Submit manuscript...
eISSN: 2378-315X

Biometrics & Biostatistics International Journal

Research Article Volume 11 Issue 5

Uma distribution with properties and applications

Rama Shanker

Department of Statistics, Assam University, Silchar, Assam, India

Correspondence: Rama Shanker, Department of Statistics, Assam University, Silchar, Assam, India

Received: December 09, 2022 | Published: December 22, 2022

Citation: Shanker R. Uma distribution with properties and applications. Biom Biostat Int J. 2022;11(5):165-169. DOI: 10.15406/bbij.2022.11.00372

Download PDF

Abstract

The stochastic natures of lifetime data are really a challenge for statistician to search a suitable distribution for modeling and analysis of lifetime data. Keeping in mind the stochastic natures of lifetime data, a new lifetime distribution named Uma distribution has been suggested. Its several statistical properties, estimation of parameter and applications have been discussed. Applications of the distribution have been presented with three datasets and the goodness of fit of Uma distribution has been compared with exponential, Lindley, Shanker, Akash and Sujatha distributions.

Keywords: lifetime distributions, statistical properties, estimation of parameter, applications

Introduction

Due to stochastic nature of lifetime data, the search for lifetime distribution in the field of lifetime data analysis is expanding exponentially and getting popularity among policy makers to model data. In recent decades several lifetime distributions have been suggested in statistics literature. For example, Lindley distribution by Lindley,1 Shanker distribution by Shanker,2 Akash distribution by Shanker,3 and Sujatha distribution by Shanker,4 is some among others. Shanker et al.5 discussed the modeling of lifetime data using exponential and Lindley distributions and observed that there are some datasets in which these two distributions do not give good fit. Further, Shanker et al.6 put an effort to have comparative study on modeling of lifetime data using exponential, Lindley and Akash distribution and found that Akash distributions gives much better fit than both exponential and Lindley distribution but still there are some data sets in which these three distributions do not give good fit. Then, Shanker and Hagos,7 tried to model the real lifetime datasets using exponential, Lindley, Shanker and Akash and observed that still there are some datasets in which these distributions do not give good fit. Flexibility and tractability are the two important characteristics of a lifetime distributions and if the existing distributions are not flexible or tractable for the given dataset, then the search for a new distribution starts. Sometimes, data are being transformed to satisfy some assumptions of the distribution so that distribution fits well. But this is not useful practice because the original nature of the dataset is lost. Therefore, the most preferable is to search a distribution which fits the given data well than to modify the existing distributions.

While testing the goodness of fit of some well-known one parameter lifetime distributions available in literature, it has been observed that the existing distributions do not fit the data well. In this paper, in the search for a new distribution, we propose a new distribution named Uma distribution which fits the data well over the existing distributions. The statistical properties, estimation of

parameter and applications of the distribution has been presented systematically. It is hoped and expected that the distribution will draw attention of researchers to model lifetime data and preferred over the existing one parameter lifetime distributions.

Uma distribution

Taking the convex combination of exponential ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdehacaGLOaGaayzkaaaaaa@3A4D@ , gamma ( 2,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG OmaiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3BB9@ and gamma ( 4,θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG inaiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3BBB@ with respective mixing proportions θ 3 θ 3 + θ 2 +6 , θ 2 θ 3 + θ 2 +6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq iUde3aaWbaaSqabeaacaaIZaaaaaGcbaGaeqiUde3aaWbaaSqabeaa caaIZaaaaOGaey4kaSIaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGOnaaaacaGGSaWaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaa ikdaaaaakeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcq aH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aaaaaaa@4CDF@ and , 6 θ 3 + θ 2 +6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG OnaaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeI7a XnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdaaaaaaa@3FB5@ a probability density function (pdf) can be expressed as

f( x;θ )= θ 4 θ 3 + θ 2 +6 ( 1+x+ x 3 ) e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0ZaaSaa aeaacqaH4oqCdaahaaWcbeqaaiaaisdaaaaakeaacqaH4oqCdaahaa WcbeqaaiaaiodaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaI2aaaamaabmaabaGaaGymaiabgUcaRiaadIhacq GHRaWkcaWG4bWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaGa aGPaVlaadwgadaahaaWcbeqaaiabgkHiTiabeI7aXjaaykW7caWG4b aaaOGaai4oaiaadIhacqGH+aGpcaaIWaGaaiilaiabeI7aXjabg6da +iaaicdaaaa@5EFF@

We would call this distribution as ‘Uma distribution’. Since it is a convex combination of exponential and gamma distributions, it is expected to give better fit over exponential and gamma distribution and other distributions developed using convex combinations of exponential and gamma distribution. The cumulative distribution function (cdf) of Uma distribution can be obtained as

F( x;θ )=1[ 1+ θx( θ 2 x 2 +3θx+ θ 2 +6 ) θ 3 + θ 2 +6 ] e θx ;x>0,θ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaGaeyypa0JaaGym aiabgkHiTmaadmaabaGaaGymaiabgUcaRmaalaaabaGaeqiUdeNaam iEamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaamiEamaa CaaaleqabaGaaGOmaaaakiabgUcaRiaaiodacqaH4oqCcaWG4bGaey 4kaSIaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOnaaGa ayjkaiaawMcaaaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgU caRiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdaaaaa caGLBbGaayzxaaGaaGPaVlaadwgadaahaaWcbeqaaiabgkHiTiabeI 7aXjaaykW7caWG4baaaOGaai4oaiaadIhacqGH+aGpcaaIWaGaaiil aiabeI7aXjabg6da+iaaicdaaaa@6CC9@

The behaviour of the pdf and the cdf of Uma distribution for varying values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ have been presented in Figures 1,2 respectively.

Figure 1 Graphs of the pdf of Uma distribution for selected values of the parameter.

Figure 2 Graphs of the cdf of Uma distribution for selected values of the parameter.

Reliability properties

  • Hazard rate function

The hazard rate function of a random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@ having pdf f( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaaaaa@3CF4@ and cdf F( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaaaaa@3CD4@ is defined as

h( x )= lim Δx0 P( X<x+Δx|X>x ) Δx = f( x;θ ) 1F( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWfqaqaaiGacYgacaGG PbGaaiyBaaWcbaGaeyiLdqKaamiEaiabgkziUkaaicdaaeqaaOWaaS aaaeaacaWGqbWaaeWaaeaadaabcaqaaiaadIfacqGH8aapcaWG4bGa ey4kaSIaeyiLdqKaamiEaiaaykW7aiaawIa7aiaadIfacqGH+aGpca WG4baacaGLOaGaayzkaaaabaGaeyiLdqKaamiEaaaacqGH9aqpdaWc aaqaaiaadAgadaqadaqaaiaadIhacaGG7aGaeqiUdehacaGLOaGaay zkaaaabaGaaGymaiabgkHiTiaadAeadaqadaqaaiaadIhacaGG7aGa eqiUdehacaGLOaGaayzkaaaaaaaa@6308@

Thus, the hazard rate function of Uma distribution can be obtained as

h( x )= θ 4 ( 1+x+ x 3 ) θ 3 ( x 3 +x+1 )+ θ 2 ( 3 x 2 +1 )+6θx+6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaa CaaaleqabaGaaGinaaaakmaabmaabaGaaGymaiabgUcaRiaadIhacq GHRaWkcaWG4bWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaaa baGaeqiUde3aaWbaaSqabeaacaaIZaaaaOWaaeWaaeaacaWG4bWaaW baaSqabeaacaaIZaaaaOGaey4kaSIaamiEaiabgUcaRiaaigdaaiaa wIcacaGLPaaacqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGcda qadaqaaiaaiodacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIa aGymaaGaayjkaiaawMcaaiabgUcaRiaaiAdacqaH4oqCcaWG4bGaey 4kaSIaaGOnaaaaaaa@5E2D@

This gives. h( 0 )= θ 4 θ 3 + θ 2 +6 =f( 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaqada qaaiaaicdaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaa CaaaleqabaGaaGinaaaaaOqaaiabeI7aXnaaCaaaleqabaGaaG4maa aakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaa iAdaaaGaeyypa0JaamOzamaabmaabaGaaGimaaGaayjkaiaawMcaaa aa@4A0A@ The behaviour of the hazard rate function of Uma distribution for various values of parameter is shown in the following Figure 3.

Figure 3 Graphs of the hazarad rate function of Uma distribution for selected values of the parameter.

  • Mean residual life function

Let X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@ be a random variable over the support ( 0, ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG imaiaacYcacqGHEisPaiaawIcacaGLPaaaaaa@3B72@ representing the lifetime of a system. Mean Residual life (MRL) function measures the expected value of the remaining lifetime of the system, provided it has survived up to time. Let us consider the conditional random variable X x =( Xx|X>x );x>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfadaWgaa WcbaGaamiEaaqabaGccqGH9aqpdaqadaqaaiaadIfacqGHsislcaWG 4bGaaiiFaiaadIfacqGH+aGpcaWG4baacaGLOaGaayzkaaGaaGPaVl aacUdacaWG4bGaeyOpa4JaaGimaaaa@475F@ . Then, the MRL function, denoted by, m( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaaaaa@3A86@ is defined as

m( x )=E( X x )= 1 S( x ) x [ 1F( t ) ] dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGfbWaaeWaaeaacaWG ybWaaSbaaSqaaiaadIhaaeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaS aaaeaacaaIXaaabaGaam4uamaabmaabaGaamiEaaGaayjkaiaawMca aaaadaWdXbqaamaadmaabaGaaGymaiabgkHiTiaadAeadaqadaqaai aadshaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaSqaaiaadIhaaeaa cqGHEisPa0Gaey4kIipakiaaykW7caWGKbGaamiDaiaaykW7caaMc8 oaaa@5769@

The MRL function of Uma distribution can thus be obtained as

m( x )= 1 { θ 3 ( x 3 +x+1 )+ θ 2 ( 3 x 2 +1 )6θx+6 } e θx x [ θ 3 ( t 3 +t+1 )+ θ 2 ( 3 t 2 +1 )6θt+6 ] e θt dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigdaaeaa daGadaqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakmaabmaabaGaam iEamaaCaaaleqabaGaaG4maaaakiabgUcaRiaadIhacqGHRaWkcaaI XaaacaGLOaGaayzkaaGaey4kaSIaeqiUde3aaWbaaSqabeaacaaIYa aaaOWaaeWaaeaacaaIZaGaamiEamaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaigdaaiaawIcacaGLPaaacaaI2aGaeqiUdeNaamiEaiabgU caRiaaiAdaaiaawUhacaGL9baacaWGLbWaaWbaaSqabeaacqGHsisl cqaH4oqCcaWG4baaaaaakmaapehabaWaamWaaeaacqaH4oqCdaahaa WcbeqaaiaaiodaaaGcdaqadaqaaiaadshadaahaaWcbeqaaiaaioda aaGccqGHRaWkcaWG0bGaey4kaSIaaGymaaGaayjkaiaawMcaaiabgU caRiabeI7aXnaaCaaaleqabaGaaGOmaaaakmaabmaabaGaaG4maiaa dshadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaaacaGLOaGaay zkaaGaaGOnaiabeI7aXjaadshacqGHRaWkcaaI2aaacaGLBbGaayzx aaaaleaacaWG4baabaGaeyOhIukaniabgUIiYdGccaaMc8Uaamyzam aaCaaaleqabaGaeyOeI0IaeqiUdeNaamiDaaaakiaaykW7caWGKbGa amiDaaaa@83E7@ = θ 3 ( x 3 +x+1 )+ θ 2 ( 6 x 2 +2 )+18θx+24 θ{ θ 3 ( x 3 +x+1 )+ θ 2 ( 3 x 2 +1 )+6θx+6 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOWaaeWaaeaacaWG4bWa aWbaaSqabeaacaaIZaaaaOGaey4kaSIaamiEaiabgUcaRiaaigdaai aawIcacaGLPaaacqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGc daqadaqaaiaaiAdacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaS IaaGOmaaGaayjkaiaawMcaaiabgUcaRiaaigdacaaI4aGaeqiUdeNa amiEaiabgUcaRiaaikdacaaI0aaabaGaeqiUde3aaiWaaeaacqaH4o qCdaahaaWcbeqaaiaaiodaaaGcdaqadaqaaiaadIhadaahaaWcbeqa aiaaiodaaaGccqGHRaWkcaWG4bGaey4kaSIaaGymaaGaayjkaiaawM caaiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaakmaabmaabaGa aG4maiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaaaca GLOaGaayzkaaGaey4kaSIaaGOnaiabeI7aXjaadIhacqGHRaWkcaaI 2aaacaGL7bGaayzFaaaaaaaa@6F70@

This gives m( 0 )= θ 3 +2 θ 2 +24 θ( θ 3 + θ 2 +6 ) = μ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaqada qaaiaaicdaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaa CaaaleqabaGaaG4maaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbe qaaiaaikdaaaGccqGHRaWkcaaIYaGaaGinaaqaaiabeI7aXnaabmaa baGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaeqiUde3aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGOnaaGaayjkaiaawMcaaaaa cqGH9aqpcqaH8oqBdaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaO Gamai4gkdiIcaaaaa@5688@ . The behaviour of the mean residual life function of Uma distribution for various values of parameter θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@38C4@ is shown in the following Figure 4.

Figure 4 Graphs of the mean residual life function of Uma distribution for selected values of the parameter.

Reverse hazard rate and Mill’s ratio

The reverse hazard rate of a random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@ having pdf f( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaaaaa@3CF4@ and cdf F( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaaaaa@3CD4@ is defined as

h r ( x )= f( x;θ ) F( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaamOCaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH 9aqpdaWcaaqaaiaadAgadaqadaqaaiaadIhacaGG7aGaeqiUdehaca GLOaGaayzkaaaabaGaamOramaabmaabaGaamiEaiaacUdacqaH4oqC aiaawIcacaGLPaaaaaaaaa@4870@

Thus, the reverse hazard rate function of Uma distribution can be obtained as h r ( x )= θ 4 ( 1+x+ x 3 ) e θx ( θ 3 + θ 2 +6 )[ ( θ 3 + θ 2 +6 )+θx( θ 2 x 2 +3θx+ θ 2 +6 ) ] e θx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIgadaWgaa WcbaGaamOCaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH 9aqpdaWcaaqaaiabeI7aXnaaCaaaleqabaGaaGinaaaakmaabmaaba GaaGymaiabgUcaRiaadIhacqGHRaWkcaWG4bWaaWbaaSqabeaacaaI ZaaaaaGccaGLOaGaayzkaaGaamyzamaaCaaaleqabaGaeyOeI0Iaeq iUdeNaaGPaVlaadIhaaaaakeaadaqadaqaaiabeI7aXnaaCaaaleqa baGaaG4maaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaaki abgUcaRiaaiAdaaiaawIcacaGLPaaacqGHsisldaWadaqaamaabmaa baGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaeqiUde3aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGOnaaGaayjkaiaawMcaaiab gUcaRiabeI7aXjaadIhadaqadaqaaiabeI7aXnaaCaaaleqabaGaaG OmaaaakiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIZaGa eqiUdeNaamiEaiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaaki abgUcaRiaaiAdaaiaawIcacaGLPaaaaiaawUfacaGLDbaacaWGLbWa aWbaaSqabeaacqGHsislcqaH4oqCcaaMc8UaamiEaaaaaaaaaa@7BC8@

 Mill’s ratio of a random X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@ xmlns='http://www.w3.org/1998/Math/MathML'> X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@37EB@ variable having pdf f( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaaaaa@3CF4@ and cdf F( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhacaGG7aGaeqiUdehacaGLOaGaayzkaaaaaa@3CD4@ is defined as

 Mill’s ratio = 1 h( x ) = 1F( x;θ ) f( x;θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaaGymaaqaaiaadIgadaqadaqaaiaadIhaaiaawIcacaGLPaaa aaGaeyypa0ZaaSaaaeaacaaIXaGaeyOeI0IaamOramaabmaabaGaam iEaiaacUdacqaH4oqCaiaawIcacaGLPaaaaeaacaWGMbWaaeWaaeaa caWG4bGaai4oaiabeI7aXbGaayjkaiaawMcaaaaaaaa@4ABC@

Thus, the Mill’s ratio of Uma distribution can be obtained as 1 h( x ) = θ 3 ( x 3 +x+1 )+ θ 2 ( 3 x 2 +1 )+6θx+6 θ 4 ( 1+x+ x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaadIgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaaGaeyyp a0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGcdaqadaqaai aadIhadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaWG4bGaey4kaSIa aGymaaGaayjkaiaawMcaaiabgUcaRiabeI7aXnaaCaaaleqabaGaaG OmaaaakmaabmaabaGaaG4maiaadIhadaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaIXaaacaGLOaGaayzkaaGaey4kaSIaaGOnaiabeI7aXj aadIhacqGHRaWkcaaI2aaabaGaeqiUde3aaWbaaSqabeaacaaI0aaa aOWaaeWaaeaacaaIXaGaey4kaSIaamiEaiabgUcaRiaadIhadaahaa WcbeqaaiaaiodaaaaakiaawIcacaGLPaaaaaaaaa@5EF8@

Stochastic ordering

In Probability theory and statistics, a stochastic order quantifies the concept of one random variable being bigger than another. A random variable  is said to be smaller than a random variable  in the

  1. Stochastic order ( X st Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGZbGa amiDaaWdaeqaaOWdbiaadMfaaiaawIcacaGLPaaaaaa@3EAB@ if F X ( x ) F Y ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaiabgwMiZkaadAeapaWaaSbaaSqaa8 qacaWGzbaapaqabaGcpeWaaeWaa8aabaWdbiaadMhaaiaawIcacaGL Paaaaaa@4278@ for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@
  2. Hazard rate order ( X hr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGObGa amOCaaWdaeqaaOWdbiaadMfaaiaawIcacaGLPaaaaaa@3E9E@ if h X ( x ) h Y ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAa8aadaWgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaa peGaamiEaaGaayjkaiaawMcaaiabgwMiZkaadIgapaWaaSbaaSqaa8 qacaWGzbaapaqabaGcpeWaaeWaa8aabaWdbiaadMhaaiaawIcacaGL Paaaaaa@42BC@ for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@
  3. Mean residual life order ( X mrl Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGTbGa amOCaiaadYgaa8aabeaak8qacaWGzbaacaGLOaGaayzkaaaaaa@3F94@ if   m X ( x ) m Y ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOaiaad2gapaWaaSbaaSqaa8qacaWGybaapaqabaGcpeWaaeWa a8aabaWdbiaadIhaaiaawIcacaGLPaaacqGHLjYScaWGTbWdamaaBa aaleaapeGaamywaaWdaeqaaOWdbmaabmaapaqaa8qacaWG5baacaGL OaGaayzkaaaaaa@43EA@ for all x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@
  4. Likelihood ratio order ( X lr Y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadIfacqGHKjYOpaWaaSbaaSqaa8qacaWGSbGa amOCaaWdaeqaaOWdbiaadMfaaiaawIcacaGLPaaaaaa@3EA2@ if f X ( x ) f Y ( y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadAgapaWaaSbaaSqaa8qacaWGybaapaqabaGc peWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaa8aabaWdbiaadA gapaWaaSbaaSqaa8qacaWGzbaapaqabaGcpeWaaeWaa8aabaWdbiaa dMhaaiaawIcacaGLPaaaaaaaaa@4140@ decrease in x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaaaa@382B@

The following results due to Shaked and Shantikumar,8 are well known for establishing stochastic ordering of distributions X < lr YX < hr YX < mrl Y X < st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaam iwaiabgYda8maaBaaaleaacaWGSbGaamOCaaqabaGccaWGzbGaeyO0 H4TaamiwaiabgYda8maaBaaaleaacaWGObGaamOCaaqabaGccaWGzb GaeyO0H4TaamiwaiabgYda8maaBaaaleaacaWGTbGaamOCaiaadYga aeqaaOGaamywaaWceaqabeaacqGHthY3aeaacaWGybGaeyipaWZaaS baaWqaaiaadohacaWG0baabeaaliaadMfaaaqabaaaaa@53F1@

Theorem: Let X~ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacaGG+b aaaa@3A0B@ Uma distribution ( θ 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUde3aaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaaaaaa@3C5C@ and Y~ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMfacaGG+b aaaa@3A0C@ Uma. ( θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUde3aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaaa@3C5D@ If θ 1 > θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIXaaabeaakiabg6da+iabeI7aXnaaBaaaleaacaaIYaaa beaaaaa@3E79@ , then X < lr Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3D09@ hence X < hr Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3D05@ , X < mrl Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaamyBaiaadkhacaWGSbaabeaakiaadMfaaaa@3DFB@ and X < st Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamywaaaa@3D12@ .

Proof: We have

f X ( x ) f Y ( x ) == θ 1 4 ( θ 2 3 + θ 2 2 +6 ) θ 2 4 ( θ 1 3 + θ 1 2 +6 ) e ( θ 1 θ 2 )x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadAgapaWaaSbaaSqaa8qacaWGybaapaqabaGc peWaaeWaa8aabaWdbiaadIhaaiaawIcacaGLPaaaa8aabaWdbiaadA gapaWaaSbaaSqaa8qacaWGzbaapaqabaGcpeWaaeWaa8aabaWdbiaa dIhaaiaawIcacaGLPaaaaaGaeyypa0Jaeyypa0ZaaSaaaeaapaGaeq iUde3aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaaI0aaaaOWa aeWaaeaacqaH4oqCdaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaai aaiodaaaGccqGHRaWkcqaH4oqCdaWgaaWcbaGaaGOmaaqabaGcdaah aaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aaacaGLOaGaayzkaaaape qaa8aacaaMc8UaeqiUde3aaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqa beaacaaI0aaaaOWaaeWaaeaacqaH4oqCdaWgaaWcbaGaaGymaaqaba GcdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcqaH4oqCdaWgaaWcbaGa aGymaaqabaGcdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aaaca GLOaGaayzkaaaaaiaadwgadaahaaWcbeqaaiabgkHiTmaabmaabaGa eqiUde3aaSbaaWqaaiaaigdaaeqaaSGaaGPaVlabgkHiTiabeI7aXn aaBaaameaacaaIYaaabeaaaSGaayjkaiaawMcaaiaadIhaaaaaaa@7045@

We have , log[ f X ( x ) f Y ( x ) ]=log[ θ 1 4 ( θ 2 3 + θ 2 2 +6 ) θ 2 4 ( θ 1 3 + θ 1 2 +6 ) ]( θ 1 θ 2 )x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac+gacaGGNbWdamaadmaabaWdbmaalaaapaqaa8qacaWG MbWdamaaBaaaleaapeGaamiwaaWdaeqaaOWdbmaabmaapaqaa8qaca WG4baacaGLOaGaayzkaaaapaqaa8qacaWGMbWdamaaBaaaleaapeGa amywaaWdaeqaaOWdbmaabmaapaqaa8qacaWG4baacaGLOaGaayzkaa aaaaWdaiaawUfacaGLDbaapeGaeyypa0JaciiBaiaac+gacaGGNbWd amaadmaabaWdbmaalaaabaWdaiabeI7aXnaaBaaaleaacaaIXaaabe aakmaaCaaaleqabaGaaGinaaaakmaabmaabaGaeqiUde3aaSbaaSqa aiaaikdaaeqaaOWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaeqiUde 3aaSbaaSqaaiaaikdaaeqaaOWaaWbaaSqabeaacaaIYaaaaOGaey4k aSIaaGOnaaGaayjkaiaawMcaaaWdbeaapaGaaGPaVlabeI7aXnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGaaGinaaaakmaabmaabaGa eqiUde3aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaaIZaaaaO Gaey4kaSIaeqiUde3aaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaa caaIYaaaaOGaey4kaSIaaGOnaaGaayjkaiaawMcaaaaaaiaawUfaca GLDbaacqGHsislcaGGOaGaeqiUde3aaSbaaSqaaiaaigdaaeqaaOGa eyOeI0IaaGPaVlabeI7aXnaaBaaaleaacaaIYaaabeaakiaacMcaca WG4baaaa@77D5@

Therefore, d dx log[ f X ( x ) f Y ( x ) ]=( θ 1 θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsgaa8aabaGaamizaiaadIhaaaWdbiGacYga caGGVbGaai4za8aadaWadaqaa8qadaWcaaWdaeaapeGaamOza8aada WgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaapeGaamiEaaGa ayjkaiaawMcaaaWdaeaapeGaamOza8aadaWgaaWcbaWdbiaadMfaa8 aabeaak8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaaa8aa caGLBbGaayzxaaGaeyypa0JaeyOeI0IaaiikaiabeI7aXnaaBaaale aacaaIXaaabeaakiabgkHiTiaaykW7cqaH4oqCdaWgaaWcbaGaaGOm aaqabaGccaGGPaaaaa@557C@

Thus, for θ 1 > θ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXnaaBa aaleaacaaIXaaabeaakiabg6da+iabeI7aXnaaBaaaleaacaaIYaaa beaaaaa@3E78@ , d dx log[ f X ( x ) f Y ( x ) ]<0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadsgaa8aabaGaamizaiaadIhaaaWdbiGacYga caGGVbGaai4za8aadaWadaqaa8qadaWcaaWdaeaapeGaamOza8aada WgaaWcbaWdbiaadIfaa8aabeaak8qadaqadaWdaeaapeGaamiEaaGa ayjkaiaawMcaaaWdaeaapeGaamOza8aadaWgaaWcbaWdbiaadMfaa8 aabeaak8qadaqadaWdaeaapeGaamiEaaGaayjkaiaawMcaaaaaa8aa caGLBbGaayzxaaGaeyipaWJaaGimaaaa@4C27@ . this means that X < lr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaamiBaiaadkhaaeqaaOGaamywaaaa@3D08@ hence X < hr Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaamiAaiaadkhaaeqaaOGaamywaaaa@3D04@ ,and X < st Y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfacqGH8a apdaWgaaWcbaGaam4CaiaadshaaeqaaOGaamywaaaa@3D11@ .

Moments based descriptive measures

The r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhaaaa@3922@ th moment about origin μ r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaaaa@3E2D@ of Uma distribution can be obtained as μ r =E( X r )= θ 4 θ 3 + θ 2 +6 0 x r ( 1+x+ x 2 ) e θx dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaWGYbaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9iaadweadaqadaqaaiaadIfadaahaaWcbeqaaiaadkhaaaaakiaawI cacaGLPaaacqGH9aqpdaWcaaqaaiabeI7aXnaaCaaaleqabaGaaGin aaaaaOqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeI 7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdaaaWaa8qCaeaa caWG4bWaaWbaaSqabeaacaWGYbaaaOWaaeWaaeaacaaIXaGaey4kaS IaamiEaiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaaakiaawIca caGLPaaaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiaaykW7ca WGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaaMc8UaamiEaaaakiaa dsgacaWG4baaaa@66A4@

= r!{ θ 3 +( r+1 ) θ 2 +( r+1 )( r+2 )( r+3 ) } θ r ( θ 3 + θ 2 +6 ) ;r=1,2,3, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9maala aabaGaamOCaiaacgcadaGadaqaaiabeI7aXnaaCaaaleqabaGaaG4m aaaakiabgUcaRmaabmaabaGaamOCaiabgUcaRiaaigdaaiaawIcaca GLPaaacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkdaqadaqa aiaadkhacqGHRaWkcaaIXaaacaGLOaGaayzkaaWaaeWaaeaacaWGYb Gaey4kaSIaaGOmaaGaayjkaiaawMcaamaabmaabaGaamOCaiabgUca RiaaiodaaiaawIcacaGLPaaaaiaawUhacaGL9baaaeaacqaH4oqCda ahaaWcbeqaaiaadkhaaaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGa aG4maaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgU caRiaaiAdaaiaawIcacaGLPaaaaaGaai4oaiaadkhacqGH9aqpcaaI XaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacqGHflY1cqGHflY1cq GHflY1aaa@6EBE@

Substituting r=1,2,3,4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpcaaIXaGaaiilaiaaikdacaGGSaGaaG4maiaacYcacaaI0aaaaa@3F2A@ in the above equation, the first four moments about origin of Uma distribution can be obtained as

μ 1 = θ 3 +2 θ 2 +24 θ( θ 3 + θ 2 +6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIXaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG OmaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaikdacaaI 0aaabaGaeqiUde3aaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaa GccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI 2aaacaGLOaGaayzkaaaaaaaa@536A@ , μ 2 = 2( θ 3 +3 θ 2 +60 ) θ 2 ( θ 3 + θ 2 +6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOmamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIZa aaaOGaey4kaSIaaG4maiabeI7aXnaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaiAdacaaIWaaacaGLOaGaayzkaaaabaGaeqiUde3aaWbaaS qabeaacaaIYaaaaOWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaioda aaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkca aI2aaacaGLOaGaayzkaaaaaaaa@56A4@

μ 3 = 6( θ 3 +4 θ 2 +120 ) θ 3 ( θ 3 + θ 2 +6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOnamaabmaabaGaeqiUde3aaWbaaSqabeaacaaIZa aaaOGaey4kaSIaaGinaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiab gUcaRiaaigdacaaIYaGaaGimaaGaayjkaiaawMcaaaqaaiabeI7aXn aaCaaaleqabaGaaG4maaaakmaabmaabaGaeqiUde3aaWbaaSqabeaa caaIZaaaaOGaey4kaSIaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaaGOnaaGaayjkaiaawMcaaaaaaaa@5762@ , μ 4 = 24( θ 3 +5 θ 2 +210 ) θ 4 ( θ 3 + θ 2 +6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaI0aaabeaakmaaCaaaleqabaGccWaGGBOmGikaaiabg2da 9maalaaabaGaaGOmaiaaisdadaqadaqaaiabeI7aXnaaCaaaleqaba GaaG4maaaakiabgUcaRiaaiwdacqaH4oqCdaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIYaGaaGymaiaaicdaaiaawIcacaGLPaaaaeaacq aH4oqCdaahaaWcbeqaaiaaisdaaaGcdaqadaqaaiabeI7aXnaaCaaa leqabaGaaG4maaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaiAdaaiaawIcacaGLPaaaaaaaaa@581F@ .

The moments about the mean, using relationship between moments about the mean and the moments about the origin, can thus be obtained as

μ 2 = θ 6 +4 θ 5 +2 θ 4 +84 θ 3 +60 θ 2 +144 θ 2 ( θ 3 + θ 2 +6 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIYaaabeaakiabg2da9maalaaabaGaeqiUde3aaWbaaSqa beaacaaI2aaaaOGaey4kaSIaaGinaiabeI7aXnaaCaaaleqabaGaaG ynaaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaisdaaaGc cqGHRaWkcaaI4aGaaGinaiabeI7aXnaaCaaaleqabaGaaG4maaaaki abgUcaRiaaiAdacaaIWaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaaGymaiaaisdacaaI0aaabaGaeqiUde3aaWbaaSqabeaaca aIYaaaaOWaaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGH RaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI2aaaca GLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaaaaa@6147@ μ 3 = 2( θ 9 +6 θ 8 +6 θ 7 +200 θ 6 +270 θ 5 +108 θ 4 +324 θ 3 +432 θ 2 +864 ) θ 3 ( θ 3 + θ 2 +6 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTnaaBa aaleaacaaIZaaabeaakiabg2da9maalaaabaGaaGOmamaabmaabaGa eqiUde3aaWbaaSqabeaacaaI5aaaaOGaey4kaSIaaGOnaiabeI7aXn aaCaaaleqabaGaaGioaaaakiabgUcaRiaaiAdacqaH4oqCdaahaaWc beqaaiaaiEdaaaGccqGHRaWkcaaIYaGaaGimaiaaicdacqaH4oqCda ahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaIYaGaaG4naiaaicdacqaH 4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHRaWkcaaIXaGaaGimaiaaiI dacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkcaaIZaGaaGOm aiaaisdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI0a GaaG4maiaaikdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWk caaI4aGaaGOnaiaaisdaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaa WcbeqaaiaaiodaaaGcdaqadaqaaiabeI7aXnaaCaaaleqabaGaaG4m aaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRi aaiAdaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaaaa@7663@ μ 4 = 3( 3 θ 12 +24 θ 11 +44 θ 10 +968 θ 9 +2336 θ 8 +2016 θ 7 +7488 θ 6 +13248 θ 5 +5760 θ 4 +31104 θ 3 +24192 θ 2 +31104 ) θ 4 ( θ 3 + θ 2 +6 ) 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaSGaeqiVd02aaS baaWqaaiaaisdaaeqaaSGaeyypa0ZaaSaaaeaacaaIZaWaaeWaaqaa beqaaiaaiodacqaH4oqCdaahaaadbeqaaiaaigdacaaIYaaaaSGaey 4kaSIaaGOmaiaaisdacqaH4oqCdaahaaadbeqaaiaaigdacaaIXaaa aSGaey4kaSIaaGinaiaaisdacqaH4oqCdaahaaadbeqaaiaaigdaca aIWaaaaSGaey4kaSIaaGyoaiaaiAdacaaI4aGaeqiUde3aaWbaaWqa beaacaaI5aaaaSGaey4kaSIaaGOmaiaaiodacaaIZaGaaGOnaiabeI 7aXnaaCaaameqabaGaaGioaaaaliabgUcaRiaaikdacaaIWaGaaGym aiaaiAdacqaH4oqCdaahaaadbeqaaiaaiEdaaaWccqGHRaWkcaaI3a GaaGinaiaaiIdacaaI4aGaeqiUde3aaWbaaWqabeaacaaI2aaaaSGa ey4kaSIaaGymaiaaiodacaaIYaGaaGinaiaaiIdacqaH4oqCdaahaa adbeqaaiaaiwdaaaaaleaacqGHRaWkcaaI1aGaaG4naiaaiAdacaaI WaGaeqiUde3aaWbaaWqabeaacaaI0aaaaSGaey4kaSIaaG4maiaaig dacaaIXaGaaGimaiaaisdacqaH4oqCdaahaaadbeqaaiaaiodaaaWc cqGHRaWkcaaIYaGaaGinaiaaigdacaaI5aGaaGOmaiabeI7aXnaaCa aameqabaGaaGOmaaaaliabgUcaRiaaiodacaaIXaGaaGymaiaaicda caaI0aaaaiaawIcacaGLPaaaaeaacqaH4oqCdaahaaadbeqaaiaais daaaWcdaqadaqaaiabeI7aXnaaCaaameqabaGaaG4maaaaliabgUca RiabeI7aXnaaCaaameqabaGaaGOmaaaaliabgUcaRiaaiAdaaiaawI cacaGLPaaadaahaaadbeqaaiaaisdaaaaaaaaa@9535@

The descriptive constants including coefficient of variation (CV), coefficient of skewness (CS), coefficient of kurtosis (CK) and the index of dispersion (ID) of Uma distribution are thus obtained as

CV= μ 2 μ 1 = θ 6 +4 θ 5 +2 θ 4 +84 θ 3 +60 θ 2 +144 θ 3 +2 θ 2 +24 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGwb Gaeyypa0ZaaSaaaeaadaGcaaqaaiabeY7aTnaaBaaaleaacaaIYaaa beaaaeqaaaGcbaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOWaaWbaaS qabeaakiadacUHYaIOaaaaaiabg2da9maalaaabaWaaOaaaeaacqaH 4oqCdaahaaWcbeqaaiaaiAdaaaGccqGHRaWkcaaI0aGaeqiUde3aaW baaSqabeaacaaI1aaaaOGaey4kaSIaaGOmaiabeI7aXnaaCaaaleqa baGaaGinaaaakiabgUcaRiaaiIdacaaI0aGaeqiUde3aaWbaaSqabe aacaaIZaaaaOGaey4kaSIaaGOnaiaaicdacqaH4oqCdaahaaWcbeqa aiaaikdaaaGccqGHRaWkcaaIXaGaaGinaiaaisdaaSqabaaakeaacq aH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaeqiUde3a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaisdaaaaaaa@6656@ CS= μ 3 2 μ 2 3 = 4 ( θ 9 +6 θ 8 +6 θ 7 +200 θ 6 +270 θ 5 +108 θ 4 +324 θ 3 +432 θ 2 +864 ) 2 ( θ 6 +4 θ 5 +2 θ 4 +84 θ 3 +60 θ 2 +144 ) 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGtb Gaeyypa0ZaaSaaaeaacqaH8oqBdaWgaaWcbaGaaG4maaqabaGcdaah aaWcbeqaaiaaikdaaaaakeaacqaH8oqBdaWgaaWcbaGaaGOmaaqaba GcdaahaaWcbeqaaiaaiodaaaaaaOGaeyypa0ZaaSaaaeaacaaI0aWa aeWaaeaacqaH4oqCdaahaaWcbeqaaiaaiMdaaaGccqGHRaWkcaaI2a GaeqiUde3aaWbaaSqabeaacaaI4aaaaOGaey4kaSIaaGOnaiabeI7a XnaaCaaaleqabaGaaG4naaaakiabgUcaRiaaikdacaaIWaGaaGimai abeI7aXnaaCaaaleqabaGaaGOnaaaakiabgUcaRiaaikdacaaI3aGa aGimaiabeI7aXnaaCaaaleqabaGaaGynaaaakiabgUcaRiaaigdaca aIWaGaaGioaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaa iodacaaIYaGaaGinaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgU caRiaaisdacaaIZaGaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaaaa kiabgUcaRiaaiIdacaaI2aGaaGinaaGaayjkaiaawMcaamaaCaaale qabaGaaGOmaaaaaOqaamaabmaabaGaeqiUde3aaWbaaSqabeaacaaI 2aaaaOGaey4kaSIaaGinaiabeI7aXnaaCaaaleqabaGaaGynaaaaki abgUcaRiaaikdacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWk caaI4aGaaGinaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRi aaiAdacaaIWaGaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIa aGymaiaaisdacaaI0aaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIZa aaaaaaaaa@8C88@ CK= μ 4 μ 2 2 = 3( 3 θ 12 +24 θ 11 +44 θ 10 +968 θ 9 +2336 θ 8 +2016 θ 7 +7488 θ 6 +13248 θ 5 +5760 θ 4 +31104 θ 3 +24192 θ 2 +31104 ) ( θ 6 +4 θ 5 +2 θ 4 +84 θ 3 +60 θ 2 +144 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaWGlb Gaeyypa0ZaaSaaaeaacqaH8oqBdaWgaaWcbaGaaGinaaqabaaakeaa cqaH8oqBdaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaaikdaaa aaaOGaeyypa0ZaaSaaaeaacaaIZaWaaeWaaqaabeqaaiaaiodacqaH 4oqCdaahaaWcbeqaaiaaigdacaaIYaaaaOGaey4kaSIaaGOmaiaais dacqaH4oqCdaahaaWcbeqaaiaaigdacaaIXaaaaOGaey4kaSIaaGin aiaaisdacqaH4oqCdaahaaWcbeqaaiaaigdacaaIWaaaaOGaey4kaS IaaGyoaiaaiAdacaaI4aGaeqiUde3aaWbaaSqabeaacaaI5aaaaOGa ey4kaSIaaGOmaiaaiodacaaIZaGaaGOnaiabeI7aXnaaCaaaleqaba GaaGioaaaakiabgUcaRiaaikdacaaIWaGaaGymaiaaiAdacqaH4oqC daahaaWcbeqaaiaaiEdaaaGccqGHRaWkcaaI3aGaaGinaiaaiIdaca aI4aGaeqiUde3aaWbaaSqabeaacaaI2aaaaOGaey4kaSIaaGymaiaa iodacaaIYaGaaGinaiaaiIdacqaH4oqCdaahaaWcbeqaaiaaiwdaaa aakeaacqGHRaWkcaaI1aGaaG4naiaaiAdacaaIWaGaeqiUde3aaWba aSqabeaacaaI0aaaaOGaey4kaSIaaG4maiaaigdacaaIXaGaaGimai aaisdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGa aGinaiaaigdacaaI5aGaaGOmaiabeI7aXnaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaiodacaaIXaGaaGymaiaaicdacaaI0aaaaiaawIca caGLPaaaaeaadaqadaqaaiabeI7aXnaaCaaaleqabaGaaGOnaaaaki abgUcaRiaaisdacqaH4oqCdaahaaWcbeqaaiaaiwdaaaGccqGHRaWk caaIYaGaeqiUde3aaWbaaSqabeaacaaI0aaaaOGaey4kaSIaaGioai aaisdacqaH4oqCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaI2aGa aGimaiabeI7aXnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaca aI0aGaaGinaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaa aa@A93C@ ID= μ 2 μ 1 = θ 6 +4 θ 5 +2 θ 4 +84 θ 3 +60 θ 2 +144 θ( θ 3 + θ 2 +6 )( θ 3 +2 θ 2 +24 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMeacaWGeb Gaeyypa0ZaaSaaaeaacqaH8oqBdaWgaaWcbaGaaGOmaaqabaaakeaa cqaH8oqBdaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaOGamai4gk diIcaaaaGaeyypa0ZaaSaaaeaacqaH4oqCdaahaaWcbeqaaiaaiAda aaGccqGHRaWkcaaI0aGaeqiUde3aaWbaaSqabeaacaaI1aaaaOGaey 4kaSIaaGOmaiabeI7aXnaaCaaaleqabaGaaGinaaaakiabgUcaRiaa iIdacaaI0aGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG OnaiaaicdacqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI XaGaaGinaiaaisdaaeaacqaH4oqCdaqadaqaaiabeI7aXnaaCaaale qabaGaaG4maaaakiabgUcaRiabeI7aXnaaCaaaleqabaGaaGOmaaaa kiabgUcaRiaaiAdaaiaawIcacaGLPaaadaqadaqaaiabeI7aXnaaCa aaleqabaGaaG4maaaakiabgUcaRiaaikdacqaH4oqCdaahaaWcbeqa aiaaikdaaaGccqGHRaWkcaaIYaGaaGinaaGaayjkaiaawMcaaaaaaa a@72B4@

Behaviour of coefficient of variation, coefficient of skewness, coefficient of kurtosis and index of dispersion for changing values of parameter are shown in the Figure 5.

Figure 5 Graph of CV, CS, CK and ID of Uma distribution for different values of the parameter.

Deviations from mean and median

Mean deviation about the mean and the mean deviation about median of a random variable X MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIfaaaa@3908@ having pdf f( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaqada qaaiaadIhaaiaawIcacaGLPaaaaaa@3B9C@ and cdf F( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadIhaaiaawIcacaGLPaaaaaa@3B7C@ are defined by δ 1 (x)= 0 |xμ|f(x)dx =2μF(μ)2 0 μ xf(x)dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIXaaabeaakiaacIcacaWG4bGaaiykaiabg2da9maapeha baGaaiiFaiaadIhacqGHsislcqaH8oqBcaGG8bGaamOzaiaacIcaca WG4bGaaiykaiaadsgacaWG4baaleaacaaIWaaabaGaeyOhIukaniab gUIiYdGccqGH9aqpcaaIYaGaeqiVd0MaamOraiaacIcacqaH8oqBca GGPaGaeyOeI0IaaGOmamaapehabaGaamiEaiaaykW7caWGMbGaaiik aiaadIhacaGGPaGaamizaiaadIhaaSqaaiaaicdaaeaacqaH8oqBa0 Gaey4kIipaaaa@6305@

 and δ 2 (x)= 0 |xM|f(x)dx =μ+2 M xf(x)dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIYaaabeaakiaacIcacaWG4bGaaiykaiabg2da9maapeha baGaaiiFaiaadIhacqGHsislcaWGnbGaaiiFaiaadAgacaGGOaGaam iEaiaacMcacaWGKbGaamiEaaWcbaGaaGimaaqaaiabg6HiLcqdcqGH RiI8aOGaeyypa0JaeyOeI0IaeqiVd0Maey4kaSIaaGOmamaapehaba GaamiEaiaaykW7caWGMbGaaiikaiaadIhacaGGPaGaamizaiaadIha aSqaaiaad2eaaeaacqGHEisPa0Gaey4kIipaaaa@5E41@ respectively, where μ=E(X) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeY7aTjabg2 da9iaadweacaGGOaGaamiwaiaacMcaaaa@3DE7@ and M=Median(X) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eacqGH9a qpcaWGnbGaamyzaiaadsgacaWGPbGaamyyaiaad6gacaGGOaGaamiw aiaacMcaaaa@41A5@ .

Using pdf and expressions for the mean of Uma distribution, we get

0 μ xf( x;θ ) dx=μ [ θ 4 ( μ 4 + μ 2 +μ )+ θ 3 ( 4 μ 3 +2μ+1 )+2 θ 2 ( 6 μ 2 +1 )+24( θμ+1 ) ] e θμ θ( θ 3 + θ 2 +6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam iEaiaaykW7caWGMbWaaeWaaeaacaWG4bGaai4oaiabeI7aXbGaayjk aiaawMcaaaWcbaGaaGimaaqaaiabeY7aTbqdcqGHRiI8aOGaaGPaVl aadsgacaWG4bGaeyypa0JaeqiVd0MaeyOeI0YaaSaaaeaadaWadaqa aiabeI7aXnaaCaaaleqabaGaaGinaaaakmaabmaabaGaeqiVd02aaW baaSqabeaacaaI0aaaaOGaey4kaSIaeqiVd02aaWbaaSqabeaacaaI YaaaaOGaey4kaSIaeqiVd0gacaGLOaGaayzkaaGaey4kaSIaeqiUde 3aaWbaaSqabeaacaaIZaaaaOWaaeWaaeaacaaI0aGaeqiVd02aaWba aSqabeaacaaIZaaaaOGaey4kaSIaaGOmaiabeY7aTjabgUcaRiaaig daaiaawIcacaGLPaaacqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaa caaIYaaaaOWaaeWaaeaacaaI2aGaeqiVd02aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGymaaGaayjkaiaawMcaaiabgUcaRiaaikdacaaI 0aWaaeWaaeaacqaH4oqCcqaH8oqBcqGHRaWkcaaIXaaacaGLOaGaay zkaaaacaGLBbGaayzxaaGaamyzamaaCaaaleqabaGaeyOeI0IaeqiU deNaeqiVd0gaaaGcbaGaeqiUde3aaeWaaeaacqaH4oqCdaahaaWcbe qaaiaaiodaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaI2aaacaGLOaGaayzkaaaaaaaa@8C3F@ 0 M xf( x;θ ) dx=μ [ θ 4 ( M 4 + M 2 +M )+ θ 3 ( 4 M 3 +2M+1 )+2 θ 2 ( 6 M 2 +1 )+24( θM+1 ) ] e θM θ( θ 3 + θ 2 +6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaGaam iEaiaaykW7caWGMbWaaeWaaeaacaWG4bGaai4oaiabeI7aXbGaayjk aiaawMcaaaWcbaGaaGimaaqaaiaad2eaa0Gaey4kIipakiaaykW7ca WGKbGaamiEaiabg2da9iabeY7aTjabgkHiTmaalaaabaWaamWaaeaa cqaH4oqCdaahaaWcbeqaaiaaisdaaaGcdaqadaqaaiaad2eadaahaa WcbeqaaiaaisdaaaGccqGHRaWkcaWGnbWaaWbaaSqabeaacaaIYaaa aOGaey4kaSIaamytaaGaayjkaiaawMcaaiabgUcaRiabeI7aXnaaCa aaleqabaGaaG4maaaakmaabmaabaGaaGinaiaad2eadaahaaWcbeqa aiaaiodaaaGccqGHRaWkcaaIYaGaamytaiabgUcaRiaaigdaaiaawI cacaGLPaaacqGHRaWkcaaIYaGaeqiUde3aaWbaaSqabeaacaaIYaaa aOWaaeWaaeaacaaI2aGaamytamaaCaaaleqabaGaaGOmaaaakiabgU caRiaaigdaaiaawIcacaGLPaaacqGHRaWkcaaIYaGaaGinamaabmaa baGaeqiUdeNaamytaiabgUcaRiaaigdaaiaawIcacaGLPaaaaiaawU facaGLDbaacaWGLbWaaWbaaSqabeaacqGHsislcqaH4oqCcaWGnbaa aaGcbaGaeqiUde3aaeWaaeaacqaH4oqCdaahaaWcbeqaaiaaiodaaa GccqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaI 2aaacaGLOaGaayzkaaaaaaaa@8558@

Using above expressions some algebraic simplifications, the mean δ 1 (x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIXaaabeaakiaacIcacaWG4bGaaiykaaaa@3D17@ deviation about the mean, and the mean deviation about the median δ 2 (x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIYaaabeaakiaacIcacaWG4bGaaiykaaaa@3D18@ of Uma distribution are obtained as δ 1 (x)= 2[ θ 3 μ 3 +6 θ 2 μ 2 + θ 3 μ+18θμ+( θ 3 +2 θ 2 +24 ) ]e θ( θ 3 + θ 2 +6 ) θμ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIXaaabeaakiaacIcacaWG4bGaaiykaiabg2da9maalaaa baGaaGOmamaadmaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaeq iVd02aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGOnaiabeI7aXnaa CaaaleqabaGaaGOmaaaakiabeY7aTnaaCaaaleqabaGaaGOmaaaaki abgUcaRiabeI7aXnaaCaaaleqabaGaaG4maaaakiabeY7aTjabgUca RiaaigdacaaI4aGaeqiUdeNaeqiVd0Maey4kaSYaaeWaaeaacqaH4o qCdaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaaIYaGaeqiUde3aaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaaisdaaiaawIcacaGLPa aaaiaawUfacaGLDbaacaWGLbaabaGaeqiUde3aaeWaaeaacqaH4oqC daahaaWcbeqaaiaaiodaaaGccqGHRaWkcqaH4oqCdaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaI2aaacaGLOaGaayzkaaaaamaaCaaaleqa baGaeyOeI0IaeqiUdeNaeqiVd0gaaaaa@746E@ δ 2 ( x )= 2[ θ 4 ( M 4 + M 2 +M )+ θ 3 ( 4 M 3 +2M+1 )+2 θ 2 ( 6 M 2 +1 )+24( θM+1 ) ]e θ( θ 3 + θ 2 +6 ) θM μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes7aKnaaBa aaleaacaaIYaaabeaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiab g2da9maalaaabaGaaGOmamaadmaabaGaeqiUde3aaWbaaSqabeaaca aI0aaaaOWaaeWaaeaacaWGnbWaaWbaaSqabeaacaaI0aaaaOGaey4k aSIaamytamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaad2eaaiaawI cacaGLPaaacqGHRaWkcqaH4oqCdaahaaWcbeqaaiaaiodaaaGcdaqa daqaaiaaisdacaWGnbWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG Omaiaad2eacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaey4kaSIaaGOm aiabeI7aXnaaCaaaleqabaGaaGOmaaaakmaabmaabaGaaGOnaiaad2 eadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaaacaGLOaGaayzk aaGaey4kaSIaaGOmaiaaisdadaqadaqaaiabeI7aXjaad2eacqGHRa WkcaaIXaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamyzaaqaaiab eI7aXnaabmaabaGaeqiUde3aaWbaaSqabeaacaaIZaaaaOGaey4kaS IaeqiUde3aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOnaaGaayjk aiaawMcaaaaadaahaaWcbeqaaiabgkHiTiabeI7aXjaad2eaaaGccq GHsislcqaH8oqBaaa@7B53@

Parameter estimation of Uma distribution

Suppose ( x 1 , x 2 , x 3 ,..., x n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaaIXaaabeaakiaacYcacaaMc8UaamiEamaaBaaa leaacaaIYaaabeaakiaacYcacaaMc8UaamiEamaaBaaaleaacaaIZa aabeaakiaacYcacaaMc8UaaGPaVlaac6cacaGGUaGaaiOlaiaaykW7 caaMc8UaaiilaiaadIhadaWgaaWcbaGaamOBaaqabaaakiaawIcaca GLPaaaaaa@4FBF@ be a random sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6gaaaa@391E@ from Uma distribution. The log likelihood function, L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYeaaaa@38FC@ of Uma distribution is given by

logL= i=1 n logf( x i ;θ ) =n{ 4logθlog( θ 3 + θ 2 +6 ) }+ i=1 n log( 1+ x i + x i 3 )nθ x ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGVb Gaai4zaiaadYeacqGH9aqpdaaeWbqaaiGacYgacaGGVbGaai4zaiaa dAgadaqadaqaaiaadIhadaWgaaWcbaGaamyAaaqabaGccaGG7aGaeq iUdehacaGLOaGaayzkaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaa d6gaa0GaeyyeIuoakiabg2da9iaad6gadaGadaqaaiaaisdaciGGSb Gaai4BaiaacEgacqaH4oqCcqGHsislciGGSbGaai4BaiaacEgadaqa daqaaiabeI7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeI7aXn aaCaaaleqabaGaaGOmaaaakiabgUcaRiaaiAdaaiaawIcacaGLPaaa aiaawUhacaGL9baacqGHRaWkdaaeWbqaaiGacYgacaGGVbGaai4zam aabmaabaGaaGymaiabgUcaRiaadIhadaWgaaWcbaGaamyAaaqabaGc cqGHRaWkcaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaaca aIZaaaaaGccaGLOaGaayzkaaGaeyOeI0IaamOBaiaaykW7cqaH4oqC caaMc8UabmiEayaaraaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6 gaa0GaeyyeIuoaaaa@7DBA@

The maximum likelihood estimate (MLE) ( θ ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGafq iUdeNbaKaaaiaawIcacaGLPaaaaaa@3B7A@ of the parameters ( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iUdeNaaGPaVdGaayjkaiaawMcaaaaa@3CF5@ of Uma distribution is the solution of the following log likelihood equation

dlogL dθ = 4n θ ( 3 θ 2 +2θ )n θ 3 + θ 2 +6 n x ¯ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiGacYgacaGGVbGaai4zaiaadYeaaeaacaWGKbGaeqiUdehaaiab g2da9maalaaabaGaaGinaiaad6gaaeaacqaH4oqCaaGaeyOeI0YaaS aaaeaadaqadaqaaiaaiodacqaH4oqCdaahaaWcbeqaaiaaikdaaaGc cqGHRaWkcaaIYaGaeqiUdehacaGLOaGaayzkaaGaamOBaaqaaiabeI 7aXnaaCaaaleqabaGaaG4maaaakiabgUcaRiabeI7aXnaaCaaaleqa baGaaGOmaaaakiabgUcaRiaaiAdaaaGaeyOeI0IaamOBaiaaykW7ca aMc8UabmiEayaaraGaeyypa0JaaGimaaaa@5DB6@

This gives

x ¯ θ 4 +( x ¯ 1 ) θ 3 2 θ 2 +6 x ¯ θ24=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaykW7ceWG4b GbaebacqaH4oqCdaahaaWcbeqaaiaaisdaaaGccqGHRaWkdaqadaqa aiqadIhagaqeaiabgkHiTiaaigdaaiaawIcacaGLPaaacqaH4oqCda ahaaWcbeqaaiaaiodaaaGccqGHsislcaaIYaGaeqiUde3aaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGOnaiqadIhagaqeaiabeI7aXjabgk HiTiaaikdacaaI0aGaeyypa0JaaGimaaaa@522E@ .

This is a fourth degree polynomial equation in θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXbaa@39E1@ . It should be noted that the method of moment estimate is also the same as that of the MLE. The above equation can easily be solved using Newton-Raphson method, taking the initial value of the parameter θ=0.5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI7aXjabg2 da9iaaicdacaGGUaGaaGynaaaa@3D12@ .

Applications and goodness of fit

The applications and the goodness of fit of Uma distribution has been discussed with three datasets. Keeping in mind the flexibility and tractability of the distribution with the dataset following three datasets have been considered.

Data set 1: This data set represents the lifetime data relating to relief times (in minutes) of 20 patients receiving an analgesic and reported by Gross and Clark.9

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2.0

Data Set 2: This data set is the strength data of glass of the aircraft window reported by Fuller et al.10:

18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 25.80, 26.69, 26.77, 26.78, 27.05, 27.67, 29.90, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 45.381

Data Set 3: The following data represent the tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge lengths of 20 mm(Bader and Priest, 1982)11:  

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585 .

The values ML estimates of parameter, , AIC (Akaike Information Criterion), AICC (Akaike Information Criterion corrected), BIC (Bayesian Information criterion), K-S (Kolmogorov-Smirnov) for the considered distributions for the given datasets have been computed and presented in Tables 1–3 respectively.

It is clear from the goodness of fit in the Tables 1 to 3 that Uma distribution gives much better fit over exponential, Lindley, Shanker, Akash and Sujatha distributions.

Sl. No

Distributions                                                θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja aaaa@38D5@

  2logL MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C59@


 

AIC

AICC

BIC

K-S

1

Uma

1.6024

     38.61

40.61

40.83

41.60

0.238

2

Sujatha

1.1367

     57.50

59.50

59.72

60.49

0.309

3

Akash

1.1569

     59.52

61.52

61.74

62.51

0.320

4

Shanker

0.8038

     59.78

61.78

61.22

62.51

0.315

5

Lindley

0.8161

     60.50

62.50

62.72

63.49

0.341

6

Exponential

0.5263

     65.67

67.67

67.90

68.67

0.389

Table 1 ML estimates, , AIC, AICC, BIC, K-S of the distribution for the dataset-1

Sl. No

Distributions

   θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja aaaa@38D5@

2logL MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C59@

 

AIC

AICC

BIC

K-S

1

Uma

0.1299

232.54

234.54

234.67

235.97

0.233

2

Sujatha

0.0956

241.50

243.50

243.64

244.94

0.27

3

Akash

0.0971

240.68

242.68

242.82

244.11

0.266

4

Shanker

0.0647

252.35

254.35

254.49

255.78

0.326

5

Lindley

0.0629

253.99

255.99

256.13

257.42

0.333

6

Exponential

0.0325

274.53

276.53

276.67

277.96

0.426

Table 2 ML estimates, , AIC, AICC, BIC, K-S of the distributions for the dataset-2

Sl. No

Distributions

   θ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeI7aXzaaja aaaa@38D5@

2logL MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaaik daciGGSbGaai4BaiaacEgacaWGmbaaaa@3C59@

AIC

AICC

BIC

K-S

1

Uma

1.3828

156.41

158.41

158.47

160.64

0.312

2

Sujatha

0.9361

221.61

223.61

223.67

225.84

0.348

3

Akash

0.9647

224.28

226.28

226.34

228.51

0.348

4

Shanker

0.6580

233.01

235.01

235.06

237.24

0.355

5

Lindley

0.6590

238.38

240.38

240.44

242.61

0.390

6

Exponential

0.4079

261.74

263.74

263.80

265.97

0.434

Table 3 ML estimates, , AIC, AICC, BIC, K-S of the distributions for the dataset-3

Conclusion and future works

A new lifetime distribution named Uma distribution has been suggested. Statistical properties, estimation of parameter and applications of the distribution has been presented. As the distribution is new one, it is expected and hoped that it will be of great use to statisticians working in the field of modeling lifetime data from different fields of knowledge.

Being a new lifetime distribution with flexibility, tractability and practicability, a lot of future works can be done on Uma distribution.

Acknowledgments

Author is really grateful to the Editor-In-Chief of the Journal and the anonymous reviewer for quick and valuable comments on the paper.

Conflicts of interest

There aren't any conflict of interests.

Funding

None.

References

  1. Lindley DV. Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society, Series B. 1958;20:102–107.
  2. Shanker R. Shanker distribution and its applications. International Journal of Statistics and Applications. 2015a;5(6):338–348.
  3. Shanker R. Akash Distribution and its applications. International Journal of Probability and Statistics. 2015b;4(3):65–75.
  4. Shanker R. Sujatha Distribution and its applications. Statistics in Transition-New series. 2016a;17(3):391–410.
  5. Shanker R, Hagos F, Sujatha S. On Modeling of Lifetimes data using Exponential and Lindley distributions. Biom Biostat Int J. 2015;2(5):140–147.
  6. Shanker R, Hagos F, Sujatha S. On modeling of lifetime data using one parameter Akash, Lindley and exponential distributions. Biom Biostat Int J. 2016;3(2):54–62.
  7. Shanker R, Hagos F. On modeling of lifetime data using Akash, Shanker, Lindley and exponential distributions. Biom & Biostat Int J. 2016;3(6):214–224.
  8. Shaked M, Shanthikumar JG. Stochastic Orders and Their Applications. Academic Press, New York: 1994.
  9. Gross AJ, Clark VA. Survival Distributions: Reliability Applications in the Biometrical Sciences. New York: John Wiley. 1975.
  10. Fuller EJ, Frieman S, Quinn J, et al. Fracture mechanics approach to the design of glass aircraft windows: A case study, SPIE Proc 1994;2286:419–430.
  11. Bader MG, Priest AM. Statistical aspects of fiber and bundle strength in hybrid composites. In: Hayashi T, Kawata K, Umekawa S, editors. Progress in Science in Engineering Composites, ICCM-IV. Tokyo; 1982:1129–1136.
Creative Commons Attribution License

©2022 Shanker. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.