Submit manuscript...
MOJ
eISSN: 2576-4519

Applied Bionics and Biomechanics

Research Article Volume 2 Issue 5

Dispersion and dynamics influences from phosphorus deposition on e-coli transport in coastal deltaic lake

Eluozo SN,1 Afiibor BB2

1Department of Civil Engineering, Gregory University Uturu (GUU), Nigeria
2Department of Statistics Federal Polytechnic, Nigeria

Correspondence: Eluozo SN, Department of Civil Engineering, Gregory University Uturu (GUU) Abia State of Nigeria, Nigeria

Received: August 31, 2018 | Published: September 28, 2018

Citation: Eluozo SN, Afiibor BB. Dispersion and dynamics influences from phosphorus deposition on e-coli transport in coastal deltaic lake. MOJ App Bio Biomech. 2018;2(5):289–293. DOI: 10.15406/mojabb.2018.02.00083

Download PDF

Abstract

The study monitor the dynamic pressure from phosphorus deposition on E.coli transport in coastal deltaic lake, such environment were observed to develop lots of negativities from various factors, the study observed high deposition of phosphorus, these substance are micronutrient family that increase the deposition of E.coli in lake and other river environments, the study monitor the behaviour of E.coli in lake under variation of phosphorus pressure in the system, dispersion and dynamic influences from such substances generated fluctuation of E.coli migration in the study environment, the derived solution generated simulation values that were compared with experimental values, and both parameters developed some level of faviourable fits, the study has also observed other environmental factors that may cause fluctuation of the E.coli in the study area.

Keywords: dispersion, dynamics, phosphorus, E.coli transport and lakes

Introduction

The deposition of E-coli in soil and water environment has been a serious concern to environmental health globally, Harvell et al.1 express the rate of environmental challenges to have alter serious natural condition thus cause serious negative impact on the environment. The problem has escalated to serious diseases and more pollution around the globe. In the strem rivers and ocean today there serious rise in temperature that has cause increase in proliferation, other part of the world today there increase in cholera due to increase of salt water surface temperature.2 Nevertheless, it has been observed by most experts that global warming has some positive impact on human health; for example, Epstein,3 even at that bin other part of the world it might chage to negative impact as these climatic condition might reduce snail population including scistosomiasis. More so the spread rise of some other diseases in oceans could be catastrophic to human health on its ambient water bodies and humans.2,4–6 Furthermore studies has shown that implementation of an appropriate measures should definitely prevent the transmission of water borne pathogens including death cause this diseases contaminated water.2,7 Unsafe rate of pathogens in ambient water bodies has been the major cause of water pollution that has pose serious hazard to public health. Studies from world health organization have explained that over 2.2 billion death and 2.6 billion people lack safe drinking water globally. Deaths annually of 1.4 million are children.8 The struggle to ensure that safe drinking water is provided to people could reduce it to about 4% of the global disease burden.9,10 Other related research has also explain these condition in the same state of public health concern, Recent studies such as10–17 have evaluation the present state of art and progression in this field, mainly, for freshwater and estuarine sediments. However, gap in the studies has been observed. Besides there are several present evaluation and reviewed precisely on specific water bodies, for instance, John and Rose15 focuses on ground water, Brookes11 focuses on reservoirs and lakes, and Jamieson et al.,12 focuses on agriculture watershed. Others, for example, Kay et al.,18 reviewed on catchment microbial dynamics.

Theoretical background

K d 2 c d x 2 φ dc dx + V t dc dx =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4samaala aabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadogaaeaacaWGKbGa amiEamaaCaaaleqabaGaaGOmaaaaaaGccaaMc8UaaGPaVlabgkHiTi aaykW7caaMc8UaaGPaVlabeA8aQnaalaaabaGaamizaiaadogaaeaa caWGKbGaamiEaaaacaaMc8UaaGPaVlaaykW7cqGHRaWkcaaMc8UaaG PaVlaadAfadaWgaaWcbaGaamiDaaqabaGcdaWcaaqaaiaadsgacaWG JbaabaGaamizaiaadIhaaaGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaG PaVlaaykW7caaIWaGaaGPaVlaaykW7caaMc8UaaGPaVdaa@6A26@                                                                                (1)

K d 2 c d x 2 ( φ V t ) dc dx =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4samaala aabaGaamizamaaCaaaleqabaGaaGOmaaaakiaadogaaeaacaWGKbGa amiEamaaCaaaleqabaGaaGOmaaaaaaGccaaMc8UaaGPaVlabgkHiTi aaykW7caaMc8UaaGPaVpaabmaabaGaeqOXdOMaeyOeI0IaamOvamaa BaaaleaacaWG0baabeaaaOGaayjkaiaawMcaamaalaaabaGaamizai aadogaaeaacaWGKbGaamiEaaaacaaMc8UaaGPaVlaaykW7caaMc8Ua eyypa0JaaGPaVlaaykW7caaMc8UaaGimaiaaykW7caaMc8UaaGPaVl aaykW7aaa@6352@                                                                                  (2)

Let C= n=0 a n x n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8+aaabCaeaacaWGHbWa aSbaaSqaaiaad6gaaeqaaOGaamiEamaaCaaaleqabaGaamOBaaaaae aacaWGUbGaeyypa0JaaGimaaqaaiabg6HiLcqdcqGHris5aaaa@4B80@

C 1 = n=1 n a n x n1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGymaaaakiaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7 caaMc8+aaabCaeaacaWGUbGaamyyamaaBaaaleaacaWGUbaabeaaki aadIhadaahaaWcbeqaaiaad6gacqGHsislcaaIXaaaaaqaaiaad6ga cqGH9aqpcaaIXaaabaGaeyOhIukaniabggHiLdaaaa@4F0E@

C 11 = n=2 n( n1 ) a n x n2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGymaiaaigdaaaGccaaMc8UaaGPaVlabg2da9iaaykW7 caaMc8UaaGPaVpaaqahabaGaamOBamaabmaabaGaamOBaiabgkHiTi aaigdaaiaawIcacaGLPaaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGa amiEamaaCaaaleqabaGaamOBaiabgkHiTiaaikdaaaaabaGaamOBai abg2da9iaaikdaaeaacqGHEisPa0GaeyyeIuoaaaa@53EF@

K n=2 n( n1 ) a n x n2 ( φ V t ) n=1 n a n x n1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4samaaqa habaGaamOBamaabmaabaGaamOBaiabgkHiTiaaigdaaiaawIcacaGL PaaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGaamiEamaaCaaaleqaba GaamOBaiabgkHiTiaaikdaaaaabaGaamOBaiabg2da9iaaikdaaeaa cqGHEisPa0GaeyyeIuoakiaaykW7caaMc8UaeyOeI0IaaGPaVlaayk W7daqadaqaaiabeA8aQjabgkHiTiaadAfadaWgaaWcbaGaamiDaaqa baaakiaawIcacaGLPaaadaaeWbqaaiaad6gacaWGHbWaaSbaaSqaai aad6gaaeqaaOGaamiEamaaCaaaleqabaGaamOBaiabgkHiTiaaigda aaaabaGaamOBaiabg2da9iaaigdaaeaacqGHEisPa0GaeyyeIuoaki aaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaIWaaaaa@6C06@                                                     (3)

Replace n in the 1st term by n+2 and in the 2nd term by n+1, so that we have;

K n=2 n( n+2 )( n+1 ) a n+2 x n ( φ V t ) n=0 ( n+1 ) a n+1 x n =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4samaaqa habaGaamOBamaabmaabaGaamOBaiabgUcaRiaaikdaaiaawIcacaGL Paaadaqadaqaaiaad6gacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaam yyamaaBaaaleaacaWGUbGaey4kaSIaaGOmaaqabaGccaWG4bWaaWba aSqabeaacaWGUbaaaaqaaiaad6gacqGH9aqpcaaIYaaabaGaeyOhIu kaniabggHiLdGccaaMc8UaaGPaVlabgkHiTiaaykW7caaMc8+aaeWa aeaacqaHgpGAcqGHsislcaWGwbWaaSbaaSqaaiaadshaaeqaaaGcca GLOaGaayzkaaWaaabCaeaadaqadaqaaiaad6gacqGHRaWkcaaIXaaa caGLOaGaayzkaaGaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaa qabaGccaWG4bWaaWbaaSqabeaacaWGUbaaaaqaaiaad6gacqGH9aqp caaIWaaabaGaeyOhIukaniabggHiLdGccaaMc8UaaGPaVlabg2da9i aaykW7caaMc8UaaGimaaaa@7324@                                                 (4)

i.e. K( n+2 )( n+1 ) a n+2 =( φ V t )( n+1 ) a n+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4samaabm aabaGaamOBaiabgUcaRiaaikdaaiaawIcacaGLPaaadaqadaqaaiaa d6gacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaamyyamaaBaaaleaaca WGUbGaey4kaSIaaGOmaaqabaGccaaMc8UaaGPaVlabg2da9iaaykW7 caaMc8+aaeWaaeaacqaHgpGAcqGHsislcaWGwbWaaSbaaSqaaiaads haaeqaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGUbGaey4kaSIaaGym aaGaayjkaiaawMcaaiaadggadaWgaaWcbaGaamOBaiabgUcaRiaaig daaeqaaaaa@594E@                      …………………..                                (5)

a n+2 = ( φ V t )( n+1 ) a n+1 K( n+2 )( n+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGUbGaey4kaSIaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7 cqGH9aqpcaaMc8UaaGPaVpaalaaabaWaaeWaaeaacqaHgpGAcqGHsi slcaWGwbWaaSbaaSqaaiaadshaaeqaaaGccaGLOaGaayzkaaWaaeWa aeaacaWGUbGaey4kaSIaaGymaaGaayjkaiaawMcaaiaadggadaWgaa WcbaGaamOBaiabgUcaRiaaigdaaeqaaaGcbaGaam4samaabmaabaGa amOBaiabgUcaRiaaikdaaiaawIcacaGLPaaadaqadaqaaiaad6gacq GHRaWkcaaIXaaacaGLOaGaayzkaaaaaaaa@5AF3@                                   …………………..                                (6)

a n+2 = ( φ V t )( n+1 ) a n+1 K( n+2 )( n+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaWGUbGaey4kaSIaaGOmaaqabaGccaaMc8UaaGPaVlaaykW7 cqGH9aqpcaaMc8UaaGPaVpaalaaabaWaaeWaaeaacqaHgpGAcqGHsi slcaWGwbWaaSbaaSqaaiaadshaaeqaaaGccaGLOaGaayzkaaWaaeWa aeaacaWGUbGaey4kaSIaaGymaaGaayjkaiaawMcaaiaadggadaWgaa WcbaGaamOBaiabgUcaRiaaigdaaeqaaaGcbaGaam4samaabmaabaGa amOBaiabgUcaRiaaikdaaiaawIcacaGLPaaadaqadaqaaiaad6gacq GHRaWkcaaIXaaacaGLOaGaayzkaaaaaaaa@5AF3@                                                   …………………..                                (7)

for n=0, a 2 = ( φ V t ) a 1 2K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7caaIWaGaaiilaiaaykW7caaM c8UaamyyamaaBaaaleaacaaIYaaabeaakiaaykW7caaMc8UaaGPaVl abg2da9iaaykW7caaMc8+aaSaaaeaadaqadaqaaiabeA8aQjabgkHi TiaadAfadaWgaaWcbaGaamiDaaqabaaakiaawIcacaGLPaaacaWGHb WaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGOmaiaadUeaaaaaaa@585E@                                                    …………………..                                (8)
for n=1, a 3 = ( φ V t ) a 2 3K = ( φ V t ) 2 a 1 2K3K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7caaIXaGaaiilaiaaykW7caaM c8UaamyyamaaBaaaleaacaaIZaaabeaakiaaykW7caaMc8UaaGPaVl abg2da9iaaykW7caaMc8+aaSaaaeaadaqadaqaaiabeA8aQjabgkHi TiaadAfadaWgaaWcbaGaamiDaaqabaaakiaawIcacaGLPaaacaWGHb WaaSbaaSqaaiaaikdaaeqaaaGcbaGaaG4maiaadUeaaaGaaGPaVlaa ykW7cqGH9aqpcaaMc8UaaGPaVpaalaaabaWaaeWaaeaacqaHgpGAcq GHsislcaWGwbWaaSbaaSqaaiaadshaaeqaaaGccaGLOaGaayzkaaWa aWbaaSqabeaacaaIYaaaaOGaamyyamaaBaaaleaacaaIXaaabeaaaO qaaiaaikdacaWGlbGaeyOiGCRaaGPaVlaaiodacaWGlbaaaaaa@6ED4@                            …………………..                                (9)

for n=2; a 4 = ( φ V t ) a 3 4K = ( φ V t ) 4K ( φ V t ) a 1 3K2K = ( φ V t ) 3 a 1 4K3K2K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7caaIYaGaai4oaiaaykW7caaM c8UaamyyamaaBaaaleaacaaI0aaabeaakiaaykW7caaMc8UaaGPaVl abg2da9iaaykW7caaMc8+aaSaaaeaadaqadaqaaiabeA8aQjabgkHi TiaadAfadaWgaaWcbaGaamiDaaqabaaakiaawIcacaGLPaaacaWGHb WaaSbaaSqaaiaaiodaaeqaaaGcbaGaaGinaiaadUeaaaGaaGPaVlaa ykW7cqGH9aqpcaaMc8UaaGPaVpaalaaabaWaaeWaaeaacqaHgpGAcq GHsislcaWGwbWaaSbaaSqaaiaadshaaeqaaaGccaGLOaGaayzkaaaa baGaaGinaiaadUeaaaGaaGPaVlaaykW7cqGHIaYTcaaMc8UaaGPaVp aalaaabaWaaeWaaeaacqaHgpGAcqGHsislcaWGwbWaaSbaaSqaaiaa dshaaeqaaaGccaGLOaGaayzkaaGaamyyamaaBaaaleaacaaIXaaabe aaaOqaaiaaiodacaWGlbGaaGPaVlabgkci3kaaykW7caaIYaGaam4s aaaacaaMc8UaaGPaVlabg2da9iaaykW7caaMc8+aaSaaaeaadaqada qaaiabeA8aQjabgkHiTiaadAfadaWgaaWcbaGaamiDaaqabaaakiaa wIcacaGLPaaadaahaaWcbeqaaiaaiodaaaGccaWGHbWaaSbaaSqaai aaigdaaeqaaaGcbaGaaGinaiaadUeacaaMc8UaeyOiGCRaaG4maiaa dUeacqGHIaYTcaaMc8UaaGOmaiaadUeaaaaaaa@9A1C@                  …                           (10)

for n=3; a 5 = ( φ V t ) 5K = ( φ V t ) 4 a 1 5K4K3K2K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7caaIZaGaai4oaiaaykW7caaM c8UaamyyamaaBaaaleaacaaI1aaabeaakiaaykW7caaMc8UaaGPaVl abg2da9iaaykW7caaMc8UaaGPaVpaalaaabaWaaeWaaeaacqaHgpGA cqGHsislcaWGwbWaaSbaaSqaaiaadshaaeqaaaGccaGLOaGaayzkaa aabaGaaGynaiaadUeaaaGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPa VlaaykW7caaMc8+aaSaaaeaadaqadaqaaiabeA8aQjabgkHiTiaadA fadaWgaaWcbaGaamiDaaqabaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaisdaaaGccaWGHbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaaGynai aadUeacaaMc8UaeyOiGCRaaGinaiaadUeacaaMc8UaeyOiGCRaaG4m aiaadUeacqGHIaYTcaaMc8UaaGOmaiaadUeaaaaaaa@7AF1@     …………………..                               (11)

for n; a n ( φ V t ) n1 a 1 K n1 n! MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaayk W7caGG7aGaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaad6gaaeqaaOGa aGPaVlaaykW7cqGHsislcaaMc8UaaGPaVpaalaaabaWaaeWaaeaacq aHgpGAcqGHsislcaWGwbWaaSbaaSqaaiaadshaaeqaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiaadggada WgaaWcbaGaaGymaaqabaaakeaacaWGlbWaaWbaaSqabeaacaWGUbGa eyOeI0IaaGymaaaakiaad6gacaGGHaaaaaaa@571F@                                                      …………………..                                (12)

C( x )= a 0 + a 1 x+ a 2 x 2 + a 3 x 3 + a 4 x 4 + a 5 x 5 +....... a n x n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaabm aabaGaamiEaaGaayjkaiaawMcaaiaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8UaamyyamaaBaaaleaacaaIWaaabeaakiaaykW7ca aMc8Uaey4kaSIaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigdaaeqa aOGaamiEaiaaykW7cqGHRaWkcaaMc8UaamyyamaaBaaaleaacaaIYa aabeaakiaadIhadaahaaWcbeqaaiaaikdaaaGccaaMc8Uaey4kaSIa aGPaVlaadggadaWgaaWcbaGaaG4maaqabaGccaWG4bWaaWbaaSqabe aacaaIZaaaaOGaaGPaVlabgUcaRiaaykW7caWGHbWaaSbaaSqaaiaa isdaaeqaaOGaamiEamaaCaaaleqabaGaaGinaaaakiaaykW7cqGHRa WkcaaMc8UaamyyamaaBaaaleaacaaI1aaabeaakiaadIhadaahaaWc beqaaiaaiwdaaaGccaaMc8Uaey4kaSIaaGPaVlaac6cacaGGUaGaai Olaiaac6cacaGGUaGaaiOlaiaac6cacaWGHbWaaSbaaSqaaiaad6ga aeqaaOGaamiEamaaBaaaleaacaWGUbaabeaaaaa@7B44@         …………..                             (13)

  = a 0 + a 1 x+ ( φ V t ) a 1 x 2 2!K + ( φ V t ) a 1 x 3 3! K 2 + ( φ V t ) x 4 4! K 3 + ( φ V t ) 5 5! K 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yyamaaBaaaleaacaaIWaaabeaakiaaykW7caaMc8Uaey4kaSIaaGPa VlaaykW7caWGHbWaaSbaaSqaaiaaigdaaeqaaOGaamiEaiaaykW7cq GHRaWkcaaMc8+aaSaaaeaadaqadaqaaiabeA8aQjabgkHiTiaadAfa daWgaaWcbaGaamiDaaqabaaakiaawIcacaGLPaaacaWGHbWaaSbaaS qaaiaaigdaaeqaaOGaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaa ikdacaGGHaGaam4saaaacaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8 +aaSaaaeaadaqadaqaaiabeA8aQjabgkHiTiaadAfadaWgaaWcbaGa amiDaaqabaaakiaawIcacaGLPaaacaWGHbWaaSbaaSqaaiaaigdaae qaaOGaamiEamaaCaaaleqabaGaaG4maaaaaOqaaiaaiodacaGGHaGa am4samaaCaaaleqabaGaaGOmaaaaaaGccaaMc8UaaGPaVlabgUcaRi aaykW7daWcaaqaamaabmaabaGaeqOXdOMaeyOeI0IaamOvamaaBaaa leaacaWG0baabeaaaOGaayjkaiaawMcaaiaadIhadaahaaWcbeqaai aaisdaaaaakeaacaaI0aGaaiyiaiaadUeadaahaaWcbeqaaiaaioda aaaaaOGaaGPaVlaaykW7caaMc8Uaey4kaSIaaGPaVlaaykW7daWcaa qaamaabmaabaGaeqOXdOMaeyOeI0IaamOvamaaBaaaleaacaWG0baa beaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGynaaaaaOqaaiaaiw dacaGGHaGaam4samaaCaaaleqabaGaaGinaaaaaaaaaa@8C9B@  ...                           (14)        

C( x )= a 0 + a 1 [ ( φ V t )x 2!K + ( φ V t ) 2 x 3 3! K 2 + ( φ V t ) 3 4! K 3 + ( φ V t ) 4 5! K 4 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaabm aabaGaamiEaaGaayjkaiaawMcaaiaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8UaamyyamaaBaaaleaacaaIWaaabeaakiaaykW7ca aMc8Uaey4kaSIaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigdaaeqa aOWaamWaaeaadaWcaaqaamaabmaabaGaeqOXdOMaeyOeI0IaamOvam aaBaaaleaacaWG0baabeaaaOGaayjkaiaawMcaaiaadIhaaeaacaaI YaGaaiyiaiaadUeaaaGaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVp aalaaabaWaaeWaaeaacqaHgpGAcqGHsislcaWGwbWaaSbaaSqaaiaa dshaaeqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaam iEamaaCaaaleqabaGaaG4maaaaaOqaaiaaiodacaGGHaGaam4samaa CaaaleqabaGaaGOmaaaaaaGccaaMc8UaaGPaVlabgUcaRiaaykW7da WcaaqaamaabmaabaGaeqOXdOMaeyOeI0IaamOvamaaBaaaleaacaWG 0baabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaG4maaaaaOqaai aaisdacaGGHaGaam4samaaCaaaleqabaGaaG4maaaaaaGccaaMc8Ua aGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVpaalaaabaWaaeWaaeaacq aHgpGAcqGHsislcaWGwbWaaSbaaSqaaiaadshaaeqaaaGccaGLOaGa ayzkaaWaaWbaaSqabeaacaaI0aaaaaGcbaGaaGynaiaacgcacaWGlb WaaWbaaSqabeaacaaI0aaaaaaaaOGaay5waiaaw2faaaaa@8FFA@  …….                     (15)

C( x )= a 0 + a 1 ( φ V t ) K x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaabm aabaGaamiEaaGaayjkaiaawMcaaiaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8UaamyyamaaBaaaleaacaaIWaaabeaakiaaykW7ca aMc8Uaey4kaSIaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigdaaeqa aOGaaGPaVlabloriSjaaykW7daahaaWcbeqaamaalaaabaWaaeWaae aacqaHgpGAcqGHsislcaWGwbWaaSbaaWqaaiaadshaaeqaaaWccaGL OaGaayzkaaaabaGaam4saaaacaWG4baaaaaa@5ACA@                                                 …………………..                                (16)

 

Subject equation (16) to the following boundary condition
C( o )=0andC( o )=H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaabm aabaGaam4BaaGaayjkaiaawMcaaiaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8UaaGimaiaaykW7caaMc8Uaamyyaiaad6gacaWGKb GaaGPaVlaadoeadaqadaqaaiaad+gaaiaawIcacaGLPaaacaaMc8Ua aGPaVlabg2da9iaaykW7caaMc8Uaamisaaaa@56D7@

C( x )= a 0 + a 1 ( φ V t ) K x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaabm aabaGaamiEaaGaayjkaiaawMcaaiaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8UaamyyamaaBaaaleaacaaIWaaabeaakiaaykW7ca aMc8Uaey4kaSIaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigdaaeqa aOGaaGPaVlabloriSjaaykW7daahaaWcbeqaamaalaaabaWaaeWaae aacqaHgpGAcqGHsislcaWGwbWaaSbaaWqaaiaadshaaeqaaaWccaGL OaGaayzkaaaabaGaam4saaaacaWG4baaaaaa@5ACA@

C( o )= a 0 + a 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaabm aabaGaam4BaaGaayjkaiaawMcaaiaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8UaamyyamaaBaaaleaacaaIWaaabeaakiaaykW7ca aMc8Uaey4kaSIaaGPaVlaaykW7caWGHbWaaSbaaSqaaiaaigdaaeqa aOGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaicdaaaa@561D@

i.e. a 0 + a 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIWaaabeaakiaaykW7caaMc8Uaey4kaSIaaGPaVlaaykW7 caWGHbWaaSbaaSqaaiaaigdaaeqaaOGaaGPaVlaaykW7cqGH9aqpca aMc8UaaGPaVlaaicdaaaa@4A1B@                                                                       …………………..                (17)

C 1 ( x )= ( φ V t ) 2!K a 1 ( φ V t ) K x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGymaaaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiaa ykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8+aaSaaaeaadaqada qaaiabeA8aQjabgkHiTiaadAfadaWgaaWcbaGaamiDaaqabaaakiaa wIcacaGLPaaaaeaacaaIYaGaaiyiaiaadUeaaaGaaGPaVlaadggada WgaaWcbaGaaGymaaqabaGccaaMc8UaeS4eHWMaaGPaVpaaCaaaleqa baWaaSaaaeaadaqadaqaaiabeA8aQjabgkHiTiaadAfadaWgaaadba GaamiDaaqabaaaliaawIcacaGLPaaaaeaacaWGlbaaaiaadIhaaaaa aa@5CE1@

C 1 ( o )= ( φ V t ) 2!K a 1 =H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaGymaaaakmaabmaabaGaam4BaaGaayjkaiaawMcaaiaa ykW7caaMc8Uaeyypa0JaaGPaVlaaykW7caaMc8+aaSaaaeaadaqada qaaiabeA8aQjabgkHiTiaadAfadaWgaaWcbaGaamiDaaqabaaakiaa wIcacaGLPaaaaeaacaaIYaGaaiyiaiaadUeaaaGaaGPaVlaadggada WgaaWcbaGaaGymaaqabaGccaaMc8Uaeyypa0JaaGPaVlaaykW7caWG ibaaaa@56BC@

a 1 = HK φ V t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaaabeaakiaaykW7cqGH9aqpcaaMc8UaaGPaVpaalaaa baGaamisaiaadUeaaeaacqaHgpGAcqGHsislcaWGwbWaaSbaaSqaai aadshaaeqaaaaaaaa@4549@                                                             …………………..                                (18)

Substitute (18) into equation (17)

a 1 = a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaaabeaakiaaykW7caaMc8Uaeyypa0JaaGPaVlaaykW7 caWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGPaVdaa@43DE@

a 0 = HK φ V t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaaG PaVlaaykW7caaMc8UaaGPaVlaadggadaWgaaWcbaGaaGimaaqabaGc caaMc8Uaeyypa0JaaGPaVlaaykW7daWcaaqaaiabgkHiTiaadIeaca WGlbaabaGaeqOXdOMaeyOeI0IaamOvamaaBaaaleaacaWG0baabeaa aaaaaa@4EBE@                                      …………………..                                (19)

Hence the particular solution of equation (16) is of the form:
C( x )= HK φ V t + HK φ V t ( φ V t ) K x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaabm aabaGaamiEaaGaayjkaiaawMcaaiaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8UaeyOeI0IaaGPaVlaaykW7daWcaaqaaiaadIeaca WGlbaabaGaeqOXdOMaeyOeI0IaamOvamaaBaaaleaacaWG0baabeaa aaGccaaMc8UaaGPaVlabgUcaRiaaykW7caaMc8+aaSaaaeaacaWGib Gaam4saaqaaiabeA8aQjabgkHiTiaadAfadaWgaaWcbaGaamiDaaqa baaaaOGaeS4eHWMaaGPaVpaaCaaaleqabaWaaSaaaeaadaqadaqaai abeA8aQjabgkHiTiaadAfadaWgaaadbaGaamiDaaqabaaaliaawIca caGLPaaaaeaacaWGlbaaaiaadIhaaaaaaa@6657@                                                     
C( x )= HK φ V t [ ( φ V t ) K x 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4TaaG PaVlaaykW7caWGdbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaGPa VlaaykW7cqGH9aqpcaaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaaca WGibGaam4saaqaaiabeA8aQjabgkHiTiaadAfadaWgaaWcbaGaamiD aaqabaaaaOGaaGPaVlaaykW7daWadaqaaiabloriSjaaykW7daahaa WcbeqaamaalaaabaWaaeWaaeaacqaHgpGAcqGHsislcaWGwbWaaSba aWqaaiaadshaaeqaaaWccaGLOaGaayzkaaaabaGaam4saaaacaWG4b aaaOGaaGPaVlabgkHiTiaaykW7caaIXaaacaGLBbGaayzxaaaaaa@65B3@           …………………..                                (20)

If x=Vt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7caWGwbGaeyOiGCRaamiDaaaa @42FC@

C( x )= HK φ V t [ ( φ V t ) K Vt 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaeyinIWLaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWGdbWaaeWaaeaacaWG4baa caGLOaGaayzkaaGaaGPaVlaaykW7cqGH9aqpcaaMc8UaaGPaVlaayk W7caaMc8+aaSaaaeaacaWGibGaam4saaqaaiabeA8aQjabgkHiTiaa dAfadaWgaaWcbaGaamiDaaqabaaaaOGaaGPaVlaaykW7daWadaqaai abloriSjaaykW7daahaaWcbeqaamaalaaabaWaaeWaaeaacqaHgpGA cqGHsislcaWGwbWaaSbaaWqaaiaadshaaeqaaaWccaGLOaGaayzkaa aabaGaam4saaaacaWGwbGaeyOiGCRaamiDaaaakiaaykW7cqGHsisl caaMc8UaaGymaaGaay5waiaaw2faaaaa@6B91@ ............ (21)

If H= d V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaamisaiaayk W7caaMc8Uaeyypa0JaaGPaVlaaykW7daWcaaqaaiaadsgaaeaacaWG wbaaaaaa@4147@

C( x )= HK φ V t [ ( φ V t ) K d V 1 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqai=hGuQ8kuc9pgc9q8qqaq=dir=f0=yqaiVgFr0xfr=x fr=xb9adbaqaaeaaciGaaiaabeqaamaabaabaaGcbaGaam4qamaabm aabaGaamiEaaGaayjkaiaawMcaaiaaykW7caaMc8Uaeyypa0JaaGPa VlaaykW7caaMc8UaaGPaVpaalaaabaGaamisaiaadUeaaeaacqaHgp GAcqGHsislcaWGwbWaaSbaaSqaaiaadshaaeqaaaaakiaaykW7caaM c8+aamWaaeaacqWItecBcaaMc8+aaWbaaSqabeaadaWcaaqaamaabm aabaGaeqOXdOMaeyOeI0IaamOvamaaBaaameaacaWG0baabeaaaSGa ayjkaiaawMcaaaqaaiaadUeaaaGaaGPaVpaalaaabaGaamizaaqaai aadAfaaaaaaOGaaGPaVlabgkHiTiaaykW7caaIXaaacaGLBbGaayzx aaaaaa@62A2@ ...........     (22)

Materials and method

Standard laboratory experiment where performed to monitor the concentration of E-coli at different positions, the samples were collected in sequences base on the allocated depositions at different locations, this samples collected at different location generated variations at different distance producing different migration of E-coli concentration through introduction of contaminant on the lake, sample were collected at different Distances, the experimental results generated were subject comparison with the theoretical values for model validation.

Result and discussion

Results and discussion are presented in Tables (1-8) including graphical representation of E-Coli concentration

Distance [m]

Predictive Conc.  [Mg/L]

 Experimental  Conc.[Mg/L]

1

2.20E-02

0.017

2

2.11E-02

0.022

3

2.22E-02

0.023

4

3.35E-02

0.026

5

3.45E-02

0.029

6

3.66E-02

0.032

7

4.23E-02

0.035

8

4.45E-02

0.038

9

5.23E-02

0.041

10

5.44E-02

0.044

Table 1 Predictive and experimental values of e-coli transport at different distance

Distance [m]

Predictive Conc.  [Mg/L]

 Experimental [Mg/L]

1

2.12E-03

0.002023

2

2.17E-03

0.002052

3

2.22E-03

0.002087

4

2.25E-03

0.002128

5

2.28E-03

0.002175

6

2.32E-03

0.002228

7

2.38E-03

0.002287

8

2.52E-03

0.002352

9

2.54E-03

0.002423

10

2.60E-03

0.0025

Table 2 Predictive and experimental values of e-coli transport at different distance

Distance [m]

Predictive Conc.  [Mg/L]

 Experimental [Mg/L]

1

1.20E-01

0.128004

2

1.61E-01

0.149032

3

1.62E-01

0.170108

4

1.75E-01

0.191256

5

1.88E-01

0.2125

6

1.94E-01

0.233864

7

2.18E-01

0.255372

8

2.28E-01

0.277048

9

2.24E-01

0.298916

10

2.30E-01

0.321

Table 3 Predictive and experimental values of e-coli transport at different distance

Distance [m]

Predictive Conc.  [Mg/L]

 Experimental [Mg/L]

1

3.82E-04

5.80E-05

2

2.71E-04

1.24E-04

3

2.72E-04

2.46E-04

4

2.84E-04

4.72E-04

5

1.45E-03

8.50E-04

6

2.84E-03

1.43E-03

7

1.87E-03

2.25E-03

8

2.91E-03

3.38E-03

9

5.94E-03

4.84E-03

10

6.99E-03

6.70E-03

Table 4 Predictive and experimental values of e-coli transport at different distance

Distance [m]

Predictive Conc.  [Mg/L]

 Experimental [Mg/L]

1

2.10E-02

0.01793

2

2.20E-02

0.02172

3

2.34E-02

0.02537

4

3.21E-02

0.02888

5

3.62E-02

0.03225

6

3.77E-02

0.03548

7

3.81E-02

0.03857

8

4.82E-02

0.04152

9

4.85E-02

0.04433

10

4.88E-02

0.047

Table 5 Predictive and experimental values of e-coli transport at different distance

Distance [m]

Predictive Conc.  [Mg/L]

 Experimental [Mg/L]

1

2.82E-02

0.025009

2

2.61E-02

0.025036

3

2.62E-02

0.025081

4

2.75E-02

0.025144

5

2.88E-02

0.025225

6

3.44E-02

0.025324

7

3.68E-02

0.025441

8

3.78E-02

0.025576

9

3.84E-02

0.025729

10

3.90E-02

0.0259

Table 6 Predictive and experimental values of e-coli transport at different distance

Distance [m]

Predictive Conc.  [Mg/L]

 Experimental [Mg/L]

1

2.82E-02

0.025009

2

2.61E-02

0.025036

3

2.62E-02

0.025081

4

2.75E-02

0.025144

5

2.88E-02

0.025225

6

3.44E-02

0.025324

7

3.68E-02

0.025441

8

3.78E-02

0.025576

9

3.84E-02

0.025729

10

3.90E-02

0.0259

Table 7 Predictive and experimental values of e-coli transport at different distance

Distance [m]

Predictive Conc.  [Mg/L]

 Experimental [Mg/L]

1

3.20E-03

0.00202

2

3.41E-03

0.00216

3

2.62E-03

0.00254

4

3.65E-03

0.00328

5

3.78E-03

0.0045

6

3.44E-03

0.00632

7

3.68E-03

0.00886

8

3.78E-03

0.01224

9

4.84E-03

0.01658

10

6.50E-03

0.022

Table 8 Predictive and experimental values of E-Coli transport at different distance

The figure has explained the behaviour and dynamic influences on phosphorus deposition in lake, the rate of E.coli transport at various distances were observed and presented in figures, the study express behaviour of the system in terms of various pressure express in different conditions, Figure 1 & 2 developed fluctuation in exponential phase to the optimum values recorded at ten metres, but the variation were observed on the predictive values as figure one experienced fluctuation more than Figure 2, while the experimental values observed linear concentration in exponential phase figure three experiences similar condition, the predictive values observe vacillation to the optimum values while the experimental maintained the same trend to the maximum values recorded at the same distances, Figure 4 express graduation increase in concentration to the optimum values recorded at ten metre, while the experimental values maintained the same trend, but with fluctuation on gradual process to the maximum values recorded at the same distances. Figure 5 maintained oscillation base on the pressure from the micronutrient in exponential phase to the optimum values recorded at ten metres, while the experimental parameters in the same trend experiences linear increase but maintained the same exponential phase. Figure 6 observe gradual process of migration and suddenly develop gradual transport between one and five metres, and experiences sudden increase that was observed to the optimum values with gradual increase in concentration. While the experimental values experience linear increase to the maximum values recorded at ten metres. Figure 7 experienced gradual increase in concentration with slight exponential growth in the transport system, while that of the experimental values developed sudden increase to the optimum values at distances of ten metres.

Figure 1 Predictive and experimental values of e-coli transport at different distance.

Figure 2 Predictive and experimental values of e-coli transport at different distance.

Figure 3 Predictive and experimental values of e-coli transport at different distance.

Figure 4 Predictive and experimental values of e-coli transport at different distance.

Figure 5 Predictive and experimental values of e-coli transport at different distance.

Figure 6 Predictive and experimental values of e-coli transport at different distance.

Figure 7 Predictive and experimental values of e-coli transport at different distance.

Conclusion

The study has monitor the dynamic influences of phosphorus deposition in lakes at coastal deltaic environment, the study has also express the behaviour of E.coli in lake applying these conceptual techniques, the migration process of E.coli in lake experience fluctuation on the predictive parameters, these shows the rate of pressure from phosphorus deposition in the lake, although the velocity of flow experiences degradation in some condition, it definitely implies that the concentration will experiences declined phase as observed in the figure, such condition may not be out of contest, but may be inhibited by other influence in such marine environment, since micronutrients were found in such marine environment, other factors will always cause the inhibition of phosphorus to developed fluctuation effect on the E.coli depositions in lakes thus affect the growth rate. The derived solutions were subjected to simulation, these parameters were compared with experimental values, and both parameter developed favorable fits.

Acknowledgments

None.

Conflict of interest

Author declares there is no conflict of interest in publishing the article.

References

  1. Harvell CD, Kim K, Burkholder JM, et al. Emerging Marine Diseases--Climate Links and Anthropogenic Factors. Science. 1999;285(5433):1505–1510.
  2. Colwell RR. Global climate and infectious disease: The Cholera Paradigm. Science. 1996;274(5295):2025–2031.
  3. Epstein PR. Climate change and emerging infectious diseases. Microbes Infect. 2001;3(9):747–754.
  4. Martens WJM, Niessen LW, Rotmans J, et al. Potential impact of global climate-change on malaria risk. Environmental Health Perspectives. 1995;103(5):458–464.
  5. Trenberth KE, Hoar TJ. The 1990-1995 El Nino Southern Oscillation event: Longest on record. Geophysical Research Letters. 1996;23(1):57–60.
  6. Harvell CD, Mitchell CE, Ward JR, et al. Climate warming and disease risks for terrestrial and marine biota. Science. 2002;296:2158–2162.
  7. Okun DA. From cholera to cancer to cryptosporidiosis. Journal of Environmental Engineering. 1996;122(6):453–458.
  8. World Health Organization. Water Sanitation and Health. http://www.who.int/water_sanitation_health/diseases/en/ (accessed on 6/20/2012), 2010.
  9. Pramod KP. Modeling In-Stream Escherichia coli Concentrations A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of Doctor Of Philosophy Iowa State University Ames, Iowa; 2012.
  10. Diffey BL. Solar Ultraviolet-Radiation Effects on Biological-Systems. Physics in Medicine and Biology. 1991;36(3):299–328.
  11. Brookes JD, Antenucci J, Hipsey M, et al. Fate and transport of pathogens in lakes and reservoirs. Environ Int. 2004;30(5):741–759.
  12. Jamieson R, Gordon R, Joy D, et al. Assessing microbial pollution of rural surface waters: A review of current watershed scale modeling approaches. Agricultural Water Management. 2004;70(1):1–17.
  13. Gerba CP, Smith J. Sources of pathogenic microorganisms and their fate during land application of wastes. J Environ Qual. 2005;34:42–48.
  14. Gerba CP, McLeod JS. Effect of sediments on the survival of Escherichia coli in marine waters. Appl Environ Microbiol. 1976;32(1):114–120.
  15. John DE, Rose JB. Review of factors affecting microbial survival in groundwater. Environment Science & Technology. 2005;39(19):7345–7356.
  16. Hipsey MR, Antenucci JP, Brookes JD. A generic, process-based model of microbial pollution in aquatic systems. Water Resources Research. 2008;44(7):W07408.
  17. Pachepsky YA, Shelton DR. Escherichia coliand fecal coliforms in freshwater and estuarine sediments. Critical Reviews in Environmental Science Technology. 2011;41(12):1067–1110.
  18. Kay D, Edwards AC, Ferrier RC, et al. Catchment microbial dynamics: the emergence of a research agenda. Progress in Physical Geography. 2007;31(1):59–76.
Creative Commons Attribution License

©2018 Eluozo, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.