Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 7 Issue 1

Modeling the transport of fecal coliform in ntanwaogba creek, influenced by variations in micronutrient deposition, velocity and dispersion coefficient

SN Eluozo ,1 LW Arimieari 2

1Department of Civil Engineering, College of Engineering, Gregory University, Nigeria
2Rivers State University Nkpolu-Oroworukwo, Department of Civil Engineering, Faculty of Engineering, Nigeria

Correspondence: Eluozo Solomon, Department of Civil Engineering, College of Engineering, Gregory University, Uturu, Nigeria

Received: May 29, 2023 | Published: June 7, 2023

Citation: Eluozo SN, Arimieari LW. Modeling the transport of fecal coliform in ntanwaogba creek, influenced by variations in micronutrient deposition, velocity and dispersion coefficient. MOJ App Bio Biomech. 2023;7(1):64-70. DOI: 10.15406/mojabb.2023.07.00176

Download PDF

Abstract

The study of Micronutrients in Ntanwaogba Creek were thoroughly carried out to monitor its rates of deposition at different numerous discharge location sites in the study environment, this was imperative because the rates of biological waste discharge at regular interval, based on this factor, it was necessary to conduct a comprehensive investigation of their rate of concentration at different station point of discharge. This implies that the rate of dispersions from the contaminant influenced constant discharge of waste in the creek, and based on these factors, it was determined that such comprehensive research was required. Micronutrients act as a substrate for microbial growth, but the speed at which they are injected into the rill affects how quickly they move through the system. In order to determine the effects of these two parameters on the migration rate of faecal coliform at different point sources of discharge, the study observed different growth rate at different station point in the study location. This observed condition indicates that the pollutants had a range of development speeds, including both slow and fast, which was enabled by these considerations. The system discovered that lower velocities have an effect on velocity rates with higher concentrations, and that accumulation with micronutrients increased their concentration. However, the concentration rates varied depending on the dominant characteristics of the transport under pressure at various points of discharge. In the simulation, these two parameters were used to determine the various pressure rates at different station points. Unquestionably, the study has depicted the effects of these two parameters' pressures on the movement of faecal coliform in a range of figures that correspond to the several point sources of discharge looked at. The speeds recorded at various station locations represented the pressure rates at various rates of concentration in the research environment. It has established the scope of the influence of rill flow velocity and the variance in micronutrient deposition at various point sources. On the basis of model simulation prediction results, also, the dispersions at various point sources were evaluated. Both parameters showed correlations for the best fits when the predicted and experimental values were compared for model validation.

Keywords: modeling, transport, fecal coliform, micronutrients and dispersion coefficient

Introduction

Many studies have shown that water-borne infections are extremely dangerous to human health. These facts make it clear that, if pollution rates are not controlled, there will always be significant hazards to the overall health of the ecosystem. Total Maximum Daily Load (TMDL) implementation costs were assessed by experts, and they range from $0.9 to $4.3 billion annually.1,2 The main factor causing stream impairments is pathogen influxes from land-based agricultural activities.2,3 Controlling pathogen contamination caused by cattle, meantime, is a difficult task. Riparian buffers can be fenced off to prevent pathogen contamination; however it is not apparent how broad the buffers need to be to be effective in preventing pathogen contamination of stream water.4 The research that has thoroughly evaluated studies in this field has elaborated on the pathogen contamination of stream water 4–8 (Jamieson. More research has concentrated on understanding pathogen transmission in stream water using mathematical models.5,6,9,10 Also, the principal source of drinking water is typically a surface reservoir, indicating that these bodies of surface water are frequently subjected to pathogen pollution.9,11–13 There has been a considerable improvement in knowledge of water quality and water treatment for pathogen pollution in industrialized nations because specialists tracked the occurrences of 26 water-borne illnesses through public water sources, which were done by experts.12–21 Also, the inflow of contaminated stream water into lakes and reservoirs during the rainy seasons might result in a significant rise in pathogen rates.4,22–24 For purposes of measuring the quantity of pathogen uptake from torrents running into lakes and reservoirs during wet seasons it also involved monitoring pathogen movement including its dispersion.2,3,25

Theoretical foundation and controlling equation

dc dx +β(x) K=A(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadogaaeaacaWGKbGaamiEaaaacqGHRaWkcqaHYoGycaGGOaGa amiEaiaacMcaqaaaaaaaaaWdbiaacckapaGaam4saiabg2da9iaadg eacaGGOaGaamiEaiaacMcaaaa@4623@   1

Nomenclatures

C = Concentration

B = Micronutrients

K = Dispersions. Velocity of flow

A= Fluid Density

X = Distance

Multiplying the equation through by C[x] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGBb GaamiEaiaac2faaaa@3AC3@ , we have:

C(x)   dC dx +C(x) β(x) K=C(x) A(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGOa GaamiEaiaacMcaqaaaaaaaaaWdbiaacckacaGGGcWdamaalaaabaGa amizaiaadoeaaeaacaWGKbGaamiEaaaacqGHRaWkcaWGdbGaaiikai aadIhacaGGPaWdbiaacckapaGaeqOSdiMaaiikaiaadIhacaGGPaWd biaacckapaGaam4saiabg2da9iaadoeacaGGOaGaamiEaiaacMcape GaaiiOa8aacaWGbbGaaiikaiaadIhacaGGPaaaaa@544A@   2

Let P(x)=C(x) β(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfacaGGOa GaamiEaiaacMcacqGH9aqpcaWGdbGaaiikaiaadIhacaGGPaaeaaaa aaaaa8qacaGGGcWdaiabek7aIjaacIcacaWG4bGaaiykaaaa@43D7@   3

Then Equation (2), we have:

C(x)   dC dx +C(x) β(x) K=C(x) A(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGOa GaamiEaiaacMcaqaaaaaaaaaWdbiaacckacaGGGcWdamaalaaabaGa amizaiaadoeaaeaacaWGKbGaamiEaaaacqGHRaWkcaWGdbGaaiikai aadIhacaGGPaWdbiaacckapaGaeqOSdiMaaiikaiaadIhacaGGPaWd biaacckapaGaam4saiabg2da9iaadoeacaGGOaGaamiEaiaacMcape GaaiiOa8aacaWGbbGaaiikaiaadIhacaGGPaaaaa@544A@   4

C(x)   dC dx   + P(x) K=C(x) A(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGOa GaamiEaiaacMcaqaaaaaaaaaWdbiaacckacaGGGcWdamaalaaabaGa amizaiaadoeaaeaacaWGKbGaamiEaaaapeGaaiiOaiaacckapaGaey 4kaSYdbiaacckapaGaamiuaiaacIcacaWG4bGaaiyka8qacaGGGcWd aiaadUeacqGH9aqpcaWGdbGaaiikaiaadIhacaGGPaWdbiaacckapa GaamyqaiaacIcacaWG4bGaaiykaaaa@52C7@   5

C(x)  P 1 +  P(x) K=  C(x) A( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGOa GaamiEaiaacMcaqaaaaaaaaaWdbiaacckapaGaamiuamaaCaaaleqa jeaqbaGaaGymaaaakiabgUcaR8qacaGGGcGaaiiOa8aacaWGqbGaai ikaiaadIhacaGGPaWdbiaacckapaGaam4saiabg2da98qacaGGGcGa aiiOa8aacaWGdbGaaiikaiaadIhacaGGPaWdbiaacckapaGaamyqam aabmaabaGaamiEaaGaayjkaiaawMcaaaaa@5161@   6

C(x)  P 1 =C(x) AP(x) K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeacaGGOa GaamiEaiaacMcaqaaaaaaaaaWdbiaacckapaGaamiuamaaCaaaleqa jeaqbaGaaGymaaaakiabg2da9iaadoeacaGGOaGaamiEaiaacMcape GaaiiOa8aacaWGbbGaeyOeI0IaamiuaiaacIcacaWG4bGaaiyka8qa caGGGcWdaiaadUeaaaa@4A18@   7

Differentiate 2nd term on the left hand side of (6) with respect to x, we have

K  dC dx =  C( x )A( x )  C( x )  P 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeaqaaaaa aaaaWdbiaacckapaWaaSaaaeaacaWGKbGaam4qaaqaaiaadsgacaWG 4baaaiabg2da98qacaGGGcGaaiiOa8aacaWGdbWaaeWaaeaacaWG4b aacaGLOaGaayzkaaGaamyqamaabmaabaGaamiEaaGaayjkaiaawMca aiabgkHiT8qacaGGGcGaaiiOa8aacaWGdbWaaeWaaeaacaWG4baaca GLOaGaayzkaaWdbiaacckapaGaamiuamaaCaaaleqajeaqbaGaaGym aaaaaaa@50FB@   8

dC dx =   1 K [  C( x )A( x )C( x ) P 1   ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadoeaaeaacaWGKbGaamiEaaaacqGH9aqpqaaaaaaaaaWdbiaa cckacaGGGcWdamaalaaabaGaaGymaaqaaiaadUeaaaWaamWaaeaape GaaiiOa8aacaWGdbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaamyq amaabmaabaGaamiEaaGaayjkaiaawMcaaiabgkHiTiaadoeadaqada qaaiaadIhaaiaawIcacaGLPaaacaWGqbWaaWbaaSqabKqaafaacaaI XaaaaOWdbiaacckaa8aacaGLBbGaayzxaaaaaa@515B@   9

dC dx =   C( x ) K  [ A( x ) P 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadoeaaeaacaWGKbGaamiEaaaacqGH9aqpqaaaaaaaaaWdbiaa cckacaGGGcWdamaalaaabaGaam4qamaabmaabaGaamiEaaGaayjkai aawMcaaaqaaiaadUeaaaWdbiaacckapaWaamWaaeaacaWGbbWaaeWa aeaacaWG4baacaGLOaGaayzkaaGaeyOeI0IaamiuamaaCaaaleqaje aqbaGaaGymaaaaaOGaay5waiaaw2faaaaa@4C0F@   10

Applying separation of variables, by dividing through by C(x) and cross multiply by dx, gives:

dC C = 1 K  [ A( x ) P 1 ] dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadoeaaeaacaWGdbaaaiabg2da9maalaaabaGaaGymaaqaaiaa dUeaaaaeaaaaaaaaa8qacaGGGcWdamaadmaabaGaamyqamaabmaaba GaamiEaaGaayjkaiaawMcaaiabgkHiTiaadcfadaahaaWcbeqcbaua aiaaigdaaaaakiaawUfacaGLDbaapeGaaiiOa8aacaWGKbGaamiEaa aa@4920@   11

1 C( x )  dC= 1 K  [ A( x ) P 1 ] dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaadoeadaqadaqaaiaadIhaaiaawIcacaGLPaaaaaaeaaaa aaaaa8qacaGGGcWdaiaadsgacaWGdbGaeyypa0ZaaSaaaeaacaaIXa aabaGaam4saaaapeGaaiiOa8aadaWadaqaaiaadgeadaqadaqaaiaa dIhaaiaawIcacaGLPaaacqGHsislcaWGqbWaaWbaaSqabKqaafaaca aIXaaaaaGccaGLBbGaayzxaaWdbiaacckapaGaamizaiaadIhaaaa@4DA4@   12

1 C( x )  dC=  ( A( x ) K P 1 K ) dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaaG ymaaqaaiaadoeadaqadaqaaiaadIhaaiaawIcacaGLPaaaaaaeaaaa aaaaa8qacaGGGcWdaiaadsgacaWGdbGaeyypa0ZdbiaacckacaGGGc WdamaabmaabaWaaSaaaeaacaWGbbWaaeWaaeaacaWG4baacaGLOaGa ayzkaaaabaGaam4saaaacqGHsisldaWcaaqaaiaadcfadaahaaWcbe qcbauaaiaaigdaaaaakeaacaWGlbaaaaGaayjkaiaawMcaa8qacaGG GcWdaiaadsgacaWG4baaaa@4E84@   13

  1 C( x )  dC=  (   A( x ) K    P 1 K   )  dx+η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapeaabaaeaa aaaaaaa8qacaGGGcWdamaalaaabaGaaGymaaqaaiaadoeadaqadaqa aiaadIhaaiaawIcacaGLPaaaaaaaleqabeqdcqGHRiI8aOWdbiaacc kapaGaamizaiaadoeacqGH9aqpdaWdbaqaa8qacaGGGcWdamaabmaa baWdbiaacckapaWaaSaaaeaacaWGbbWaaeWaaeaacaWG4baacaGLOa GaayzkaaaabaGaam4saaaacqGHsislpeGaaiiOaiaacckapaWaaSaa aeaacaWGqbWaaWbaaSqabKqaafaacaaIXaaaaaGcbaGaam4saaaape GaaiiOaaWdaiaawIcacaGLPaaaaSqabeqaniabgUIiYdGcpeGaaiiO a8aacaWGKbGaamiEaiabgUcaRiabeE7aObaa@5A28@   14

lnC( x )= A( x )  dx   P 1 K  dx+η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb Gaam4qamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maapeaa baGaamyqamaabmaabaGaamiEaaGaayjkaiaawMcaaabaaaaaaaaape GaaiiOaaWcpaqabeqaniabgUIiYdGccaWGKbGaamiEaiabgkHiTmaa peaabaWdbiaacckapaWaaSaaaeaacaWGqbWaaWbaaSqabKqaafaaca aIXaaaaaGcbaGaam4saaaaaSqabeqaniabgUIiYdGcpeGaaiiOa8aa caWGKbGaamiEaiabgUcaRiabeE7aObaa@52DD@   15

lnC( x )=   1 K  [ Ax P 1 ] x+η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb Gaam4qamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9abaaaaa aaaapeGaaiiOaiaacckapaWaaSaaaeaacaaIXaaabaGaam4saaaape GaaiiOa8aadaWadaqaaiaadgeacaWG4bGaeyOeI0IaamiuamaaCaaa leqajeaqbaGaaGymaaaaaOGaay5waiaaw2faa8qacaGGGcWdaiaadI hacqGHRaWkcqaH3oaAaaa@4E4C@   16

lnC( x )=( A(x) K    P 1 K ) x+η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacYgacaGGUb Gaam4qamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maabmaa baWaaSaaaeaacaWGbbGaaiikaiaadIhacaGGPaaabaGaam4saaaacq GHsislqaaaaaaaaaWdbiaacckacaGGGcWdamaalaaabaGaamiuamaa CaaaleqajeaqbaGaaGymaaaaaOqaaiaadUeaaaaacaGLOaGaayzkaa WdbiaacckapaGaamiEaiabgUcaRiabeE7aObaa@4E1E@   17

Taking exponent of the both side of the equation

C( x )=   (   A( x ) K    P 1 K  + η  ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcqWItecBqaaaaaaaaaWd biaacckapaWaaWbaaSqabeaadaqadaqaa8qacaGGGcWdamaalaaaba GaamyqamaabmaabaGaamiEaaGaayjkaiaawMcaaaqaaiaadUeaaaWd biaacckapaGaeyOeI0YdbiaacckapaWaaSaaaeaacaWGqbWaaWbaaW qabKGaGgaacaaIXaaaaaWcbaGaam4saaaapeGaaiiOa8aacqGHRaWk peGaaiiOa8aacqaH3oaApeGaaiiOaaWdaiaawIcacaGLPaaaaaaaaa@5259@   18

C( x )=D   1 K   (  Ax  P 1 x  ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Pj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaqada qaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGebGaeS4eHWgeaaaa aaaaa8qacaGGGcWdamaaCaaaleqabaWaaSaaaKqaafaacaaIXaaaba Gaam4saaaal8qacaGGGcaaaOWdamaaCaaaleqabaWaaeWaaeaapeGa aiiOa8aacaWGbbGaamiEaiabgkHiT8qacaGGGcWdaiaadcfadaahaa adbeqccaAaaiaaigdaaaWccaWG4bWdbiaacckaa8aacaGLOaGaayzk aaaaaaaa@4DE9@   19

Materials and method

The water samples were taken sequentially according to the requirements set forth at various places. These samples were obtained at various locations, which resulted in fluctuations at various distances, resulting in variable faecal coliform concentrations, and the experimental results were compared. Using the conventional procedure for the experiment at several samples at various stations, a typical laboratory experiment was carried out to track faecal coliform.

Results and discussion

(Table 1-6)(Figure 1-6) shows how the major influencing factors in the research environment affect the migration rate of faecal coliform. The variance of the contaminant's exponential growth rate in terms of quick and slow growth in relation to increase in distance was depicted in the figures. However, during the transport system's exponential phase. The observed fluctuations are primarily related to the pace of micronutrient depositions, including dispersion from the pollutant at several station locations, where the starting concentrations are recorded. The growth rate's behaviour did exhibit some degree of variability. Such a condition shows that the concentration change rate at different study locations was determined by the micronutrient's function as a substrate for any bacterium. The study looked at these pressures from transport and the impact that condition had on the flow dynamics that pushed the microorganisms at different station points of discharge. The many types of micronutrient depositions that have been seen in the rill and the fluctuations in those depositions as a whole have affected the growth rate of faecal coliform in the study region, as shown in graphical representation in all of the figures. The behaviour of faecal coliforms was monitored through the use of modeling and simulation by examining the variable effect of contaminant movement at distinct station points of discharge. The experimental and prediction values of each created figure expressed best fit correlations.

Distance [x]

Predictive values conc.[Mg/L] variation of velocity and dispersion coefficient [0.0042/27.5]

Experimental values conc.[Mg/l] variation of velocity and dispersion [0.0042/27.5]

2

0.126042926

0.03112

4

0.137548218

0.10196

6

0.150103721

0.16624

8

0.1638053

0.22468

10

0.17875757

0.278

12

0.195074694

0.32692

14

0.212881257

0.37216

16

0.232313216

0.41444

18

0.253518939

0.45448

20

0.276660336

0.493

22

0.301914097

0.53072

24

0.32947304

0.56836

26

0.359547584

0.60664

28

0.392367355

0.64628

30

0.428182938

0.688

32

0.467267795

0.73252

34

0.509920346

0.78056

38

0.607260908

0.89008

40

0.662692134

0.953

42

0.723183165

1.02232

44

0.789195861

1.09876

46

0.861234246

1.18304

48

0.939848348

1.27588

50

1.025638403

1.378

54

1.221426272

1.61296

56

1.332918969

1.74724

58

1.454588803

1.89368

60

1.587364749

2.053

62

1.732260583

2.22592

64

1.890382616

2.41316

66

2.062938146

2.61544

68

2.251244672

2.83348

70

2.456739959

3.068

72

2.680993007

3.31972

74

2.925716041

3.58936

76

3.192777575

3.87764

78

3.484216684

4.18528

80

3.802258571

4.513

82

4.149331558

4.86152

84

4.528085626

5.23156

86

4.941412646

5.62384

88

5.392468463

6.03908

90

5.884696991

6.478

Table 1 Shows the model's Prediction and Experimental Values for Faecal Coliform Concentrations at Various Distances

Distance [x]

Predictive values conc.[Mg/L] variation of velocity and dispersion coefficient [0.0032/29.9]

Experimental values conc.[Mg/l] variation of velocity and dispersion [0.0032/29.9]

2

0.102408622

0.0387048

4

0.111096671

0.1027384

6

0.12052179

0.1668296

8

0.130746508

0.2310072

10

0.141838662

0.2953

12

0.153871841

0.3597368

14

0.166925881

0.4243464

16

0.181087387

0.4891576

18

0.196450315

0.5541992

20

0.213116588

0.6195

22

0.23119678

0.6850888

24

0.250810842

0.7509944

26

0.272088905

0.8172456

28

0.295172137

0.8838712

30

0.320213683

0.9509

32

0.34737968

1.0183608

34

0.376850362

1.0862824

38

0.443504458

1.2236232

40

0.481130086

1.2931

42

0.521947764

1.3631528

44

0.566228295

1.4338104

46

0.614265457

1.5051016

48

0.666377952

1.5770552

50

0.72291152

1.6497

54

0.850773977

1.7971784

56

0.922951168

1.8720696

58

1.001251662

1.9477672

60

1.086194941

2.0243

62

1.178344562

2.1016968

64

1.278311889

2.1799864

66

1.386760152

2.2591976

68

1.504408852

2.3393592

70

1.632038525

2.4205

72

1.770495928

2.5026488

74

1.920699654

2.5858344

76

2.083646229

2.6700856

78

2.260416716

2.7554312

80

2.452183898

2.8419

82

2.66022005

2.9295208

84

2.885905385

3.0183224

86

3.130737206

3.1083336

88

3.396339848

3.1995832

90

3.684475446

3.2921

Table 2 Model Prediction and Experimental Values on Fecal Coliform Concentration at Various Distances

Distance [x]

Predictive values conc.[Mg/L] variation of velocity and dispersion coefficient [0.0028/29.9]

Experimental values conc.[Mg/l] variation of velocity and dispersion [0.0028/29.9]

2

0.071382281

0.00900792

4

0.077438146

0.04106336

6

0.084007773

0.07321384

8

0.091134748

0.10550688

10

0.098866355

0.13799

12

0.107253889

0.17071072

14

0.116352997

0.20371656

16

0.126224047

0.23705504

18

0.136932529

0.27077368

20

0.148549486

0.30492

22

0.161151993

0.33954152

24

0.174823659

0.37468576

26

0.18965519

0.41040024

28

0.205744985

0.44673248

30

0.223199791

0.48373

32

0.242135413

0.52144032

34

0.262677477

0.55991096

38

0.309137641

0.63932328

40

0.33536398

0.68036

42

0.363815285

0.72234712

44

0.394680316

0.76533216

46

0.428163846

0.80936264

48

0.464488022

0.85448608

50

0.503893835

0.90075

54

0.593018302

0.99688936

56

0.643328251

1.04685984

58

0.697906349

1.09816088

60

0.757114694

1.15084

62

0.821346104

1.20494472

64

0.891026719

1.26052256

66

0.966618835

1.31762104

68

1.048623967

1.37628768

70

1.137586175

1.43657

72

1.234095678

1.49851552

74

1.338792768

1.56217176

76

1.452372053

1.62758624

78

1.575587076

1.69480648

80

1.709255302

1.76388

82

1.854263552

1.83485432

84

2.01157388

1.90777696

86

2.18222996

1.98269544

88

2.367364004

2.05965728

90

2.568204283

2.13871

Table 3 Shows the model's Prediction and Experimental Values for Faecal Coliform Concentrations at Various Distances

Distance [x]

Predictive values conc.[Mg/L] variation of velocity and dispersion coefficient [0.0011/17.5]

Experimental values conc.[Mg/l] variation of velocity and dispersion [0.0011/17.5]

2

0.022082347

-0.03668

4

0.02533143

0.11156

6

0.029058567

0.23564

8

0.033334096

0.33748

10

0.038238704

0.419

12

0.043864952

0.48212

14

0.050319016

0.52876

16

0.057722699

0.56084

18

0.066215721

0.58028

20

0.075958364

0.589

22

0.087134489

0.58892

24

0.099955012

0.58196

26

0.114661881

0.57004

28

0.131532644

0.55508

30

0.150885684

0.539

32

0.173086231

0.52372

34

0.198553254

0.51116

38

0.261279889

0.50188

40

0.299723275

0.509

42

0.343823024

0.52652

44

0.394411385

0.55636

46

0.452443059

0.60044

48

0.519013216

0.66068

50

0.595378165

0.739

54

0.783469107

0.95756

56

0.898744744

1.10164

58

1.030981448

1.27148

60

1.182674783

1.469

62

1.356687501

1.69612

64

1.556303559

1.95476

66

1.785290103

2.24684

68

2.047968555

2.57428

70

2.349296171

2.939

72

2.694959591

3.34292

74

3.091482159

3.78796

76

3.546347028

4.27604

78

4.068138387

4.80908

80

4.666703457

5.389

82

5.35333833

6.01772

84

6.141001145

6.69716

86

7.044556637

7.42924

88

8.081056661

8.21588

90

9.270061997

9.059

Table 4 Shows the model's Prediction and Experimental Values for Faecal Coliform Concentrations at Various Distances

Distance [x]

Predictive values conc.[Mg/L] variation of velocity and dispersion coefficient [0.0021/17.5]

Experimental values conc.[Mg/l] variation of velocity and dispersion [0.0021/15.5]

2

0.038006482

-0.469408

4

0.044377655

-0.421408

6

0.051816852

-0.341408

8

0.060503111

-0.229408

10

0.070645481

-0.085408

12

0.082488055

0.090592

14

0.096315846

0.298592

16

0.112461642

0.538592

18

0.131314021

0.810592

20

0.153326697

1.114592

22

0.179029442

1.450592

24

0.209040837

1.818592

26

0.244083159

2.218592

28

0.284999759

2.650592

30

0.332775368

3.114592

32

0.388559786

3.610592

34

0.45369556

4.138592

38

0.61855438

5.290592

40

0.722245035

5.914592

42

0.843317755

6.570592

44

0.984686361

7.258592

46

1.149753131

7.978592

48

1.342490681

8.730592

50

1.567537569

9.514592

54

2.137131844

11.178592

56

2.495387493

12.058592

58

2.913698918

12.970592

60

3.4021335

13.914592

62

3.972446253

14.890592

64

4.638362732

15.898592

66

5.415909357

16.938592

68

6.32379912

18.010592

70

7.383881944

19.114592

72

8.621670538

20.250592

74

10.06695441

21.418592

76

11.75451678

22.618592

78

13.72497174

23.850592

80

16.02574166

25.114592

82

18.71219851

26.410592

84

21.84899648

27.738592

86

25.51162799

29.098592

88

29.78824053

30.490592

90

34.78175812

31.914592

Table 5 Model Prediction and Experimental Values on Fecal Coliform Concentration at Various Distances

Distance [x]

Predictive values conc.[Mg/L] variation of velocity and dispersion coefficient [0.035/26.5]

Experimental values conc.[Mg/l] variation of velocity and dispersion [0.035/26.5]

2

1.015504788

3.651

4

1.111859812

2.899

6

1.217357372

2.235

8

1.33286495

1.659

10

1.459332333

1.171

12

1.597799431

0.771

14

1.749404823

0.459

16

1.915395121

0.235

18

2.09713522

0.099

20

2.296119523

0.051

22

2.513984227

0.091

24

2.752520777

0.219

26

3.013690598

0.435

28

3.299641222

0.739

30

3.612723947

1.131

32

3.955513173

1.611

34

4.330827566

2.179

38

5.191669134

3.579

40

5.684274788

4.411

42

6.223620772

5.331

44

6.81414199

6.339

46

7.460694146

7.435

48

8.168593671

8.619

50

8.943661443

9.891

54

10.72139917

12.699

56

11.738687

14.235

58

12.85249904

15.859

60

14.07199387

17.571

62

15.4071991

19.371

64

16.86909376

21.259

66

18.46969864

23.235

68

20.2221751

25.299

70

22.14093331

27.451

72

24.24175073

29.691

74

26.54190183

32.019

76

29.06030016

34.435

78

31.81765388

36.939

80

34.83663598

39.531

82

38.14207078

42.211

84

41.76113802

44.979

86

45.72359637

47.835

88

50.0620281

50.779

90

54.81210701

53.811

Table 6 Model Prediction and Experimental Values on Fecal Coliform Concentration at Various Distances

Figure 1 Model Prediction and Experimental Values on Fecal Coliform Concentration at Various Distances.

Figure 2 Model Prediction and Experimental Values on Fecal Coliform Concentration at Various Distances.

Figure 3 Shows the model's Prediction and Experimental Values for Faecal Coliform Concentrations at Various Distances.

Figure 4 Shows the model's Prediction and Experimental Values for Faecal Coliform Concentrations at Various Distances.

Figure 5 Model Prediction and Experimental Values on Fecal Coliform Concentration at Various Distances.

Figure 6 Model Prediction and Experimental Values on Fecal Coliform Concentration at Various Distances.

Conclusion

The system keeps track of the contaminant's behaviour at several station points of discharge that are seen in the research environment. An experimental approach was used to monitor the station points, and it led to concentration variations at various stations spaced uniformly apart. The microorganisms' growth-related behaviour was evaluated, thus, it was found that the concentration of faecal coliform in Ntanwaogba Creek increased gradually and quickly. To identify the variables influencing the faecal coliform's transport behaviour, the reaction of the organism in the rill was evaluated. The pollutant was observed to rise at various station sites in response to micronutrients identified in various stations that support the behaviour, demonstrating the contrast between their effects on the concentration's slow and fast stages of growth.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The authors declare that they have no competing interests.

References

  1. U.S. Environmental Protection Agency. WATERS (Watershed Assessment, Tracking & Environmental ResultS). Washington, D.C. 2010a.
  2. US Environmental Protection Agency (US EPA). Impaired waters and total maximum daily loads. 2012.
  3. Pandey PK. Modeling in- stream Escherichia coli concentrations. Graduate Dissertation Iowa state university. 2012:62–75.
  4. Nagels JW, Davies-Colley RJ, Donnison AM, et al. Faecal contamination over flood events in a pastoral agricultural stream in New Zealand. Water Sci Technol. 2002;45(12):45–52.
  5. Pachepsky YA, Sadeghi AM, Bradford SA, et al. Transport and fate of manure-borne pathogens: Modeling perspective. Agricultural Water Management. 2006;86(1–2):81–92.
  6. Jamieson R, Gordon R, Joy D, et al. Assessing microbial pollution of rural surface waters: A review of current watershed scale modeling approaches. Agricultural Water Management. 2004;70(1):1–17.
  7. Jamieson R, Joy DM, Lee H, et al. Transport and deposition of sediment-associated Escherichia coli in natural streams. Water Res. 2005;39(12):2665–2675.
  8. Jamieson RC, Joy DM, Lee H, et al. Resuspension of sediment-associated Escherichia coli in a natural stream. J Environ Qual. 2005;34(2):581–589.
  9. Kim JW, Pachepsky YA, Shelton DR, et al. Effect of streambed bacteria release on E. coli concentrations: Monitoring and modeling with the modified SWAT. Ecological Modeling. 2010;221(12):1592–1604.
  10. Muirhead RW, Davies-Colley RJ, Donnison AM, et al. Faecal bacteria yields in artificial flood events: quantifying in-stream stores. Water Res. 2004;38(5):1215–1224.
  11. Eluozo SN, Amadi CP. Velocity and Oxygen Deficit Influence on the Transport of Francisela in Eleme Creek. Journal of Water Resource Engineering and Management. 2019;6(2):43–48.
  12. Eluozo SN, Afiibor BB. Mathematical model to monitor the transport of bordetella influenced by heterogeneous porosity in homogeneous gravel depositions. Journal of Geotechnical Engineering. 2019;6(1).
  13. Ezeilo FE, Eluozo SN. Linear Phase Velocity Effect on Accumulation of Zinc in Homogeneous Fine Sand Applying Predictive Model. International Journal of Mechanical and Civil Engineering. 2018;4(4):17–32.
  14. Eluozo SN, Ezeilo FE. Numerical Modeling of Nocardia Migration Influenced Transport Pressured by Dispersion and Velocity in Fine Sand Formation in Wetland Environment. Journal of Water Resources Engineering and Management. 2018;5(1):25–32.
  15. Eluozo SN, Ezeilo FE. Modeling Heterogeneous Porosity in Alluvia Plain Deposition in Deltaic Formation. Recent Trend in Civil Engineering & Technology. 2018;8(2):1–10.
  16. Ezeilo FE, Eluozo SN. Dispersion and storage coefficient influences on accumulation of frankia transport in heterogeneous silty and fine sand formation, Warri, Delta State of Nigeria. International Journal of Mechanical and Civil Engineering. 2018;4(4):1–16.
  17. Eluozo SN, Amadi CP. Modeling and simulation of legionella transport influenced by heterogeneous velocity in stream. Journal of Water Resource Engineering and Management. 2019;6(2):25–31.
  18. Eluozo SN, Ezeilo FE. Predicting the behaviour of borrelia in homogeneous fine sand in coastal area of Bakana. Recent Trend in Civil Engineering & Technology. 2018;8(2):1–19.
  19. Eluozo SN, Oba AL. Modeling and simulation of cadmium transport influenced by high degree of saturation and porosity on homogeneous coarse depositions MOJ Civil Engineering. 2018;4(4):263–267.
  20. Eluozo SN, Afiibor BB. Dispersion and dynamics influences from phosphorus deposition on e-coli transport in coastal deltaic Lake. MOJ Applied Bionics and biomechanics. 2018;2(5):289–293.
  21. Eluozo SN, Oba AL. Predicting heterogeneous permeability coefficient pressured by heterogeneous seepage on coarse deposition. MOJ Civil Engineering. 2018;4(4):257–261.
  22. Brookes JD, Antenucci J, Hipsey M, et al. Fate and transport of pathogens in lakes and reservoirs. Environment International. 2004;30(5):741–759.
  23. Howe AD, Forster S, Morton S, et al. Cryptosporidium oocysts in a water supply associated with a cryptosporidiosis outbreak. Emerg Infect Dis. 2002;8(6):619–624.
  24. Gibson CJ, Haas CN, Rose JB. Risk assessment of waterborne protozoa: current status and future trends. Parasitology. 1998;117:S205–S212
  25. Kistemann T, Classen T, Koch C, et al. Microbial load of drinking water reservoir tributaries during extreme rainfall and runoff. Applied and Environmental Microbiology. 2002;68(5):2188–2197.
Creative Commons Attribution License

©2023 Eluozo, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.