Submit manuscript...
MOJ
eISSN: 2572-8520

Civil Engineering

Research Article Volume 4 Issue 4

Predicting heterogeneous permeability coefficient pressured by heterogeneous seepage on coarse deposition

Eluozo SN,1 Oba AL2

1Department of Civil and Environmental Engineering, Gregory University Uturu (GUU), Abia State of Nigeria, Nigeria
2Department of Civil Engineering, Ken-Saro Wiwa Polytechnic Bori, Nigeria

Correspondence: luozo SN, Department of Civil and Environmental Engineering, Gregory University Uturu (GUU), Abia State of Nigeria

Received: May 11, 2018 | Published: August 23, 2018

Citation: Predicting heterogeneous permeability coefficient pressured by heterogeneous seepage on coarse deposition. MOJ Civil Eng. 2018;4(4):257-261. DOI: 10.15406/mojce.2018.04.00128

Download PDF

Abstract

This paper monitor coefficient of permeability pressured by heterogeneous seepage in coarse depositions, previous studies carried out express permeability coefficient influences by Void Ratio on Heterogeneous Compressibility of Fine Sand Formation in Obio-Akpor, that study discuses void ratios as a pressure to the rate of compressibility of litho structures of that stratum in that study location, the lithology determine coefficient of the stratum permeation in fluid flow in such deltaic depositions. But for these study it focuses on heterogeneous seepage force under heterogeneous permeability coefficient on depositions of coarse sand, other study variables from other slight depositions were observed to influences the permeability coefficient, several experts has applied experimental procedures to determine permeability coefficient and its rates of seepage force in some strata, there is no literature that has monitor the permeation of soil strata with analytical solutions from seepage force influences, the study evaluates the refection of heterogeneity structured strata of coarse deposition, it also monitor other slight deposited formation reflected on the variation of permeability in the deltaic environment. From the simulation, increase of permeability where observed, these express the litho structure of coarse deposition in coastal regions, while some simulation values explain the reality of deltaic deposition that are not in coastal environments. Finally, other simulation reflects some structured strata that developed lower permeations, these areas will definitely developed low yield of phreatic depositions or accumulation of contaminant in pollution transport. The study were subjected to simulations, these values predict the heterogeneous deposition of permeability under seepage influences in deltaic formations, and the predicted values were compared with experimental data for model validation, and both parameters express favorable fits.

Keywords: permeability coefficient, heterogeneous, Seepage and coarse formation

Introduction

Among hydro-geological, geological, and geotechnical problems in earth dams, seepage is a major concern associated with dams. Because it threatens dam stability and may cause unforeseen failure.1-6 Many methods such as using of cut off wall and injection to avoid seepage are proposed. Otherwise the prediction of seepage discharge through earth dam can be useful for seepage controls. Fealeh Khaseh dam located in Zanjan province, west of Iran, is used as a case study in this paper. Although there are many established theoretical relation between seepage and soil properties their association and evaluation of seepage requires system identification techniques.7-8 The interdependency of factors involved in such problems prevents the use of regression analysis and demands a more extensive and sophisticated method. The Group Method of Data Handling (GMDH) type of artificial neural networks (ANN) optimized by Genetic Algorithms (GAs) can be used for complex systems modeling, where unknown relationships exist between the variables, without having a specific knowledge of the processes. In recent years, the use of such self-organizing neural networks has led to successful application of the GMDH-type of algorithm in geotechnical sciences.9-12 This situation continues gradually until difference between water potential in up and down stream cause moving particles from porosity and starting piping suddenly. This event is named as seepage. Lakshmi13 in theory, seepage is named gravitation water which flow into soil particles porosity in result of gravity. Seepage in dam is similar to flow in an open channel because their free surface and atmosphere pressure.14-16 But, underground water is including two sections liquid/solid; and, flow velocity and discharge are controlled by soil permeability. A method to display flow in body and foundation of earth dam is Flow net. The primary line in flow net is named as phreatic line which restricts seepage.17,18

Governing equation

Av+As Av ks L k 2 s t + ( Av+As ) AvL + ks L V ( Vv+Vs ) Vv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadgeacaWG2bGaey4kaSIaamyqaiaadohaaOqaaKqzGeGa amyqaiaadAhaaaqcfa4aaSaaaOqaaKqzGeGaeyOaIyRaam4Aaiaado haaOqaaKqzGeGaeyOaIyRaamitaaaacqGHsisljuaGdaWcaaGcbaqc LbsacqGHciITcaWGRbWcdaahaaqabeaajugWaiaaikdaaaqcLbsaca WGZbaakeaajugibiabgkGi2kaadshaaaGaey4kaSscfa4aaSaaaOqa aKqbaoaabmaakeaajugibiaadgeacaWG2bGaey4kaSIaamyqaiaado haaOGaayjkaiaawMcaaaqaaKqzGeGaamyqaiaadAhacaWGmbaaaiab gUcaRKqbaoaalaaakeaajugibiabgkGi2kaadUgacaWGZbaakeaaju gibiabgkGi2kaadYeaaaGaamOvaKqbaoaalaaakeaajuaGdaqadaGc baqcLbsacaWGwbGaamODaiabgUcaRiaadAfacaWGZbaakiaawIcaca GLPaaaaeaajugibiaadAfacaWG2baaaaaa@6F6C@   (1)

ks L = S 1 ks(L)Sks(o) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2kaadUgacaWGZbaakeaajugibiabgkGi2kaadYea aaGaeyypa0Jaam4uaKqbaoaaCaaaleqabaqcLbmacaaIXaaaaKqzGe Gaam4AaiaadohacaGGOaGaamitaiaacMcacqGHsislcaWGtbGaam4A aiaadohacaGGOaGaam4BaiaacMcaaaa@4C5D@ (2)

ks t = S 1 ks(L)Sks(o) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2kaadUgacaWGZbaakeaajugibiabgkGi2kaadsha aaGaeyypa0Jaam4uaKqbaoaaCaaaleqabaqcLbmacaaIXaaaaKqzGe Gaam4AaiaadohacaGGOaGaamitaiaacMcacqGHsislcaWGtbGaam4A aiaadohacaGGOaGaam4BaiaacMcaaaa@4C85@ (3)

Φs L = S 1 ks(L)Sks(o) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiabgkGi2kabfA6agjaadohaaOqaaKqzGeGaeyOaIyRaamit aaaacqGH9aqpcaWGtbWcdaahaaqabeaajugWaiaaigdaaaqcLbsaca WGRbGaam4CaiaacIcacaWGmbGaaiykaiabgkHiTiaadofacaWGRbGa am4CaiaacIcacaWGVbGaaiykaaaa@4C59@ (4)

S 1 Vks(L) Av+As Av [ S 1 (L) S 1 ks(o) ]+V ( Av+As ) AvL [ S 1 ks(t) S 1 ks(z) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaS WaaWbaaeqabaqcLbmacaaIXaaaaKqzGeGaamOvaiaadUgacaWGZbGa aiikaiaadYeacaGGPaGaeyOeI0scfa4aaSaaaOqaaKqzGeGaamyqai aadAhacqGHRaWkcaWGbbGaam4CaaGcbaqcLbsacaWGbbGaamODaaaa juaGdaWadaGcbaqcLbsacaWGtbWcdaahaaqabeaajugWaiaaigdaaa qcLbsacaGGOaGaamitaiaacMcacqGHsislcaWGtbWcdaahaaqabeaa jugWaiaaigdaaaqcLbsacaWGRbGaam4CaiaacIcacaWGVbGaaiykaa GccaGLBbGaayzxaaqcLbsacqGHRaWkcaWGwbqcfa4aaSaaaOqaaKqb aoaabmaakeaajugibiaadgeacaWG2bGaey4kaSIaamyqaiaadohaaO GaayjkaiaawMcaaaqaaKqzGeGaamyqaiaadAhacaWGmbaaaKqbaoaa dmaakeaajugibiaadofalmaaCaaabeqaaKqzadGaaGymaaaajugibi aadUgacaWGZbGaaiikaiaadshacaGGPaGaeyOeI0Iaam4uaSWaaWba aeqabaqcLbmacaaIXaaaaKqzGeGaam4AaiaadohacaGGOaGaamOEai aacMcaaOGaay5waiaaw2faaaaa@79E0@ (5)

S 1 (L)ks(o)= Av+As Av S 1 ks(o) ( Av+As ) AvL ks(o) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaS WaaWbaaeqabaqcLbmacaaIXaaaaKqzGeGaaiikaiaadYeacaGGPaGa eyOeI0Iaam4AaiaadohacaGGOaGaam4BaiaacMcacqGH9aqpjuaGda WcaaGcbaqcLbsacaWGbbGaamODaiabgUcaRiaadgeacaWGZbaakeaa jugibiaadgeacaWG2baaaiaadofalmaaCaaabeqaaKqzadGaaGymaa aajugibiaadUgacaWGZbGaaiikaiaad+gacaGGPaGaeyOeI0scfa4a aSaaaOqaaKqbaoaabmaakeaajugibiaadgeacaWG2bGaey4kaSIaam yqaiaadohaaOGaayjkaiaawMcaaaqaaKqzGeGaamyqaiaadAhacaWG mbaaaiaadUgacaWGZbGaaiikaiaad+gacaGGPaaaaa@61F3@    (6)

V ( Av+As ) AvL Vs(L)V ( Av+As ) AvL SVs(o) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOvaK qbaoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGbbGaamODaiabgUca RiaadgeacaWGZbaakiaawIcacaGLPaaaaeaajugibiaadgeacaWG2b GaamitaaaacaWGwbGaam4CaiaacIcacaWGmbGaaiykaiabgkHiTiaa dAfajuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGaamyqaiaadAhacq GHRaWkcaWGbbGaam4CaaGccaGLOaGaayzkaaaabaqcLbsacaWGbbGa amODaiaadYeaaaGaam4uaiaadAfacaWGZbGaaiikaiaad+gacaGGPa aaaa@57DA@ (7)

Φ ( Vv+Vs ) Vv ks(z)Sks(o) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuOPdy ucfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadAfacaWG2bGaey4k aSIaamOvaiaadohaaOGaayjkaiaawMcaaaqaaKqzGeGaamOvaiaadA haaaGaam4AaiaadohacaGGOaGaamOEaiaacMcacqGHsislcaWGtbGa am4AaiaadohacaGGOaGaam4BaiaacMcaaaa@4C80@   (8)

Let ks(o)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aadohacaGGOaGaam4BaiaacMcacqGH9aqpcaaIWaaaaa@3C6F@

We have

S 1 (L) ( Av+As ) Av ks(o)+k ( Av+As ) AvL ks(t)+k ( Vv+Vs ) Vv S 1 ks(L) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaS WaaWbaaeqabaqcLbmacaaIXaaaaKqzGeGaaiikaiaadYeacaGGPaGa eyOeI0scfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadgeacaWG2b Gaey4kaSIaamyqaiaadohaaOGaayjkaiaawMcaaaqaaKqzGeGaamyq aiaadAhaaaGaam4AaiaadohacaGGOaGaam4BaiaacMcacqGHRaWkca WGRbqcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadgeacaWG2bGa ey4kaSIaamyqaiaadohaaOGaayjkaiaawMcaaaqaaKqzGeGaamyqai aadAhacaWGmbaaaiaadUgacaWGZbGaaiikaiaadshacaGGPaGaey4k aSIaam4AaKqbaoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGwbGaam ODaiabgUcaRiaadAfacaWGZbaakiaawIcacaGLPaaaaeaajugibiaa dAfacaWG2baaaiaadofalmaaCaaabeqaaKqzadGaaGymaaaajugibi aadUgacaWGZbGaaiikaiaadYeacaGGPaaaaa@6FF9@  (9)

Φ S 1 (L)= 1 S [ ( Av+As ) Av Φs(L)Φ ( Av+As ) AvL S 1 +Φ ( Vv+Vs ) Vv S 1 Φs(L) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeuOPdy Kaam4uaSWaaWbaaeqabaqcLbmacaaIXaaaaKqzGeGaaiikaiaadYea caGGPaGaeyypa0tcfa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsaca WGtbaaaKqbaoaadmaakeaajuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqz GeGaamyqaiaadAhacqGHRaWkcaWGbbGaam4CaaGccaGLOaGaayzkaa aabaqcLbsacaWGbbGaamODaaaacqqHMoGrcaWGZbGaaiikaiaadYea caGGPaGaeyOeI0IaeuOPdyucfa4aaSaaaOqaaKqbaoaabmaakeaaju gibiaadgeacaWG2bGaey4kaSIaamyqaiaadohaaOGaayjkaiaawMca aaqaaKqzGeGaamyqaiaadAhacaWGmbaaaiaadofalmaaCaaabeqaaK qzadGaaGymaaaajugibiabgUcaRiabfA6agLqbaoaalaaakeaajuaG daqadaGcbaqcLbsacaWGwbGaamODaiabgUcaRiaadAfacaWGZbaaki aawIcacaGLPaaaaeaajugibiaadAfacaWG2baaaiaadofalmaaCaaa beqaaKqzadGaaGymaaaajugibiabfA6agjaadohacaGGOaGaamitai aacMcaaOGaay5waiaaw2faaaaa@78D6@  (10)

kS(L)= 1 S 1 [ ( Av+As ) Av ks(L)k ( Av+As ) AvL S 1 +k ( Vv+Vs ) Vv ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aadofacaGGOaGaamitaiaacMcacqGH9aqpjuaGdaWcaaGcbaqcLbsa caaIXaaakeaajugibiaadofajuaGdaahaaWcbeqaaKqzadGaaGymaa aaaaqcfa4aamWaaOqaaKqbaoaalaaakeaajuaGdaqadaGcbaqcLbsa caWGbbGaamODaiabgUcaRiaadgeacaWGZbaakiaawIcacaGLPaaaae aajugibiaadgeacaWG2baaaiaadUgacaWGZbGaaiikaiaadYeacaGG PaGaeyOeI0Iaam4AaKqbaoaalaaakeaajuaGdaqadaGcbaqcLbsaca WGbbGaamODaiabgUcaRiaadgeacaWGZbaakiaawIcacaGLPaaaaeaa jugibiaadgeacaWG2bGaamitaaaacaWGtbWcdaahaaqabeaajugWai aaigdaaaqcLbsacqGHRaWkcaWGRbqcfa4aaSaaaOqaaKqbaoaabmaa keaajugibiaadAfacaWG2bGaey4kaSIaamOvaiaadohaaOGaayjkai aawMcaaaqaaKqzGeGaamOvaiaadAhaaaaakiaawUfacaGLDbaaaaa@6E94@  (11)

k S 1 (L)= ( Av+As ) Av ks(L)k ( Av+As ) AvL ks(t)+k ( Vv+Vs ) Vv S 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aadofalmaaCaaabeqaaKqzadGaaGymaaaajugibiaacIcacaWGmbGa aiykaiabg2da9KqbaoaalaaakeaajuaGdaWcaaGcbaqcfa4aaeWaaO qaaKqzGeGaamyqaiaadAhacqGHRaWkcaWGbbGaam4CaaGccaGLOaGa ayzkaaaabaqcLbsacaWGbbGaamODaaaacaWGRbGaam4CaiaacIcaca WGmbGaaiykaiabgkHiTiaadUgajuaGdaWcaaGcbaqcfa4aaeWaaOqa aKqzGeGaamyqaiaadAhacqGHRaWkcaWGbbGaam4CaaGccaGLOaGaay zkaaaabaqcLbsacaWGbbGaamODaiaadYeaaaGaam4AaiaadohacaGG OaGaamiDaiaacMcacqGHRaWkcaWGRbqcfa4aaSaaaOqaaKqbaoaabm aakeaajugibiaadAfacaWG2bGaey4kaSIaamOvaiaadohaaOGaayjk aiaawMcaaaqaaKqzGeGaamOvaiaadAhaaaaakeaajugibiaadofalm aaCaaabeqaaKqzadGaaGymaaaaaaaaaa@6D8A@   (12)

kS(L)= ( Av+As ) Av S 1 ks(L)+k ( Vv+Vs ) Vv kS(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aadofacaGGOaGaamitaiaacMcacqGH9aqpjuaGdaWcaaGcbaqcfa4a aeWaaOqaaKqzGeGaamyqaiaadAhacqGHRaWkcaWGbbGaam4CaaGcca GLOaGaayzkaaaabaqcLbsacaWGbbGaamODaaaacaWGtbWcdaahaaqa beaajugWaiaaigdaaaqcLbsacaWGRbGaam4CaiaacIcacaWGmbGaai ykaiabgUcaRiaadUgajuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGa amOvaiaadAhacqGHRaWkcaWGwbGaam4CaaGccaGLOaGaayzkaaaaba qcLbsacaWGwbGaamODaaaacaWGRbGaam4uaiaacIcacaWG0bGaaiyk aaaa@5D52@ (13)

kS(L)= ( Av+As ) Av ks(L)=k ( Av+As ) AvL ks(L)+k ( Vv+Vs ) Vv S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aadofacaGGOaGaamitaiaacMcacqGH9aqpjuaGdaWcaaGcbaqcfa4a aSaaaOqaaKqbaoaabmaakeaajugibiaadgeacaWG2bGaey4kaSIaam yqaiaadohaaOGaayjkaiaawMcaaaqaaKqzGeGaamyqaiaadAhaaaGa am4AaiaadohacaGGOaGaamitaiaacMcacqGH9aqpcaWGRbqcfa4aaS aaaOqaaKqbaoaabmaakeaajugibiaadgeacaWG2bGaey4kaSIaamyq aiaadohaaOGaayjkaiaawMcaaaqaaKqzGeGaamyqaiaadAhacaWGmb aaaiaadUgacaWGZbGaaiikaiaadYeacaGGPaGaey4kaSIaam4AaKqb aoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGwbGaamODaiabgUcaRi aadAfacaWGZbaakiaawIcacaGLPaaaaeaajugibiaadAfacaWG2baa aaGcbaqcLbsacaWGtbaaaaaa@68C0@ (14)

kS(L)=[ ( Av+As ) Av +k ( Av+As ) AvL +k ( Vv+Vs ) S 1 Vs ]kS(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aadofacaGGOaGaamitaiaacMcacqGH9aqpjuaGdaWadaGcbaqcfa4a aSaaaOqaaKqbaoaabmaakeaajugibiaadgeacaWG2bGaey4kaSIaam yqaiaadohaaOGaayjkaiaawMcaaaqaaKqzGeGaamyqaiaadAhaaaGa ey4kaSIaam4AaKqbaoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGbb GaamODaiabgUcaRiaadgeacaWGZbaakiaawIcacaGLPaaaaeaajugi biaadgeacaWG2bGaamitaaaacqGHRaWkcaWGRbqcfa4aaSaaaOqaaK qbaoaabmaakeaajugibiaadAfacaWG2bGaey4kaSIaamOvaiaadoha aOGaayjkaiaawMcaaKqzGeGaam4uaKqbaoaaCaaaleqabaqcLbmaca aIXaaaaaGcbaqcLbsacaWGwbGaam4CaaaaaOGaay5waiaaw2faaKqz GeGaaGPaVlaadUgacaWGtbGaaiikaiaadshacaGGPaaaaa@6B39@ (15)

S 1 kS(L)=( ( Av+As ) Av +k ( Av+As ) AvL +k ( Vv+Vs ) S 1 Vs )kS(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uaS WaaWbaaeqabaqcLbmacaaIXaaaaKqzGeGaam4AaiaadofacaGGOaGa amitaiaacMcacqGH9aqpjuaGdaqadaGcbaqcfa4aaSaaaOqaaKqbao aabmaakeaajugibiaadgeacaWG2bGaey4kaSIaamyqaiaadohaaOGa ayjkaiaawMcaaaqaaKqzGeGaamyqaiaadAhaaaGaey4kaSIaam4AaK qbaoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGbbGaamODaiabgUca RiaadgeacaWGZbaakiaawIcacaGLPaaaaeaajugibiaadgeacaWG2b GaamitaaaacqGHRaWkcaWGRbqcfa4aaSaaaOqaaKqbaoaabmaakeaa jugibiaadAfacaWG2bGaey4kaSIaamOvaiaadohaaOGaayjkaiaawM caaKqzGeGaam4uaKqbaoaaCaaaleqabaqcLbsacaaIXaaaaaGcbaqc LbsacaWGwbGaam4CaaaaaOGaayjkaiaawMcaaKqzGeGaam4Aaiaado facaGGOaGaamiDaiaacMcaaaa@6C23@ (16)

Av+As Av +k ( Av+As ) AvL +k ( Vv+Vs ) S 1 Vs MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadgeacaWG2bGaey4kaSIaamyqaiaadohaaOqaaKqzGeGa amyqaiaadAhaaaGaey4kaSIaam4AaKqbaoaalaaakeaajuaGdaqada GcbaqcLbsacaWGbbGaamODaiabgUcaRiaadgeacaWGZbaakiaawIca caGLPaaaaeaajugibiaadgeacaWG2bGaamitaaaacqGHRaWkcaWGRb qcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadAfacaWG2bGaey4k aSIaamOvaiaadohaaOGaayjkaiaawMcaaKqzGeGaam4uaSWaaWbaae qabaqcLbmacaaIXaaaaaGcbaqcLbsacaWGwbGaam4Caaaaaaa@5A3B@    (17)

kS(L) S 1 (L) Av+As Av +k ( Av+As ) AvL +k ( Vv+Vs ) S 1 Vs MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aadofacaGGOaGaamitaiaacMcajuaGdaWcaaGcbaqcLbsacaWGtbWc daahaaqabeaajugWaiaaigdaaaqcLbsacaGGOaGaamitaiaacMcaaO qaaKqbaoaalaaakeaajugibiaadgeacaWG2bGaey4kaSIaamyqaiaa dohaaOqaaKqzGeGaamyqaiaadAhaaaGaey4kaSIaam4AaKqbaoaala aakeaajuaGdaqadaGcbaqcLbsacaWGbbGaamODaiabgUcaRiaadgea caWGZbaakiaawIcacaGLPaaaaeaajugibiaadgeacaWG2bGaamitaa aacqGHRaWkcaWGRbqcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaa dAfacaWG2bGaey4kaSIaamOvaiaadohaaOGaayjkaiaawMcaaKqzGe Gaam4uaSWaaWbaaKGbagqabaqcLbmacaaIXaaaaaGcbaqcLbsacaWG wbGaam4Caaaaaaaaaa@6633@   (18)

Furthermore, considering the boundary condition, we have the following

 At t=0 V 1 S(o)=VS(o)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDai abg2da9iaaicdacaWGwbWcdaahaaqabeaajugWaiaaigdaaaqcLbsa caWGtbGaaiikaiaad+gacaGGPaGaeyypa0JaamOvaiaadofacaGGOa Gaam4BaiaacMcacqGH9aqpcaaIWaaaaa@469E@

Av+As Av kS(L)k ( Av+As ) S 1 AvL kS(L)+k ( Vv+Vs ) Vv kS(t)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadgeacaWG2bGaey4kaSIaamyqaiaadohaaOqaaKqzGeGa amyqaiaadAhaaaGaam4AaiaadofacaGGOaGaamitaiaacMcacqGHsi slcaWGRbqcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadgeacaWG 2bGaey4kaSIaamyqaiaadohaaOGaayjkaiaawMcaaKqzGeGaam4uaS WaaWbaaeqabaqcLbmacaaIXaaaaaGcbaqcLbsacaWGbbGaamODaiaa dYeaaaGaam4AaiaadofacaGGOaGaamitaiaacMcacqGHRaWkcaWGRb qcfa4aaSaaaOqaaKqbaoaabmaakeaajugibiaadAfacaWG2bGaey4k aSIaamOvaiaadohaaOGaayjkaiaawMcaaaqaaKqzGeGaamOvaiaadA haaaGaam4AaiaadofacaGGOaGaamiDaiaacMcacqGH9aqpcaaIWaaa aa@6807@   (19)

kS(L)= Av+As Av k ( Av+As ) AvL +k ( Vv+Vs ) Vs MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aadofacaGGOaGaamitaiaacMcacqGH9aqpjuaGdaWcaaGcbaqcLbsa caWGbbGaamODaiabgUcaRiaadgeacaWGZbaakeaajugibiaadgeaca WG2baaaiabgkHiTiaadUgajuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqz GeGaamyqaiaadAhacqGHRaWkcaWGbbGaam4CaaGccaGLOaGaayzkaa aabaqcLbsacaWGbbGaamODaiaadYeaaaGaey4kaSIaam4AaKqbaoaa laaakeaajuaGdaqadaGcbaqcLbsacaWGwbGaamODaiabgUcaRiaadA facaWGZbaakiaawIcacaGLPaaaaeaajugibiaadAfacaWGZbaaaaaa @5C46@   (20)

Considering the following boundary conditions when

At t>0 Φ 1 S(o)=ΦS(o) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDai abg6da+iaaicdacqqHMoGrlmaaCaaabeqaaKqzadGaaGymaaaajugi biaadofacaGGOaGaam4BaiaacMcacqGH9aqpcqqHMoGrcaWGtbGaai ikaiaad+gacaGGPaaaaa@461E@

Applying the boundary condition into this equation

Av+As Av kS(L) ( Av+As ) Av +k ( Av+As ) AvL kS(L)+k ( Av+As ) AvL kSoS(L)+V ( Vv+Vs ) Vv VS(t)+V ( Vv+Vs ) Vv VSo+S(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadgeacaWG2bGaey4kaSIaamyqaiaadohaaOqaaKqzGeGa amyqaiaadAhaaaGaam4AaiaadofacaGGOaGaamitaiaacMcacqGHsi sljuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGaamyqaiaadAhacqGH RaWkcaWGbbGaam4CaaGccaGLOaGaayzkaaaabaqcLbsacaWGbbGaam ODaaaacqGHRaWkcaWGRbqcfa4aaSaaaOqaaKqbaoaabmaakeaajugi biaadgeacaWG2bGaey4kaSIaamyqaiaadohaaOGaayjkaiaawMcaaa qaaKqzGeGaamyqaiaadAhacaWGmbaaaiaadUgacaWGtbGaaiikaiaa dYeacaGGPaGaey4kaSIaam4AaKqbaoaalaaakeaajuaGdaqadaGcba qcLbsacaWGbbGaamODaiabgUcaRiaadgeacaWGZbaakiaawIcacaGL PaaaaeaajugibiaadgeacaWG2bGaamitaaaacaWGRbGaam4uaiaad+ gacqGHsislcaWGtbGaaiikaiaadYeacaGGPaGaey4kaSIaamOvaKqb aoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGwbGaamODaiabgUcaRi aadAfacaWGZbaakiaawIcacaGLPaaaaeaajugibiaadAfacaWG2baa aiaadAfacaWGtbGaaiikaiaadshacaGGPaGaey4kaSIaamOvaKqbao aalaaakeaajuaGdaqadaGcbaqcLbsacaWGwbGaamODaiabgUcaRiaa dAfacaWGZbaakiaawIcacaGLPaaaaeaajugibiaadAfacaWG2baaai aadAfacaWGtbGaam4BaiabgUcaRiaadofacaGGOaGaamiDaiaacMca aaa@93AE@ (21)

( Av+As ) Av (L) ( Av+As ) AvL kS(o) ( Av+As ) Av kSo+k ( Vv+Vs ) Vv kSo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajuaGdaqadaGcbaqcLbsacaWGbbGaamODaiabgUcaRiaadgeacaWG ZbaakiaawIcacaGLPaaaaeaajugibiaadgeacaWG2baaaiaacIcaca WGmbGaaiykaiabgkHiTKqbaoaalaaakeaajuaGdaqadaGcbaqcLbsa caWGbbGaamODaiabgUcaRiaadgeacaWGZbaakiaawIcacaGLPaaaae aajugibiaadgeacaWG2bGaamitaaaacaWGRbGaam4uaiaacIcacaWG VbGaaiykaKqbaoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGbbGaam ODaiabgUcaRiaadgeacaWGZbaakiaawIcacaGLPaaaaeaajugibiaa dgeacaWG2baaaiaadUgacaWGtbGaam4BaiabgUcaRiaadUgajuaGda WcaaGcbaqcfa4aaeWaaOqaaKqzGeGaamOvaiaadAhacqGHRaWkcaWG wbGaam4CaaGccaGLOaGaayzkaaaabaqcLbsacaWGwbGaamODaaaaca WGRbGaam4uaiaad+gaaaa@6DBD@   (22)

kS(L)=[ Av+Ass Av =k ( Av+As ) Av +k ( Av+As ) AvL +k ( Vv+Vs ) Vv ]kSo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aadofacaGGOaGaamitaiaacMcacqGH9aqpjuaGdaWadaGcbaqcfa4a aSaaaOqaaKqzGeGaamyqaiaadAhacqGHRaWkcaWGbbGaam4Caiaado haaOqaaKqzGeGaamyqaiaadAhaaaGaeyypa0Jaam4AaKqbaoaalaaa keaajuaGdaqadaGcbaqcLbsacaWGbbGaamODaiabgUcaRiaadgeaca WGZbaakiaawIcacaGLPaaaaeaajugibiaadgeacaWG2baaaiabgUca RiaadUgajuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGaamyqaiaadA hacqGHRaWkcaWGbbGaam4CaaGccaGLOaGaayzkaaaabaqcLbsacaWG bbGaamODaiaadYeaaaGaey4kaSIaam4AaKqbaoaalaaakeaajuaGda qadaGcbaqcLbsacaWGwbGaamODaiabgUcaRiaadAfacaWGZbaakiaa wIcacaGLPaaaaeaajugibiaadAfacaWG2baaaaGccaGLBbGaayzxaa qcLbsacaWGRbGaam4uaiaad+gaaaa@6F1E@ (23)

kS(L)= Av+Ass Av ( Av+As ) Av k ( Av+As ) AvL +k ( Vv+Vs ) Vv kSo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aadofacaGGOaGaamitaiaacMcacqGH9aqpjuaGdaWcaaGcbaqcLbsa caWGbbGaamODaiabgUcaRiaadgeacaWGZbGaam4CaaGcbaqcLbsaca WGbbGaamODaaaacqGHsisljuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqz GeGaamyqaiaadAhacqGHRaWkcaWGbbGaam4CaaGccaGLOaGaayzkaa aabaqcLbsacaWGbbGaamODaaaacqGHsislcaWGRbqcfa4aaSaaaOqa aKqbaoaabmaakeaajugibiaadgeacaWG2bGaey4kaSIaamyqaiaado haaOGaayjkaiaawMcaaaqaaKqzGeGaamyqaiaadAhacaWGmbaaaiab gUcaRiaadUgajuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGaamOvai aadAhacqGHRaWkcaWGwbGaam4CaaGccaGLOaGaayzkaaaabaqcLbsa caWGwbGaamODaaaacaWGRbGaam4uaiaad+gaaaa@6AFD@ (24)

kS(L)= ( Av+Ass ) Av ( Av+As ) Av k ( Av+As ) AvL +k ( Vv+Vs ) Vv VSo ( Av+As ) Av S ( Av+As ) Av +k ( Vv+Vs ) Vv MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aadofacaGGOaGaamitaiaacMcacqGH9aqpjuaGdaWcaaGcbaqcfa4a aSaaaOqaaKqbaoaabmaakeaajugibiaadgeacaWG2bGaey4kaSIaam yqaiaadohacaWGZbaakiaawIcacaGLPaaaaeaajugibiaadgeacaWG 2baaaiabgkHiTKqbaoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGbb GaamODaiabgUcaRiaadgeacaWGZbaakiaawIcacaGLPaaaaeaajugi biaadgeacaWG2baaaiabgkHiTiaadUgajuaGdaWcaaGcbaqcfa4aae WaaOqaaKqzGeGaamyqaiaadAhacqGHRaWkcaWGbbGaam4CaaGccaGL OaGaayzkaaaabaqcLbsacaWGbbGaamODaiaadYeaaaGaey4kaSIaam 4AaKqbaoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGwbGaamODaiab gUcaRiaadAfacaWGZbaakiaawIcacaGLPaaaaeaajugibiaadAfaca WG2baaaiaadAfacaWGtbGaam4BaaGcbaqcfa4aaSaaaOqaaKqbaoaa bmaakeaajugibiaadgeacaWG2bGaey4kaSIaamyqaiaadohaaOGaay jkaiaawMcaaaqaaKqzGeGaamyqaiaadAhaaaGaam4uaiabgkHiTKqb aoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGbbGaamODaiabgUcaRi aadgeacaWGZbaakiaawIcacaGLPaaaaeaajugibiaadgeacaWG2baa aiabgUcaRiaadUgajuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGaam OvaiaadAhacqGHRaWkcaWGwbGaam4CaaGccaGLOaGaayzkaaaabaqc LbsacaWGwbGaamODaaaaaaaaaa@8FCA@ (25)

Applying quadratic equation to determine denominator for the equation

Av+As Av k ( Av+As ) AvL + k 2 ( Vv+Vs ) Vv =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadgeacaWG2bGaey4kaSIaamyqaiaadohaaOqaaKqzGeGa amyqaiaadAhaaaGaeyOeI0Iaam4AaKqbaoaalaaakeaajuaGdaqada GcbaqcLbsacaWGbbGaamODaiabgUcaRiaadgeacaWGZbaakiaawIca caGLPaaaaeaajugibiaadgeacaWG2bGaamitaaaacqGHRaWkcaWGRb qcfa4aaWbaaSqabeaajugWaiaaikdaaaqcfa4aaSaaaOqaaKqbaoaa bmaakeaajugibiaadAfacaWG2bGaey4kaSIaamOvaiaadohaaOGaay jkaiaawMcaaaqaaKqzGeGaamOvaiaadAhaaaGaeyypa0JaaGimaaaa @5B27@  (26)

s= b± b 2 4ac 2ac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Cai abg2da9KqbaoaalaaakeaajugibiabgkHiTiaadkgacqGHXcqSjuaG daGcaaGcbaqcLbsacaWGIbqcfa4aaWbaaSqabeaajugWaiaaikdaaa qcLbsacqGHsislcaaI0aGaamyyaiaadogaaSqabaaakeaajugibiaa ikdacaWGHbGaam4yaaaaaaa@496A@ (27)

Where a= Av+As Av MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyyai abg2da9KqbaoaalaaakeaajugibiaadgeacaWG2bGaey4kaSIaamyq aiaadohaaOqaaKqzGeGaamyqaiaadAhaaaaaaa@4058@ , b= k 2 ( Av+As ) AvL MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOyai abg2da9iaadUgajuaGdaahaaWcbeqaaKqzadGaaGOmaaaajuaGdaWc aaGcbaqcfa4aaeWaaOqaaKqzGeGaamyqaiaadAhacqGHRaWkcaWGbb Gaam4CaaGccaGLOaGaayzkaaaabaqcLbsacaWGbbGaamODaiaadYea aaaaaa@46E0@  and c=k ( Vv+Vs ) Vv kS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4yai abg2da9iaadUgajuaGdaWcaaGcbaqcfa4aaeWaaOqaaKqzGeGaamOv aiaadAhacqGHRaWkcaWGwbGaam4CaaGccaGLOaGaayzkaaaabaqcLb sacaWGwbGaamODaaaacaWGRbGaam4uaaaa@4572@

For simplicity denoting the expressed functions parameter of the following

Let Av+As Av =Q, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaake aajugibiaadgeacaWG2bGaey4kaSIaamyqaiaadohaaOqaaKqzGeGa amyqaiaadAhaaaGaeyypa0JaamyuaiaacYcaaaa@4069@ V ( Av+As ) AvL = λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOvaK qbaoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGbbGaamODaiabgUca RiaadgeacaWGZbaakiaawIcacaGLPaaaaeaajugibiaadgeacaWG2b GaamitaaaacqGH9aqpcqaH7oaBjuaGdaahaaWcbeqaaKqzadGaaGOm aaaaaaa@4798@  and k ( Vv+Vs ) Vv =α MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4AaK qbaoaalaaakeaajuaGdaqadaGcbaqcLbsacaWGwbGaamODaiabgUca RiaadAfacaWGZbaakiaawIcacaGLPaaaaeaajugibiaadAfacaWG2b aaaiabg2da9iabeg7aHbaa@4461@

Integrating the express parameters into the quadratic function we have:

S= λ 2 ± λ 2 4kαVS 2kVS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4uai abg2da9KqbaoaalaaakeaajugibiabgkHiTiabeU7aSLqbaoaaCaaa leqabaqcLbmacaaIYaaaaKqzGeGaeyySaeBcfa4aaOaaaOqaaKqzGe Gaeq4UdW2cdaahaaqabeaajugWaiaaikdaaaqcLbsacqGHsislcaaI 0aGaam4Aaiabeg7aHjaadAfacaWGtbaaleqaaaGcbaqcLbsacaaIYa Gaam4AaiaadAfacaWGtbaaaaaa@50D3@ (28)

[ S 1 = λ 2 + λ 2 4kαVS 2kVS ][ S 2 = λ 2 λ 2 4kαVS 2kVS ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaake aajugibiaadofalmaaBaaabaqcLbmacaaIXaaaleqaaKqzGeGaeyyp a0tcfa4aaSaaaOqaaKqzGeGaeq4UdW2cdaahaaqabeaajugWaiaaik daaaqcLbsacqGHRaWkjuaGdaGcaaGcbaqcLbsacqaH7oaBjuaGdaah aaWcbeqaaKqzadGaaGOmaaaajugibiabgkHiTiaaisdacaWGRbGaeq ySdeMaamOvaiaadofaaSqabaaakeaajugibiaaikdacaWGRbGaamOv aiaadofaaaaakiaawUfacaGLDbaajuaGdaWadaGcbaqcLbsacaWGtb qcfa4aaSbaaSqaaKqzadGaaGOmaaWcbeaajugibiabg2da9Kqbaoaa laaakeaajugibiabeU7aSLqbaoaaCaaaleqabaqcLbsacaaIYaaaai abgkHiTKqbaoaakaaakeaajugibiabeU7aSTWaaWbaaeqabaqcLbma caaIYaaaaKqzGeGaeyOeI0IaaGinaiaadUgacqaHXoqycaWGwbGaam 4uaaWcbeaaaOqaaKqzGeGaaGOmaiaadUgacaWGwbGaam4uaaaaaOGa ay5waiaaw2faaaaa@71BB@
l [ λ 2 4QαVS 2kVS ]t[ λ λ 2 4QαVS 2kVS ]t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbIt LDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4 rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9 pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaaea qbaaGcbaGaeS4eHWMaaGPaVpaaCaaaleqabaGaaGPaVpaadmaabaWa aSaaaeaadaGcaaqaaiabeU7aSnaaCaaameqabaGaaGOmaaaaliaayk W7cqGHsislcaaMc8UaaGinaiaadgfacqaHXoqycaWGwbGaam4uaaad beaaaSqaaiaaikdacaWGRbGaamOvaiaadofaaaaacaGLBbGaayzxaa GaaGPaVlaadshacaaMc8UaaGPaVpaadmaabaWaaSaaaeaacaaMc8Ua eq4UdWMaaGPaVpaakaaabaGaeq4UdW2aaWbaaWqabeaacaaIYaaaaS GaaGPaVlabgkHiTiaaykW7caaI0aGaamyuaiabeg7aHjaadAfacaWG tbaameqaaaWcbaGaaGOmaiaadUgacaWGwbGaam4uaaaaaiaawUfaca GLDbaacaWG0baaaaaa@6C6F@ (29)

The inverse Laplace of the equation yield

VS(L)=[ Q t +Q+λ+α ]VSo l [ λ+ λ 2 +4QαVS kVS ]t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOvai aadofacaGGOaGaamitaiaacMcacqGH9aqpjuaGdaWadaGcbaqcfa4a aSaaaOqaaKqzGeGaamyuaaGcbaqcLbsacaWG0baaaiabgUcaRiaadg facqGHRaWkcqaH7oaBcqGHRaWkcqaHXoqyaOGaay5waiaaw2faaKqz GeGaamOvaiaadofacaWGVbGaeS4eHWwcfa4aaWbaaSqabeaadaWada qaamaalaaabaqcLbmacqaH7oaBcqGHRaWklmaakaaabaqcLbmacqaH 7oaBlmaaCaaameqabaqcLbmacaaIYaaaaiabgUcaRiaaisdacaWGrb GaeqySdeMaamOvaiaadofaaWqabaaaleaajugWaiaadUgacaWGwbGa am4uaaaaaSGaay5waiaaw2faaKqzadGaamiDaaaaaaa@6449@

[ [ λ λ 2 4kαVS 2kVS ] ]t[ λ λ 2 +4kαVS 2kVS ]t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaake aajuaGdaWadaGcbaqcfa4aaSaaaOqaaKqzGeGaeq4UdWMaeyOeI0sc fa4aaOaaaOqaaKqzGeGaeq4UdWwcfa4aaWbaaSqabeaajugWaiaaik daaaqcLbsacqGHsislcaaI0aGaam4Aaiabeg7aHjaadAfacaWGtbaa leqaaaGcbaqcLbsacaaIYaGaam4AaiaadAfacaWGtbaaaaGccaGLBb GaayzxaaaacaGLBbGaayzxaaqcLbsacaWG0bGaeyOeI0scfa4aamWa aOqaaKqbaoaalaaakeaajugibiabeU7aSjabgkHiTKqbaoaakaaake aajugibiabeU7aSTWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaey4k aSIaaGinaiaadUgacqaHXoqycaWGwbGaam4uaaWcbeaaaOqaaKqzGe GaaGOmaiaadUgacaWGwbGaam4uaaaaaOGaay5waiaaw2faaKqzGeGa amiDaaaa@68CF@ (30)

VS(L)=[ λ t 2 VSo ][ [ λ+ λ 2 4kαVS 2kVS ] ] l [ λ λ 2 4QαVS 2kVS ]t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOvai aadofacaGGOaGaamitaiaacMcacqGH9aqpjuaGdaWadaGcbaqcfa4a aSaaaOqaaKqzGeGaeq4UdWgakeaajugibiaadshajuaGdaahaaWcbe qaaKqzadGaaGOmaaaaaaqcLbsacaWGwbGaam4uaiaad+gaaOGaay5w aiaaw2faaKqbaoaadmaakeaajuaGdaWadaGcbaqcfa4aaSaaaOqaaK qzGeGaeq4UdWMaey4kaSscfa4aaOaaaOqaaKqzGeGaeq4UdW2cdaah aaqabeaajugWaiaaikdaaaqcLbsacqGHsislcaaI0aGaam4Aaiabeg 7aHjaadAfacaWGtbaaleqaaaGcbaqcLbsacaaIYaGaam4AaiaadAfa caWGtbaaaaGccaGLBbGaayzxaaaacaGLBbGaayzxaaqcLbsacqWIte cBjuaGdaahaaWcbeqaamaadmaabaWaaSaaaeaajugWaiabeU7aSTWa aOaaaeaajugWaiabeU7aSTWaaWbaaWqabeaajugWaiaaikdaaaGaey OeI0IaaGinaiaadgfacqaHXoqycaWGwbGaam4uaaadbeaaaSqaaKqz adGaaGOmaiaadUgacaWGwbGaam4uaaaaaSGaay5waiaaw2faaKqzad GaamiDaaaaaaa@79DD@

l [ λ λ 2 4kαVS 2kVS ]t[ λ λ 2 4kαVS 2kVS ]t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbIt LDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4 rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9 pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaaea qbaaGcbaGaeS4eHWMaaGPaVpaaCaaaleqabaGaaGPaVpaadmaabaWa aSaaaeaacqaH7oaBcaaMc8+aaOaaaeaacqaH7oaBdaahaaadbeqaai aaikdaaaWccaaMc8UaeyOeI0IaaGPaVlaaisdacaWGRbGaeqySdeMa amOvaiaadofaaWqabaaaleaacaaIYaGaam4AaiaadAfacaWGtbaaaa Gaay5waiaaw2faaiaaykW7caWG0bGaaGPaVlaaykW7cqGHsisldaWa daqaamaalaaabaGaaGPaVlabeU7aSnaakaaabaGaeq4UdW2aaWbaaW qabeaacaaIYaaaaSGaaGPaVlabgkHiTiaaykW7caaI0aGaam4Aaiab eg7aHjaadAfacaWGtbaameqaaaWcbaGaaGOmaiaadUgacaWGwbGaam 4uaaaaaiaawUfacaGLDbaacaWG0baaaaaa@6F44@  (31)

At this point VSo=0t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOvai aadofacaWGVbGaeyypa0JaaGimaiaadshacqGHGjsUcaaIWaaaaa@3E5B@

For equation (30) at t=0VS(o)=VSo MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamiDai abg2da9iaaicdacaWGwbGaam4uaiaacIcacaWGVbGaaiykaiabg2da 9iaadAfacaWGtbGaam4Baaaa@40E0@  we have

VSo=[ ( k+λ+α )VSo(1+1+1) ]=0=( k+λ+α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOvai aadofacaWGVbGaeyypa0tcfa4aamWaaOqaaKqbaoaabmaakeaajugi biaadUgacqGHRaWkcqaH7oaBcqGHRaWkcqaHXoqyaOGaayjkaiaawM caaKqzGeGaamOvaiaadofacaWGVbGaaiikaiaaigdacqGHRaWkcaaI XaGaey4kaSIaaGymaiaacMcaaOGaay5waiaaw2faaKqzGeGaeyypa0 JaaGimaiabg2da9KqbaoaabmaakeaajugibiaadUgacqGHRaWkcqaH 7oaBcqGHRaWkcqaHXoqyaOGaayjkaiaawMcaaaaa@5A16@

Hence Q+λ+α=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamyuai abgUcaRiabeU7aSjabgUcaRiabeg7aHjabg2da9iaaicdaaaa@3E27@

Equation (31) becomes

VS(L)VSo[ λ t 2 +2 ][ λ+ λ 2 4kαVS 2kVS ]t[ λ λ 2 4kαVS 2kVS ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOvai aadofacaGGOaGaamitaiaacMcacqGHsislcaWGwbGaam4uaiaad+ga juaGdaWadaGcbaqcfa4aaSaaaOqaaKqzGeGaeq4UdWgakeaajugibi aadshajuaGdaahaaWcbeqaaKqzadGaaGOmaaaaaaqcLbsacqGHRaWk caaIYaaakiaawUfacaGLDbaajuaGdaWadaGcbaqcfa4aaSaaaOqaaK qzGeGaeq4UdWMaey4kaSscfa4aaOaaaOqaaKqzGeGaeq4UdWwcfa4a aWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHsislcaaI0aGaam4Aai abeg7aHjaadAfacaWGtbaaleqaaaGcbaqcLbsacaaIYaGaam4Aaiaa dAfacaWGtbaaaaGccaGLBbGaayzxaaqcLbsacaWG0bqcfa4aamWaaO qaaKqbaoaalaaakeaajugibiabeU7aSLqbaoaakaaakeaajugibiab eU7aSLqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaeyOeI0IaaG inaiaadUgacqaHXoqycaWGwbGaam4uaaWcbeaaaOqaaKqzGeGaaGOm aiaadUgacaWGwbGaam4uaaaaaOGaay5waiaaw2faaaaa@7754@  (32)

We recall that Hence l x + l x =2Cosx, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbdfwBIj xAHbstHrhAaeXatLxBI9gBaerbd9wDYLwzYbItLDharuavP1wzZbIt LDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4 rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9 pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaaea qbaaGcbaGaamisaiaadwgacaWGUbGaam4yaiaadwgacaaMc8UaaGPa VlabloriSnaaCaaaleqabaGaamiEaaaakiaaykW7cqGHRaWkcaaMc8 UaeS4eHW2aaWbaaSqabeaacqGHsislcaWG4bGaaGPaVdaakiaaykW7 cqGH9aqpcaaMc8UaaGPaVlaaikdaciGGdbGaai4BaiaacohacaaMc8 UaamiEaiaacYcaaaa@5984@ so that equation (32) can be expressed as:

kS(L)[ λ+2 ]kSoCos[ λ λ 2 4kαVS 2kVS ]t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaam4Aai aadofacaGGOaGaamitaiaacMcacqGHsisljuaGdaWadaGcbaqcLbsa cqaH7oaBcqGHRaWkcaaIYaaakiaawUfacaGLDbaajugibiaadUgaca WGtbGaam4BaiaadoeacaWGVbGaam4CaKqbaoaadmaakeaajuaGdaWc aaGcbaqcLbsacqaH7oaBjuaGdaGcaaGcbaqcLbsacqaH7oaBlmaaCa aabeqaaKqzadGaaGOmaaaajugibiabgkHiTiaaisdacaWGRbGaeqyS deMaamOvaiaadofaaSqabaaakeaajugibiaaikdacaWGRbGaamOvai aadofaaaaakiaawUfacaGLDbaajugibiaadshaaaa@5E55@ (33)

Materials and methods

Standard laboratory experiment where performed to monitor the rate of permeability depositions at different formation, the soil depositions of the strata were collected in sequences base on the structural deposition at different study area, this samples collected at different location generated variation of permeability coefficient at different depth producing different coefficient of permeability through its pressure flow at the lower end using falling head permeability test at different strata, the experimental result are applied to be compared with theoretical values for model validation.

Results and discussion

Results and discussion are presented in tables including graphical representation of heterogeneous permeability coefficient at different Depth and Time (Tables 1–6).

Time per day

Predictive heterogeneous
permeability [M/s]

Experimental heterogeneous
permeability [M/S]

10

1.95E-02

2.00E-02

20

3.90E-02

4.00E-02

30

5.90E-02

6.00E-02

40

7.80E-02

8.00E-02

50

9.75E-02

1.00E-01

60

1.17E-01

1.20E-01

70

1.37E-01

1.40E-01

80

1.56E-01

1.60E-01

90

1.76E-01

1.80E-01

100

1.95E-01

2.00E-01

Table 1 Predictive and experimental values of heterogeneous permeability at different time

Depth [M]

Predictive heterogeneous
permeability [M/s]

Experimental heterogeneous
permeability [M/S]

3

1.32E-05

1.20E-05

6

2.65E-05

2.40E-05

9

3.98E-05

3.60E-05

12

5.32E-05

4.80E-05

15

6.64E-05

6.00E-05

18

7.98E-05

7.20E-05

21

9.30E-05

8.40E-05

24

1.06E-04

9.60E-05

27

1.19E-04

1.08E-04

30

1.33E-04

1.20E-04

Table 2 Predictive and experimental values of heterogeneous permeability at different depth

Depth [M]

Predictive heterogeneous
permeability [M/s]

Experimental heterogeneous
permeability [M/S]

3

1.32E-06

1.40E-06

6

2.10E-06

2.60E-06

9

3.98E-06

3.80E-06

12

5.32E-06

5.00E-06

15

6.64E-06

6.20E-06

18

7.78E-06

7.40E-06

21

9.30E-06

8.60E-06

24

1.06E-05

9.80E-06

27

1.19E-05

1.10E-05

30

1.33E-05

1.22E-05

Table 3 Predictive and experimental values of heterogeneous permeability at different depth

Depth [M]

Predictive heterogeneous
permeability [M/s]

Experimental heterogeneous
permeability [M/S]

3

1.97E-05

2.09E-05

6

3.95E-05

4.19E-05

9

5.92E-05

6.29E-05

12

7.91E-05

8.39E-05

15

9.88E-05

1.05E-04

18

1.19E-04

1.26E-04

21

1.38E-04

1.47E-04

24

1.59E-04

1.68E-04

27

1.77E-04

1.89E-04

30

1.98E-04

2.09E-04

Table 4 Predictive and experimental values of heterogeneous permeability at different depth

Depth [M]

Predictive heterogeneous
permeability [M/s]

Experimental heterogeneous
permeability [M/S]

3

2.65E-05

2.80E-05

6

5.32E-05

5.50E-05

9

7.98E-05

8.20E-05

12

1.14E-04

1.09E-04

15

1.33E-04

1.36E-04

18

1.59E-04

1.63E-04

21

1.86E-04

1.90E-04

24

2.13E-04

2.17E-04

27

2.39E-04

2.44E-04

30

2.66E-04

2.71E-04

Table 5 Predictive and experimental values of heterogeneous permeability at different depth

Time per day

Predictive heterogeneous
permeability [M/s]

Experimental heterogeneous
permeability [M/S]

10

8.58E-04

8.96E-04

20

1.71E-03

1.79E-03

30

2.57E-03

2.69E-03

40

3.43E-03

3.59E-03

50

4.29E-03

4.49E-03

60

5.15E-03

5.39E-03

70

6.00E-03

6.29E-03

80

6.86E-03

7.19E-03

90

7.72E-03

8.09E-03

100

8.58E-03

8.99E-03

110

9.44E-03

9.89E-03

120

1.03E-02

1.07E-02

Table 6 predictive and experimental values of heterogeneous permeability at different time

Figures 1–6 presented express the rate heterogeneous deposition of permeability in coarse formation in every location at the study area. All the trend from the figures express exponential phase trend, these are all in linear conditions were the lowest were observed at ten days at the depth of three metres, while the optimum are recorded at thirty six metres depth at the period of hundred and twenty days, but the simulation values are heterogeneous from the permeability coefficient values. More so, based on the concept of simulation, the predictive values were observed to have reflected from heterogeneous deposition of the strata as experienced from the figures above. The values in some figure are reflecting low permeation varying between 1.32E-06 -1.00E-02.These implies that the structure of the strata establish predominant variation of coarse heterogeneity in the study environment, while in some area develop predominance with low depositions low coefficient of permeability, these are base on the rate of predominant structure strata heterogeneity thus developed fluid velocity that cannot produce productive yield rate in phreatic zones. The predictive values from various figures were compared with experimental values for model validation, both parameters developed favorable fits.

Figure 1 Predictive and experimental values of heterogeneous permeability at different time.
Figure 2 Predictive and experimental values of heterogeneous permeability at different depth.
Figure 3 Predictive and experimental values of heterogeneous permeability at different depth.
Figure 4 Predictive and experimental values of heterogeneous permeability at different depth.
Figure 5 Predictive and experimental values of heterogeneous permeability at different depth.
Figure 6 Predictive and experimental values of heterogeneous permeability at different depth.

Conclusion

The study has developed coefficient of permeability applying deterministic modeling application, several research determined coefficient of permeability using experimental procedure, there is no literature expect other modeling concept done by Eluozo,19 these was to monitor permeability coefficient under predominant effect from void ratio and compressibility of fine sand, the seepage force were observed from fracture between the porous rock deposition during disintegration or weathering period, this generated the heterogeneity of fluid flow in permeable coarse depositions, the developed model were subjected to simulation, these generated predictive values were compared with experimental values for model validation, the results from predictive values experienced linear flow with variation of permeability coefficient from the graphical representations, most values deposited lower permeability coefficient compared to others, the study generated permeability coefficient that can be experienced in deltaic deposition at different environments . Finally, other simulation reflects some structured strata that developed lower permeations, these areas will definitely developed low yield in phreatic depositions or accumulation of contaminant in pollution transport. The study was subjected to simulations; these values predict the heterogeneous depositions of permeability under seepage influences in deltaic formations.20-25

Acknowledgement

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. Close ME, Stanton GJ, Pang L. Use of rhodamine WT with XAD–7 resin for determining groundwater flow paths. J Hydrogeol. 2002;10(3):368–376.
  2. Saeed PK, Shahram M, Hossein M, et al. Seepage evaluation of an earth dam using Group Method of Data Handling (GMDH) type neural network: A case study. Scientific Research and Essays. 2013;8(3):120–127.
  3. Eluozo SN. Predictive Model to Monitor Rate of Dissolved Chromium in Soil and Water influenced by Permeability and Linear Velocity in Phreatic Aquifers. Rivers State of Nigeria. Scientific Journal of Environmental Science. 2013a;2(1):1–9.
  4. Eluozo SN. Model Establishment and Calibration of Degree of Saturation Influencing the Transport of Cryptosporidium Parvum in Lateritic Soil in Coastal Area of Degema.  Scientific Journal of Pure and Applied Science. 2013b:2(2).
  5. Eluozo SN. Mathematical Model to Predict the Velocity of Solute Transport in Silty and Fine Sand Formations, in Unconfined Bed in Port Harcourt Metropolis, Niger Delta of Nigeria. International Journal of Waste Management and Technology. 201c;1(1):14–22.
  6. Eluozo SN. Modeling Soil Column Water Flow on Heat Pathogenic Bacteria Influenced By Advection and Dispersion in Port Harcourt, Rivers State of Nigeria. International Journal of Waste Management and Technology. 2013d;1(1):01–13.
  7. Eluozo SN. Predictive Model to Monitor the Rate of Salmonella Transport through plug Flow Application in Lateritic and silty Formation in Coastal Area of Port Harcourt. International Journal of Waste Management and Technology. 2013e;1(1):23–30.
  8. Eluozo SN. Predictive Model to Monitor the Transport of E.coli in Homogeneous Aquifers in Port Harcourt, Niger Delta of Nigeria. Scientific Journal of Pure and Applied Science. 2013f;2(3):140–150.
  9. Ardalan H, Eslami A, Nariman–Zadeh N. Piles shaft csapacity from CPT and CPTu data by polynomial neural networks and genetic algorithms. Comput Geotechn. 2009;36(4):616–625.
  10. Kalantary F, Ardalan H, Nariman–Zadeh N. An investigation on the Su–NSPT correlation using GMDH type neural networks and genetic algorithms. Eng Geol. 2009;104(1–2):144–155.
  11. Eluozo SN. Model Prediction to Monitor the Influence of Porosity Effect on Shigellae Transport to Ground Water in Elele Rivers State of Nigeria. Scientific Journal of Pure and Applied Science. 2013g;2(3):151–160.
  12. Eluozo SN. Modeling the Transport of Pseudomonas in Homogeneous Formation in Khana, Rivers State of Nigeria. American Journal of Engineering Science and Technology Research. 2013h;1(3):32–42.
  13. Lakshmi NR. Seepage in soils. New Jersey: John Willey & Sons, Inc., Hoboken: 2003;10–15.
  14. Eluozo SN. Modeling the Transport of Bacillus in linear Phase Condition in Heterogeneous Unconfined Aquifers in Ahoada East, Rivers State of Nigeria. International Journal of Sustainable Energy and Environment. 2013i;1(3): 68–77.
  15. Eluozo SN. Modeling of Shigellae Transport on Batch System Application in Homogeneous fine Sand column Influenced by Porosity and Void Ratio in Coastal Area of Borikiri, Niger Delta of Nigeria. American Journal of Engineering Science and Technology Research. 2013j;1(3):51–58.
  16. Eluozo SN. Modeling of Batch System Application on Bacteriophage Transport in Homogeneous coarse Aquifers Influenced by Permeability in Elele, Rivers State of Nigeria. International Journal of Sustainable Energy and Environment. 2013k;1(3):48–55.
  17. Eluozo SN. Mathematical Modeling on Application of Batch System to Predict the Deposition of Bacteria in Lakes. American Journal of Environment, Energy and Power Research. 2013l;1(2):24–32.
  18. Eluozo SN. Mathematical Model To Predict Blocking Effect on Random Sequential Adsorption on Thermotolerant Transport in Homogeneous Unconfined Aquifers in Ahoada Deltaic Environment, Rivers State of Nigeria.  American Journal of Engineering Science and Technology Research. 2013m;1(1):19–33.
  19. Eluozo SN. Permeability Coefficient Model Influenced by Void Ratio on Heterogeneous Compressibility of Fine Sand Formation in Obio–Akpor, Port Harcourt. World Journal of Environmental Sciences and Development Research. 2015;1(1):1–8.
  20. Eluozo SN. Mathematical Model on Inverse Migration of Enteromobacter in Homogenous Coarse Sand Column in Coastal Area of Port Harcourt, Niger Delta Environment. International Journal of Sustainable Energy and Environment. 2013n;1(3):56–67.
  21. Eluozo SN. Amagbo LG, Afiibor BB. Permeability and void Ratio Influence on Heterogeneous Deposition of Chlorobium Transport in Coarse Formation, Applying Numerical Modeling and Simulation. MOJ Applied Bionics and Biomechanics. 2017o;1(5):1–7.
  22. Sujoy KR. Experimental study on different types of seepage flow under the sheet piles through in indigenous mode Department of Civil Engineering Faculty of Engineering & Technology Jadavpur University Kolkata, India; 2010.
  23. Kalkani EC. Analysing seepage in an earth dam. International Water Power and Dam Construction. 1989;41(2):23–33.
  24. Goldin AL, Rasskazov LN. Design of earth dams. In: Balkema AA, editor. The Netherlands:.1992;51–63.
  25. Deiminiat Abbas A. Ghezelsofloo H Shojaee.  New approach to initial estimation of seepage rate in zoned earth dam. India.
Creative Commons Attribution License

©2018 Predicting, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.