@ is a natural outcome in sampling-related situations.

In distribution theory, it is highly helpful to add a shape parameter to an existing distribution using a weighted approach. The existing distribution exhibits increased flexibility and tractability tendencies with the inclusion of a parameter. Weighted distributions are used to model heterogeneity, clustered sampling, and extraneous variance in the dataset.

Weighted versions of one parameter lifetime distributions have been derived by several researchers using the weight function w( x,ω )= x ω1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Damaabm aabaGaamiEaiaacYcacqaHjpWDaiaawIcacaGLPaaacqGH9aqpcaWG 4bWaaWbaaSqabeaacqaHjpWDcqGHsislcaaIXaaaaaaa@419A@ . For examples, Ghitany et al.5 proposed weighted Lindley distribution (WLD) from Lindley distribution of Lindley,6 Eyob and Shanker7 suggested weighted Garima distribution (WGD) from Garima distributions of Shanker,8 Ganaie et al.9 suggested weighted Aradhana distribution (WAD) from Aradhana distribution of Shanker,10 Shanker and Shukla11 suggested weighted Sujatha distribution (WSD) from Sujatha distribution of Shanker,12 Shanker et al.13 suggested weighted Komal distribution (WKD) from Komal distribution of Shanker,15 Shanker et al.14 suggested weighted Uma distribution (WUD) from Uma distribution of Shanker17 respectively. It has been noted that, depending on a conceptual or applied angle, these weighted distributions did not provide a suitable fit in certain datasets. Therefore, search for better weighted distribution corresponding to recent lifetime distribution is required.

Shanker16 introduced a one parameter Pratibha distribution with statistical properties and applications and observed that Pratibha distribution provides better fit than exponential distribution, Lindley distribution, Sujatha distribution, Shanker distribution by Shanker,18 Akash distribution by Shanker19 and Garima distribution. The pdf and cdf of Pratibha distribution are given by

f( x;η )= η 3 [ η 3 +η+2 ] ( η+x+ x 2 ) e ηx ;x>0,η>0 F( x;η )=1[ 1+ ηx( ηx+η+2 ) η 3 +η+2 ] e ηx ;x>0,η>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamOzam aabmaabaGaamiEaiaacUdacqaH3oaAaiaawIcacaGLPaaacqGH9aqp daWcaaqaaiabeE7aOnaaCaaaleqabaGaaG4maaaaaOqaamaadmaaba Gaeq4TdG2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaeq4TdGMaey4k aSIaaGOmaaGaay5waiaaw2faaaaadaqadaqaaiabeE7aOjabgUcaRi aadIhacqGHRaWkcaWG4bWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGa ayzkaaGaamyzamaaCaaaleqabaGaeyOeI0Iaeq4TdGMaamiEaaaaki aacUdacaWG4bGaeyOpa4JaaGimaiaacYcacqaH3oaAcqGH+aGpcaaI WaaabaGaamOramaabmaabaGaamiEaiaacUdacqaH3oaAaiaawIcaca GLPaaacqGH9aqpcaaIXaGaeyOeI0YaamWaaeaacaaIXaGaey4kaSYa aSaaaeaacqaH3oaAcaWG4bWaaeWaaeaacqaH3oaAcaWG4bGaey4kaS Iaeq4TdGMaey4kaSIaaGOmaaGaayjkaiaawMcaaaqaaiabeE7aOnaa CaaaleqabaGaaG4maaaakiabgUcaRiabeE7aOjabgUcaRiaaikdaaa aacaGLBbGaayzxaaGaaGPaVlaadwgadaahaaWcbeqaaiabgkHiTiab eE7aOjaaykW7caWG4baaaOGaai4oaiaadIhacqGH+aGpcaaIWaGaai ilaiabeE7aOjabg6da+iaaicdaaaaa@8AE4@

The primary goal is to study the weighted Pratibha distribution (WPD) and examine its properties. The WPD is being proposed because it is expected to provide a better fit than the weighted counterpart of the Lindley, Sujatha, Komal, and Garima distributions, given that the Pratibha distribution provides the highest degree of fit over these distributions.

Weighted Pratibha distribution

Let a random variable X~ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacaGG+b aaaa@38EE@ WPD ( η,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4TdGMaaiilaiabeM8a3bGaayjkaiaawMcaaaaa@3CC1@  with the weight function w( x,ω )= x ω1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEhadaqada qaaiaadIhacaGGSaGaeqyYdChacaGLOaGaayzkaaGaeyypa0JaamiE amaaCaaaleqabaGaeqyYdCNaeyOeI0IaaGymaaaaaaa@42B3@ , the pdf and cdf of WPD can be expressed as

f( x;η,ω )= η ω+2 [ η 3 +ηω+ω( ω+1 ) ]Γ( ω ) ( η+x+ x 2 ) x ω1 e ηx ;x>0,η>0,ω>0 F( x;η,ω )=1 η 3 Γ( ω,ηx )+ηΓ( ω+1,ηx )+Γ( ω+2,ηx ) [ η 3 +ηω+ω( ω+1 ) ]Γ( ω ) ;x>0,η>0,ω>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcaaKaam OzamaabmaabaGaamiEaiaacUdacqaH3oaAcaGGSaGaeqyYdChacaGL OaGaayzkaaGaeyypa0ZaaSaaaeaacqaH3oaAdaahaaqcbauabeaacq aHjpWDcqGHRaWkcaaIYaaaaaqcaauaamaadmaabaGaeq4TdG2aaWba aKqaafqabaGaaG4maaaajaaqcqGHRaWkcqaH3oaAcqaHjpWDcqGHRa WkcqaHjpWDdaqadaqaaiabeM8a3jabgUcaRiaaigdaaiaawIcacaGL PaaaaiaawUfacaGLDbaacqqHtoWrdaqadaqaaiabeM8a3bGaayjkai aawMcaaaaadaqadaqaaiabeE7aOjabgUcaRiaadIhacqGHRaWkcaWG 4bWaaWbaaKqaafqabaGaaGOmaaaaaKaaajaawIcacaGLPaaacaWG4b WaaWbaaKqaafqabaGaeqyYdCNaeyOeI0IaaGymaaaajaaqcaWGLbWa aWbaaKqaafqabaGaeyOeI0Iaeq4TdGMaamiEaaaajaaqcaGG7aGaam iEaiabg6da+iaaicdacaGGSaGaeq4TdGMaeyOpa4JaaGimaiaacYca cqaHjpWDcqGH+aGpcaaIWaaakeaajaaqcaWGgbWaaeWaaeaacaWG4b Gaai4oaiabeE7aOjaacYcacqaHjpWDaiaawIcacaGLPaaacqGH9aqp caaIXaGaeyOeI0YaaSaaaeaacqaH3oaAdaahaaqcbauabeaacaaIZa aaaKaaajabfo5ahnaabmaabaGaeqyYdCNaaiilaiabeE7aOjaadIha aiaawIcacaGLPaaacqGHRaWkcqaH3oaAcqqHtoWrdaqadaqaaiabeM 8a3jabgUcaRiaaigdacaGGSaGaeq4TdGMaamiEaaGaayjkaiaawMca aiabgUcaRiabfo5ahnaabmaabaGaeqyYdCNaey4kaSIaaGOmaiaacY cacqaH3oaAcaWG4baacaGLOaGaayzkaaaabaWaamWaaeaacqaH3oaA daahaaqcbauabeaacaaIZaaaaKaaajabgUcaRiabeE7aOjabeM8a3j abgUcaRiabeM8a3naabmaabaGaeqyYdCNaey4kaSIaaGymaaGaayjk aiaawMcaaaGaay5waiaaw2faaiabfo5ahnaabmaabaGaeqyYdChaca GLOaGaayzkaaaaaiaacUdacaWG4bGaeyOpa4JaaGimaiaacYcacqaH 3oaAcqGH+aGpcaaIWaGaaiilaiabeM8a3jabg6da+iaaicdaaaaa@C9FE@

where η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aObaa@38BB@ is a scale parameter and ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@38DC@  is shape parameter of the distribution. When ω=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabg2 da9iaaigdaaaa@3A9D@ , WPD reduced to Pratibha distribution with parameter η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aObaa@38BB@ . The plots of pdf and cdf of WPD are shown in the following Figures 1 & 2 respectively. From the Figure 1, it is clear that when η=0.1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabg2 da9iaaicdacaGGUaGaaGymaaaa@3BE8@  and for increasing values of ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@38DC@ , the pdf has unimodal and positively skeweed natures. When ω=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabg2 da9iaaicdacaGGUaGaaGynaaaa@3C0D@  and η<0.1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgY da8iaaicdacaGGUaGaaGymaaaa@3BE6@ , it has monotonically increasing natures and for ω=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3jabg2 da9iaaicdacaGGUaGaaGynaaaa@3C0D@  and η1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgw MiZkaaigdaaaa@3B3B@ , the pdf have bimodal and positively skewwed natures. The most important feature of WPD is that it is unimodal and bimodal for different values of parameters and in general flood dataset shows unimodal or bimodal shapes depending upon the time period of the flood and WPD would be the best choice for modeling data of flood.

Figure 1 pdf of WPD.

Figure 2 cdf of WPD.

Reliability properties

Survival function

The survival function of WPD can be obtained as

S( x;η,ω )= η 3 Γ( ω,ηx )+ηΓ( ω+1,ηx )+Γ( ω+2,ηx ) [ η 3 +ηω+ω( ω+1 ) ]Γ( ω ) ;x>0,η>0,ω>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaqada qaaiaadIhacaGG7aGaeq4TdGMaaiilaiabeM8a3bGaayjkaiaawMca aiabg2da9maalaaabaGaeq4TdG2aaWbaaSqabeaacaaIZaaaaOGaeu 4KdC0aaeWaaeaacqaHjpWDcaGGSaGaeq4TdGMaamiEaaGaayjkaiaa wMcaaiabgUcaRiabeE7aOjabfo5ahnaabmaabaGaeqyYdCNaey4kaS IaaGymaiaacYcacqaH3oaAcaWG4baacaGLOaGaayzkaaGaey4kaSIa eu4KdC0aaeWaaeaacqaHjpWDcqGHRaWkcaaIYaGaaiilaiabeE7aOj aadIhaaiaawIcacaGLPaaaaeaadaWadaqaaiabeE7aOnaaCaaaleqa baGaaG4maaaakiabgUcaRiabeE7aOjabeM8a3jabgUcaRiabeM8a3n aabmaabaGaeqyYdCNaey4kaSIaaGymaaGaayjkaiaawMcaaaGaay5w aiaaw2faaiabfo5ahnaabmaabaGaeqyYdChacaGLOaGaayzkaaaaai aacUdacaWG4bGaeyOpa4JaaGimaiaacYcacqaH3oaAcqGH+aGpcaaI WaGaaiilaiabeM8a3jabg6da+iaaicdaaaa@8322@

Hazard function

The hazard function of WPD can be obtained as

h( x;η,ω )= η ω+2 ( η+x+ x 2 ) x ω1 e ηx η 3 Γ( ω,ηx )+ηΓ( ω+1,ηx )+Γ( ω+2,ηx ) ;x>0,η>0,ω>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhacaGG7aGaeq4TdGMaaiilaiabeM8a3bGaayjkaiaawMca aiabg2da9maalaaabaGaeq4TdG2aaWbaaSqabeaacqaHjpWDcqGHRa WkcaaIYaaaaOWaaeWaaeaacqaH3oaAcqGHRaWkcaWG4bGaey4kaSIa amiEamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiaadIhada ahaaWcbeqaaiabeM8a3jabgkHiTiaaigdaaaGccaWGLbWaaWbaaSqa beaacqGHsislcqaH3oaAcaWG4baaaaGcbaGaeq4TdG2aaWbaaSqabe aacaaIZaaaaOGaeu4KdC0aaeWaaeaacqaHjpWDcaGGSaGaeq4TdGMa amiEaaGaayjkaiaawMcaaiabgUcaRiabeE7aOjabfo5ahnaabmaaba GaeqyYdCNaey4kaSIaaGymaiaacYcacqaH3oaAcaWG4baacaGLOaGa ayzkaaGaey4kaSIaeu4KdC0aaeWaaeaacqaHjpWDcqGHRaWkcaaIYa GaaiilaiabeE7aOjaadIhaaiaawIcacaGLPaaaaaGaai4oaiaadIha cqGH+aGpcaaIWaGaaiilaiabeE7aOjabg6da+iaaicdacaGGSaGaeq yYdCNaeyOpa4JaaGimaaaa@847E@

The plots of hazard function of WPD are graphically shown in the following Figure 3. It shows different shapes including monotonically increasing, decreasing, upside bathtub and downside bathtub and it means that the distribution is applicable for modelling data of these natures.

Figure 3 Hazard function of WPD.

Reverse hazard function

r( x;η,ω )= η ω+2 ( η+x+ x 2 ) x ω1 e ηx [ η 3 +ηω+ω( ω+1 ) ]Γ( ω ) η 3 Γ( ω,ηx )+ηΓ( ω+1,ηx )+Γ( ω+2,ηx ) ;x>0,η>0,ω>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaKazaa4=baGaamOCam aabmaabaGaamiEaiaacUdacqaH3oaAcaGGSaGaeqyYdChacaGLOaGa ayzkaaGaeyypa0ZaaSaaaeaacqaH3oaAdaahaaqcKfaG=hqabaGaeq yYdCNaey4kaSIaaGOmaaaajqgaa+=aaeWaaeaacqaH3oaAcqGHRaWk caWG4bGaey4kaSIaamiEamaaCaaajqwaa+FabeaacaaIYaaaaaqcKb aG=laawIcacaGLPaaacaWG4bWaaWbaaKazba4=beqaaiabeM8a3jab gkHiTiaaigdaaaqcKbaG=laadwgadaahaaqcKfaG=hqabaGaeyOeI0 Iaeq4TdGMaamiEaaaaaKazaa4=baWaamWaaeaacqaH3oaAdaahaaqc KfaG=hqabaGaaG4maaaajqgaa+Vaey4kaSIaeq4TdGMaeqyYdCNaey 4kaSIaeqyYdC3aaeWaaeaacqaHjpWDcqGHRaWkcaaIXaaacaGLOaGa ayzkaaaacaGLBbGaayzxaaGaeu4KdC0aaeWaaeaacqaHjpWDaiaawI cacaGLPaaacqGHsislcqaH3oaAdaahaaqcKfaG=hqabaGaaG4maaaa jqgaa+Vaeu4KdC0aaeWaaeaacqaHjpWDcaGGSaGaeq4TdGMaamiEaa GaayjkaiaawMcaaiabgUcaRiabeE7aOjabfo5ahnaabmaabaGaeqyY dCNaey4kaSIaaGymaiaacYcacqaH3oaAcaWG4baacaGLOaGaayzkaa Gaey4kaSIaeu4KdC0aaeWaaeaacqaHjpWDcqGHRaWkcaaIYaGaaiil aiabeE7aOjaadIhaaiaawIcacaGLPaaaaaGaai4oaiaadIhacqGH+a GpcaaIWaGaaiilaiabeE7aOjabg6da+iaaicdacaGGSaGaeqyYdCNa eyOpa4JaaGimaaaa@B33C@

Mean residual life function

Mean residual life function of WPD can be obtained as

m( x;η,ω )= η 3 Γ( ω+1,ηx )+ηΓ( ω+2,ηx )+Γ( ω+3,ηx ) η[ η 3 Γ( ω,ηx )+ηΓ( ω+1,ηx )+Γ( ω+2,ηx ) ] x;x>0,η>0,ω>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhacaGG7aGaeq4TdGMaaiilaiabeM8a3bGaayjkaiaawMca aiabg2da9maalaaabaGaeq4TdG2aaWbaaSqabeaacaaIZaaaaOGaeu 4KdC0aaeWaaeaacqaHjpWDcqGHRaWkcaaIXaGaaiilaiabeE7aOjaa dIhaaiaawIcacaGLPaaacqGHRaWkcqaH3oaAcqqHtoWrdaqadaqaai abeM8a3jabgUcaRiaaikdacaGGSaGaeq4TdGMaamiEaaGaayjkaiaa wMcaaiabgUcaRiabfo5ahnaabmaabaGaeqyYdCNaey4kaSIaaG4mai aacYcacqaH3oaAcaWG4baacaGLOaGaayzkaaaabaGaeq4TdG2aamWa aeaacqaH3oaAdaahaaWcbeqaaiaaiodaaaGccqqHtoWrdaqadaqaai abeM8a3jaacYcacqaH3oaAcaWG4baacaGLOaGaayzkaaGaey4kaSIa eq4TdGMaeu4KdC0aaeWaaeaacqaHjpWDcqGHRaWkcaaIXaGaaiilai abeE7aOjaadIhaaiaawIcacaGLPaaacqGHRaWkcqqHtoWrdaqadaqa aiabeM8a3jabgUcaRiaaikdacaGGSaGaeq4TdGMaamiEaaGaayjkai aawMcaaaGaay5waiaaw2faaaaacqGHsislcaWG4bGaai4oaiaadIha cqGH+aGpcaaIWaGaaiilaiabeE7aOjabg6da+iaaicdacaGGSaGaeq yYdCNaeyOpa4JaaGimaaaa@96A6@ .

The plots of mean residual life function are shown in the following Figure 4. It is quite obvious that mean residual life function is monotonically decreasing.

Figure 4 Mean residual life function of WPD.

Moments related measures

The rth raw moment (moment about origin) of WPD, after little algebraic simplification, can be obtained as

μ r = 0 x r f( x;η,ω ) dx= Γ( ω+r )[ η 3 +η( ω+r )+( ω+r )( ω+r+1 ) ] η r [ η 3 +ηω+ω( ω+1 ) ]Γ( ω ) ;r=1,2,3... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maapehabaGaamiEamaaCaaaleqabaGaamOCaaaakiaadAgadaqada qaaiaadIhacaGG7aGaeq4TdGMaaiilaiabeM8a3bGaayjkaiaawMca aaWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOGaaGPaVlaadsgaca WG4bGaeyypa0ZaaSaaaeaacqqHtoWrdaqadaqaaiabeM8a3jabgUca RiaadkhaaiaawIcacaGLPaaadaWadaqaaiabeE7aOnaaCaaaleqaba GaaG4maaaakiabgUcaRiabeE7aOnaabmaabaGaeqyYdCNaey4kaSIa amOCaaGaayjkaiaawMcaaiabgUcaRmaabmaabaGaeqyYdCNaey4kaS IaamOCaaGaayjkaiaawMcaamaabmaabaGaeqyYdCNaey4kaSIaamOC aiabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaeaacq aH3oaAdaahaaWcbeqaaiaadkhaaaGcdaWadaqaaiabeE7aOnaaCaaa leqabaGaaG4maaaakiabgUcaRiabeE7aOjabeM8a3jabgUcaRiabeM 8a3naabmaabaGaeqyYdCNaey4kaSIaaGymaaGaayjkaiaawMcaaaGa ay5waiaaw2faaiabfo5ahnaabmaabaGaeqyYdChacaGLOaGaayzkaa aaaiaacUdacaWGYbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaa iodacaGGUaGaaiOlaiaac6caaaa@920F@

Putting r=1,2,3,4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaaI0aaaaa@3E0D@ , the first four raw moments are obtained as

μ 1 = ω[ η 3 +η( ω+1 )+( ω+1 )( ω+2 ) ] η[ η 3 +ηω+ω( ω+1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqyYdC3aamWaaeaacqaH3oaAdaahaaWcbeqaaiaaio daaaGccqGHRaWkcqaH3oaAdaqadaqaaiabeM8a3jabgUcaRiaaigda aiaawIcacaGLPaaacqGHRaWkdaqadaqaaiabeM8a3jabgUcaRiaaig daaiaawIcacaGLPaaadaqadaqaaiabeM8a3jabgUcaRiaaikdaaiaa wIcacaGLPaaaaiaawUfacaGLDbaaaeaacqaH3oaAdaWadaqaaiabeE 7aOnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeE7aOjabeM8a3jab gUcaRiabeM8a3naabmaabaGaeqyYdCNaey4kaSIaaGymaaGaayjkai aawMcaaaGaay5waiaaw2faaaaaaaa@68CE@

μ 2 = ω( ω+1 )[ η 3 +η( ω+2 )+( ω+2 )( ω+3 ) ] η 2 [ η 3 +ηω+ω( ω+1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqyYdC3aaeWaaeaacqaHjpWDcqGHRaWkcaaIXaaaca GLOaGaayzkaaWaamWaaeaacqaH3oaAdaahaaWcbeqaaiaaiodaaaGc cqGHRaWkcqaH3oaAdaqadaqaaiabeM8a3jabgUcaRiaaikdaaiaawI cacaGLPaaacqGHRaWkdaqadaqaaiabeM8a3jabgUcaRiaaikdaaiaa wIcacaGLPaaadaqadaqaaiabeM8a3jabgUcaRiaaiodaaiaawIcaca GLPaaaaiaawUfacaGLDbaaaeaacqaH3oaAdaahaaWcbeqaaiaaikda aaGcdaWadaqaaiabeE7aOnaaCaaaleqabaGaaG4maaaakiabgUcaRi abeE7aOjabeM8a3jabgUcaRiabeM8a3naabmaabaGaeqyYdCNaey4k aSIaaGymaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaaaaa@6EB8@

μ 3 = ω( ω+1 )( ω+2 )[ η 3 +η( ω+3 )+( ω+3 )( ω+4 ) ] η 3 [ η 3 +ηω+ω( ω+1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqyYdC3aaeWaaeaacqaHjpWDcqGHRaWkcaaIXaaaca GLOaGaayzkaaWaaeWaaeaacqaHjpWDcqGHRaWkcaaIYaaacaGLOaGa ayzkaaWaamWaaeaacqaH3oaAdaahaaWcbeqaaiaaiodaaaGccqGHRa WkcqaH3oaAdaqadaqaaiabeM8a3jabgUcaRiaaiodaaiaawIcacaGL PaaacqGHRaWkdaqadaqaaiabeM8a3jabgUcaRiaaiodaaiaawIcaca GLPaaadaqadaqaaiabeM8a3jabgUcaRiaaisdaaiaawIcacaGLPaaa aiaawUfacaGLDbaaaeaacqaH3oaAdaahaaWcbeqaaiaaiodaaaGcda WadaqaaiabeE7aOnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeE7a OjabeM8a3jabgUcaRiabeM8a3naabmaabaGaeqyYdCNaey4kaSIaaG ymaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaaaaa@73B1@

μ 4 = ω( ω+1 )( ω+2 )( ω+3 )[ η 3 +η( ω+4 )+( ω+4 )( ω+5 ) ] η 4 [ η 3 +ηω+ω( ω+1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqyYdC3aaeWaaeaacqaHjpWDcqGHRaWkcaaIXaaaca GLOaGaayzkaaWaaeWaaeaacqaHjpWDcqGHRaWkcaaIYaaacaGLOaGa ayzkaaWaaeWaaeaacqaHjpWDcqGHRaWkcaaIZaaacaGLOaGaayzkaa WaamWaaeaacqaH3oaAdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcqaH 3oaAdaqadaqaaiabeM8a3jabgUcaRiaaisdaaiaawIcacaGLPaaacq GHRaWkdaqadaqaaiabeM8a3jabgUcaRiaaisdaaiaawIcacaGLPaaa daqadaqaaiabeM8a3jabgUcaRiaaiwdaaiaawIcacaGLPaaaaiaawU facaGLDbaaaeaacqaH3oaAdaahaaWcbeqaaiaaisdaaaGcdaWadaqa aiabeE7aOnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeE7aOjabeM 8a3jabgUcaRiabeM8a3naabmaabaGaeqyYdCNaey4kaSIaaGymaaGa ayjkaiaawMcaaaGaay5waiaaw2faaaaaaaa@78AB@

The central moments of WPD, after simple algebraic simplification, can be obtained as

μ 2 = ω[ η 6 +2 η 4 ω+2 η 3 ω 2 +2 η 4 +8 η 3 ω+ η 2 ω 2 +2η ω 3 + ω 4 +6 η 3 + η 2 ω+6η ω 2 +4 ω 3 +4ηω+5 ω 2 +2ω ] η 2 ( η 3 +ηω+ ω 2 +ω ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqyYdC3aamWaaqaa beqaaiabeE7aOnaaCaaaleqabaGaaGOnaaaakiabgUcaRiaaikdacq aH3oaAdaahaaWcbeqaaiaaisdaaaGccqaHjpWDcqGHRaWkcaaIYaGa eq4TdG2aaWbaaSqabeaacaaIZaaaaOGaeqyYdC3aaWbaaSqabeaaca aIYaaaaOGaey4kaSIaaGOmaiabeE7aOnaaCaaaleqabaGaaGinaaaa kiabgUcaRiaaiIdacqaH3oaAdaahaaWcbeqaaiaaiodaaaGccqaHjp WDcqGHRaWkcqaH3oaAdaahaaWcbeqaaiaaikdaaaGccqaHjpWDdaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaeq4TdGMaeqyYdC3aaW baaSqabeaacaaIZaaaaaGcbaGaey4kaSIaeqyYdC3aaWbaaSqabeaa caaI0aaaaOGaey4kaSIaaGOnaiabeE7aOnaaCaaaleqabaGaaG4maa aakiabgUcaRiabeE7aOnaaCaaaleqabaGaaGOmaaaakiabeM8a3jab gUcaRiaaiAdacqaH3oaAcqaHjpWDdaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaI0aGaeqyYdC3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIa aGinaiabeE7aOjabeM8a3jabgUcaRiaaiwdacqaHjpWDdaahaaWcbe qaaiaaikdaaaGccqGHRaWkcaaIYaGaeqyYdChaaiaawUfacaGLDbaa aeaacqaH3oaAdaahaaWcbeqaaiaaikdaaaGcdaqadaqaaiabeE7aOn aaCaaaleqabaGaaG4maaaakiabgUcaRiabeE7aOjabeM8a3jabgUca RiabeM8a3naaCaaaleqabaGaaGOmaaaakiabgUcaRiabeM8a3bGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaaaa@9BC0@

μ 3 = 2ω[ η 9 +3 η 7 ω+3 η 6 ω 2 +3 η 7 +15 η 6 ω+3 η 5 ω 2 + 6 η 4 ω 3 +3 η 3 ω 4 +12 η 6 +3 η 5 ω+21 η 4 ω 2 +13 η 3 ω 3 +3 η 2 ω 4 +3η ω 5 + ω 6 +15 η 4 ω+ 16 η 3 ω 2 +9 η 2 ω 3 +12η ω 4 +5 ω 5 +6 η 3 ω +6 η 2 ω 2 +15η ω 3 +9 ω 4 +6η ω 2 +7 ω 3 +2 ω 2 ] η 3 ( η 3 +ηω+ ω 2 +ω ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmaiabeM8a3naa dmaaeaqabeaacqaH3oaAdaahaaWcbeqaaiaaiMdaaaGccqGHRaWkca aIZaGaeq4TdG2aaWbaaSqabeaacaaI3aaaaOGaeqyYdCNaey4kaSIa aG4maiabeE7aOnaaCaaaleqabaGaaGOnaaaakiabeM8a3naaCaaale qabaGaaGOmaaaakiabgUcaRiaaiodacqaH3oaAdaahaaWcbeqaaiaa iEdaaaGccqGHRaWkcaaIXaGaaGynaiabeE7aOnaaCaaaleqabaGaaG OnaaaakiabeM8a3jabgUcaRiaaiodacqaH3oaAdaahaaWcbeqaaiaa iwdaaaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaGccqGHRaWkaeaaca aI2aGaeq4TdG2aaWbaaSqabeaacaaI0aaaaOGaeqyYdC3aaWbaaSqa beaacaaIZaaaaOGaey4kaSIaaG4maiabeE7aOnaaCaaaleqabaGaaG 4maaaakiabeM8a3naaCaaaleqabaGaaGinaaaakiabgUcaRiaaigda caaIYaGaeq4TdG2aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaG4mai abeE7aOnaaCaaaleqabaGaaGynaaaakiabeM8a3jabgUcaRiaaikda caaIXaGaeq4TdG2aaWbaaSqabeaacaaI0aaaaOGaeqyYdC3aaWbaaS qabeaacaaIYaaaaaGcbaGaey4kaSIaaGymaiaaiodacqaH3oaAdaah aaWcbeqaaiaaiodaaaGccqaHjpWDdaahaaWcbeqaaiaaiodaaaGccq GHRaWkcaaIZaGaeq4TdG2aaWbaaSqabeaacaaIYaaaaOGaeqyYdC3a aWbaaSqabeaacaaI0aaaaOGaey4kaSIaaG4maiabeE7aOjabeM8a3n aaCaaaleqabaGaaGynaaaakiabgUcaRiabeM8a3naaCaaaleqabaGa aGOnaaaakiabgUcaRiaaigdacaaI1aGaeq4TdG2aaWbaaSqabeaaca aI0aaaaOGaeqyYdCNaey4kaScabaGaaGymaiaaiAdacqaH3oaAdaah aaWcbeqaaiaaiodaaaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaI5aGaeq4TdG2aaWbaaSqabeaacaaIYaaaaOGaeqyYdC3a aWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGymaiaaikdacqaH3oaAcq aHjpWDdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI1aGaeqyYdC3a aWbaaSqabeaacaaI1aaaaOGaey4kaSIaaGOnaiabeE7aOnaaCaaale qabaGaaG4maaaakiabeM8a3bqaaiabgUcaRiaaiAdacqaH3oaAdaah aaWcbeqaaiaaikdaaaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaIXaGaaGynaiabeE7aOjabeM8a3naaCaaaleqabaGaaG4m aaaakiabgUcaRiaaiMdacqaHjpWDdaahaaWcbeqaaiaaisdaaaGccq GHRaWkcaaI2aGaeq4TdGMaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaaG4naiabeM8a3naaCaaaleqabaGaaG4maaaakiabgUcaRi aaikdacqaHjpWDdaahaaWcbeqaaiaaikdaaaaaaOGaay5waiaaw2fa aaqaaiabeE7aOnaaCaaaleqabaGaaG4maaaakmaabmaabaGaeq4TdG 2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaeq4TdGMaeqyYdCNaey4k aSIaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaeqyYdChaca GLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaaaaaaa@F478@

μ 4 = 3ω[ 2 η 12 + η 12 ω+4 η 10 ω 2 +4 η 9 ω 3 +12 η 10 ω+ 24 η 9 ω 2 +6 η 8 ω 3 +12 η 7 ω 4 +6 η 6 ω 5 +8 η 10 +60 η 9 ω+22 η 8 ω 2 +76 η 7 ω 3 +56 η 6 ω 4 + 12 η 5 ω 5 +12 η 4 ω 6 +4 η 3 ω 7 +40 η 9 +16 η 8 ω +160 η 7 ω 2 +158 η 6 ω 3 +76 η 5 ω 4 +101 η 4 ω 5 +44 η 3 ω 6 +6 η 2 ω 7 +4η ω 8 + ω 9 +96 η 7 ω +164 η 6 ω 2 +148 η 5 ω 3 +272 η 4 ω 4 +160 η 3 ω 5 +46 η 2 ω 6 +36η ω 7 +10 ω 8 +56 η 6 ω 3 84 η 5 ω 2 +287 η 4 ω 3 +252 η 3 ω 4 +118 η 2 ω 5 +116η ω 6 +38 ω 7 +104 η 4 ω 2 +172 η 3 ω 3 38 ω 4 +8 ω 3 ] η 4 ( η 3 +ηω+ ω 2 +ω ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakiabg2da9maalaaabaGaaG4maiabeM8a3naa dmaaeaqabeaacaaIYaGaeq4TdG2aaWbaaSqabeaacaaIXaGaaGOmaa aakiabgUcaRiabeE7aOnaaCaaaleqabaGaaGymaiaaikdaaaGccqaH jpWDcqGHRaWkcaaI0aGaeq4TdG2aaWbaaSqabeaacaaIXaGaaGimaa aakiabeM8a3naaCaaaleqabaGaaGOmaaaakiabgUcaRiaaisdacqaH 3oaAdaahaaWcbeqaaiaaiMdaaaGccqaHjpWDdaahaaWcbeqaaiaaio daaaGccqGHRaWkcaaIXaGaaGOmaiabeE7aOnaaCaaaleqabaGaaGym aiaaicdaaaGccqaHjpWDcqGHRaWkaeaacaaIYaGaaGinaiabeE7aOn aaCaaaleqabaGaaGyoaaaakiabeM8a3naaCaaaleqabaGaaGOmaaaa kiabgUcaRiaaiAdacqaH3oaAdaahaaWcbeqaaiaaiIdaaaGccqaHjp WDdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIXaGaaGOmaiabeE7a OnaaCaaaleqabaGaaG4naaaakiabeM8a3naaCaaaleqabaGaaGinaa aakiabgUcaRiaaiAdacqaH3oaAdaahaaWcbeqaaiaaiAdaaaGccqaH jpWDdaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaI4aGaeq4TdG2aaW baaSqabeaacaaIXaGaaGimaaaaaOqaaiabgUcaRiaaiAdacaaIWaGa eq4TdG2aaWbaaSqabeaacaaI5aaaaOGaeqyYdCNaey4kaSIaaGOmai aaikdacqaH3oaAdaahaaWcbeqaaiaaiIdaaaGccqaHjpWDdaahaaWc beqaaiaaikdaaaGccqGHRaWkcaaI3aGaaGOnaiabeE7aOnaaCaaale qabaGaaG4naaaakiabeM8a3naaCaaaleqabaGaaG4maaaakiabgUca RiaaiwdacaaI2aGaeq4TdG2aaWbaaSqabeaacaaI2aaaaOGaeqyYdC 3aaWbaaSqabeaacaaI0aaaaOGaey4kaScabaGaaGymaiaaikdacqaH 3oaAdaahaaWcbeqaaiaaiwdaaaGccqaHjpWDdaahaaWcbeqaaiaaiw daaaGccqGHRaWkcaaIXaGaaGOmaiabeE7aOnaaCaaaleqabaGaaGin aaaakiabeM8a3naaCaaaleqabaGaaGOnaaaakiabgUcaRiaaisdacq aH3oaAdaahaaWcbeqaaiaaiodaaaGccqaHjpWDdaahaaWcbeqaaiaa iEdaaaGccqGHRaWkcaaI0aGaaGimaiabeE7aOnaaCaaaleqabaGaaG yoaaaakiabgUcaRiaaigdacaaI2aGaeq4TdG2aaWbaaSqabeaacaaI 4aaaaOGaeqyYdChabaGaey4kaSIaaGymaiaaiAdacaaIWaGaeq4TdG 2aaWbaaSqabeaacaaI3aaaaOGaeqyYdC3aaWbaaSqabeaacaaIYaaa aOGaey4kaSIaaGymaiaaiwdacaaI4aGaeq4TdG2aaWbaaSqabeaaca aI2aaaaOGaeqyYdC3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4n aiaaiAdacqaH3oaAdaahaaWcbeqaaiaaiwdaaaGccqaHjpWDdaahaa WcbeqaaiaaisdaaaGccqGHRaWkcaaIXaGaaGimaiaaigdacqaH3oaA daahaaWcbeqaaiaaisdaaaGccqaHjpWDdaahaaWcbeqaaiaaiwdaaa aakeaacqGHRaWkcaaI0aGaaGinaiabeE7aOnaaCaaaleqabaGaaG4m aaaakiabeM8a3naaCaaaleqabaGaaGOnaaaakiabgUcaRiaaiAdacq aH3oaAdaahaaWcbeqaaiaaikdaaaGccqaHjpWDdaahaaWcbeqaaiaa iEdaaaGccqGHRaWkcaaI0aGaeq4TdGMaeqyYdC3aaWbaaSqabeaaca aI4aaaaOGaey4kaSIaeqyYdC3aaWbaaSqabeaacaaI5aaaaOGaey4k aSIaaGyoaiaaiAdacqaH3oaAdaahaaWcbeqaaiaaiEdaaaGccqaHjp WDaeaacqGHRaWkcaaIXaGaaGOnaiaaisdacqaH3oaAdaahaaWcbeqa aiaaiAdaaaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaGccqGHRaWkca aIXaGaaGinaiaaiIdacqaH3oaAdaahaaWcbeqaaiaaiwdaaaGccqaH jpWDdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaaG4naiaaik dacqaH3oaAdaahaaWcbeqaaiaaisdaaaGccqaHjpWDdaahaaWcbeqa aiaaisdaaaGccqGHRaWkcaaIXaGaaGOnaiaaicdacqaH3oaAdaahaa WcbeqaaiaaiodaaaGccqaHjpWDdaahaaWcbeqaaiaaiwdaaaaakeaa cqGHRaWkcaaI0aGaaGOnaiabeE7aOnaaCaaaleqabaGaaGOmaaaaki abeM8a3naaCaaaleqabaGaaGOnaaaakiabgUcaRiaaiodacaaI2aGa eq4TdGMaeqyYdC3aaWbaaSqabeaacaaI3aaaaOGaey4kaSIaaGymai aaicdacqaHjpWDdaahaaWcbeqaaiaaiIdaaaGccqGHRaWkcaaI1aGa aGOnaiabeE7aOnaaCaaaleqabaGaaGOnaaaakiabeM8a3naaCaaale qabaGaaG4maaaaaOqaaiaaiIdacaaI0aGaeq4TdG2aaWbaaSqabeaa caaI1aaaaOGaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG OmaiaaiIdacaaI3aGaeq4TdG2aaWbaaSqabeaacaaI0aaaaOGaeqyY dC3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGOmaiaaiwdacaaIYa Gaeq4TdG2aaWbaaSqabeaacaaIZaaaaOGaeqyYdC3aaWbaaSqabeaa caaI0aaaaOGaey4kaSIaaGymaiaaigdacaaI4aGaeq4TdG2aaWbaaS qabeaacaaIYaaaaOGaeqyYdC3aaWbaaSqabeaacaaI1aaaaaGcbaGa ey4kaSIaaGymaiaaigdacaaI2aGaeq4TdGMaeqyYdC3aaWbaaSqabe aacaaI2aaaaOGaey4kaSIaaG4maiaaiIdacqaHjpWDdaahaaWcbeqa aiaaiEdaaaGccqGHRaWkcaaIXaGaaGimaiaaisdacqaH3oaAdaahaa WcbeqaaiaaisdaaaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaaIXaGaaG4naiaaikdacqaH3oaAdaahaaWcbeqaaiaaiodaaa GccqaHjpWDdaahaaWcbeqaaiaaiodaaaaakeaacaaIZaGaaGioaiab eM8a3naaCaaaleqabaGaaGinaaaakiabgUcaRiaaiIdacqaHjpWDda ahaaWcbeqaaiaaiodaaaaaaOGaay5waiaaw2faaaqaaiabeE7aOnaa CaaaleqabaGaaGinaaaakmaabmaabaGaeq4TdG2aaWbaaSqabeaaca aIZaaaaOGaey4kaSIaeq4TdGMaeqyYdCNaey4kaSIaeqyYdC3aaWba aSqabeaacaaIYaaaaOGaey4kaSIaeqyYdChacaGLOaGaayzkaaWaaW baaSqabeaacaaI0aaaaaaaaaa@99AF@

Thus, the coefficient of variation (C.V), coefficient of skewness ( β 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaO aaaeaacqaHYoGydaWgaaWcbaGaaGymaaqabaaabeaaaOGaayjkaiaa wMcaaaaa@3B39@ , coefficient of kurtosis ( β 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq OSdi2aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3B2A@ , and index of dispersion ( γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4SdCgacaGLOaGaayzkaaaaaa@3A3E@ of WPD are obtained as

CV= ω[ η 6 +2 η 4 ω+2 η 3 ω 2 +2 η 4 +8 η 3 ω+ η 2 ω 2 +2η ω 3 + ω 4 +6 η 3 + η 2 ω+6η ω 2 +4 ω 3 +4ηω+5 ω 2 +2ω ] ω[ η 3 +η( ω+1 )+( ω+1 )( ω+2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGwb Gaeyypa0ZaaSaaaeaadaGcaaqaaiabeM8a3naadmaaeaqabeaacqaH 3oaAdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaIYaGaeq4TdG2aaW baaSqabeaacaaI0aaaaOGaeqyYdCNaey4kaSIaaGOmaiabeE7aOnaa CaaaleqabaGaaG4maaaakiabeM8a3naaCaaaleqabaGaaGOmaaaaki abgUcaRiaaikdacqaH3oaAdaahaaWcbeqaaiaaisdaaaGccqGHRaWk caaI4aGaeq4TdG2aaWbaaSqabeaacaaIZaaaaOGaeqyYdCNaey4kaS Iaeq4TdG2aaWbaaSqabeaacaaIYaaaaOGaeqyYdC3aaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaGOmaiabeE7aOjabeM8a3naaCaaaleqaba GaaG4maaaaaOqaaiabgUcaRiabeM8a3naaCaaaleqabaGaaGinaaaa kiabgUcaRiaaiAdacqaH3oaAdaahaaWcbeqaaiaaiodaaaGccqGHRa WkcqaH3oaAdaahaaWcbeqaaiaaikdaaaGccqaHjpWDcqGHRaWkcaaI 2aGaeq4TdGMaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG inaiabeM8a3naaCaaaleqabaGaaG4maaaakiabgUcaRiaaisdacqaH 3oaAcqaHjpWDcqGHRaWkcaaI1aGaeqyYdC3aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGOmaiabeM8a3baacaGLBbGaayzxaaaaleqaaaGc baGaeqyYdC3aamWaaeaacqaH3oaAdaahaaWcbeqaaiaaiodaaaGccq GHRaWkcqaH3oaAdaqadaqaaiabeM8a3jabgUcaRiaaigdaaiaawIca caGLPaaacqGHRaWkdaqadaqaaiabeM8a3jabgUcaRiaaigdaaiaawI cacaGLPaaadaqadaqaaiabeM8a3jabgUcaRiaaikdaaiaawIcacaGL PaaaaiaawUfacaGLDbaaaaaaaa@A12C@

β 1 = 2ω[ η 9 +3 η 7 ω+3 η 6 ω 2 +3 η 7 +15 η 6 ω+3 η 5 ω 2 +6 η 4 ω 3 +3 η 3 ω 4 +12 η 6 +3 η 5 ω+21 η 4 ω 2 +13 η 3 ω 3 +3 η 2 ω 4 +3η ω 5 + ω 6 +15 η 4 ω+ 16 η 3 ω 2 +9 η 2 ω 3 +12η ω 4 +5 ω 5 +6 η 3 ω +6 η 2 ω 2 +15η ω 3 +9 ω 4 +6η ω 2 +7 ω 3 +2 ω 2 ] ω[ η 6 +2 η 4 ω+2 η 3 ω 2 +2 η 4 +8 η 3 ω+ η 2 ω 2 +2η ω 3 + ω 4 +6 η 3 + η 2 ω+6η ω 2 +4 ω 3 +4ηω+5 ω 2 +2ω ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaakaaabaGaeq OSdi2aaSbaaSqaaiaaigdaaeqaaaqabaGccqGH9aqpdaWcaaqaaiaa ikdacqaHjpWDdaWadaabaeqabaGaeq4TdG2aaWbaaSqabeaacaaI5a aaaOGaey4kaSIaaG4maiabeE7aOnaaCaaaleqabaGaaG4naaaakiab eM8a3jabgUcaRiaaiodacqaH3oaAdaahaaWcbeqaaiaaiAdaaaGccq aHjpWDdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZaGaeq4TdG2a aWbaaSqabeaacaaI3aaaaOGaey4kaSIaaGymaiaaiwdacqaH3oaAda ahaaWcbeqaaiaaiAdaaaGccqaHjpWDcqGHRaWkcaaIZaGaeq4TdG2a aWbaaSqabeaacaaI1aaaaOGaeqyYdC3aaWbaaSqabeaacaaIYaaaaa GcbaGaey4kaSIaaGOnaiabeE7aOnaaCaaaleqabaGaaGinaaaakiab eM8a3naaCaaaleqabaGaaG4maaaakiabgUcaRiaaiodacqaH3oaAda ahaaWcbeqaaiaaiodaaaGccqaHjpWDdaahaaWcbeqaaiaaisdaaaGc cqGHRaWkcaaIXaGaaGOmaiabeE7aOnaaCaaaleqabaGaaGOnaaaaki abgUcaRiaaiodacqaH3oaAdaahaaWcbeqaaiaaiwdaaaGccqaHjpWD cqGHRaWkcaaIYaGaaGymaiabeE7aOnaaCaaaleqabaGaaGinaaaaki abeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiabgUcaRiaaigdacaaI ZaGaeq4TdG2aaWbaaSqabeaacaaIZaaaaOGaeqyYdC3aaWbaaSqabe aacaaIZaaaaOGaey4kaSIaaG4maiabeE7aOnaaCaaaleqabaGaaGOm aaaakiabeM8a3naaCaaaleqabaGaaGinaaaakiabgUcaRiaaiodacq aH3oaAcqaHjpWDdaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcqaHjpWD daahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaIXaGaaGynaiabeE7aOn aaCaaaleqabaGaaGinaaaakiabeM8a3jabgUcaRaqaaiaaigdacaaI 2aGaeq4TdG2aaWbaaSqabeaacaaIZaaaaOGaeqyYdC3aaWbaaSqabe aacaaIYaaaaOGaey4kaSIaaGyoaiabeE7aOnaaCaaaleqabaGaaGOm aaaakiabeM8a3naaCaaaleqabaGaaG4maaaakiabgUcaRiaaigdaca aIYaGaeq4TdGMaeqyYdC3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIa aGynaiabeM8a3naaCaaaleqabaGaaGynaaaakiabgUcaRiaaiAdacq aH3oaAdaahaaWcbeqaaiaaiodaaaGccqaHjpWDaeaacqGHRaWkcaaI 2aGaeq4TdG2aaWbaaSqabeaacaaIYaaaaOGaeqyYdC3aaWbaaSqabe aacaaIYaaaaOGaey4kaSIaaGymaiaaiwdacqaH3oaAcqaHjpWDdaah aaWcbeqaaiaaiodaaaGccqGHRaWkcaaI5aGaeqyYdC3aaWbaaSqabe aacaaI0aaaaOGaey4kaSIaaGOnaiabeE7aOjabeM8a3naaCaaaleqa baGaaGOmaaaakiabgUcaRiaaiEdacqaHjpWDdaahaaWcbeqaaiaaio daaaGccqGHRaWkcaaIYaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaaa kiaawUfacaGLDbaaaeaacqaHjpWDdaWadaabaeqabaGaeq4TdG2aaW baaSqabeaacaaI2aaaaOGaey4kaSIaaGOmaiabeE7aOnaaCaaaleqa baGaaGinaaaakiabeM8a3jabgUcaRiaaikdacqaH3oaAdaahaaWcbe qaaiaaiodaaaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaGccqGHRaWk caaIYaGaeq4TdG2aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGioai abeE7aOnaaCaaaleqabaGaaG4maaaakiabeM8a3jabgUcaRiabeE7a OnaaCaaaleqabaGaaGOmaaaakiabeM8a3naaCaaaleqabaGaaGOmaa aakiabgUcaRiaaikdacqaH3oaAcqaHjpWDdaahaaWcbeqaaiaaioda aaaakeaacqGHRaWkcqaHjpWDdaahaaWcbeqaaiaaisdaaaGccqGHRa WkcaaI2aGaeq4TdG2aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaeq4T dG2aaWbaaSqabeaacaaIYaaaaOGaeqyYdCNaey4kaSIaaGOnaiabeE 7aOjabeM8a3naaCaaaleqabaGaaGOmaaaakiabgUcaRiaaisdacqaH jpWDdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI0aGaeq4TdGMaeq yYdCNaey4kaSIaaGynaiabeM8a3naaCaaaleqabaGaaGOmaaaakiab gUcaRiaaikdacqaHjpWDaaGaay5waiaaw2faaaaaaaa@30A9@

β 2 = 3ω[ 2 η 12 + η 12 ω+4 η 10 ω 2 +4 η 9 ω 3 +12 η 10 ω+ 24 η 9 ω 2 +6 η 8 ω 3 +12 η 7 ω 4 +6 η 6 ω 5 +8 η 10 +60 η 9 ω+22 η 8 ω 2 +76 η 7 ω 3 +56 η 6 ω 4 + 12 η 5 ω 5 +12 η 4 ω 6 +4 η 3 ω 7 +40 η 9 +16 η 8 ω +160 η 7 ω 2 +158 η 6 ω 3 +76 η 5 ω 4 +101 η 4 ω 5 +44 η 3 ω 6 +6 η 2 ω 7 +4η ω 8 + ω 9 +96 η 7 ω +164 η 6 ω 2 +148 η 5 ω 3 +272 η 4 ω 4 +160 η 3 ω 5 +46 η 2 ω 6 +36η ω 7 +10 ω 8 +56 η 6 ω 3 84 η 5 ω 2 +287 η 4 ω 3 +252 η 3 ω 4 +118 η 2 ω 5 +116η ω 6 +38 ω 7 +104 η 4 ω 2 +172 η 3 ω 3 38 ω 4 +8 ω 3 ] ω 2 [ η 6 +2 η 4 ω+2 η 3 ω 2 +2 η 4 +8 η 3 ω+ η 2 ω 2 +2η ω 3 + ω 4 +6 η 3 + η 2 ω+6η ω 2 +4 ω 3 +4ηω+5 ω 2 +2ω ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aInaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaaG4maiabeM8a3naa dmaaeaqabeaacaaIYaGaeq4TdG2aaWbaaSqabeaacaaIXaGaaGOmaa aakiabgUcaRiabeE7aOnaaCaaaleqabaGaaGymaiaaikdaaaGccqaH jpWDcqGHRaWkcaaI0aGaeq4TdG2aaWbaaSqabeaacaaIXaGaaGimaa aakiabeM8a3naaCaaaleqabaGaaGOmaaaakiabgUcaRiaaisdacqaH 3oaAdaahaaWcbeqaaiaaiMdaaaGccqaHjpWDdaahaaWcbeqaaiaaio daaaGccqGHRaWkcaaIXaGaaGOmaiabeE7aOnaaCaaaleqabaGaaGym aiaaicdaaaGccqaHjpWDcqGHRaWkaeaacaaIYaGaaGinaiabeE7aOn aaCaaaleqabaGaaGyoaaaakiabeM8a3naaCaaaleqabaGaaGOmaaaa kiabgUcaRiaaiAdacqaH3oaAdaahaaWcbeqaaiaaiIdaaaGccqaHjp WDdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIXaGaaGOmaiabeE7a OnaaCaaaleqabaGaaG4naaaakiabeM8a3naaCaaaleqabaGaaGinaa aakiabgUcaRiaaiAdacqaH3oaAdaahaaWcbeqaaiaaiAdaaaGccqaH jpWDdaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaI4aGaeq4TdG2aaW baaSqabeaacaaIXaGaaGimaaaaaOqaaiabgUcaRiaaiAdacaaIWaGa eq4TdG2aaWbaaSqabeaacaaI5aaaaOGaeqyYdCNaey4kaSIaaGOmai aaikdacqaH3oaAdaahaaWcbeqaaiaaiIdaaaGccqaHjpWDdaahaaWc beqaaiaaikdaaaGccqGHRaWkcaaI3aGaaGOnaiabeE7aOnaaCaaale qabaGaaG4naaaakiabeM8a3naaCaaaleqabaGaaG4maaaakiabgUca RiaaiwdacaaI2aGaeq4TdG2aaWbaaSqabeaacaaI2aaaaOGaeqyYdC 3aaWbaaSqabeaacaaI0aaaaOGaey4kaScabaGaaGymaiaaikdacqaH 3oaAdaahaaWcbeqaaiaaiwdaaaGccqaHjpWDdaahaaWcbeqaaiaaiw daaaGccqGHRaWkcaaIXaGaaGOmaiabeE7aOnaaCaaaleqabaGaaGin aaaakiabeM8a3naaCaaaleqabaGaaGOnaaaakiabgUcaRiaaisdacq aH3oaAdaahaaWcbeqaaiaaiodaaaGccqaHjpWDdaahaaWcbeqaaiaa iEdaaaGccqGHRaWkcaaI0aGaaGimaiabeE7aOnaaCaaaleqabaGaaG yoaaaakiabgUcaRiaaigdacaaI2aGaeq4TdG2aaWbaaSqabeaacaaI 4aaaaOGaeqyYdChabaGaey4kaSIaaGymaiaaiAdacaaIWaGaeq4TdG 2aaWbaaSqabeaacaaI3aaaaOGaeqyYdC3aaWbaaSqabeaacaaIYaaa aOGaey4kaSIaaGymaiaaiwdacaaI4aGaeq4TdG2aaWbaaSqabeaaca aI2aaaaOGaeqyYdC3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4n aiaaiAdacqaH3oaAdaahaaWcbeqaaiaaiwdaaaGccqaHjpWDdaahaa WcbeqaaiaaisdaaaGccqGHRaWkcaaIXaGaaGimaiaaigdacqaH3oaA daahaaWcbeqaaiaaisdaaaGccqaHjpWDdaahaaWcbeqaaiaaiwdaaa aakeaacqGHRaWkcaaI0aGaaGinaiabeE7aOnaaCaaaleqabaGaaG4m aaaakiabeM8a3naaCaaaleqabaGaaGOnaaaakiabgUcaRiaaiAdacq aH3oaAdaahaaWcbeqaaiaaikdaaaGccqaHjpWDdaahaaWcbeqaaiaa iEdaaaGccqGHRaWkcaaI0aGaeq4TdGMaeqyYdC3aaWbaaSqabeaaca aI4aaaaOGaey4kaSIaeqyYdC3aaWbaaSqabeaacaaI5aaaaOGaey4k aSIaaGyoaiaaiAdacqaH3oaAdaahaaWcbeqaaiaaiEdaaaGccqaHjp WDaeaacqGHRaWkcaaIXaGaaGOnaiaaisdacqaH3oaAdaahaaWcbeqa aiaaiAdaaaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaGccqGHRaWkca aIXaGaaGinaiaaiIdacqaH3oaAdaahaaWcbeqaaiaaiwdaaaGccqaH jpWDdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaaG4naiaaik dacqaH3oaAdaahaaWcbeqaaiaaisdaaaGccqaHjpWDdaahaaWcbeqa aiaaisdaaaGccqGHRaWkcaaIXaGaaGOnaiaaicdacqaH3oaAdaahaa WcbeqaaiaaiodaaaGccqaHjpWDdaahaaWcbeqaaiaaiwdaaaaakeaa cqGHRaWkcaaI0aGaaGOnaiabeE7aOnaaCaaaleqabaGaaGOmaaaaki abeM8a3naaCaaaleqabaGaaGOnaaaakiabgUcaRiaaiodacaaI2aGa eq4TdGMaeqyYdC3aaWbaaSqabeaacaaI3aaaaOGaey4kaSIaaGymai aaicdacqaHjpWDdaahaaWcbeqaaiaaiIdaaaGccqGHRaWkcaaI1aGa aGOnaiabeE7aOnaaCaaaleqabaGaaGOnaaaakiabeM8a3naaCaaale qabaGaaG4maaaaaOqaaiaaiIdacaaI0aGaeq4TdG2aaWbaaSqabeaa caaI1aaaaOGaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaG OmaiaaiIdacaaI3aGaeq4TdG2aaWbaaSqabeaacaaI0aaaaOGaeqyY dC3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGOmaiaaiwdacaaIYa Gaeq4TdG2aaWbaaSqabeaacaaIZaaaaOGaeqyYdC3aaWbaaSqabeaa caaI0aaaaOGaey4kaSIaaGymaiaaigdacaaI4aGaeq4TdG2aaWbaaS qabeaacaaIYaaaaOGaeqyYdC3aaWbaaSqabeaacaaI1aaaaaGcbaGa ey4kaSIaaGymaiaaigdacaaI2aGaeq4TdGMaeqyYdC3aaWbaaSqabe aacaaI2aaaaOGaey4kaSIaaG4maiaaiIdacqaHjpWDdaahaaWcbeqa aiaaiEdaaaGccqGHRaWkcaaIXaGaaGimaiaaisdacqaH3oaAdaahaa WcbeqaaiaaisdaaaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaaIXaGaaG4naiaaikdacqaH3oaAdaahaaWcbeqaaiaaiodaaa GccqaHjpWDdaahaaWcbeqaaiaaiodaaaaakeaacaaIZaGaaGioaiab eM8a3naaCaaaleqabaGaaGinaaaakiabgUcaRiaaiIdacqaHjpWDda ahaaWcbeqaaiaaiodaaaaaaOGaay5waiaaw2faaaqaaiabeM8a3naa CaaaleqabaGaaGOmaaaakmaadmaaeaqabeaacqaH3oaAdaahaaWcbe qaaiaaiAdaaaGccqGHRaWkcaaIYaGaeq4TdG2aaWbaaSqabeaacaaI 0aaaaOGaeqyYdCNaey4kaSIaaGOmaiabeE7aOnaaCaaaleqabaGaaG 4maaaakiabeM8a3naaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikda cqaH3oaAdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaI4aGaeq4TdG 2aaWbaaSqabeaacaaIZaaaaOGaeqyYdCNaey4kaSIaeq4TdG2aaWba aSqabeaacaaIYaaaaOGaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGOmaiabeE7aOjabeM8a3naaCaaaleqabaGaaG4maaaaaOqa aiabgUcaRiabeM8a3naaCaaaleqabaGaaGinaaaakiabgUcaRiaaiA dacqaH3oaAdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcqaH3oaAdaah aaWcbeqaaiaaikdaaaGccqaHjpWDcqGHRaWkcaaI2aGaeq4TdGMaeq yYdC3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGinaiabeM8a3naa CaaaleqabaGaaG4maaaakiabgUcaRiaaisdacqaH3oaAcqaHjpWDcq GHRaWkcaaI1aGaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIa aGOmaiabeM8a3baacaGLBbGaayzxaaWaaWbaaSqabeaacaaIYaaaaa aaaaa@D7AA@

γ= ω[ η 6 +2 η 4 ω+2 η 3 ω 2 +2 η 4 +8 η 3 ω+ η 2 ω 2 +2η ω 3 + ω 4 +6 η 3 + η 2 ω+6η ω 2 +4 ω 3 +4ηω+5 ω 2 +2ω ] ωη( η 3 +ηω+ ω 2 +ω )[ η 3 +η( ω+1 )+( ω+1 )( ω+2 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maalaaabaGaeqyYdC3aamWaaqaabeqaaiabeE7aOnaaCaaaleqa baGaaGOnaaaakiabgUcaRiaaikdacqaH3oaAdaahaaWcbeqaaiaais daaaGccqaHjpWDcqGHRaWkcaaIYaGaeq4TdG2aaWbaaSqabeaacaaI ZaaaaOGaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmai abeE7aOnaaCaaaleqabaGaaGinaaaakiabgUcaRiaaiIdacqaH3oaA daahaaWcbeqaaiaaiodaaaGccqaHjpWDcqGHRaWkcqaH3oaAdaahaa WcbeqaaiaaikdaaaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaGccqGH RaWkcaaIYaGaeq4TdGMaeqyYdC3aaWbaaSqabeaacaaIZaaaaaGcba Gaey4kaSIaeqyYdC3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGOn aiabeE7aOnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeE7aOnaaCa aaleqabaGaaGOmaaaakiabeM8a3jabgUcaRiaaiAdacqaH3oaAcqaH jpWDdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI0aGaeqyYdC3aaW baaSqabeaacaaIZaaaaOGaey4kaSIaaGinaiabeE7aOjabeM8a3jab gUcaRiaaiwdacqaHjpWDdaahaaWcbeqaaiaaikdaaaGccqGHRaWkca aIYaGaeqyYdChaaiaawUfacaGLDbaaaeaacqaHjpWDcqaH3oaAdaqa daqaaiabeE7aOnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeE7aOj abeM8a3jabgUcaRiabeM8a3naaCaaaleqabaGaaGOmaaaakiabgUca RiabeM8a3bGaayjkaiaawMcaamaadmaabaGaeq4TdG2aaWbaaSqabe aacaaIZaaaaOGaey4kaSIaeq4TdG2aaeWaaeaacqaHjpWDcqGHRaWk caaIXaaacaGLOaGaayzkaaGaey4kaSYaaeWaaeaacqaHjpWDcqGHRa WkcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacqaHjpWDcqGHRaWkcaaI YaaacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaaaa@B18C@

When η1.3,ω1.3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabgs MiJkaaigdacaGGUaGaaG4maiaacYcacqaHjpWDcqGHKjYOcaaIXaGa aiOlaiaaiodaaaa@42F5@ , variance is greater than the mean. The plots of coefficient of variation, skewness, kurtosis and index of dispersion are shown in the following Figure 5.

Figure 5 Coefficient of variation, coefficient of skewness, coefficient of kurtosis, index of dispersion for differnet values of the parameters of WPD.

Figure 5 illustrates that for fixed values of ω and increasing values of η, the coefficient of variation, coefficient of skewness and coefficient of kurtosis are monotonically increaseing, wheres as for fixed values of η and increasing values of ω, coefficient of variation, coefficient of skewness and coefficient of kurtosis are monotonically decreaseing. On the other hand for fixed values of ω and increasing values of η and ficxed values η and incrasing values of ω index of dispersion is decreasing.

Maximum likelihood estimation

Let ( x 1 , x 2 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaake aajugqbiaadIhakmaaBaaaleaadaWgaaadbaGaaGymaaqabaaaleqa aKqzafGaaiilaiaadIhakmaaBaaaleaadaWgaaadbaGaaGOmaaqaba aaleqaaKqzafGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWG4bqc fa4aaSbaaSqaaOWaaSbaaSqaaKqzafGaamOBaaWcbeaaaeqaaaGcca GLOaGaayzkaaaaaa@4753@ be a random sample from WPD. The log-likelihood function of WPD can be expressed as

logL=n[ ( ω+2 )logηlog( η 3 +ηω+ω( ω+1 ) ) ]nlog( Γ( ω ) ) + i=1 n log( η+ x i + x i 2 ) +( ω1 ) i=1 n log( x i ) η i=1 n x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcLbuaci GGSbGaai4BaiaacEgacaWGmbGaeyypa0JaamOBaKqbaoaadmaakeaa juaGdaqadaqaaiabeM8a3jabgUcaRiaaikdaaiaawIcacaGLPaaaju gqbiGacYgacaGGVbGaai4zaiabeE7aOjabgkHiTiGacYgacaGGVbGa ai4zaKqbaoaabmaabaqcLbuacqaH3oaAjuaGdaahaaqabeaacaaIZa aaaKqzafGaey4kaSIaeq4TdGMaeqyYdCNaey4kaSIaeqyYdCxcfa4a aeWaaeaajugqbiabeM8a3jabgUcaRiaaigdaaKqbakaawIcacaGLPa aaaiaawIcacaGLPaaaaOGaay5waiaaw2faaKqbakabgkHiTiaad6ga ciGGSbGaai4BaiaacEgadaqadaqaaiabfo5ahnaabmaabaqcLbuacq aHjpWDaKqbakaawIcacaGLPaaaaiaawIcacaGLPaaaaOqaaKqzafGa ey4kaSscfa4aaabCaOqaaKqzafGaciiBaiaac+gacaGGNbqcfa4aae WaaeaajugqbiabeE7aOjabgUcaRiaadIhajuaGdaWgaaqaaiaadMga aeqaaKqzafGaey4kaSIaaGzaVlaaygW7caWG4bqcfa4aaSbaaeaaca WGPbaabeaadaahaaqabeaacaaIYaaaaaGaayjkaiaawMcaaaWcbaqc LbuacaWGPbGaeyypa0JaaGymaaWcbaqcLbuacaWGUbaacqGHris5aK qbakabgUcaRmaabmaabaqcLbuacqaHjpWDcqGHsislcaaIXaaajuaG caGLOaGaayzkaaWaaabCaOqaaKqzafGaciiBaiaac+gacaGGNbqcfa 4aaeWaaeaajugqbiaadIhajuaGdaWgaaqaaiaadMgaaeqaaaGaayjk aiaawMcaaaWcbaqcLbuacaWGPbGaeyypa0JaaGymaaWcbaqcLbuaca WGUbaacqGHris5aiabgkHiTiaaykW7cqaH3oaAjuaGdaaeWbqaaKqz afGaamiEaKqbaoaaBaaabaGaamyAaaqabaaabaqcLbuacaWGPbGaey ypa0JaaGymaaqcfayaaKqzafGaamOBaaGaeyyeIuoaaaaa@B3F8@

This gives

logL η = n( ω+2 ) η n( 3 η 2 +ω ) η 3 +ηω+ω( ω+1 ) + i=1 n 1 η+ x i + x i 2 i=1 n x i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb uacqGHciITciGGSbGaai4BaiaacEgacaWGmbaakeaajugqbiabgkGi 2kabeE7aObaacqGH9aqpkmaalaaabaqcLbuacaWGUbGcdaqadaqaai abeM8a3jabgUcaRiaaikdaaiaawIcacaGLPaaaaeaajugqbiabeE7a ObaacqGHsislkmaalaaabaGaamOBamaabmaabaGaaG4maiabeE7aOn aaCaaaleqabaGaaGOmaaaakiabgUcaRiabeM8a3bGaayjkaiaawMca aaqaaKqzafGaeq4TdGMcdaahaaWcbeqaaiaaiodaaaqcLbuacqGHRa WkcqaH3oaAkiabeM8a3LqzafGaey4kaSIccqaHjpWDdaqadaqaaiab eM8a3jabgUcaRiaaigdaaiaawIcacaGLPaaaaaqcLbuacqGHRaWkkm aaqahabaWaaSaaaeaacaaIXaaabaqcLbuacqaH3oaAcqGHRaWkcaWG 4bGcdaWgaaqaaKqzafGaamyAaaGcbeaajugqbiabgUcaRiaadIhakm aaBaaabaqcLbuacaWGPbaakeqaamaaCaaabeqaaKqzafGaaGOmaaaa aaaakeaajugqbiaadMgacqGH9aqpcaaIXaaakeaajugqbiaad6gaai abggHiLdGaeyOeI0IcdaaeWbqaaKqzafGaamiEaOWaaSbaaeaajugq biaadMgaaOqabaqcLbuacqGH9aqpcaaIWaaakeaajugqbiaadMgacq GH9aqpcaaIXaaakeaajugqbiaad6gaaiabggHiLdaaaa@88C5@

logL ω =nlog( η ) n( η+2ω+1 ) η 3 +ηω+ω( ω+1 ) nψ( ω )+ i=1 n log x i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb uacqGHciITciGGSbGaai4BaiaacEgacaWGmbaakeaajugqbiabgkGi 2kabeM8a3baacqGH9aqpcaWGUbGaciiBaiaac+gacaGGNbGcdaqada qaaiabeE7aObGaayjkaiaawMcaaiabgkHiTmaalaaabaqcLbuacaWG UbGcdaqadaqaaiabeE7aOjabgUcaRiaaikdacqaHjpWDcqGHRaWkca aIXaaacaGLOaGaayzkaaaabaGaeq4TdG2aaWbaaSqabeaacaaIZaaa aOGaey4kaSIaeq4TdGMaeqyYdCNaey4kaSIaeqyYdC3aaeWaaeaacq aHjpWDcqGHRaWkcaaIXaaacaGLOaGaayzkaaaaaiabgkHiTiaad6ga cqaHipqEdaqadaqaaiabeM8a3bGaayjkaiaawMcaaiabgUcaRmaaqa habaqcLbuaciGGSbGaai4BaiaacEgacaWG4bGcdaWgaaWcbaqcLbua caWGPbaaleqaaaGcbaqcLbuacaWGPbGaeyypa0JaaGymaaGcbaqcLb uacaWGUbaacqGHris5aiabg2da9iaaicdaaaa@7989@

where ψ( ω )= ω log( Γ( ω ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI8a5naabm aabaGaeqyYdChacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacqGHciIT aeaacqGHciITcqaHjpWDaaGaciiBaiaac+gacaGGNbWaaeWaaeaacq qHtoWrdaqadaqaaiabeM8a3bGaayjkaiaawMcaaaGaayjkaiaawMca aaaa@4AF8@  is a digamma function.

The log-likelihood equations presented here are not readily solvable in closed form, necessitating the use of maximization techniques using R software. Iterative solutions are employed to optimize the likelihood function until sufficiently close parameter values are achieved. These equations can be solved using Fisher’s scoring method. For Fisher's scoring method, the following approach is undertaken

2 logL η 2 = n( ω+2 ) η 2 6nη[ η 3 +ηω+ω( ω+1 ) ]n ( 3 η 2 +ω ) 2 [ η 3 +ηω+ω( ω+1 ) ] 2 i=1 n 1 ( η+ x i + x i 2 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaKaaGeaadaWcaaqaaK qzGdGaeyOaIyBcaaYaaWbaaKqaGeqabaGaaGOmaaaajug4aiGacYga caGGVbGaai4zaiaadYeaaKaaGeaajug4aiabgkGi2kabeE7aOLaaGm aaCaaajeaibeqaaiaaikdaaaaaaKqzGdGaeyypa0JaeyOeI0scaaYa aSaaaeaajug4aiaad6gajaaidaqadaqaaiabeM8a3jabgUcaRiaaik daaiaawIcacaGLPaaaaeaajug4aiabeE7aOLaaGmaaCaaajeaibeqa aiaaikdaaaaaaKqzGdGaeyOeI0scaaYaaSaaaeaacaaI2aGaamOBai abeE7aOnaadmaabaqcLboacqaH3oaAjaaidaahaaqcbasabeaacaaI ZaaaaKqzGdGaey4kaSIaeq4TdGwcaaIaeqyYdCxcLboacqGHRaWkja aicqaHjpWDdaqadaqaaiabeM8a3jabgUcaRiaaigdaaiaawIcacaGL PaaaaiaawUfacaGLDbaacqGHsislcaWGUbWaaeWaaeaacaaIZaGaeq 4TdG2aaWbaaKqaGeqabaGaaGOmaaaajaaicqGHRaWkcqaHjpWDaiaa wIcacaGLPaaadaahaaqcbasabeaacaaIYaaaaaqcaasaamaadmaaba qcLboacqaH3oaAjaaidaahaaqcbasabeaacaaIZaaaaKqzGdGaey4k aSIaeq4TdGwcaaIaeqyYdCxcLboacqGHRaWkjaaicqaHjpWDdaqada qaaiabeM8a3jabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawUfacaGL DbaadaahaaqcbasabeaacaaIYaaaaaaajaaicqGHsisldaaeWbqaam aalaaabaGaaGymaaqaamaabmaabaqcLboacqaH3oaAcqGHRaWkcaWG 4bqcaaYaaSbaaeaajug4aiaadMgaaKaaGeqaaKqzGdGaey4kaSIaam iEaKaaGmaaBaaabaqcLboacaWGPbaajaaibeaadaahaaqcbasabeaa caaIYaaaaaqcaaIaayjkaiaawMcaamaaCaaajeaibeqaaiaaikdaaa aaaaqcaasaaKqzGdGaamyAaiabg2da9iaaigdaaKaaGeaajug4aiaa d6gaaiabggHiLdaaaa@AC5F@

2 logL ω 2 = 2n[ η 3 +ηω+ω( ω+1 ) ]n ( η+2ω+1 ) 2 [ η 3 +ηω+ω( ω+1 ) ] 2 n ψ ( ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb uacqGHciITkmaaCaaaleqabaGaaGOmaaaajugqbiGacYgacaGGVbGa ai4zaiaadYeaaOqaaKqzafGaeyOaIyRaeqyYdCNcdaahaaWcbeqaai aaikdaaaaaaKqzafGaeyypa0JaeyOeI0IcdaWcaaqaaiaaikdacaWG UbWaamWaaeaajugqbiabeE7aOPWaaWbaaSqabeaacaaIZaaaaKqzaf Gaey4kaSIaeq4TdGMccqaHjpWDjugqbiabgUcaROGaeqyYdC3aaeWa aeaacqaHjpWDcqGHRaWkcaaIXaaacaGLOaGaayzkaaaacaGLBbGaay zxaaGaeyOeI0IaamOBamaabmaabaGaeq4TdGMaey4kaSIaaGOmaiab eM8a3jabgUcaRiaaigdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaaakeaadaWadaqaaKqzafGaeq4TdGMcdaahaaWcbeqaaiaaioda aaqcLbuacqGHRaWkcqaH3oaAkiabeM8a3LqzafGaey4kaSIccqaHjp WDdaqadaqaaiabeM8a3jabgUcaRiaaigdaaiaawIcacaGLPaaaaiaa wUfacaGLDbaadaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0IaamOBai qbeI8a5zaafaWaaeWaaeaacqaHjpWDaiaawIcacaGLPaaaaaa@8033@

2 logL ηω = n η 6nη[ η 3 +ηω+ω( ω+1 ) ]n( η+2ω+1 )( 3 η 2 +ω ) [ η 3 +ηω+ω( ω+1 ) ] 2 = 2 logL ωη MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaqcLb uacqGHciITkmaaCaaaleqabaGaaGOmaaaajugqbiGacYgacaGGVbGa ai4zaiaadYeaaOqaaKqzafGaeyOaIyRaeq4TdGMaeyOaIyRaeqyYdC haaiabg2da9iabgkHiTOWaaSaaaeaajugqbiaad6gaaOqaaKqzafGa eq4TdGgaaiabgkHiTOWaaSaaaeaacaaI2aGaamOBaiabeE7aOnaadm aabaqcLbuacqaH3oaAkmaaCaaaleqabaGaaG4maaaajugqbiabgUca RiabeE7aOPGaeqyYdCxcLbuacqGHRaWkkiabeM8a3naabmaabaGaeq yYdCNaey4kaSIaaGymaaGaayjkaiaawMcaaaGaay5waiaaw2faaiab gkHiTiaad6gadaqadaqaaiabeE7aOjabgUcaRiaaikdacqaHjpWDcq GHRaWkcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacaaIZaqcLbuacqaH 3oaAkmaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeM8a3bGaayjkai aawMcaaaqaamaadmaabaqcLbuacqaH3oaAkmaaCaaaleqabaGaaG4m aaaajugqbiabgUcaRiabeE7aOPGaeqyYdCxcLbuacqGHRaWkkiabeM 8a3naabmaabaGaeqyYdCNaey4kaSIaaGymaaGaayjkaiaawMcaaaGa ay5waiaaw2faamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpdaWcaa qaaKqzafGaeyOaIyRcdaahaaWcbeqaaiaaikdaaaqcLbuaciGGSbGa ai4BaiaacEgacaWGmbaakeaajugqbiabgkGi2kabeM8a3jabgkGi2k abeE7aObaaaaa@9817@

For finding the MLEs ( η ^ , ω ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq 4TdGMbaKaacaGGSaGafqyYdCNbaKaaaiaawIcacaGLPaaaaaa@3CE0@  of parameters ( η,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4TdGMaaiilaiabeM8a3bGaayjkaiaawMcaaaaa@3CC0@  of WPD, following equations can be solved

( 2 logL η 2 2 logL ηω 2 logL ωη 2 logL ω 2 ) η ^ = η 0 ω ^ = ω 0 ( η ^ η 0 ω ^ ω 0 )=( logL η logL ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiGaaaqaamaalaaabaqcLbuacqGHciITkmaaCaaaleqabaGaaGOm aaaajugqbiGacYgacaGGVbGaai4zaiaadYeaaOqaaKqzafGaeyOaIy Raeq4TdGMcdaahaaWcbeqaaiaaikdaaaaaaaGcbaWaaSaaaeaajugq biabgkGi2QWaaWbaaSqabeaacaaIYaaaaKqzafGaciiBaiaac+gaca GGNbGaamitaaGcbaqcLbuacqGHciITcqaH3oaAcqGHciITcqaHjpWD aaaakeaadaWcaaqaaKqzafGaeyOaIyRcdaahaaWcbeqaaiaaikdaaa qcLbuaciGGSbGaai4BaiaacEgacaWGmbaakeaajugqbiabgkGi2kab eM8a3jabgkGi2kabeE7aObaaaOqaamaalaaabaqcLbuacqGHciITkm aaCaaaleqabaGaaGOmaaaajugqbiGacYgacaGGVbGaai4zaiaadYea aOqaaKqzafGaeyOaIyRaeqyYdCNcdaahaaWcbeqaaiaaikdaaaaaaa aaaOGaayjkaiaawMcaamaaBaaalqaabeqaaiqbeE7aOzaajaGaeyyp a0Jaeq4TdG2aaSbaaWqaaiaaicdaaeqaaaWcbaGafqyYdCNbaKaacq GH9aqpcqaHjpWDdaWgaaadbaGaaGimaaqabaaaaSqabaGcdaqadaab aeqabaGafq4TdGMbaKaacqGHsislcqaH3oaAdaWgaaWcbaGaaGimaa qabaaakeaacuaHjpWDgaqcaiabgkHiTiabeM8a3naaBaaaleaacaaI WaaabeaaaaGccaGLOaGaayzkaaGaeyypa0ZaaeWaaqaabeqaamaala aabaqcLbuacqGHciITciGGSbGaai4BaiaacEgacaWGmbaakeaajugq biabgkGi2kabeE7aObaaaOqaamaalaaabaqcLbuacqGHciITciGGSb Gaai4BaiaacEgacaWGmbaakeaajugqbiabgkGi2kabeM8a3baaaaGc caGLOaGaayzkaaaaaa@9B90@

where η 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOnaaBa aaleaacaaIWaaabeaaaaa@39A0@  and ω 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaaIWaaabeaaaaa@39C1@ are the initial values of η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aObaa@38BA@  and ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeM8a3baa@38DB@ . These equations are solved iteratively till close estimates of parameters are obtained.

A simulation study

To assess the effectiveness of maximum likelihood estimators for WPD, a simulation study has been conducted. The investigation involved examining mean estimates, biases (B), mean square errors (MSEs), and variances of the maximum likelihood estimates (MLEs) for WPD, utilizing the specified formulas.

Mean= 1 n i=1 n H ^ i ,B= 1 n i=1 n ( H ^ i H ) ,MSE= 1 n i=1 n ( H ^ i H ) 2 ,Variance=MSE B 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaKaaafaacaWGnbGaam yzaiaadggacaWGUbGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOBaaaa daaeWbqaaiqadIeagaqcamaaBaaajeaqbaGaamyAaaqabaaabaGaam yAaiabg2da9iaaigdaaeaacaWGUbaajmaqcqGHris5aKaaajaacYca caaMb8UaamOqaiabg2da9maalaaabaGaaGymaaqaaiaad6gaaaWaaa bCaeaadaqadaqaaiqadIeagaqcamaaBaaajeaqbaGaamyAaaqabaqc aaKaeyOeI0IaamisaaGaayjkaiaawMcaaaqcbauaaiaadMgacqGH9a qpcaaIXaaabaGaamOBaaqcdaKaeyyeIuoajaaqcaGGSaGaamytaiaa dofacaWGfbGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOBaaaadaaeWb qaamaabmaabaGabmisayaajaWaaSbaaKqaafaacaWGPbaabeaajaaq cqGHsislcaWGibaacaGLOaGaayzkaaaajeaqbaGaamyAaiabg2da9i aaigdaaeaacaWGUbaajmaqcqGHris5aKaaanaaCaaajeaqbeqaaiaa ikdaaaqcaaKaaiilaiaadAfacaWGHbGaamOCaiaadMgacaWGHbGaam OBaiaadogacaWGLbGaeyypa0JaamytaiaadofacaWGfbGaeyOeI0Ia amOqamaaCaaajeaqbeqaaiaaikdaaaaaaa@7A8C@ ,

where H=( η,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzafGaamisai abg2da9KqbaoaabmaakeaacqaH3oaAcaGGSaGaeqyYdChacaGLOaGa ayzkaaaaaa@3FDA@ and H ^ i =( η ^ i , ω ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadIeagaqcam aaBaaaleaacaWGPbaabeaakiabg2da9maabmaabaGafq4TdGMbaKaa daWgaaWcbaGaamyAaaqabaGccaGGSaGafqyYdCNbaKaadaWgaaWcba GaamyAaaqabaaakiaawIcacaGLPaaaaaa@422F@ .

The acceptance-rejection method of simulation study has been employed to generate data. This method is commonly used in simulation studies to produce random samples from a target distribution. The method for generating random samples from the WPD involves the following steps:

  1. Generate Y from exponential ( η ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4TdGgacaGLOaGaayzkaaaaaa@3A43@ distribution
  2. Generates U from Uniform ( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG imaiaacYcacaaIXaaacaGLOaGaayzkaaaaaa@3ABC@ distribution
  3. If U f(y) Mg(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfacqGHKj YOdaWcaaqaaiaadAgacaGGOaGaamyEaiaacMcaaeaacaWGnbGaam4z aiaacIcacaWG5bGaaiykaaaaaaa@4104@ , then set X=Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH9a qpcaWGzbaaaa@39CF@ (“accept the sample”); otherwise (“reject the sample”) and if reject then repeat the process: step (a-c) until getting the required samples. Where M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKaaGjaad2eaaa a@3849@ is a constant
  4. Each sample size is replicated 10000 times

The biases, MSEs, and variances of the MLEs of the parameters decrease for increasing sample size as evident in Tables 1 & 2. This supports the first-order asymptotic theory of MLEs.

Parameter

Sample size

Mean

Bias

MSE

Variance

 

 

25

0.09587

-0.00412

0.00001

0.00000

50

0.09600

-0.00399

0.00001

0.00000

100

0.09629

-0.00370

0.00001

0.00000

200

0.09745

-0.00254

0.00001

0.00000

300

0.097994

-0.00200

0.00000

0.00000

 

 

25

1.48705

-0.01294

0.00049

0.00033

50

1.49011

-0.00988

0.00038

0.00028

100

1.49332

-0.00667

0.00028

0.00023

200

1.49509

-0.00490

0.00021

0.00019

300

1.49674

-0.00325

0.00016

0.00015

Table 1 Descriptive constants of WPD for η=0.1,ω=1.5

Parameter

Sample size

Mean

Bias

MSE

Variance

 

 

25

0.23411

0.03411

0.00117

0.00001

50

0.23359

0.03359

0.00113

0.00001

100

0.23324

0.03324

0.00111

0.00001

200

0.23299

0.03299

0.00109

0.00001

300

0.23205

0.03205

0.00103

0.00001

 

 

25

0.30356

0.00356

0.00026

0.00025

50

0.30297

0.00297

0.00019

0.00018

100

0.30267

0.00267

0.00014

0.00014

200

0.30211

0.00211

0.00012

0.00011

300

0.30130

0.00130

0.00010

0.00010

Table 2 Descriptive constants of WPD for η=0.1,ω=1.5

Variance-Covariance matrix for the prameters η=0.1,ω=1.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabg2 da9iaaicdacaGGUaGaaGymaiaacYcacqaHjpWDcqGH9aqpcaaIXaGa aiOlaiaaiwdaaaa@4196@   and η=0.2,ω=0.3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE7aOjabg2 da9iaaicdacaGGUaGaaGOmaiaacYcacqaHjpWDcqGH9aqpcaaIWaGa aiOlaiaaiodaaaa@4194@   respectively as

           η                 ω η ω ( 0.000003 0.000005 0.000005 0.000193 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOa8aacqaH3oaApeGaaiiOaiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckapaGaeqyYdC habaqbaeqabiqaaaqaaiabeE7aObqaaiabeM8a3baadaqadaqaauaa beqaciaaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaGimaiaaicdaca aIWaGaaG4maaqaaiaaicdacaGGUaGaaGimaiaaicdacaaIWaGaaGim aiaaicdacaaI1aaabaGaaGimaiaac6cacaaIWaGaaGimaiaaicdaca aIWaGaaGimaiaaiwdaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaGim aiaaigdacaaI5aGaaG4maaaaaiaawIcacaGLPaaaaaaa@7725@   and               η                  ω η ω ( 0.000009 0.000001 0.000001 0.000100 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGa aiiOaiaacckacaGGGcGaaiiOaiaacckapaGaeq4TdG2dbiaacckaca GGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaa cckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaai iOa8aacqaHjpWDaeaafaqabeGabaaabaGaeq4TdGgabaGaeqyYdCha amaabmaabaqbaeqabiGaaaqaaiaaicdacaGGUaGaaGimaiaaicdaca aIWaGaaGimaiaaicdacaaI5aaabaGaaGimaiaac6cacaaIWaGaaGim aiaaicdacaaIWaGaaGimaiaaigdaaeaacaaIWaGaaiOlaiaaicdaca aIWaGaaGimaiaaicdacaaIWaGaaGymaaqaaiaaicdacaGGUaGaaGim aiaaicdacaaIWaGaaGymaiaaicdacaaIWaaaaaGaayjkaiaawMcaaa aaaa@795F@

Application

To test the goodness of fit of WPD , we have considered a real lifetime dataset from flood discharge. The following right-skewed dataset discussed by Montfort,20 presents the maximum annual flood discharges of the North Saskatchewan in units of 1000 cubic feet per second of the north Saskatchewan river at Edmonton over a period of 47 years.

19.885, 20.940, 21.820, 23.700, 24.888, 25.460, 25.760, 26.720, 27.500, 28.100, 28.600,

30.200, 30.380, 31.500, 32.600, 32.680, 34.400, 35.347, 35.700, 38.100, 39.020, 39.200,

40.000, 40.400, 40.400, 42.250, 44.020, 44.730, 44.900, 46.300, 50.330, 51.442, 57.220,

58.700, 58.800, 61.200, 61.740, 65.440, 65.597, 66.000, 74.100, 75.800, 84.100, 106.600,

109.700, 121.970, 121.970, 185.560.

The summary of the dataset and its total time in test (TTT) plots are shown in the folowing Table 3 and the Figure 6. The goodness of fit of the WPD along with other weighted and unweighted distributions are shown in the Table 4.

Minimum

1st Quartile

Median

Mean

3rd Quartile

Maximum

19.89

30.34

40.40

51.50

61.34

185.56

Table 3 Goodness of fit of the datasetDescriptive constants of WPD for

Distributions

MLE

 

 

AIC

K-S

P-value

 

θ^

α^

-2log L

 

 

 

WPD

0.0717 (0.0148)

1.7187 (0.7103)

443.17

447.17

0.12

0.47

WSD

0.0776 (0.0186)

2.0226 (0.9041)

443.34

447.34

0.15

0.24

WKD

0.0717 (0.0148)

0.2055 (0.0521)

443.18

447.18

0.27

0.00

WLD

0.0717 (0.0148)

2.7180 (0.7104)

443.17

447.17

0.16

0.16

WGD

0.0757 (0.0145)

3.1524 (0.6626)

443.78

447.78

0.14

0.28

WAD

0.0724 (0.0147)

0.7822 (0.7061)

443.31

447.31

0.26

0.00

Table 4 Goodness of fit of the dataset

Figure 6 TTT- plot of the observed and simulated samples of WPD respectively.

The Table-4 shows that WPD have the least, AIC and K-S values as compared to the WSD, WKD, WLD, WGD, and WAD. So, we conclude that WPD provides a better fit as compared to WSD, WKD, WLD, WGD, and WAD. From the fitted plot and the P-P plot of the considered distribution presented in the Figure 7 & 8 for the dataset also exhibit that WPD provides a better fit as compared to the considered distributions.

Figure 7 Fitted plot of the considered distributions of the dataset.

Figure 8 P-P plots of the theoretical and sample quantiles of the considered distributions of the dataset.

Conclusion

In this study a weighted version of Pratibha distribution known as weighted Pratibha distribution (WPD) has been proposed and discussed. Its significant statistical properties such as moments and its related measures, survival function, hazard function, reverse hazard function, and mean residual life function are studied. Parameters of the proposed distribution are estimated using the maximum likelihood estimation. A simulation study is carried out to know the performance of the estimated parameters values. Finally, an example of lifetime dataset relating to flood is carried out for the application and goodness of fit of the proposed distribution and it has been shown that it provides better fit over weighted distributions such as WSD, WKD, WLD, WGD, and WAD. Therefore, the WPD can be considered an important weighted distribution for modelling real dataset relating to flood.

Acknowledgments

Authors are grateful to the editor in chief and the anonymous reviewer for some minor comments which improved both the quality and the presentation.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Funding

None.

References

  1. Fisher R.A. The effects of methods of ascertainment upon the estimation of frequencies. The Annals of Eugenics. 1934;6:13–25.
  2. Rao CR. On discrete distributions arising out of methods of ascertainment, Sankhyā: The Indian Journal of Statistics, Series A. 1965;27:311–324.
  3. Rao CR, Patil GP. The Weighted distributions: a survey of their applications, Application of Statistics. 1977-78;383–405.
  4. Patil GP, Rao CR. Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics. 1978;34:179–189.
  5. Ghitany ME, Alqallaf F, Al-Mutairi, DK, et al. A two-parameter weighted Lindley distribution and its applications to survival data. Mathematics and Computers in Simulation. 2011;81(6):1190–1201.
  6. Lindley DV. Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society, Series B. 1958;20(1):102–107.
  7. Eyob T, Shanker R. A two-parameter weighted Garima distribution with properties and application. Biom Biostat Int J.. 2018;7(3):234–242.
  8. Shanker, R. Garima distribution and Its Application to model behavioural science data, Biom Biostat Int J. 2016(a);4(7):275–281.
  9. Ganaie RA, Rajagopalan V, Rather AA. Weighted Aradhana distribution: properties and applications. Journal of Information and Computational Science. 2019;9(8):392–406.
  10. Shanker R. Aradhana distribution and its applications. International Journal of Statistics and Applications. 2016(b);6(1):23–34.
  11. Shanker R, Shukla KK. A two parameter weighted Sujatha distribution and its application to model life time data, International Journal of Mathematics and Statistics. 2018;57(3):106 –121.
  12. Shanker R. Sujatha distribution and its application. Statistics in Transition New Series. 2016(c);17(3):391–410.
  13. Shanker R, Ray M, Prodhani HR. Weighted Komal distribution with properties and Applications, International Journal of Statistics and Reliability Engineering. 2023;10(3):541–551.
  14. Shanker R, Zakaria AFM, Prodhani HR, et al. Weighted Uma distribution with properties and applications. J XIDIAN Universit. 2023;17(10):830–846.
  15. Shanker R. Komal distribution with properties and application in survival analysis. Biom Biostat Int J. 2023;12(2):40–44.
  16. Shanker R. Pratibha distribution with statistical properties and application. Biom Biostat Int J. 2023;12(5):136–142.
  17. Shanker R. Uma distribution with properties and applications. Biom Biostat Int J. 2022;11(5):165–169.
  18. Shanker R. Shanker distribution and its applications. International Journal of Statistics and Applications. 2015(a);5(6):338–348.
  19. Shanker R. Akash distribution and its application. International Journal of Probability and Statistics. 2015(b);4(3):65–75.
  20. Montfort M.AJV. On testing that the distribution of extremes is of type I when type II is the alternative. Journal of Hydrology. 1970;11(4):421–427.
Creative Commons Attribution License

©2024 Prodhani, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.