Research Article Volume 11 Issue 5
Uma distribution with properties and applications
Rama Shanker
Regret for the inconvenience: we are taking measures to prevent fraudulent form submissions by extractors and page crawlers. Please type the correct Captcha word to see email ID.
Department of Statistics, Assam University, Silchar, Assam, India
Correspondence: Rama Shanker, Department of Statistics, Assam University, Silchar, Assam, India
Received: December 09, 2022 | Published: December 22, 2022
Citation: Shanker R. Uma distribution with properties and applications. Biom Biostat Int J. 2022;11(5):165-169. DOI: 10.15406/bbij.2022.11.00372
Download PDF
Abstract
The stochastic natures of lifetime data are really a challenge for statistician to search a suitable distribution for modeling and analysis of lifetime data. Keeping in mind the stochastic natures of lifetime data, a new lifetime distribution named Uma distribution has been suggested. Its several statistical properties, estimation of parameter and applications have been discussed. Applications of the distribution have been presented with three datasets and the goodness of fit of Uma distribution has been compared with exponential, Lindley, Shanker, Akash and Sujatha distributions.
Keywords: lifetime distributions, statistical properties, estimation of parameter, applications
Introduction
Due to stochastic nature of lifetime data, the search for lifetime distribution in the field of lifetime data analysis is expanding exponentially and getting popularity among policy makers to model data. In recent decades several lifetime distributions have been suggested in statistics literature. For example, Lindley distribution by Lindley,1 Shanker distribution by Shanker,2 Akash distribution by Shanker,3 and Sujatha distribution by Shanker,4 is some among others. Shanker et al.5 discussed the modeling of lifetime data using exponential and Lindley distributions and observed that there are some datasets in which these two distributions do not give good fit. Further, Shanker et al.6 put an effort to have comparative study on modeling of lifetime data using exponential, Lindley and Akash distribution and found that Akash distributions gives much better fit than both exponential and Lindley distribution but still there are some data sets in which these three distributions do not give good fit. Then, Shanker and Hagos,7 tried to model the real lifetime datasets using exponential, Lindley, Shanker and Akash and observed that still there are some datasets in which these distributions do not give good fit. Flexibility and tractability are the two important characteristics of a lifetime distributions and if the existing distributions are not flexible or tractable for the given dataset, then the search for a new distribution starts. Sometimes, data are being transformed to satisfy some assumptions of the distribution so that distribution fits well. But this is not useful practice because the original nature of the dataset is lost. Therefore, the most preferable is to search a distribution which fits the given data well than to modify the existing distributions.
While testing the goodness of fit of some well-known one parameter lifetime distributions available in literature, it has been observed that the existing distributions do not fit the data well. In this paper, in the search for a new distribution, we propose a new distribution named Uma distribution which fits the data well over the existing distributions. The statistical properties, estimation of
parameter and applications of the distribution has been presented systematically. It is hoped and expected that the distribution will draw attention of researchers to model lifetime data and preferred over the existing one parameter lifetime distributions.
Uma distribution
Taking the convex combination of exponential
, gamma
and gamma
with respective mixing proportions
and ,
a probability density function (pdf) can be expressed as
We would call this distribution as ‘Uma distribution’. Since it is a convex combination of exponential and gamma distributions, it is expected to give better fit over exponential and gamma distribution and other distributions developed using convex combinations of exponential and gamma distribution. The cumulative distribution function (cdf) of Uma distribution can be obtained as
The behaviour of the pdf and the cdf of Uma distribution for varying values of parameter
have been presented in Figures 1,2 respectively.
Figure 1 Graphs of the pdf of Uma distribution for selected values of the parameter.
Figure 2 Graphs of the cdf of Uma distribution for selected values of the parameter.
Reliability properties
The hazard rate function of a random variable
having pdf
and cdf
is defined as
Thus, the hazard rate function of Uma distribution can be obtained as
This gives.
The behaviour of the hazard rate function of Uma distribution for various values of parameter is shown in the following Figure 3.
Figure 3 Graphs of the hazarad rate function of Uma distribution for selected values of the parameter.
- Mean residual life function
Let
be a random variable over the support
representing the lifetime of a system. Mean Residual life (MRL) function measures the expected value of the remaining lifetime of the system, provided it has survived up to time. Let us consider the conditional random variable
. Then, the MRL function, denoted by,
is defined as
The MRL function of Uma distribution can thus be obtained as
This gives
. The behaviour of the mean residual life function of Uma distribution for various values of parameter
is shown in the following Figure 4.
Figure 4 Graphs of the mean residual life function of Uma distribution for selected values of the parameter.
Reverse hazard rate and Mill’s ratio
The reverse hazard rate of a random variable
having pdf
and cdf
is defined as
Thus, the reverse hazard rate function of Uma distribution can be obtained as
Mill’s ratio of a random
xmlns='http://www.w3.org/1998/Math/MathML'>
X
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@
variable having pdf
and cdf
is defined as
Mill’s ratio
Thus, the Mill’s ratio of Uma distribution can be obtained as
Stochastic ordering
In Probability theory and statistics, a stochastic order quantifies the concept of one random variable being bigger than another. A random variable is said to be smaller than a random variable in the
- Stochastic order
for all
x
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
GaamiEaaaa@382B@
- Hazard rate order
(
X
≤
hr
Y
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGObGa
amOCaaWdaeqaaOWdbiaadMfaaiaawIcacaGLPaaaaaa@3E9E@
if
h
X
(
x
)≥
h
Y
(
y
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
GaamiAa8aadaWgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaa
peGaamiEaaGaayjkaiaawMcaaiabgwMiZkaadIgapaWaaSbaaSqaa8
qacaWGzbaapaqabaGcpeWaaeWaa8aabaWdbiaadMhaaiaawIcacaGL
Paaaaaa@42BC@
for all
x
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
GaamiEaaaa@382B@
- Mean residual life order
(
X
≤
mrl
Y
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGTbGa
amOCaiaadYgaa8aabeaak8qacaWGzbaacaGLOaGaayzkaaaaaa@3F94@
if
m
X
(
x
)≥
m
Y
(
y
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
GaaiiOaiaad2gapaWaaSbaaSqaa8qacaWGybaapaqabaGcpeWaaeWa
a8aabaWdbiaadIhaaiaawIcacaGLPaaacqGHLjYScaWGTbWdamaaBa
aaleaapeGaamywaaWdaeqaaOWdbmaabmaapaqaa8qacaWG5baacaGL
OaGaayzkaaaaaa@43EA@
for all
x
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
GaamiEaaaa@382B@
- Likelihood ratio order
(
X
≤
lr
Y
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGSbGa
amOCaaWdaeqaaOWdbiaadMfaaiaawIcacaGLPaaaaaa@3EA2@
if
f
X
(
x
)
f
Y
(
y
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
WaaSaaa8aabaWdbiaadAgapaWaaSbaaSqaa8qacaWGybaapaqabaGc
peWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaa8aabaWdbiaadA
gapaWaaSbaaSqaa8qacaWGzbaapaqabaGcpeWaaeWaa8aabaWdbiaa
dMhaaiaawIcacaGLPaaaaaaaaa@4140@
decrease in
x
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
GaamiEaaaa@382B@
The following results due to Shaked and Shantikumar,8 are well known for establishing stochastic ordering of distributions
X
<
lr
Y⇒X
<
hr
Y⇒X
<
mrl
Y
⇓
X
<
st
Y
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaam
iwaiabgYda8maaBaaaleaacaWGSbGaamOCaaqabaGccaWGzbGaeyO0
H4TaamiwaiabgYda8maaBaaaleaacaWGObGaamOCaaqabaGccaWGzb
GaeyO0H4TaamiwaiabgYda8maaBaaaleaacaWGTbGaamOCaiaadYga
aeqaaOGaamywaaWceaqabeaacqGHthY3aeaacaWGybGaeyipaWZaaS
baaWqaaiaadohacaWG0baabeaaliaadMfaaaqabaaaaa@53F1@
Theorem: Let
X~
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacaGG+b
aaaa@3A0B@
Uma distribution
(
θ
1
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq
iUde3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@3C5C@
and
Y~
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfacaGG+b
aaaa@3A0C@
Uma.
(
θ
2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq
iUde3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3C5D@
If
θ
1
>
θ
2
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa
aaleaacaaIXaaabeaakiabg6da+iabeI7aXnaaBaaaleaacaaIYaaa
beaaaaa@3E79@
, then
X
<
lr
Y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
apdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3D09@
hence
X
<
hr
Y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
apdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3D05@
,
X
<
mrl
Y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
apdaWgaaWcbaGaamyBaiaadkhacaWGSbaabeaakiaadMfaaaa@3DFB@
and
X
<
st
Y
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
apdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamywaaaa@3D12@
.
Proof: We have
f
X
(
x
)
f
Y
(
x
)
==
θ
1
4
(
θ
2
3
+
θ
2
2
+6
)
θ
2
4
(
θ
1
3
+
θ
1
2
+6
)
e
−(
θ
1
−
θ
2
)x
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
WaaSaaa8aabaWdbiaadAgapaWaaSbaaSqaa8qacaWGybaapaqabaGc
peWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaa8aabaWdbiaadA
gapaWaaSbaaSqaa8qacaWGzbaapaqabaGcpeWaaeWaa8aabaWdbiaa
dIhaaiaawIcacaGLPaaaaaGaeyypa0Jaeyypa0ZaaSaaaeaapaGaeq
iUde3aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaaI0aaaaOWa
aeWaaeaacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaai
aaiodaaaGccqGHRaWkcqaH4oqCdaWgaaWcbaGaaGOmaaqabaGcdaah
aaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aaacaGLOaGaayzkaaaape
qaa8aacaaMc8UaeqiUde3aaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqa
beaacaaI0aaaaOWaaeWaaeaacqaH4oqCdaWgaaWcbaGaaGymaaqaba
GcdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcqaH4oqCdaWgaaWcbaGa
aGymaaqabaGcdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aaaca
GLOaGaayzkaaaaaiaadwgadaahaaWcbeqaaiabgkHiTmaabmaabaGa
eqiUde3aaSbaaWqaaiaaigdaaeqaaSGaaGPaVlabgkHiTiabeI7aXn
aaBaaameaacaaIYaaabeaaaSGaayjkaiaawMcaaiaadIhaaaaaaa@7045@
We have ,
log[
f
X
(
x
)
f
Y
(
x
)
]=log[
θ
1
4
(
θ
2
3
+
θ
2
2
+6
)
θ
2
4
(
θ
1
3
+
θ
1
2
+6
)
]−(
θ
1
−
θ
2
)x
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
GaciiBaiaac+gacaGGNbWdamaadmaabaWdbmaalaaapaqaa8qacaWG
MbWdamaaBaaaleaapeGaamiwaaWdaeqaaOWdbmaabmaapaqaa8qaca
WG4baacaGLOaGaayzkaaaapaqaa8qacaWGMbWdamaaBaaaleaapeGa
amywaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4baacaGLOaGaayzkaa
aaaaWdaiaawUfacaGLDbaapeGaeyypa0JaciiBaiaac+gacaGGNbWd
amaadmaabaWdbmaalaaabaWdaiabeI7aXnaaBaaaleaacaaIXaaabe
aakmaaCaaaleqabaGaaGinaaaakmaabmaabaGaeqiUde3aaSbaaSqa
aiaaikdaaeqaaOWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaeqiUde
3aaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaey4k
aSIaaGOnaaGaayjkaiaawMcaaaWdbeaapaGaaGPaVlabeI7aXnaaBa
aaleaacaaIYaaabeaakmaaCaaaleqabaGaaGinaaaakmaabmaabaGa
eqiUde3aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaaIZaaaaO
Gaey4kaSIaeqiUde3aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaa
caaIYaaaaOGaey4kaSIaaGOnaaGaayjkaiaawMcaaaaaaiaawUfaca
GLDbaacqGHsislcaGGOaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGa
eyOeI0IaaGPaVlabeI7aXnaaBaaaleaacaaIYaaabeaakiaacMcaca
WG4baaaa@77D5@
Therefore,
d
dx
log[
f
X
(
x
)
f
Y
(
x
)
]=−(
θ
1
−
θ
2
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
WaaSaaa8aabaWdbiaadsgaa8aabaGaamizaiaadIhaaaWdbiGacYga
caGGVbGaai4za8aadaWadaqaa8qadaWcaaWdaeaapeGaamOza8aada
WgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaapeGaamiEaaGa
ayjkaiaawMcaaaWdaeaapeGaamOza8aadaWgaaWcbaWdbiaadMfaa8
aabeaak8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaaa8aa
caGLBbGaayzxaaGaeyypa0JaeyOeI0IaaiikaiabeI7aXnaaBaaale
aacaaIXaaabeaakiabgkHiTiaaykW7cqaH4oqCdaWgaaWcbaGaaGOm
aaqabaGccaGGPaaaaa@557C@
Thus, for
θ
1
>
θ
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa
aaleaacaaIXaaabeaakiabg6da+iabeI7aXnaaBaaaleaacaaIYaaa
beaaaaa@3E78@
,
d
dx
log[
f
X
(
x
)
f
Y
(
x
)
]<0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape
WaaSaaa8aabaWdbiaadsgaa8aabaGaamizaiaadIhaaaWdbiGacYga
caGGVbGaai4za8aadaWadaqaa8qadaWcaaWdaeaapeGaamOza8aada
WgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaapeGaamiEaaGa
ayjkaiaawMcaaaWdaeaapeGaamOza8aadaWgaaWcbaWdbiaadMfaa8
aabeaak8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaaa8aa
caGLBbGaayzxaaGaeyipaWJaaGimaaaa@4C27@
. this means that
X
<
lr
Y
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
apdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3D08@
hence
X
<
hr
Y
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
apdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3D04@
,and
X
<
st
Y
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a
apdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamywaaaa@3D11@
.
Moments based descriptive measures
The
r
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3922@
th moment about origin
μ
r
′
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaaaa@3E2D@
of Uma distribution can be obtained as
μ
r
′
=E(
X
r
)=
θ
4
θ
3
+
θ
2
+6
∫
0
∞
x
r
(
1+x+
x
2
)
e
−θ x
dx
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da
9iaadweadaqadaqaaiaadIfadaahaaWcbeqaaiaadkhaaaaakiaawI
cacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaaCaaaleqabaGaaGin
aaaaaOqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeI
7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdaaaWaa8qCaeaa
caWG4bWaaWbaaSqabeaacaWGYbaaaOWaaeWaaeaacaaIXaGaey4kaS
IaamiEaiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIca
caGLPaaaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiaaykW7ca
WGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaaMc8UaamiEaaaakiaa
dsgacaWG4baaaa@66A4@
=
r!{
θ
3
+(
r+1
)
θ
2
+(
r+1
)(
r+2
)(
r+3
) }
θ
r
(
θ
3
+
θ
2
+6
)
;r=1,2,3,⋅⋅⋅
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala
aabaGaamOCaiaacgcadaGadaqaaiabeI7aXnaaCaaaleqabaGaaG4m
aaaakiabgUcaRmaabmaabaGaamOCaiabgUcaRiaaigdaaiaawIcaca
GLPaaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqa
aiaadkhacqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacaWGYb
Gaey4kaSIaaGOmaaGaayjkaiaawMcaamaabmaabaGaamOCaiabgUca
RiaaiodaaiaawIcacaGLPaaaaiaawUhacaGL9baaaeaacqaH4oqCda
ahaaWcbeqaaiaadkhaaaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGa
aG4maaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgU
caRiaaiAdaaiaawIcacaGLPaaaaaGaai4oaiaadkhacqGH9aqpcaaI
XaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacqGHflY1cqGHflY1cq
GHflY1aaa@6EBE@
Substituting
r=1,2,3,4
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a
qpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaaI0aaaaa@3F2A@
in the above equation, the first four moments about origin of Uma distribution can be obtained as
μ
1
′
=
θ
3
+2
θ
2
+24
θ(
θ
3
+
θ
2
+6
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da
9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG
OmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaaI
0aaabaGaeqiUde3aaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaa
GccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI
2aaacaGLOaGaayzkaaaaaaaa@536A@
,
μ
2
′
=
2(
θ
3
+3
θ
2
+60
)
θ
2
(
θ
3
+
θ
2
+6
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da
9maalaaabaGaaGOmamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIZa
aaaOGaey4kaSIaaG4maiabeI7aXnaaCaaaleqabaGaaGOmaaaakiab
gUcaRiaaiAdacaaIWaaacaGLOaGaayzkaaaabaGaeqiUde3aaWbaaS
qabeaacaaIYaaaaOWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaioda
aaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkca
aI2aaacaGLOaGaayzkaaaaaaaa@56A4@
μ
3
′
=
6(
θ
3
+4
θ
2
+120
)
θ
3
(
θ
3
+
θ
2
+6
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da
9maalaaabaGaaGOnamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIZa
aaaOGaey4kaSIaaGinaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiab
gUcaRiaaigdacaaIYaGaaGimaaGaayjkaiaawMcaaaqaaiabeI7aXn
aaCaaaleqabaGaaG4maaaakmaabmaabaGaeqiUde3aaWbaaSqabeaa
caaIZaaaaOGaey4kaSIaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey
4kaSIaaGOnaaGaayjkaiaawMcaaaaaaaa@5762@
,
μ
4
′
=
24(
θ
3
+5
θ
2
+210
)
θ
4
(
θ
3
+
θ
2
+6
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da
9maalaaabaGaaGOmaiaaisdadaqadaqaaiabeI7aXnaaCaaaleqaba
GaaG4maaaakiabgUcaRiaaiwdacqaH4oqCdaahaaWcbeqaaiaaikda
aaGccqGHRaWkcaaIYaGaaGymaiaaicdaaiaawIcacaGLPaaaaeaacq
aH4oqCdaahaaWcbeqaaiaaisdaaaGcdaqadaqaaiabeI7aXnaaCaaa
leqabaGaaG4maaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaa
aakiabgUcaRiaaiAdaaiaawIcacaGLPaaaaaaaaa@581F@
.
The moments about the mean, using relationship between moments about the mean and the moments about the origin, can thus be obtained as
μ
2
=
θ
6
+4
θ
5
+2
θ
4
+84
θ
3
+60
θ
2
+144
θ
2
(
θ
3
+
θ
2
+6
)
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiUde3aaWbaaSqa
beaacaaI2aaaaOGaey4kaSIaaGinaiabeI7aXnaaCaaaleqabaGaaG
ynaaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaisdaaaGc
cqGHRaWkcaaI4aGaaGinaiabeI7aXnaaCaaaleqabaGaaG4maaaaki
abgUcaRiaaiAdacaaIWaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGa
ey4kaSIaaGymaiaaisdacaaI0aaabaGaeqiUde3aaWbaaSqabeaaca
aIYaaaaOWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGH
RaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aaaca
GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaaa@6147@
μ
3
=
2(
θ
9
+6
θ
8
+6
θ
7
+200
θ
6
+270
θ
5
+108
θ
4
+324
θ
3
+432
θ
2
+864
)
θ
3
(
θ
3
+
θ
2
+6
)
3
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa
aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmamaabmaabaGa
eqiUde3aaWbaaSqabeaacaaI5aaaaOGaey4kaSIaaGOnaiabeI7aXn
aaCaaaleqabaGaaGioaaaakiabgUcaRiaaiAdacqaH4oqCdaahaaWc
beqaaiaaiEdaaaGccqGHRaWkcaaIYaGaaGimaiaaicdacqaH4oqCda
ahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaIYaGaaG4naiaaicdacqaH
4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaIXaGaaGimaiaaiI
dacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIZaGaaGOm
aiaaisdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI0a
GaaG4maiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWk
caaI4aGaaGOnaiaaisdaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaa
WcbeqaaiaaiodaaaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGaaG4m
aaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRi
aaiAdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaaaa@7663@
μ
4
=
3(
3
θ
12
+24
θ
11
+44
θ
10
+968
θ
9
+2336
θ
8
+2016
θ
7
+7488
θ
6
+13248
θ
5
+5760
θ
4
+31104
θ
3
+24192
θ
2
+31104
)
θ
4
(
θ
3
+
θ
2
+6
)
4
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaSGaeqiVd02aaS
baaWqaaiaaisdaaeqaaSGaeyypa0ZaaSaaaeaacaaIZaWaaeWaaqaa
beqaaiaaiodacqaH4oqCdaahaaadbeqaaiaaigdacaaIYaaaaSGaey
4kaSIaaGOmaiaaisdacqaH4oqCdaahaaadbeqaaiaaigdacaaIXaaa
aSGaey4kaSIaaGinaiaaisdacqaH4oqCdaahaaadbeqaaiaaigdaca
aIWaaaaSGaey4kaSIaaGyoaiaaiAdacaaI4aGaeqiUde3aaWbaaWqa
beaacaaI5aaaaSGaey4kaSIaaGOmaiaaiodacaaIZaGaaGOnaiabeI
7aXnaaCaaameqabaGaaGioaaaaliabgUcaRiaaikdacaaIWaGaaGym
aiaaiAdacqaH4oqCdaahaaadbeqaaiaaiEdaaaWccqGHRaWkcaaI3a
GaaGinaiaaiIdacaaI4aGaeqiUde3aaWbaaWqabeaacaaI2aaaaSGa
ey4kaSIaaGymaiaaiodacaaIYaGaaGinaiaaiIdacqaH4oqCdaahaa
adbeqaaiaaiwdaaaaaleaacqGHRaWkcaaI1aGaaG4naiaaiAdacaaI
WaGaeqiUde3aaWbaaWqabeaacaaI0aaaaSGaey4kaSIaaG4maiaaig
dacaaIXaGaaGimaiaaisdacqaH4oqCdaahaaadbeqaaiaaiodaaaWc
cqGHRaWkcaaIYaGaaGinaiaaigdacaaI5aGaaGOmaiabeI7aXnaaCa
aameqabaGaaGOmaaaaliabgUcaRiaaiodacaaIXaGaaGymaiaaicda
caaI0aaaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaaadbeqaaiaais
daaaWcdaqadaqaaiabeI7aXnaaCaaameqabaGaaG4maaaaliabgUca
RiabeI7aXnaaCaaameqabaGaaGOmaaaaliabgUcaRiaaiAdaaiaawI
cacaGLPaaadaahaaadbeqaaiaaisdaaaaaaaaa@9535@
The descriptive constants including coefficient of variation (CV), coefficient of skewness (CS), coefficient of kurtosis (CK) and the index of dispersion (ID) of Uma distribution are thus obtained as
CV=
μ
2
μ
1
′
=
θ
6
+4
θ
5
+2
θ
4
+84
θ
3
+60
θ
2
+144
θ
3
+2
θ
2
+24
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGwb
Gaeyypa0ZaaSaaaeaadaGcaaqaaiabeY7aTnaaBaaaleaacaaIYaaa
beaaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOWaaWbaaS
qabeaakiadacUHYaIOaaaaaiabg2da9maalaaabaWaaOaaaeaacqaH
4oqCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaI0aGaeqiUde3aaW
baaSqabeaacaaI1aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqa
baGaaGinaaaakiabgUcaRiaaiIdacaaI0aGaeqiUde3aaWbaaSqabe
aacaaIZaaaaOGaey4kaSIaaGOnaiaaicdacqaH4oqCdaahaaWcbeqa
aiaaikdaaaGccqGHRaWkcaaIXaGaaGinaiaaisdaaSqabaaakeaacq
aH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaeqiUde3a
aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaisdaaaaaaa@6656@
CS=
μ
3
2
μ
2
3
=
4
(
θ
9
+6
θ
8
+6
θ
7
+200
θ
6
+270
θ
5
+108
θ
4
+324
θ
3
+432
θ
2
+864
)
2
(
θ
6
+4
θ
5
+2
θ
4
+84
θ
3
+60
θ
2
+144
)
3
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGtb
Gaeyypa0ZaaSaaaeaacqaH8oqBdaWgaaWcbaGaaG4maaqabaGcdaah
aaWcbeqaaiaaikdaaaaakeaacqaH8oqBdaWgaaWcbaGaaGOmaaqaba
GcdaahaaWcbeqaaiaaiodaaaaaaOGaeyypa0ZaaSaaaeaacaaI0aWa
aeWaaeaacqaH4oqCdaahaaWcbeqaaiaaiMdaaaGccqGHRaWkcaaI2a
GaeqiUde3aaWbaaSqabeaacaaI4aaaaOGaey4kaSIaaGOnaiabeI7a
XnaaCaaaleqabaGaaG4naaaakiabgUcaRiaaikdacaaIWaGaaGimai
abeI7aXnaaCaaaleqabaGaaGOnaaaakiabgUcaRiaaikdacaaI3aGa
aGimaiabeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaigdaca
aIWaGaaGioaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaa
iodacaaIYaGaaGinaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgU
caRiaaisdacaaIZaGaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaa
kiabgUcaRiaaiIdacaaI2aGaaGinaaGaayjkaiaawMcaamaaCaaale
qabaGaaGOmaaaaaOqaamaabmaabaGaeqiUde3aaWbaaSqabeaacaaI
2aaaaOGaey4kaSIaaGinaiabeI7aXnaaCaaaleqabaGaaGynaaaaki
abgUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWk
caaI4aGaaGinaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRi
aaiAdacaaIWaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIa
aGymaiaaisdacaaI0aaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZa
aaaaaaaaa@8C88@
CK=
μ
4
μ
2
2
=
3(
3
θ
12
+24
θ
11
+44
θ
10
+968
θ
9
+2336
θ
8
+2016
θ
7
+7488
θ
6
+13248
θ
5
+5760
θ
4
+31104
θ
3
+24192
θ
2
+31104
)
(
θ
6
+4
θ
5
+2
θ
4
+84
θ
3
+60
θ
2
+144
)
2
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGlb
Gaeyypa0ZaaSaaaeaacqaH8oqBdaWgaaWcbaGaaGinaaqabaaakeaa
cqaH8oqBdaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaaikdaaa
aaaOGaeyypa0ZaaSaaaeaacaaIZaWaaeWaaqaabeqaaiaaiodacqaH
4oqCdaahaaWcbeqaaiaaigdacaaIYaaaaOGaey4kaSIaaGOmaiaais
dacqaH4oqCdaahaaWcbeqaaiaaigdacaaIXaaaaOGaey4kaSIaaGin
aiaaisdacqaH4oqCdaahaaWcbeqaaiaaigdacaaIWaaaaOGaey4kaS
IaaGyoaiaaiAdacaaI4aGaeqiUde3aaWbaaSqabeaacaaI5aaaaOGa
ey4kaSIaaGOmaiaaiodacaaIZaGaaGOnaiabeI7aXnaaCaaaleqaba
GaaGioaaaakiabgUcaRiaaikdacaaIWaGaaGymaiaaiAdacqaH4oqC
daahaaWcbeqaaiaaiEdaaaGccqGHRaWkcaaI3aGaaGinaiaaiIdaca
aI4aGaeqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaGymaiaa
iodacaaIYaGaaGinaiaaiIdacqaH4oqCdaahaaWcbeqaaiaaiwdaaa
aakeaacqGHRaWkcaaI1aGaaG4naiaaiAdacaaIWaGaeqiUde3aaWba
aSqabeaacaaI0aaaaOGaey4kaSIaaG4maiaaigdacaaIXaGaaGimai
aaisdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGa
aGinaiaaigdacaaI5aGaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaa
aakiabgUcaRiaaiodacaaIXaGaaGymaiaaicdacaaI0aaaaiaawIca
caGLPaaaaeaadaqadaqaaiabeI7aXnaaCaaaleqabaGaaGOnaaaaki
abgUcaRiaaisdacqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHRaWk
caaIYaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGioai
aaisdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI2aGa
aGimaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaca
aI0aGaaGinaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaa
aa@A93C@
ID=
μ
2
μ
1
′
=
θ
6
+4
θ
5
+2
θ
4
+84
θ
3
+60
θ
2
+144
θ(
θ
3
+
θ
2
+6
)(
θ
3
+2
θ
2
+24
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacaWGeb
Gaeyypa0ZaaSaaaeaacqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakeaa
cqaH8oqBdaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaOGamai4gk
diIcaaaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaiAda
aaGccqGHRaWkcaaI0aGaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey
4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaa
iIdacaaI0aGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG
OnaiaaicdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI
XaGaaGinaiaaisdaaeaacqaH4oqCdaqadaqaaiabeI7aXnaaCaaale
qabaGaaG4maaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaa
kiabgUcaRiaaiAdaaiaawIcacaGLPaaadaqadaqaaiabeI7aXnaaCa
aaleqabaGaaG4maaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqa
aiaaikdaaaGccqGHRaWkcaaIYaGaaGinaaGaayjkaiaawMcaaaaaaa
a@72B4@
Behaviour of coefficient of variation, coefficient of skewness, coefficient of kurtosis and index of dispersion for changing values of parameter are shown in the Figure 5.
Figure 5 Graph of CV, CS, CK and ID of Uma distribution for different values of the parameter.
Deviations from mean and median
Mean deviation about the mean and the mean deviation about median of a random variable
X
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@3908@
having pdf
f(
x
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada
qaaiaadIhaaiaawIcacaGLPaaaaaa@3B9C@
and cdf
F(
x
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada
qaaiaadIhaaiaawIcacaGLPaaaaaa@3B7C@
are defined by
δ
1
(x)=
∫
0
∞
|x−μ|f(x)dx
=2μF(μ)−2
∫
0
μ
x f(x)dx
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa
aaleaacaaIXaaabeaakiaacIcacaWG4bGaaiykaiabg2da9maapeha
baGaaiiFaiaadIhacqGHsislcqaH8oqBcaGG8bGaamOzaiaacIcaca
WG4bGaaiykaiaadsgacaWG4baaleaacaaIWaaabaGaeyOhIukaniab
gUIiYdGccqGH9aqpcaaIYaGaeqiVd0MaamOraiaacIcacqaH8oqBca
GGPaGaeyOeI0IaaGOmamaapehabaGaamiEaiaaykW7caWGMbGaaiik
aiaadIhacaGGPaGaamizaiaadIhaaSqaaiaaicdaaeaacqaH8oqBa0
Gaey4kIipaaaa@6305@
and
δ
2
(x)=
∫
0
∞
|x−M|f(x)dx
=−μ+2
∫
M
∞
x f(x)dx
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa
aaleaacaaIYaaabeaakiaacIcacaWG4bGaaiykaiabg2da9maapeha
baGaaiiFaiaadIhacqGHsislcaWGnbGaaiiFaiaadAgacaGGOaGaam
iEaiaacMcacaWGKbGaamiEaaWcbaGaaGimaaqaaiabg6HiLcqdcqGH
RiI8aOGaeyypa0JaeyOeI0IaeqiVd0Maey4kaSIaaGOmamaapehaba
GaamiEaiaaykW7caWGMbGaaiikaiaadIhacaGGPaGaamizaiaadIha
aSqaaiaad2eaaeaacqGHEisPa0Gaey4kIipaaaa@5E41@
respectively, where
μ=E(X)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2
da9iaadweacaGGOaGaamiwaiaacMcaaaa@3DE7@
and
M=Median(X)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a
qpcaWGnbGaamyzaiaadsgacaWGPbGaamyyaiaad6gacaGGOaGaamiw
aiaacMcaaaa@41A5@
.
Using pdf and expressions for the mean of Uma distribution, we get
∫
0
μ
x f(
x;θ
)
dx=μ−
[
θ
4
(
μ
4
+
μ
2
+μ
)+
θ
3
(
4
μ
3
+2μ+1
)+2
θ
2
(
6
μ
2
+1
)+24(
θμ+1
) ]
e
−θμ
θ(
θ
3
+
θ
2
+6
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam
iEaiaaykW7caWGMbWaaeWaaeaacaWG4bGaai4oaiabeI7aXbGaayjk
aiaawMcaaaWcbaGaaGimaaqaaiabeY7aTbqdcqGHRiI8aOGaaGPaVl
aadsgacaWG4bGaeyypa0JaeqiVd0MaeyOeI0YaaSaaaeaadaWadaqa
aiabeI7aXnaaCaaaleqabaGaaGinaaaakmaabmaabaGaeqiVd02aaW
baaSqabeaacaaI0aaaaOGaey4kaSIaeqiVd02aaWbaaSqabeaacaaI
YaaaaOGaey4kaSIaeqiVd0gacaGLOaGaayzkaaGaey4kaSIaeqiUde
3aaWbaaSqabeaacaaIZaaaaOWaaeWaaeaacaaI0aGaeqiVd02aaWba
aSqabeaacaaIZaaaaOGaey4kaSIaaGOmaiabeY7aTjabgUcaRiaaig
daaiaawIcacaGLPaaacqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaa
caaIYaaaaOWaaeWaaeaacaaI2aGaeqiVd02aaWbaaSqabeaacaaIYa
aaaOGaey4kaSIaaGymaaGaayjkaiaawMcaaiabgUcaRiaaikdacaaI
0aWaaeWaaeaacqaH4oqCcqaH8oqBcqGHRaWkcaaIXaaacaGLOaGaay
zkaaaacaGLBbGaayzxaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiU
deNaeqiVd0gaaaGcbaGaeqiUde3aaeWaaeaacqaH4oqCdaahaaWcbe
qaaiaaiodaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGc
cqGHRaWkcaaI2aaacaGLOaGaayzkaaaaaaaa@8C3F@
∫
0
M
x f(
x;θ
)
dx=μ−
[
θ
4
(
M
4
+
M
2
+M
)+
θ
3
(
4
M
3
+2M+1
)+2
θ
2
(
6
M
2
+1
)+24(
θM+1
) ]
e
−θM
θ(
θ
3
+
θ
2
+6
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam
iEaiaaykW7caWGMbWaaeWaaeaacaWG4bGaai4oaiabeI7aXbGaayjk
aiaawMcaaaWcbaGaaGimaaqaaiaad2eaa0Gaey4kIipakiaaykW7ca
WGKbGaamiEaiabg2da9iabeY7aTjabgkHiTmaalaaabaWaamWaaeaa
cqaH4oqCdaahaaWcbeqaaiaaisdaaaGcdaqadaqaaiaad2eadaahaa
WcbeqaaiaaisdaaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacaaIYaaa
aOGaey4kaSIaamytaaGaayjkaiaawMcaaiabgUcaRiabeI7aXnaaCa
aaleqabaGaaG4maaaakmaabmaabaGaaGinaiaad2eadaahaaWcbeqa
aiaaiodaaaGccqGHRaWkcaaIYaGaamytaiabgUcaRiaaigdaaiaawI
cacaGLPaaacqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaacaaIYaaa
aOWaaeWaaeaacaaI2aGaamytamaaCaaaleqabaGaaGOmaaaakiabgU
caRiaaigdaaiaawIcacaGLPaaacqGHRaWkcaaIYaGaaGinamaabmaa
baGaeqiUdeNaamytaiabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawU
facaGLDbaacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWGnbaa
aaGcbaGaeqiUde3aaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaa
GccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI
2aaacaGLOaGaayzkaaaaaaaa@8558@
Using above expressions some algebraic simplifications, the mean
δ
1
(x)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa
aaleaacaaIXaaabeaakiaacIcacaWG4bGaaiykaaaa@3D17@
deviation about the mean, and the mean deviation about the median
δ
2
(x)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa
aaleaacaaIYaaabeaakiaacIcacaWG4bGaaiykaaaa@3D18@
of Uma distribution are obtained as
δ
1
(x)=
2[
θ
3
μ
3
+6
θ
2
μ
2
+
θ
3
μ+18θμ+(
θ
3
+2
θ
2
+24
) ]e
θ(
θ
3
+
θ
2
+6
)
−θμ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa
aaleaacaaIXaaabeaakiaacIcacaWG4bGaaiykaiabg2da9maalaaa
baGaaGOmamaadmaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaeq
iVd02aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGOnaiabeI7aXnaa
CaaaleqabaGaaGOmaaaakiabeY7aTnaaCaaaleqabaGaaGOmaaaaki
abgUcaRiabeI7aXnaaCaaaleqabaGaaG4maaaakiabeY7aTjabgUca
RiaaigdacaaI4aGaeqiUdeNaeqiVd0Maey4kaSYaaeWaaeaacqaH4o
qCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaeqiUde3aaWba
aSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaisdaaiaawIcacaGLPa
aaaiaawUfacaGLDbaacaWGLbaabaGaeqiUde3aaeWaaeaacqaH4oqC
daahaaWcbeqaaiaaiodaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqaai
aaikdaaaGccqGHRaWkcaaI2aaacaGLOaGaayzkaaaaamaaCaaaleqa
baGaeyOeI0IaeqiUdeNaeqiVd0gaaaaa@746E@
δ
2
(
x
)=
2[
θ
4
(
M
4
+
M
2
+M
)+
θ
3
(
4
M
3
+2M+1
)+2
θ
2
(
6
M
2
+1
)+24(
θM+1
) ]e
θ(
θ
3
+
θ
2
+6
)
−θM
−μ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa
aaleaacaaIYaaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiab
g2da9maalaaabaGaaGOmamaadmaabaGaeqiUde3aaWbaaSqabeaaca
aI0aaaaOWaaeWaaeaacaWGnbWaaWbaaSqabeaacaaI0aaaaOGaey4k
aSIaamytamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaad2eaaiaawI
cacaGLPaaacqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaiodaaaGcdaqa
daqaaiaaisdacaWGnbWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG
Omaiaad2eacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaey4kaSIaaGOm
aiabeI7aXnaaCaaaleqabaGaaGOmaaaakmaabmaabaGaaGOnaiaad2
eadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaaacaGLOaGaayzk
aaGaey4kaSIaaGOmaiaaisdadaqadaqaaiabeI7aXjaad2eacqGHRa
WkcaaIXaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamyzaaqaaiab
eI7aXnaabmaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaS
IaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOnaaGaayjk
aiaawMcaaaaadaahaaWcbeqaaiabgkHiTiabeI7aXjaad2eaaaGccq
GHsislcqaH8oqBaaa@7B53@
Parameter estimation of Uma distribution
Suppose
(
x
1
,
x
2
,
x
3
, ... ,
x
n
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam
iEamaaBaaaleaacaaIXaaabeaakiaacYcacaaMc8UaamiEamaaBaaa
leaacaaIYaaabeaakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIZa
aabeaakiaacYcacaaMc8UaaGPaVlaac6cacaGGUaGaaiOlaiaaykW7
caaMc8UaaiilaiaadIhadaWgaaWcbaGaamOBaaqabaaakiaawIcaca
GLPaaaaaa@4FBF@
be a random sample of size
n
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaaaa@391E@
from Uma distribution. The log likelihood function,
L
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@38FC@
of Uma distribution is given by
logL=
∑
i=1
n
logf(
x
i
;θ
)
=n{
4logθ−log(
θ
3
+
θ
2
+6
) }+
∑
i=1
n
log(
1+
x
i
+
x
i
3
)−n θ
x
¯
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb
Gaai4zaiaadYeacqGH9aqpdaaeWbqaaiGacYgacaGGVbGaai4zaiaa
dAgadaqadaqaaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGG7aGaeq
iUdehacaGLOaGaayzkaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaa
d6gaa0GaeyyeIuoakiabg2da9iaad6gadaGadaqaaiaaisdaciGGSb
Gaai4BaiaacEgacqaH4oqCcqGHsislciGGSbGaai4BaiaacEgadaqa
daqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeI7aXn
aaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdaaiaawIcacaGLPaaa
aiaawUhacaGL9baacqGHRaWkdaaeWbqaaiGacYgacaGGVbGaai4zam
aabmaabaGaaGymaiabgUcaRiaadIhadaWgaaWcbaGaamyAaaqabaGc
cqGHRaWkcaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaaca
aIZaaaaaGccaGLOaGaayzkaaGaeyOeI0IaamOBaiaaykW7cqaH4oqC
caaMc8UabmiEayaaraaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6
gaa0GaeyyeIuoaaaa@7DBA@
The maximum likelihood estimate (MLE)
(
θ
^
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq
iUdeNbaKaaaiaawIcacaGLPaaaaaa@3B7A@
of the parameters
(
θ
)
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq
iUdeNaaGPaVdGaayjkaiaawMcaaaaa@3CF5@
of Uma distribution is the solution of the following log likelihood equation
dlogL
dθ
=
4n
θ
−
(
3
θ
2
+2θ
)n
θ
3
+
θ
2
+6
−n
x
¯
=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam
izaiGacYgacaGGVbGaai4zaiaadYeaaeaacaWGKbGaeqiUdehaaiab
g2da9maalaaabaGaaGinaiaad6gaaeaacqaH4oqCaaGaeyOeI0YaaS
aaaeaadaqadaqaaiaaiodacqaH4oqCdaahaaWcbeqaaiaaikdaaaGc
cqGHRaWkcaaIYaGaeqiUdehacaGLOaGaayzkaaGaamOBaaqaaiabeI
7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeI7aXnaaCaaaleqa
baGaaGOmaaaakiabgUcaRiaaiAdaaaGaeyOeI0IaamOBaiaaykW7ca
aMc8UabmiEayaaraGaeyypa0JaaGimaaaa@5DB6@
This gives
x
¯
θ
4
+(
x
¯
−1
)
θ
3
−2
θ
2
+6
x
¯
θ−24=0
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaykW7ceWG4b
GbaebacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkdaqadaqa
aiqadIhagaqeaiabgkHiTiaaigdaaiaawIcacaGLPaaacqaH4oqCda
ahaaWcbeqaaiaaiodaaaGccqGHsislcaaIYaGaeqiUde3aaWbaaSqa
beaacaaIYaaaaOGaey4kaSIaaGOnaiqadIhagaqeaiabeI7aXjabgk
HiTiaaikdacaaI0aGaeyypa0JaaGimaaaa@522E@
.
This is a fourth degree polynomial equation in
θ
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E1@
. It should be noted that the method of moment estimate is also the same as that of the MLE. The above equation can easily be solved using Newton-Raphson method, taking the initial value of the parameter
θ=0.5
MathType@MTEF@5@5@+=
feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb
a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2
da9iaaicdacaGGUaGaaGynaaaa@3D12@
.
Applications and goodness of fit
The applications and the goodness of fit of Uma distribution has been discussed with three datasets. Keeping in mind the flexibility and tractability of the distribution with the dataset following three datasets have been considered.
Data set 1: This data set represents the lifetime data relating to relief times (in minutes) of 20 patients receiving an analgesic and reported by Gross and Clark.9
1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.0
Data Set 2: This data set is the strength data of glass of the aircraft window reported by Fuller et al.10:
18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 25.80, 26.69, 26.77, 26.78, 27.05, 27.67, 29.90, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 45.381
Data Set 3: The following data represent the tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge lengths of 20 mm(Bader and Priest, 1982)11:
1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585 .
The values ML estimates of parameter, , AIC (Akaike Information Criterion), AICC (Akaike Information Criterion corrected), BIC (Bayesian Information criterion), K-S (Kolmogorov-Smirnov) for the considered distributions for the given datasets have been computed and presented in Tables 1–3 respectively.
It is clear from the goodness of fit in the Tables 1 to 3 that Uma distribution gives much better fit over exponential, Lindley, Shanker, Akash and Sujatha distributions.
Sl. No |
Distributions
θ
^
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja
aaaa@38D5@
|
−2logL
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik
daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C59@
|
AIC |
AICC |
BIC |
K-S |
1 |
Uma |
1.6024 |
38.61 |
40.61 |
40.83 |
41.60 |
0.238 |
2 |
Sujatha |
1.1367 |
57.50 |
59.50 |
59.72 |
60.49 |
0.309 |
3 |
Akash |
1.1569 |
59.52 |
61.52 |
61.74 |
62.51 |
0.320 |
4 |
Shanker |
0.8038 |
59.78 |
61.78 |
61.22 |
62.51 |
0.315 |
5 |
Lindley |
0.8161 |
60.50 |
62.50 |
62.72 |
63.49 |
0.341 |
6 |
Exponential |
0.5263 |
65.67 |
67.67 |
67.90 |
68.67 |
0.389 |
Table 1 ML estimates, , AIC, AICC, BIC, K-S of the distribution for the dataset-1
Sl. No |
Distributions |
θ
^
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja
aaaa@38D5@
|
−2logL
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik
daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C59@
|
AIC |
AICC |
BIC |
K-S |
1 |
Uma |
0.1299 |
232.54 |
234.54 |
234.67 |
235.97 |
0.233 |
2 |
Sujatha |
0.0956 |
241.50 |
243.50 |
243.64 |
244.94 |
0.27 |
3 |
Akash |
0.0971 |
240.68 |
242.68 |
242.82 |
244.11 |
0.266 |
4 |
Shanker |
0.0647 |
252.35 |
254.35 |
254.49 |
255.78 |
0.326 |
5 |
Lindley |
0.0629 |
253.99 |
255.99 |
256.13 |
257.42 |
0.333 |
6 |
Exponential |
0.0325 |
274.53 |
276.53 |
276.67 |
277.96 |
0.426 |
Table 2 ML estimates, , AIC, AICC, BIC, K-S of the distributions for the dataset-2
Sl. No |
Distributions |
θ
^
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja
aaaa@38D5@
|
−2logL
MathType@MTEF@5@5@+=
feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr
4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf
ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr
0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik
daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C59@
|
AIC |
AICC |
BIC |
K-S |
1 |
Uma |
1.3828 |
156.41 |
158.41 |
158.47 |
160.64 |
0.312 |
2 |
Sujatha |
0.9361 |
221.61 |
223.61 |
223.67 |
225.84 |
0.348 |
3 |
Akash |
0.9647 |
224.28 |
226.28 |
226.34 |
228.51 |
0.348 |
4 |
Shanker |
0.6580 |
233.01 |
235.01 |
235.06 |
237.24 |
0.355 |
5 |
Lindley |
0.6590 |
238.38 |
240.38 |
240.44 |
242.61 |
0.390 |
6 |
Exponential |
0.4079 |
261.74 |
263.74 |
263.80 |
265.97 |
0.434 |
Table 3 ML estimates, , AIC, AICC, BIC, K-S of the distributions for the dataset-3
Conclusion and future works
A new lifetime distribution named Uma distribution has been suggested. Statistical properties, estimation of parameter and applications of the distribution has been presented. As the distribution is new one, it is expected and hoped that it will be of great use to statisticians working in the field of modeling lifetime data from different fields of knowledge.
Being a new lifetime distribution with flexibility, tractability and practicability, a lot of future works can be done on Uma distribution.
Acknowledgments
Author is really grateful to the Editor-In-Chief of the Journal and the anonymous reviewer for quick and valuable comments on the paper.
Conflicts of interest
There aren't any conflict of interests.
Funding
References
- Lindley DV. Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society, Series B. 1958;20:102–107.
- Shanker R. Shanker distribution and its applications. International Journal of Statistics and Applications. 2015a;5(6):338–348.
- Shanker R. Akash Distribution and its applications. International Journal of Probability and Statistics. 2015b;4(3):65–75.
- Shanker R. Sujatha Distribution and its applications. Statistics in Transition-New series. 2016a;17(3):391–410.
- Shanker R, Hagos F, Sujatha S. On Modeling of Lifetimes data using Exponential and Lindley distributions. Biom Biostat Int J. 2015;2(5):140–147.
- Shanker R, Hagos F, Sujatha S. On modeling of lifetime data using one parameter Akash, Lindley and exponential distributions. Biom Biostat Int J. 2016;3(2):54–62.
- Shanker R, Hagos F. On modeling of lifetime data using Akash, Shanker, Lindley and exponential distributions. Biom & Biostat Int J. 2016;3(6):214–224.
- Shaked M, Shanthikumar JG. Stochastic Orders and Their Applications. Academic Press, New York: 1994.
- Gross AJ, Clark VA. Survival Distributions: Reliability Applications in the Biometrical Sciences. New York: John Wiley. 1975.
- Fuller EJ, Frieman S, Quinn J, et al. Fracture mechanics approach to the design of glass aircraft windows: A case study, SPIE Proc 1994;2286:419–430.
- Bader MG, Priest AM. Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi T, Kawata K, Umekawa S, editors. Progress in Science in Engineering Composites, ICCM-IV. Tokyo; 1982:1129–1136.
©2022 Shanker. This is an open access article distributed under the terms of the,
which
permits unrestricted use, distribution, and build upon your work non-commercially.