Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 10 Issue 3

Corrected mathematical models for inertial torques generated by a spinning sphere

Ryspek Usubamatov, Almazbek Arzybaev

Metrology & Standardization, Kyrgyz State Technical University, Kyrgyzstan

Correspondence: Ryspek Usubamatov, Metrology & Standardization, Kyrgyz State Technical University, Bishkek, Kyrgyzstan, , Tel +996 0553 722755, Fax +996 312 545162

Received: August 27, 2024 | Published: October 8, 2024

Citation: Usubamatov R, Arzybaev A. Corrected mathematical models for inertial torques generated by a spinning sphere. Int Rob Auto J. 2024;10(3):89-95. DOI: 10.15406/iratj.2024.10.00289

Download PDF

Abstract

The recent publications about inertial torques acting on spinning objects describe their physics by mathematical models. The several inertial torques are generated by the rotating mass which produces centrifugal, Coriolis forces, and the change in the angular momentum. The values of the inertial torques depend on the geometries of the spinning objects. The volumetric geometries of the objects request complex analytical processing of the expressions for the inertial torques. The analysis of the known publication related to the spinning sphere shows the expressions of inertial torques derived from errors in the mathematical processing of integral equations. The wrong limits of the integral equations that give incorrect values for the inertial torques of the spinning sphere present these errors. This manuscript presents the corrected mathematical model for the inertial torques generated by the rotating mass of the spinning solid and hollow sphere.

Keywords: inertial torques, gyroscope theory, spinning sphere

Introduction

The textbooks and research publications describe the various designs of spinning machine parts and mechanisms in engineering. They circumscribe how rotating objects exhibit gyroscopic effects, which can be calculated using inertial forces and torques to determine the actual dynamic properties for mathematical models of their movements.1,2 The rotating parts and components come in different shapes, such as discs, rings, cylinders, spheres, circular cones, paraboloids, propellers, etc. The texts also mention that inertial torques for simple designs can be calculated using known methods and equations, while more complex forms require new mathematical models.3,4 The publications explain how to apply standard methods to compute inertial torques for various spinning objects encountered in engineering. They also suggest using a universal method for calculating inertial torques for unique designs.5,6 The texts mention that researchers face challenges in applying these methods to derive inertial torques and mathematical models for the motions of different rotating objects. The textbooks of classical mechanics attract the attention of readers on gyroscope problems.7,8 Gyroscopic effects remain as a problem for researchers who published numerous works and tried to find analytical and confirm practically.9,10 The new generation tries to give answers to unsolved properties of spinning objects whose rotating masses produce the system of inertial torques that manifest gyroscopic effects.11,12

In the field of engineering, all spinning objects exhibit gyroscopic effects resulting from their inertial torques. Numerous designs of gyroscopic devices produce inertial torques generated by their rotating masses, which should be calculated by the defined expressions.13 Rotating masses of objects with unique geometry are base for the analytical expressions of their inertial torque.14 The known publications related to the gyroscopic effects are confined by the use of the gyroscopic torque of the change in the angular momentum which does not solve all aspects of gyroscopic devices.15 The gyroscopic effects are more diverse and their unsolved problems of inertial torques solve numerical models. The modern tendency of intensification of processes in engineering requests accurate commuting and designs of the mechanisms and devices. This direction is important for the gyroscopic devices in which spinning components generate considerable inertial torques. The publications related to the theory of gyroscopic effects comprise a limited number of analytical approaches that do not satisfy engineering requirements.16 The new and original design of gyroscopic devices remains an unsolved problem and presents a challenge for researchers and practitioners because of the absence of mathematical models for the inertial torques.17 A known publication that comprises the inertial torques acting on a spinning sphere is presented by analytical errors in mathematical processing that yield incorrect solutions.18 The theory of gyroscopic effects for rotating objects opens a new direction in the dynamics of machines.19 The specificity of inertial torques generated by the rotating mass of spinning objects is presented by dependency on their geometries. The volumetric designs of the spinning components complicate the mathematical models of inertial torques generated by rotating bodies.20 The correct mathematical modelling for the inertial torques generated by rotating masses of solid and hollow spheres is presented in this manuscript.

Methodology

Centrifugal torques acting on a spinning sphere

The rotating center mass and mass elements generate several inertial forces acting on the spinning sphere. The inertial torques are acting simultaneously on the spinning sphere with a uniform circular motion.1–5 This section considers the action of the inertial torques on the solid and hollow spheres where mass elements are distributed on the spherical surfaces. The rotation of mass elements generates the centrifugal forces acting strictly perpendicular to the axis oz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad+gacaWG6b aaaa@38FF@ and ox MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad+gacaWG4b aaaa@38FD@ of the spinning sphere. The analytical approach for the modeling of the action of the centrifugal forces of the spinning sphere is the same as for the spinning disc represented in Chapter 3 of the gyroscope theory.19 The rotating mass elements of the sphere are located on the spherical surface of the 2/3 radius for the solid sphere and the middle radius for the hollow sphere. The analysis of the acting inertial forces generated by the mass element of the sphere is considered on the arbitrary planes that parallel to the plane of the maximal diameter of the sphere (Figure 1). The arbitrary circle plane of the sphere is the same as the plane xoy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiaad+gacaWG5baaaa@3A1B@ of the thin disc represented in.19 The plane of the mass elements generates the change in the vector components f ct.z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0bGaaiOlaiaadQhaa8aa beaaaaa@3C03@ , whose directions are parallel to the spinning sphere axle oz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad+gacaWG6b aaaa@38FF@ . The integrated product of components for the vector change in the centrifugal forces f ct.z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0bGaaiOlaiaadQhaa8aa beaaaaa@3C03@ and their variable radius of location relative to axis ox MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4BaiaadIhaaaa@391D@ and oy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4BaiaadMhaaaa@391E@ generate the resistance torque T ct,x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadogacaWG0bGaaiilaiaadIhaa8aa beaaaaa@3BED@ and precession torque T ct,x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadogacaWG0bGaaiilaiaadIhaa8aa beaaaaa@3BED@ . acting about axes ox MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad+gacaWG4b aaaa@38FD@ and oy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4BaiaadMhaaaa@391E@ , respectively, whose expressions are identical.19

Figure 1 Schematic of the spinning sphere, its motions, and acting external torque.

The mass element m is disposed on the radius R i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@394B@ of the sphere, where i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyAaaaa@381A@ indicates the solid ss MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Caiaadohaaaa@391C@ and hollow hs MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiAaiaadohaaaa@3911@ spheres ( R ss =( 2/3 )R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaacIcaqaaaaa aaaaWdbiaadkfapaWaaSbaaSqaa8qacaWGZbGaam4CaaWdaeqaaOWd biabg2da98aadaqadaqaa8qacaaIYaGaai4laiaaiodaa8aacaGLOa GaayzkaaWdbiaadkfaaaa@40E3@ for the solid sphere and R hs =R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOua8aadaWgaaWcbaWdbiaadIgacaWGZbaapaqabaGcpeGaeyyp a0JaamOuaaaa@3C39@ for the hollow sphere). The sphere rotates in a uniform circular motion with a constant angular velocity ω in the counter-clockwise direction and generates the plane of the centrifugal forces f ct MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0baapaqabaaaaa@3A52@ acting perpendicular to axis oz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4BaiaadQhaaaa@391F@ . The centrifugal forces f ct MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0baapaqabaaaaa@3A52@ represent the distributed load where the sphere’s mass elements are located. The inclination of the spinning sphere on the minor angle Δγ generates the change in the vector’s components f ct.z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0bGaaiOlaiaadQhaa8aa beaaaaa@3C03@ , whose directions are parallel to the sphere axle oz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4BaiaadQhaaaa@391F@ . The integrated product of the vector change in the centrifugal forces f ct.z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0bGaaiOlaiaadQhaa8aa beaaaaa@3C03@ and their variable radius r about axis ox MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad+gacaWG4b aaaa@38FD@ generates the resistance torque T ct MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadogacaWG0baapaqabaaaaa@3A40@ acting opposite to the external torque T.

The resistance torque Δ T ct MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaamiva8aadaWgaaWcbaWdbiaadogacaWG0baapaqabaaa aa@3BA6@ of the centrifugal force f ct.z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0bGaaiOlaiaadQhaa8aa beaaaaa@3C03@ is expressed by the following:

Δ T ct. = f ct.z y m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaamiva8aadaWgaaWcbaWdbiaadogacaWG0bGaaiOlaaWd aeqaaOGaeyypa0ZdbiaadAgapaWaaSbaaSqaa8qacaWGJbGaamiDai aac6cacaWG6baapaqabaGccaWG5bWaaSbaaSqaaiaad2gaaeqaaaaa @4475@                      (1)

where ym = Risinβsinα is the normal component of r to axis o 1 x 1, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Ba8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG4bWdamaa BaaaleaapeGaaGymaiaacYcaa8aabeaaaaa@3C11@ other components are as specified above.

The component of the centrifugal force f ct.z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0bGaaiOlaiaadQhaa8aa beaaaaa@3C03@ for arbitrarily chosen plane is represented by the following equation:

f ct.z = f ct sinΔγ=mr ω 2 sinΔγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0bGaaiOlaiaadQhaa8aa beaakiabg2da98qacaWGMbWdamaaBaaaleaapeGaam4yaiaadshaa8 aabeaakiaaykW7ieaajugibiaa=nhacaWFPbGaa8NBaOGaaGPaVlab fs5aejaaykW7cqaHZoWzcqGH9aqpcaWGTbGaamOCaiabeM8a3naaCa aaleqabaGaaGOmaaaakiaaykW7jugibiaa=nhacaWFPbGaa8NBaOGa euiLdqKaaGPaVlabeo7aNbaa@5AA8@ (2)

where f ct =mr ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0baapaqabaGccqGH9aqp caWGTbGaamOCaiabeM8a3naaCaaaleqabaGaaGOmaaaaaaa@4001@ is the centrifugal force of the mass element m;, m= M 4π R i 2 Δδ R i 2 = M 4π Δδ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2gacqGH9a qpdaWcaaqaaiaad2eaaeaacaaI0aGaeqiWdaNaamOuamaaDaaaleaa caWGPbaabaGaaGOmaaaaaaGccqqHuoarcqaH0oazcaWGsbWaa0baaS qaaiaadMgaaeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWGnbaabaGa aGinaiabec8aWbaacqqHuoarcqaH0oazaaa@4C4A@ , M is the mass of the sphere; 4π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaisdacqaHap aCaaa@3987@ is the spherical angle; Δδ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabfs5aejabes 7aKbaa@3A17@ is the spherical angle of the mass element; the radius r of the mass element rotation at the plane o 1 x 1 y 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Ba8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaWG4bWaaSba aSqaaiaaigdaaeqaaOGaamyEamaaBaaaleaacaaIXaaabeaaaaa@3D22@ is r=(2/3) R i sinβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkhacqGH9a qpcaGGOaGaaGOmaiaac+cacaaIZaGaaiykaiaaykW7caWGsbWaaSba aSqaaiaadMgaaeqaaOGaci4CaiaacMgacaGGUbGaeqOSdigaaa@448D@ , where

R ss =(2/3)R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaam4CaiaadohaaeqaaOGaeyypa0JaaiikaiaaikdacaGGVaGa aG4maiaacMcacaaMc8UaamOuaaaa@40F6@ is the radius of the solid sphere; R hs =R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaamiAaiaadohaaeqaaOGaeyypa0JaamOuaaaa@3BDB@ is the radius of the hollow sphere; ω is the constant angular velocity of the sphere; α is the angle of the mass element’s location on the plane that parallel to plane xoy;β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEaiaad+gacaWG5bGaai4oaiaaykW7caaMc8UaeqOSdigaaa@3F91@ is the angle of the mass element’s location on the plane yoz; Δγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEaiaad+gacaWG6bGaai4oaiaabccacqqHuoarcqaHZoWzaaa@3E8C@ is the angle of turn for the sphere’s plane around axis ox(sinΔγ= Δγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4BaiaadIhapaGaaiika8qacaWGZbGaamyAaiaad6gacqqHuoar cqaHZoWzcqGH9aqpcaqGGaGaeuiLdqKaeq4SdCgaaa@4484@ for the small values of the angle)

Substituting the defined parameters into Eq. (1) yields the following:

-for the solid sphere

f ct.s = M 4π ω 2 ΔδΔγ 2 3 Rsinβsinα= MR ω 2 6π ΔδΔγsinβsinα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0bGaaiOlaiaadohaa8aa beaakiabg2da9iabgkHiTmaalaaabaGaamytaaqaaiaaisdacqaHap aCaaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaeuiLdqKaeqiTdq2d biabfs5aeHGaciab=n7aNnaalaaabaGaaGOmaaqaaiaaiodaaaWdai aadkfaciGGZbGaaiyAaiaac6gacqWFYoGycaaMc8UaaGPaVlGacoha caGGPbGaaiOBaiaaykW7cqaHXoqycqGH9aqpcqGHsisldaWcaaqaai aad2eacaWGsbGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaGcbaGaaGOn aiabec8aWbaacqqHuoarcqaH0oazpeGaeuiLdqKae83SdC2daiGaco hacaGGPbGaaiOBaiab=j7aIjaaykW7caaMc8Uaci4CaiaacMgacaGG UbGaaGPaVlabeg7aHbaa@76E7@ (3)

-for the hollow sphere

f ct.z = M 4π ω 2 ΔδΔγ×Rsinβsinα= MR ω 2 4π ΔδΔγsinβsinα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0bGaaiOlaiaadQhaa8aa beaakiabg2da9iabgkHiTmaalaaabaGaamytaaqaaiaaisdacqaHap aCaaGaeqyYdC3aaWbaaSqabeaacaaIYaaaaOGaeuiLdqKaeqiTdq2d biabfs5aeHGaciab=n7aNjabgEna0+aacaWGsbGaci4CaiaacMgaca GGUbGae8NSdiMaaGPaVlaaykW7ciGGZbGaaiyAaiaac6gacaaMc8Ua eqySdeMaeyypa0JaeyOeI0YaaSaaaeaacaWGnbGaamOuaiabeM8a3n aaCaaaleqabaGaaGOmaaaaaOqaaiaaisdacqaHapaCaaGaeuiLdqKa eqiTdq2dbiabfs5aejab=n7aN9aaciGGZbGaaiyAaiaac6gacqWFYo GycaaMc8UaaGPaVlGacohacaGGPbGaaiOBaiaaykW7cqaHXoqyaaa@777A@ (4)

where all components are as specified above.

The change in the vectors of the centrifugal forces f cf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWGMbaapaqabaaaaa@3A44@ on the angle Δγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaeq4SdCgaaa@3A39@ presents the vectors f ct.z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0bGaaiOlaiaadQhaa8aa beaaaaa@3C03@ which act around axis ox MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4BaiaadIhaaaa@391D@ in Figure 2.

Figure 2 Schematic of acting centrifugal forces and torques on the cross-section of the sphere about the axis ox.

The resultant torque is the product of the integrated centrifugal forces f ctz MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWG0bGaamOEaaWdaeqaaaaa @3B51@ and the centroid y A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadgeaa8aabeaaaaa@394A@ (point A, Figure 2). The centroid is defined by the following expression:7,8

-for the solid sphere

y A = α=0 π β=0 π/2 f ct.z y m dαdβ α=0 π β=0 π/2 f ct.z dαdβ = α=0 π β=0 π/2 MR ω 2 6π ΔδΔγsinβsinα× 2 3 Rsinβsinαdαdβ α=0 π β=0 π/2 MR ω 2 6π ΔδΔγsinβsinαdβdα = MR ω 2 6π ΔδΔγ 2 3 R α=0 π β=0 π/2 sinβsinαsinβsinαddβ MR ω 2 6π ΔδΔγ 2 3 R α=0 π β=0 π/2 sinβsinαdβdα = 2 3 R α=0 π β=0 π/2 sin 2 β sin 2 αdβdα α=0 π β=0 π/2 sinβsinαdβdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWG5bWdamaaBaaaleaapeGaamyqaaWdaeqaaOGaeyypa0Za aSaaaeaadaWfWaqaaiabgUIiYdWcbaGaeqySdeMaeyypa0JaaGimaa qaaiabec8aWbaakiaaykW7daWfWaqaaiabgUIiYdWcbaGaeqOSdiMa eyypa0JaaGimaaqaaiabec8aWjaac+cacaaIYaaaaOWdbiaadAgapa WaaSbaaSqaa8qacaWGJbGaamiDaiaac6cacaWG6baapaqabaGccaWG 5bWaaSbaaSqaaiaad2gaaeqaaOGaamizaiabeg7aHjaadsgaiiGacq WFYoGycaaMc8oabaWaaCbmaeaacqGHRiI8aSqaaiabeg7aHjabg2da 9iaaicdaaeaacqaHapaCaaGccaaMc8+aaCbmaeaacqGHRiI8aSqaai abek7aIjabg2da9iaaicdaaeaacqaHapaCcaGGVaGaaGOmaaaak8qa caWGMbWdamaaBaaaleaapeGaam4yaiaadshacaGGUaGaamOEaaWdae qaaOGaamizaiabeg7aHjaadsgacqWFYoGyaaGaeyypa0ZaaSaaaeaa daWfWaqaaiabgUIiYdWcbaGaeqySdeMaeyypa0JaaGimaaqaaiabec 8aWbaakiaaykW7daWfWaqaaiabgUIiYdWcbaGaeqOSdiMaeyypa0Ja aGimaaqaaiabec8aWjaac+cacaaIYaaaaOWaaSaaaeaacaWGnbGaam OuaiabeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiaaiAdacqaHapaC aaGaeuiLdqKaeqiTdq2dbiabfs5aejab=n7aN9aaciGGZbGaaiyAai aac6gacqWFYoGycaaMc8UaaGPaVlGacohacaGGPbGaaiOBaiaaykW7 cqaHXoqypeGaey41aq7aaSaaaeaacaaIYaaabaGaaG4maaaapaGaam OuaiGacohacaGGPbGaaiOBaiab=j7aIjaaykW7caaMc8Uaci4Caiaa cMgacaGGUbGaeqySdeMaamizaiabeg7aHjaadsgacqWFYoGycaaMc8 oabaWaaCbmaeaacqGHRiI8aSqaaiabeg7aHjabg2da9iaaicdaaeaa cqaHapaCaaGccaaMc8+aaCbmaeaacqGHRiI8aSqaaiabek7aIjabg2 da9iaaicdaaeaacqaHapaCcaGGVaGaaGOmaaaakmaalaaabaGaamyt aiaadkfacqaHjpWDdaahaaWcbeqaaiaaikdaaaaakeaacaaI2aGaeq iWdahaaiabfs5aejabes7aK9qacqqHuoarcqWFZoWzpaGaci4Caiaa cMgacaGGUbGae8NSdiMaaGPaVlaaykW7ciGGZbGaaiyAaiaac6gaca aMc8UaeqySdeMaaGPaVlaadsgacqWFYoGycaWGKbGaeqySdegaaiab g2da9aqaamaalaaabaWaaSaaaeaacaWGnbGaamOuaiabeM8a3naaCa aaleqabaGaaGOmaaaaaOqaaiaaiAdacqaHapaCaaGaeuiLdqKaeqiT dq2dbiabfs5aejab=n7aNnaalaaabaGaaGOmaaqaaiaaiodaaaGaam Oua8aadaWfWaqaaiabgUIiYdWcbaGaeqySdeMaeyypa0JaaGimaaqa aiabec8aWbaakiaaykW7daWfWaqaaiabgUIiYdWcbaGaeqOSdiMaey ypa0JaaGimaaqaaiabec8aWjaac+cacaaIYaaaaOGaci4CaiaacMga caGGUbGae8NSdiMaaGPaVlaaykW7ciGGZbGaaiyAaiaac6gacaaMc8 UaeqySdeMaci4CaiaacMgacaGGUbGae8NSdiMaaGPaVlaaykW7ciGG ZbGaaiyAaiaac6gacaaMc8UaeqySdeMaamizaiaadsgacqWFYoGyca aMc8oabaWaaSaaaeaacaWGnbGaamOuaiabeM8a3naaCaaaleqabaGa aGOmaaaaaOqaaiaaiAdacqaHapaCaaGaeuiLdqKaeqiTdq2dbiabfs 5aejab=n7aNnaalaaabaGaaGOmaaqaaiaaiodaaaGaamOua8aadaWf WaqaaiabgUIiYdWcbaGaeqySdeMaeyypa0JaaGimaaqaaiabec8aWb aakiaaykW7daWfWaqaaiabgUIiYdWcbaGaeqOSdiMaeyypa0JaaGim aaqaaiabec8aWjaac+cacaaIYaaaaOGaci4CaiaacMgacaGGUbGae8 NSdiMaaGPaVlaaykW7ciGGZbGaaiyAaiaac6gacaaMc8UaeqySdeMa amizaiab=j7aIjaadsgacqaHXoqycaaMc8oaaiabg2da9maalaaaba WdbmaalaaabaGaaGOmaaqaaiaaiodaaaGaamOua8aadaWfWaqaaiab gUIiYdWcbaGaeqySdeMaeyypa0JaaGimaaqaaiabec8aWbaakiaayk W7daWfWaqaaiabgUIiYdWcbaGaeqOSdiMaeyypa0JaaGimaaqaaiab ec8aWjaac+cacaaIYaaaaOGaci4CaiaacMgacaGGUbWaaWbaaSqabe aacaaIYaaaaOGae8NSdiMaaGPaVlaaykW7ciGGZbGaaiyAaiaac6ga daahaaWcbeqaaiaaikdaaaGccqaHXoqycaWGKbGae8NSdiMaamizai abeg7aHbqaamaaxadabaGaey4kIipaleaacqaHXoqycqGH9aqpcaaI WaaabaGaeqiWdahaaOGaaGPaVpaaxadabaGaey4kIipaleaacqaHYo GycqGH9aqpcaaIWaaabaGaeqiWdaNaai4laiaaikdaaaGcciGGZbGa aiyAaiaac6gacqWFYoGyciGGZbGaaiyAaiaac6gacqaHXoqycaWGKb Gae8NSdiMaamizaiabeg7aHbaaaaaa@ABBB@ (5)

-for the hollow sphere

y A = α=0 π β=0 π2 f ct.z y m dαdβ α=0 π β=0 π/2 f ct.z dαdβ = α=0 π β=0 π/2 MR ω 2 4π ΔδΔγsinβsinα×Rsinβsinαdβdα α= π β=0 π/2 MR ω 2 4π ΔδΔγsinβsinαdβdα = MR ω 2 4π ΔδΔγ×R α=0 π β=0 π/2 sinβsinαsinβsinαdβdα MR ω 2 6π ΔδΔγ α=0 π β=0 π/2 sinβsinαdβdα = R α=0 π β=0 π/2 sin 2 β sin 2 αdβdα β=0 π/2 sinβdβ 0 π sinαdα MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG5b WaaSbaaSqaaiaadgeaaeqaaOGaeyypa0ZaaSaaaeaadaWdXbqaamaa pehabaGaamOzamaaBaaaleaacaWGJbGaamiDaiaac6cacaWG6baabe aakiaadMhadaWgaaWcbaGaamyBaaqabaGccaWGKbGaeqySdeMaamiz aiabek7aIbWcbaGaeqOSdiMaeyypa0JaaGimaaqaaiabec8aWjaaik daa0Gaey4kIipaaSqaaiabeg7aHjabg2da9iaaicdaaeaacqaHapaC a0Gaey4kIipaaOqaamaapehabaWaa8qCaeaacaWGMbWaaSbaaSqaai aadogacaWG0bGaaiOlaiaadQhaaeqaaOGaamizaiabeg7aHjaadsga cqaHYoGyaSqaaiabek7aIjabg2da9iaaicdaaeaacqaHapaCcaGGVa GaaGOmaaqdcqGHRiI8aaWcbaGaeqySdeMaeyypa0JaaGimaaqaaiab ec8aWbqdcqGHRiI8aaaakiabg2da9maalaaabaWaa8qCaeaadaWdXb qaamaalaaabaGaamytaiaadkfacqaHjpWDdaahaaWcbeqaaiaaikda aaaakeaacaaI0aGaeqiWdahaaiabfs5aejabes7aKjabfs5aejabeo 7aNjGacohacaGGPbGaaiOBaiabek7aIjGacohacaGGPbGaaiOBaiab eg7aHjabgEna0kaadkfaciGGZbGaaiyAaiaac6gacqaHYoGyciGGZb GaaiyAaiaac6gacqaHXoqycaWGKbGaeqOSdiMaamizaiabeg7aHbWc baGaeqOSdiMaeyypa0JaaGimaaqaaiabec8aWjaac+cacaaIYaaani abgUIiYdaaleaacqaHXoqycqGH9aqpcaaIWaaabaGaeqiWdahaniab gUIiYdaakeaadaWdXbqaamaapehabaWaaSaaaeaacaWGnbGaamOuai abeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiaaisdacqaHapaCaaGa euiLdqKaeqiTdqMaeuiLdqKaeq4SdCMaci4CaiaacMgacaGGUbGaeq OSdiMaci4CaiaacMgacaGGUbGaeqySdeMaamizaiabek7aIjaadsga cqaHXoqyaSqaaiabek7aIjabg2da9iaaicdaaeaacqaHapaCcaGGVa GaaGOmaaqdcqGHRiI8aaWcbaGaeqySdeMaeyypa0dabaGaeqiWdaha niabgUIiYdaaaOGaeyypa0dabaWaaSaaaeaadaWcaaqaaiaad2eaca WGsbGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaGcbaGaaGinaiabec8a WbaacqqHuoarcqaH0oazcqqHuoarcqaHZoWzcqGHxdaTcaWGsbWaa8 qCaeaadaWdXbqaaiGacohacaGGPbGaaiOBaiabek7aIjGacohacaGG PbGaaiOBaiabeg7aHjGacohacaGGPbGaaiOBaiabek7aIjGacohaca GGPbGaaiOBaiabeg7aHjaadsgacqaHYoGycaWGKbGaeqySdegaleaa cqaHYoGycqGH9aqpcaaIWaaabaGaeqiWdaNaai4laiaaikdaa0Gaey 4kIipaaSqaaiaadg7acqGH9aqpcaaIWaaabaGaamiWdaqdcqGHRiI8 aaGcbaWaaSaaaeaacaWGnbGaamOuaiabeM8a3naaCaaaleqabaGaaG OmaaaaaOqaaiaaiAdacqaHapaCaaGaeuiLdqKaeqiTdqMaeuiLdqKa eq4SdC2aa8qCaeaadaWdXbqaaiGacohacaGGPbGaaiOBaiabek7aIj GacohacaGGPbGaaiOBaiabeg7aHjaadsgacqaHYoGycaWGKbGaeqyS degaleaacqaHYoGycqGH9aqpcaaIWaaabaGaeqiWdaNaai4laiaaik daa0Gaey4kIipaaSqaaiabeg7aHjabg2da9iaaicdaaeaacqaHapaC a0Gaey4kIipaaaGccqGH9aqpdaWcaaqaaiaadkfadaWdXbqaamaape habaGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeqOS diMaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaIYaaaaOGaeqySde Maamizaiabek7aIjaadsgacqaHXoqyaSqaaiabek7aIjabg2da9iaa icdaaeaacqaHapaCcaGGVaGaaGOmaaqdcqGHRiI8aaWcbaGaamySdi abg2da9iaaicdaaeaacaWGapaaniabgUIiYdaakeaadaWdXbqaaiGa cohacaGGPbGaaiOBaiabek7aIjaadsgacqaHYoGyaSqaaiabek7aIj abg2da9iaaicdaaeaacqaHapaCcaGGVaGaaGOmaaqdcqGHRiI8aOWa a8qCaeaaciGGZbGaaiyAaiaac6gacqaHXoqycaWGKbGaeqySdegale aacaaIWaaabaGaeqiWdahaniabgUIiYdaaaaaaaa@7317@ (6)

where the components MR ω 2 6π ΔδΔγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ytaiaadkfacqaHjpWDdaahaaWcbeqaaiaaikdaaaaakeaacaaI2aGa eqiWdahaaiabfs5aejabes7aKbbaaaaaaaaapeGaeuiLdqecciGae8 3SdCgaaa@4441@ , MR ω 2 4π ΔδΔγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ytaiaadkfacqaHjpWDdaahaaWcbeqaaiaaikdaaaaakeaacaaI0aGa eqiWdahaaiabfs5aejabes7aKbbaaaaaaaaapeGaeuiLdqecciGae8 3SdCgaaa@443F@ are accepted at this stage of computing as a constant for Eqs. (5) and (6), respectively.

 Substituting defined parameters v m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqacabaaaaaaa aapeGaa8NDamaaBaaaleaacaWFTbaabeaaaaa@3948@ into Eqs. (3) and (4), where sinα= 0 π cosαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaci4CaiaacMgacaGGUbGaaGPaV=aacqaHXoqycqGH9aqpdaWfWaqa aiabgUIiYdWcbaGaaGimaaqaaiabec8aWbaakiGacogacaGGVbGaai 4Caiabeg7aHjaadsgacqaHXoqyaaa@49E1@ sinβ= 0 π cosβdβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaci4CaiaacMgacaGGUbGaaGPaVJGac8aacqWFYoGycqGH9aqpdaWf WaqaaiabgUIiYdWcbaGaaGimaaqaaiabec8aWbaakiGacogacaGGVb Gaai4Caiab=j7aIjaadsgacqWFYoGyaaa@49E4@ , sinβ= 0 π cosβdβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaci4CaiaacMgacaGGUbGaaGPaVJGac8aacqWFYoGycqGH9aqpdaWf WaqaaiabgUIiYdWcbaGaaGimaaqaaiabec8aWbaakiGacogacaGGVb Gaai4Caiab=j7aIjaadsgacqWFYoGyaaa@49E4@ , sin 2 α= 1 2 ( 1cos2α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiGacohacaGGPb GaaiOBamaaCaaaleqabaGaaGOmaaaakiabeg7aHjabg2da9maalaaa baGaaGymaaqaaiaaikdaaaWaaeWaaeaacaaIXaGaeyOeI0Iaci4yai aac+gacaGGZbGaaGOmaiabeg7aHbGaayjkaiaawMcaaaaa@4762@ , sin 2 β= 1 2 ( 1cos2β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiGacohacaGGPb GaaiOBamaaCaaaleqabaGaaGOmaaaaiiGakiab=j7aIjabg2da9maa laaabaGaaGymaaqaaiaaikdaaaWaaeWaaeaacaaIXaGaeyOeI0Iaci 4yaiaac+gacaGGZbGaaGOmaiab=j7aIbGaayjkaiaawMcaaaaa@4768@ and represented by the integral forms: and expressed by the integral forms with the limit for the hemisphere, the following equations emerge: 

-for the solid sphere   

0 T ct d T ct = MR ω 2 6π 0 π dδ 0 y dγ 0 π/2 cosβdβ 0 π cosαdα× 2 3 R× 1 2 0 π/2 ( 1cos2β )dβ× 1 2 0 π ( 1cos2α )dα β=0 π/2 sinβdβ 0 π sinαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaxadabaGaey 4kIipaleaacaaIWaaabaGaamivamaaBaaameaacaWGJbGaamiDaaqa baaaaOGaamizaiaadsfadaWgaaWcbaGaam4yaiaadshaaeqaaOGaey ypa0JaeyOeI0YaaSaaaeaacaWGnbGaamOuaiabeM8a3naaCaaaleqa baGaaGOmaaaaaOqaaiaaiAdacqaHapaCaaWaaCbmaeaacqGHRiI8aS qaaiaaicdaaeaacqaHapaCaaGccaaMc8Uaamizaiabes7aKnaaxada baGaey4kIipaleaacaaIWaaabaGaamyEaaaakiaadsgacqaHZoWzda WfWaqaaiabgUIiYdWcbaGaaGimaaqaaiabec8aWjaac+cacaaIYaaa aOGaci4yaiaac+gacaGGZbacciGae8NSdiMaamizaiab=j7aInaaxa dabaGaey4kIipaleaacaaIWaaabaGaeqiWdahaaOGaaGPaVlGacoga caGGVbGaai4Caiabeg7aHjaadsgacqaHXoqycqGHxdaTdaWcaaqaam aalaaabaGaaGOmaaqaaiaaiodaaaGaamOuaiabgEna0oaalaaabaGa aGymaaqaaiaaikdaaaWaaCbmaeaacqGHRiI8aSqaaiaaicdaaeaacq aHapaCcaGGVaGaaGOmaaaakmaabmaabaGaaGymaiabgkHiTiGacoga caGGVbGaai4CaiaaikdacqWFYoGyaiaawIcacaGLPaaacaWGKbGae8 NSdiMaey41aq7aaSaaaeaacaaIXaaabaGaaGOmaaaadaWfWaqaaiab gUIiYdWcbaGaaGimaaqaaiabec8aWbaakmaabmaabaGaaGymaiabgk HiTiGacogacaGGVbGaai4CaiaaikdacqaHXoqyaiaawIcacaGLPaaa caWGKbGaeqySdegabaWaaCbmaeaacqGHRiI8aSqaaiab=j7aIjabg2 da9iaaicdaaeaacqaHapaCcaGGVaGaaGOmaaaakiGacohacaGGPbGa aiOBaiab=j7aIjaadsgacqWFYoGydaWfWaqaaiabgUIiYdWcbaGaaG imaaqaaiabec8aWbaakiGacohacaGGPbGaaiOBaiabeg7aHjaadsga cqaHXoqyaaaaaa@BA9D@ (7)

-for the hollow sphere

0 T ct d T ct = MR ω 2 4π 0 π dδ 0 y dγ 0 π/2 cosβdβ 0 π cosαdα× 1 2 R 0 π/2 ( 1cos2β )dβ× 1 2 0 π ( 1cos2α )dα β=0 π/2 sinβdβ β=0 π sinαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaxadabaGaey 4kIipaleaacaaIWaaabaGaamivamaaBaaameaacaWGJbGaamiDaaqa baaaaOGaamizaiaadsfadaWgaaWcbaGaam4yaiaadshaaeqaaOGaey ypa0JaeyOeI0YaaSaaaeaacaWGnbGaamOuaiabeM8a3naaCaaaleqa baGaaGOmaaaaaOqaaiaaisdacqaHapaCaaWaaCbmaeaacqGHRiI8aS qaaiaaicdaaeaacqaHapaCaaGccaaMc8Uaamizaiabes7aKnaaxada baGaey4kIipaleaacaaIWaaabaGaamyEaaaakiaadsgacqaHZoWzda WfWaqaaiabgUIiYdWcbaGaaGimaaqaaiabec8aWjaac+cacaaIYaaa aOGaci4yaiaac+gacaGGZbacciGae8NSdiMaamizaiab=j7aInaaxa dabaGaey4kIipaleaacaaIWaaabaGaeqiWdahaaOGaaGPaVlGacoga caGGVbGaai4Caiabeg7aHjaadsgacqaHXoqycqGHxdaTdaWcaaqaam aalaaabaGaaGymaaqaaiaaikdaaaGaamOuamaaxadabaGaey4kIipa leaacaaIWaaabaGaeqiWdaNaai4laiaaikdaaaGcdaqadaqaaiaaig dacqGHsislciGGJbGaai4BaiaacohacaaIYaGae8NSdigacaGLOaGa ayzkaaGaamizaiab=j7aIjabgEna0oaalaaabaGaaGymaaqaaiaaik daaaWaaCbmaeaacqGHRiI8aSqaaiaaicdaaeaacqaHapaCaaGcdaqa daqaaiaaigdacqGHsislciGGJbGaai4BaiaacohacaaIYaGaeqySde gacaGLOaGaayzkaaGaamizaiabeg7aHbqaamaaxadabaGaey4kIipa leaacqWFYoGycqGH9aqpcaaIWaaabaGaeqiWdaNaai4laiaaikdaaa GcciGGZbGaaiyAaiaac6gacqWFYoGycaWGKbGae8NSdi2aaCbmaeaa cqGHRiI8aSqaaiab=j7aIjabg2da9iaaicdaaeaacqaHapaCaaGcci GGZbGaaiyAaiaac6gacqaHXoqycaWGKbGaeqySdegaaaaa@B99D@ (8)

Solving of integral Eqs. (7) and (8) yield the following:

-for the solid sphere

T ct | 0 T ct = MR ω 2 6π ×( δ| 0 π )×( γ| 0 γ )×sinβ| 0 π/2 × 2sinα| 0 π/2 × 1 6 R( β 1 2 sin2β )| 0 π/2 ×( α 1 2 sin2α )| 0 π ( cosβ )| 0 π/2 ×( cosα )| 0 π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamivam aaBaaaleaacaWGJbGaamiDaaqabaGcdaabbaqaamaaDaaaleaacaaI WaaabaGaamivamaaBaaameaacaWGJbGaamiDaaqabaaaaaGccaGLhW oacqGH9aqpcqGHsisldaWcaaqaaiaad2eacaWGsbGaeqyYdC3aaWba aSqabeaacaaIYaaaaaGcbaGaaGOnaiabec8aWbaacqGHxdaTdaqada qaaiabes7aKnaaeeaabaWaa0baaSqaaiaaicdaaeaacqaHapaCaaaa kiaawEa7aaGaayjkaiaawMcaaiabgEna0oaabmaabaGaeq4SdC2aaq qaaeaadaqhaaWcbaGaaGimaaqaaiabeo7aNbaaaOGaay5bSdaacaGL OaGaayzkaaGaey41aqRaci4CaiaacMgacaGGUbacciGae8NSdi2aaq qaaeaadaqhaaWcbaGaaGimaaqaaiabec8aWjaac+cacaaIYaaaaaGc caGLhWoacqGHxdaTaeaacaaIYaGaci4CaiaacMgacaGGUbGaeqySde 2aaqqaaeaadaqhaaWcbaGaaGimaaqaaiabec8aWjaac+cacaaIYaaa aaGccaGLhWoacqGHxdaTdaWcaaqaamaalaaabaGaaGymaaqaaiaaiA daaaGaamOuamaabmaabaGae8NSdiMaeyOeI0YaaSaaaeaacaaIXaaa baGaaGOmaaaaciGGZbGaaiyAaiaac6gacaaIYaGae8NSdigacaGLOa GaayzkaaWaaqqaaeaadaqhaaWcbaGaaGimaaqaaiabec8aWjaac+ca caaIYaaaaaGccaGLhWoacqGHxdaTdaqadaqaaiabeg7aHjabgkHiTm aalaaabaGaaGymaaqaaiaaikdaaaGaci4CaiaacMgacaGGUbGaaGOm aiabeg7aHbGaayjkaiaawMcaamaaeeaabaWaa0baaSqaaiaaicdaae aacqaHapaCaaaakiaawEa7aaqaamaabmaabaGaeyOeI0Iaci4yaiaa c+gacaGGZbGae8NSdigacaGLOaGaayzkaaWaaqqaaeaadaqhaaWcba GaaGimaaqaaiabec8aWjaac+cacaaIYaaaaaGccaGLhWoacqGHxdaT daqadaqaaiabgkHiTiGacogacaGGVbGaai4Caiabeg7aHbGaayjkai aawMcaamaaeeaabaWaa0baaSqaaiaaicdaaeaacqaHapaCaaaakiaa wEa7aaaaaaaa@B497@

that gave rise to the following

T ct = MR ω 2 6π ×( π0 )×( γ0 )×( 10 )×2( 10 )× 1 6 [ R( π 2 0 )0 ]×[ ( π0 )0 ] [ 1( 01 ) ]×[ ( 11 ) ] = M R 2 π 2 ω 2 72 γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaWG nbGaamOuaiabeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiaaiAdacq aHapaCaaGaey41aq7aaeWaaeaacqaHapaCcqGHsislcaaIWaaacaGL OaGaayzkaaGaey41aq7aaeWaaeaacqaHZoWzcqGHsislcaaIWaaaca GLOaGaayzkaaGaey41aq7aaeWaaeaacaaIXaGaeyOeI0IaaGimaaGa ayjkaiaawMcaaiabgEna0kaaikdadaqadaqaaiaaigdacqGHsislca aIWaaacaGLOaGaayzkaaGaey41aq7aaSaaaeaadaWcaaqaaiaaigda aeaacaaI2aaaamaadmaabaGaamOuamaabmaabaWaaSaaaeaacqaHap aCaeaacaaIYaaaaiabgkHiTiaaicdaaiaawIcacaGLPaaacqGHsisl caaIWaaacaGLBbGaayzxaaGaey41aq7aamWaaeaadaqadaqaaiabec 8aWjabgkHiTiaaicdaaiaawIcacaGLPaaacqGHsislcaaIWaaacaGL BbGaayzxaaaabaWaamWaaeaacaaIXaGaeyOeI0YaaeWaaeaacaaIWa GaeyOeI0IaaGymaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabgEna 0oaadmaabaGaeyOeI0YaaeWaaeaacqGHsislcaaIXaGaeyOeI0IaaG ymaaGaayjkaiaawMcaaaGaay5waiaaw2faaaaacqGH9aqpcqGHsisl daWcaaqaaiaad2eacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaeqiWda 3aaWbaaSqabeaacaaIYaaaaOGaeqyYdC3aaWbaaSqabeaacaaIYaaa aaGcbaGaaG4naiaaikdaaaGaeq4SdCgaaa@9496@ (9)

-for the hollow sphere                                                                                   

T ct | 0 T ct = MR ω 2 4π ×( δ| 0 π )×( γ| 0 γ )×sinβ| 0 π/2 ×2sinα| 0 π/2 × R× 1 2 ( β 1 2 sin2β )| 0 π/2 ×( α 1 2 sin2α )| 0 π ( cosβ )| 0 π/2 ×( cosα )| 0 π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOWaaqqaaeaadaqhaaWcbaGaaGimaaqa aiaadsfadaWgaaadbaGaam4yaiaadshaaeqaaaaaaOGaay5bSdGaey ypa0JaeyOeI0YaaSaaaeaacaWGnbGaamOuaiabeM8a3naaCaaaleqa baGaaGOmaaaaaOqaaiaaisdacqaHapaCaaGaey41aq7aaeWaaeaacq aH0oazdaabbaqaamaaDaaaleaacaaIWaaabaGaeqiWdahaaaGccaGL hWoaaiaawIcacaGLPaaacqGHxdaTdaqadaqaaiabeo7aNnaaeeaaba Waa0baaSqaaiaaicdaaeaacqaHZoWzaaaakiaawEa7aaGaayjkaiaa wMcaaiabgEna0kGacohacaGGPbGaaiOBaGGaciab=j7aInaaeeaaba Waa0baaSqaaiaaicdaaeaacqaHapaCcaGGVaGaaGOmaaaaaOGaay5b SdGaey41aqRaaGOmaiGacohacaGGPbGaaiOBaiabeg7aHnaaeeaaba Waa0baaSqaaiaaicdaaeaacqaHapaCcaGGVaGaaGOmaaaaaOGaay5b SdGaey41aq7aaSaaaeaacaWGsbGaey41aq7aaSaaaeaacaaIXaaaba GaaGOmaaaadaqadaqaaiab=j7aIjabgkHiTmaalaaabaGaaGymaaqa aiaaikdaaaGaci4CaiaacMgacaGGUbGaaGOmaiab=j7aIbGaayjkai aawMcaamaaeeaabaWaa0baaSqaaiaaicdaaeaacqaHapaCcaGGVaGa aGOmaaaaaOGaay5bSdGaey41aq7aaeWaaeaacqaHXoqycqGHsislda WcaaqaaiaaigdaaeaacaaIYaaaaiGacohacaGGPbGaaiOBaiaaikda cqaHXoqyaiaawIcacaGLPaaadaabbaqaamaaDaaaleaacaaIWaaaba GaeqiWdahaaaGccaGLhWoaaeaadaqadaqaaiabgkHiTiGacogacaGG VbGaai4Caiab=j7aIbGaayjkaiaawMcaamaaeeaabaWaa0baaSqaai aaicdaaeaacqaHapaCcaGGVaGaaGOmaaaaaOGaay5bSdGaey41aq7a aeWaaeaacqGHsislciGGJbGaai4BaiaacohacqaHXoqyaiaawIcaca GLPaaadaabbaqaamaaDaaaleaacaaIWaaabaGaeqiWdahaaaGccaGL hWoaaaaaaa@B6A1@

that gave rise to the following

T ct = MR ω 2 4π ×( π0 )×( γ0 )×( 10 )×2( 10 )× R 4 [ ( π 2 0 )0 ]×[ ( π0 )0 ] [ 1( 01 ) ]×[ ( 11 ) ] = M R 2 π 2 ω 2 32 γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaWG nbGaamOuaiabeM8a3naaCaaaleqabaGaaGOmaaaaaOqaaiaaisdacq aHapaCaaGaey41aq7aaeWaaeaacqaHapaCcqGHsislcaaIWaaacaGL OaGaayzkaaGaey41aq7aaeWaaeaacqaHZoWzcqGHsislcaaIWaaaca GLOaGaayzkaaGaey41aq7aaeWaaeaacaaIXaGaeyOeI0IaaGimaaGa ayjkaiaawMcaaiabgEna0kaaikdadaqadaqaaiaaigdacqGHsislca aIWaaacaGLOaGaayzkaaGaey41aq7aaSaaaeaadaWcaaqaaiaadkfa aeaacaaI0aaaamaadmaabaWaaeWaaeaadaWcaaqaaiabec8aWbqaai aaikdaaaGaeyOeI0IaaGimaaGaayjkaiaawMcaaiabgkHiTiaaicda aiaawUfacaGLDbaacqGHxdaTdaWadaqaamaabmaabaGaeqiWdaNaey OeI0IaaGimaaGaayjkaiaawMcaaiabgkHiTiaaicdaaiaawUfacaGL DbaaaeaadaWadaqaaiaaigdacqGHsisldaqadaqaaiaaicdacqGHsi slcaaIXaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaey41aq7aamWa aeaacqGHsisldaqadaqaaiabgkHiTiaaigdacqGHsislcaaIXaaaca GLOaGaayzkaaaacaGLBbGaayzxaaaaaiabg2da9iabgkHiTmaalaaa baGaamytaiaadkfadaahaaWcbeqaaiaaikdaaaGccqaHapaCdaahaa WcbeqaaiaaikdaaaGccqaHjpWDdaahaaWcbeqaaiaaikdaaaaakeaa caaIZaGaaGOmaaaacqaHZoWzaaa@93D3@ (10)

where the change of the limits is taken for a quarter of the sphere.

The angle γ is variable and depends on the angular velocity ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWG4baabeaaaaa@3A02@ of the sphere about axis ox.

The rate of change in the torque T ct MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaaaa@39F2@ per time is expressed by the differential equation

-for the solid sphere                                                                                      

d T ct dt = M R 2 π 2 ω 2 72 dγ dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadsfadaWgaaWcbaGaam4yaiaadshaaeqaaaGcbaGaamizaiaa dshaaaGaeyypa0JaeyOeI0YaaSaaaeaacaWGnbGaamOuamaaCaaale qabaGaaGOmaaaakiabec8aWnaaCaaaleqabaGaaGOmaaaakiabeM8a 3naaCaaaleqabaGaaGOmaaaaaOqaaiaaiEdacaaIYaaaamaalaaaba Gaamizaiabeo7aNbqaaiaadsgacaWG0baaaaaa@4CE5@ (11)

-for the hollow sphere

d T ct dt = M R 2 π 2 ω 2 32 dγ dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadsfadaWgaaWcbaGaam4yaiaadshaaeqaaaGcbaGaamizaiaa dshaaaGaeyypa0JaeyOeI0YaaSaaaeaacaWGnbGaamOuamaaCaaale qabaGaaGOmaaaakiabec8aWnaaCaaaleqabaGaaGOmaaaakiabeM8a 3naaCaaaleqabaGaaGOmaaaaaOqaaiaaiodacaaIYaaaamaalaaaba Gaamizaiabeo7aNbqaaiaadsgacaWG0baaaaaa@4CE1@ (12)

where t=α/ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcqaHXoqycaGGVaGaeqyYdChaaa@3D2A@ is the time taken relative to the angular velocity of the spinning sphere and other parameters are as specified above.

The differential of time and the angle is: dt= dα ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsgacaWG0b Gaeyypa0ZaaSaaaeaacaWGKbGaeqySdegabaGaeqyYdChaaaaa@3E59@ , the expression dγ dt = ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiabeo7aNbqaaiaadsgacaWG0baaaiabg2da9iabeM8a3naaBaaa leaacaWG4baabeaaaaa@3F8A@ is the angular velocity of the sphere’s precession around axis ox. Substituting the defined components into Eqs. (11) and (12), separation of variables, presentation by the integral forms with defined limits, and solutions yield the following:

-for the solid sphere

ωd T ct dα = M R 2 π 2 ω 2 32 ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq yYdCNaamizaiaadsfadaWgaaWcbaGaam4yaiaadshaaeqaaaGcbaGa amizaiabeg7aHbaacqGH9aqpcqGHsisldaWcaaqaaiaad2eacaWGsb WaaWbaaSqabeaacaaIYaaaaOGaeqiWda3aaWbaaSqabeaacaaIYaaa aOGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaGcbaGaaG4maiaaikdaaa GaeqyYdC3aaSbaaSqaaiaadIhaaeqaaaaa@4DC8@ , d T ct = M R 2 π 2 ω ω x 72 dα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsgacaWGub WaaSbaaSqaaiaadogacaWG0baabeaakiabg2da9iabgkHiTmaalaaa baGaamytaiaadkfadaahaaWcbeqaaiaaikdaaaGccqaHapaCdaahaa WcbeqaaiaaikdaaaGccqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqa baaakeaacaaI3aGaaGOmaaaacaWGKbGaeqySdegaaa@4B06@ , 0 T ct d T ct = 0 T ct M R 2 π 2 ω ω x 72 dα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaapehabaGaam izaiaadsfadaWgaaWcbaGaam4yaiaadshaaeqaaaqaaiaaicdaaeaa caWGubWaaSbaaWqaaiaadogacaWG0baabeaaa0Gaey4kIipakiabg2 da9iabgkHiTmaapehabaWaaSaaaeaacaWGnbGaamOuamaaCaaaleqa baGaaGOmaaaakiabec8aWnaaCaaaleqabaGaaGOmaaaakiabeM8a3j abeM8a3naaBaaaleaacaWG4baabeaaaOqaaiaaiEdacaaIYaaaaaWc baGaaGimaaqaaiaadsfadaWgaaadbaGaam4yaiaadshaaeqaaaqdcq GHRiI8aOGaamizaiabeg7aHbaa@5719@

T ct = 1 72 M R 2 π 2 ω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaI XaaabaGaaG4naiaaikdaaaGaamytaiaadkfadaahaaWcbeqaaiaaik daaaGccqaHapaCdaahaaWcbeqaaiaaikdaaaGccqaHjpWDcqaHjpWD daWgaaWcbaGaamiEaaqabaaaaa@4846@ (13)

-for the hollow sphere

ωd T ct dα = M R 2 π 2 ω 2 32 ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaeq yYdCNaamizaiaadsfadaWgaaWcbaGaam4yaiaadshaaeqaaaGcbaGa amizaiabeg7aHbaacqGH9aqpcqGHsisldaWcaaqaaiaad2eacaWGsb WaaWbaaSqabeaacaaIYaaaaOGaeqiWda3aaWbaaSqabeaacaaIYaaa aOGaeqyYdC3aaWbaaSqabeaacaaIYaaaaaGcbaGaaG4maiaaikdaaa GaeqyYdC3aaSbaaSqaaiaadIhaaeqaaaaa@4DC8@ , d T ct = M R 2 π 2 ω ω x 32 dα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsgacaWGub WaaSbaaSqaaiaadogacaWG0baabeaakiabg2da9iabgkHiTmaalaaa baGaamytaiaadkfadaahaaWcbeqaaiaaikdaaaGccqaHapaCdaahaa WcbeqaaiaaikdaaaGccqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqa baaakeaacaaIZaGaaGOmaaaacaWGKbGaeqySdegaaa@4B02@ , 0 T ct d T ct = 0 π M R 2 π 2 ω ω x 32 dα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaapehabaGaam izaiaadsfadaWgaaWcbaGaam4yaiaadshaaeqaaaqaaiaaicdaaeaa caWGubWaaSbaaWqaaiaadogacaWG0baabeaaa0Gaey4kIipakiabg2 da9iabgkHiTmaapehabaWaaSaaaeaacaWGnbGaamOuamaaCaaaleqa baGaaGOmaaaakiabec8aWnaaCaaaleqabaGaaGOmaaaakiabeM8a3j abeM8a3naaBaaaleaacaWG4baabeaaaOqaaiaaiodacaaIYaaaaaWc baGaaGimaaqaaiabec8aWbqdcqGHRiI8aOGaamizaiabeg7aHbaa@55EB@

T ct = 1 32 M R 2 π 2 ω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOGaeyypa0JaeyOeI0YaaSaaaeaacaaI XaaabaGaaG4maiaaikdaaaGaamytaiaadkfadaahaaWcbeqaaiaaik daaaGccqaHapaCdaahaaWcbeqaaiaaikdaaaGccqaHjpWDcqaHjpWD daWgaaWcbaGaamiEaaqabaaaaa@4842@  (14)

The torque acts on the upper and lower and left and right sides of the sphere then the total resistance torque T ct MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaaaa@39F2@ of Eq. (13) and (14) is increased four times

-for the solid sphere 

T ct =± 2×2 72 M R 2 π 2 ω ω x =± 5 36 π 2 Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOGaeyypa0JaeyySae7aaSaaaeaacaaI YaGaey41aqRaaGOmaaqaaiaaiEdacaaIYaaaaiaad2eacaWGsbWaaW baaSqabeaacaaIYaaaaOGaeqiWda3aaWbaaSqabeaacaaIYaaaaOGa eqyYdCNaeqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaeyypa0JaeyySae 7aaSaaaeaacaaI1aaabaGaaG4maiaaiAdaaaGaeqiWda3aaWbaaSqa beaacaaIYaaaaOGaamOsaiabeM8a3jabeM8a3naaBaaaleaacaWG4b aabeaaaaa@59A7@ (15)

-for the hollow sphere

T ct =± 2×2 32 M R 2 π 2 ω ω x =± 3 16 π 2 Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOGaeyypa0JaeyySae7aaSaaaeaacaaI YaGaey41aqRaaGOmaaqaaiaaiodacaaIYaaaaiaad2eacaWGsbWaaW baaSqabeaacaaIYaaaaOGaeqiWda3aaWbaaSqabeaacaaIYaaaaOGa eqyYdCNaeqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaeyypa0JaeyySae 7aaSaaaeaacaaIZaaabaGaaGymaiaaiAdaaaGaeqiWda3aaWbaaSqa beaacaaIYaaaaOGaamOsaiabeM8a3jabeM8a3naaBaaaleaacaWG4b aabeaaaaa@599F@ (16)        

where J=2M R 2 /5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQeacqGH9a qpcaaIYaGaamytaiaadkfadaahaaWcbeqaaiaaikdaaaGccaGGVaGa aGynaaaa@3DAB@ and J=2M R 2 /3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQeacqGH9a qpcaaIYaGaamytaiaadkfadaahaaWcbeqaaiaaikdaaaGccaGGVaGa aG4maaaa@3DA9@ is the sphere mass moment of inertia for solid and hollow spheres respectively, other parameters are as specified above. The sign (±) is (+) for the precession torque whose direction is counter-clockwise about axis oy and (-) for the resistance torque whose direction is clockwise about the axis ox.

The expression for the precession torque generated by the centrifugal forces of the mass element is the same as for the resistance torque of the sphere considered above. The precession torque of the centrifugal forces acts around the axis oy as illustrated in Figure 2.

Coriolis torque and the change in the angular momentum acting on a spinning sphere

The modeling of the action of Coriolis forces generated by the mass elements of the spinning sphere is almost the same as for the centrifugal forces.19 Coriolis forces are generated by the rotating mass elements located on parallel planes of the sphere. The resistance torque Δ T cr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaamiva8aadaWgaaWcbaWdbiaadogacaWGYbaapaqabaaa aa@3BA4@ of Coriolis force of the mass elements f cr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWGYbaapaqabaaaaa@3A50@ of the spinning sphere is expressed by the following:

Δ T cr = f cr y m =m a z y m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaamiva8aadaWgaaWcbaWdbiaadogacaWGYbaapaqabaGc cqGH9aqpcqGHsislpeGaamOza8aadaWgaaWcbaWdbiaadogacaWGYb aapaqabaGccaWG5bWaaSbaaSqaaiaad2gaaeqaaOGaeyypa0JaeyOe I0IaamyBaiaadggadaWgaaWcbaGaamOEaaqabaGccaWG5bWaaSbaaS qaaiaad2gaaeqaaaaa@4A21@        (17)

where y m =  R i sinαsinβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaad2gaa8aabeaak8qacqGH9aqpcaqG GaGaamOua8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaWGZbGaam yAaiaad6gacqaHXoqycaWGZbGaamyAaiaad6gacqaHYoGyaaa@4664@ is the distance to the mass element’s location along with axes oz and ox; other components are represented in Eq. (2).

The expression for a z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@396B@ is represented by the following:   

α z = d V z dt = d(VcosαsinΔγ) dt =Vcosα dγ dt = R i sinβcosαω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaWG6baabeaakiabg2da9iabgkHiTmaalaaabaGaamizaiaa dAfadaWgaaWcbaGaamOEaaqabaaakeaacaWGKbGaamiDaaaacqGH9a qpdaWcaaqaaiaadsgacaGGOaGaamOvaiGacogacaGGVbGaai4Caiab eg7aHjGacohacaGGPbGaaiOBaabaaaaaaaaapeGaeuiLdqKaeq4SdC 2daiaacMcaaeaacaWGKbGaamiDaaaacqGH9aqpcqGHsislcaWGwbGa ci4yaiaac+gacaGGZbGaeqySde2aaSaaaeaacaWGKbWdbiabeo7aNb WdaeaacaWGKbGaamiDaaaacqGH9aqpcqGHsislcaWGsbWaaSbaaSqa aiaadMgaaeqaaOGaci4CaiaacMgacaGGUbWdbiabek7aI9aaciGGJb Gaai4BaiaacohacqaHXoqycqaHjpWDcqaHjpWDdaWgaaWcbaGaamiE aaqabaaaaa@6EF5@ (18)       

where a z =d V z /dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGH9aqpcaWG KbGaamOva8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacaGGVaGaam izaiaadshaaaa@4057@ is Coriolis acceleration of the mass element along with axis oz; V z =VcosαsinΔγ= R i ωcosαcosβsinΔγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOva8aadaWgaaWcbaWdbiaadQhaa8aabeaak8qacqGH9aqpcaWG wbGaam4yaiaad+gacaWGZbGaeqySdeMaam4CaiaadMgacaWGUbGaeu iLdqKaeq4SdCMaeyypa0JaamOua8aadaWgaaWcbaWdbiaadMgaa8aa beaak8qacqaHjpWDcaWGJbGaam4BaiaadohacqaHXoqycaWGJbGaam 4BaiaadohacqaHYoGycaWGZbGaamyAaiaad6gacqqHuoarcqaHZoWz aaa@598E@ is the change in the tangential velocity V of the mass element; sinΔγ =Δγ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4CaiaadMgacaWGUbGaeuiLdqKaeq4SdCMaaeiiaiabg2da9iab fs5aejabeo7aNbaa@41C8@ for the small-angle; other components are as specified above.

Substituting defined parameters into the expression of Coriolis force f cr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWGYbaapaqabaaaaa@3A50@ (Eq. (17)) brings the following equations:

-for the solid sphere

f cr = MΔδ 4π 2 3 Rω ω x sinβcosα= MRΔδ 6π ω ω x sinβcosα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWGYbaapaqabaGccqGH9aqp cqGHsisldaWcaaqaaiaad2eapeGaeuiLdqKaeqiTdqgapaqaaiaais dacqaHapaCaaWaaSaaaeaacaaIYaaabaGaaG4maaaacaWGsbGaeqyY dCNaeqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaci4CaiaacMgacaGGUb Wdbiabek7aI9aaciGGJbGaai4BaiaacohacqaHXoqycqGH9aqpdaWc aaqaaiaad2eacaWGsbWdbiabfs5aejabes7aKbWdaeaacaaI2aGaeq iWdahaaiabeM8a3jabeM8a3naaBaaaleaacaWG4baabeaakiGacoha caGGPbGaaiOBa8qacqaHYoGypaGaci4yaiaac+gacaGGZbGaeqySde gaaa@6948@ (19)

-for the hollow sphere

f cr = MΔδ 4π Rω ω x sinβcosα= MRΔδ 4π ω ω x sinβcosα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaadogacaWGYbaapaqabaGccqGH9aqp cqGHsisldaWcaaqaaiaad2eapeGaeuiLdqKaeqiTdqgapaqaaiaais dacqaHapaCaaGaamOuaiabeM8a3jabeM8a3naaBaaaleaacaWG4baa beaakiGacohacaGGPbGaaiOBa8qacqaHYoGypaGaci4yaiaac+gaca GGZbGaeqySdeMaeyypa0ZaaSaaaeaacaWGnbGaamOua8qacqqHuoar cqaH0oaza8aabaGaaGinaiabec8aWbaacqaHjpWDcqaHjpWDdaWgaa WcbaGaamiEaaqabaGcciGGZbGaaiyAaiaac6gapeGaeqOSdi2daiGa cogacaGGVbGaai4Caiabeg7aHbaa@67BD@ (20)

Substituting defined parameters into (Eq. 17) yields the following equations:

-for the solid sphere

Δ T cr = MRω ω x Δδ 6π sinβcosα× y m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaamiva8aadaWgaaWcbaWdbiaadogacaWGYbaapaqabaGc cqGH9aqpdaWcaaqaaiaad2eacaWGsbGaeqyYdCNaeqyYdC3aaSbaaS qaaiaadIhaaeqaaOWdbiabfs5aejabes7aKbWdaeaacaaI2aGaeqiW dahaaiGacohacaGGPbGaaiOBa8qacqaHYoGypaGaci4yaiaac+gaca GGZbGaeqySdeMaey41aqRaamyEamaaBaaaleaacaWGTbaabeaaaaa@561E@ (21)

for the hollow sphere

Δ T cr = MRω ω x Δδ 4π sinβcosα× y m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuiLdqKaamiva8aadaWgaaWcbaWdbiaadogacaWGYbaapaqabaGc cqGH9aqpdaWcaaqaaiaad2eacaWGsbGaeqyYdCNaeqyYdC3aaSbaaS qaaiaadIhaaeqaaOWdbiabfs5aejabes7aKbWdaeaacaaI0aGaeqiW dahaaiGacohacaGGPbGaaiOBa8qacqaHYoGypaGaci4yaiaac+gaca GGZbGaeqySdeMaey41aqRaamyEamaaBaaaleaacaWGTbaabeaaaaa@561C@ (22)

The change in the tangential velocity V of the mass elements of the cross-section of the sphere rotating about the axis ox presents the Coriolis acceleration a z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaadQhaa8aabeaaaaa@396B@  (Figure 3).

Figure 3 Schematic of the acting Coriolis forces, torques, and motions of the spinning sphere.

The location of the resultant force is the centroid of the area under the Coriolis force curve calculated by Eq. (5) for the centroid A. The centroid point C is defined for the resultant Coriolis force acting around the axis ox.

-for the solid sphere

y c = α=0 π β=0 π/2 f cr y m dαdβ α=0 π β=0 π/2 f cr dαdβ = α=0 π β=0 π/2 MRω ω x Δ δ 2 6π sinβcosα× 2 3 Rsinαsinβdαdβ α=0 π β=0 π/2 MRω ω x Δδ 6π sinβcosαdαdβ = MRω ω x Δδ 6π α=0 π 2 3 Rsinβcosαdα× 0 π/2 sinβcosβdβ MRω ω x Δδ 6π α=0 π/2 sinβdβ× 0 π/2 cosαdα = 2 3 R 0 π/2 sin 2 βd× 0 π sinαcosαdα α=0 π/2 sinβdβ× 0 π cosαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWG5bWdamaaBaaaleaacaWGJbaabeaakiabg2da9maalaaa baWaaCbmaeaacqGHRiI8aSqaaiabeg7aHjabg2da9iaaicdaaeaacq aHapaCaaGccaaMc8+aaCbmaeaacqGHRiI8aSqaaiabek7aIjabg2da 9iaaicdaaeaacqaHapaCcaGGVaGaaGOmaaaak8qacaWGMbWaaSbaaS qaaiaadogacaWGYbaabeaak8aacaWG5bWaaSbaaSqaaiaad2gaaeqa aOGaamizaiabeg7aHjaadsgaiiGacqWFYoGycaaMc8oabaWaaCbmae aacqGHRiI8aSqaaiabeg7aHjabg2da9iaaicdaaeaacqaHapaCaaGc caaMc8+aaCbmaeaacqGHRiI8aSqaaiabek7aIjabg2da9iaaicdaae aacqaHapaCcaGGVaGaaGOmaaaak8qacaWGMbWaaSbaaSqaaiaadoga caWGYbaabeaak8aacaWGKbGaeqySdeMaamizaiab=j7aIbaacqGH9a qpdaWcaaqaamaaxadabaGaey4kIipaleaacqaHXoqycqGH9aqpcaaI WaaabaGaeqiWdahaaOGaaGPaVpaaxadabaGaey4kIipaleaacqaHYo GycqGH9aqpcaaIWaaabaGaeqiWdaNaai4laiaaikdaaaGcdaWcaaqa aiaad2eacaWGsbGaeqyYdCNaeqyYdC3aaSbaaSqaaiaadIhaaeqaaO GaeuiLdqKaeqiTdq2aaWbaaSqabeaacaaIYaaaaaGcbaGaaGOnaiab ec8aWbaaciGGZbGaaiyAaiaac6gacqWFYoGycaaMc8UaaGPaVlGaco gacaGGVbGaai4CaiaaykW7cqaHXoqypeGaey41aq7aaSaaaeaacaaI YaaabaGaaG4maaaapaGaamOuaiGacohacaGGPbGaaiOBaiabeg7aHj aaykW7caaMc8Uaci4CaiaacMgacaGGUbGae8NSdiMaamizaiabeg7a HjaadsgacqWFYoGycaaMc8oabaWaaCbmaeaacqGHRiI8aSqaaiabeg 7aHjabg2da9iaaicdaaeaacqaHapaCaaGccaaMc8+aaCbmaeaacqGH RiI8aSqaaiabek7aIjabg2da9iaaicdaaeaacqaHapaCcaGGVaGaaG OmaaaakmaalaaabaGaamytaiaadkfacqaHjpWDcqaHjpWDdaWgaaWc baGaamiEaaqabaGccqqHuoarcqaH0oazaeaacaaI2aGaeqiWdahaai GacohacaGGPbGaaiOBaiab=j7aIjaaykW7caaMc8Uaci4yaiaac+ga caGGZbGaaGPaVlabeg7aHjaadsgacqaHXoqycaWGKbGae8NSdiMaaG PaVdaacqGH9aqpaeaadaWcaaqaamaalaaabaGaamytaiaadkfacqaH jpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaGccqqHuoarcqaH0oazae aacaaI2aGaeqiWdahaamaaxadabaGaey4kIipaleaacqaHXoqycqGH 9aqpcaaIWaaabaGaeqiWdahaaOGaaGPaV=qadaWcaaqaaiaaikdaae aacaaIZaaaaiaadkfapaGaci4CaiaacMgacaGGUbGae8NSdiMaaGPa VlaaykW7ciGGJbGaai4BaiaacohacaaMc8UaeqySdeMaamizaiabeg 7aHjabgEna0kaaykW7daWfWaqaaiabgUIiYdWcbaGaaGimaaqaaiab ec8aWjaac+cacaaIYaaaaOGaci4CaiaacMgacaGGUbGae8NSdiMaci 4yaiaac+gacaGGZbGae8NSdiMaamizaiab=j7aIbqaamaalaaabaGa amytaiaadkfacqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaGccq qHuoarcqaH0oazaeaacaaI2aGaeqiWdahaaiaaykW7daWfWaqaaiab gUIiYdWcbaGaeqySdeMaeyypa0JaaGimaaqaaiabec8aWjaac+caca aIYaaaaOGaci4CaiaacMgacaGGUbGae8NSdiMaaGPaVlaadsgacqWF YoGycqGHxdaTcaaMc8+aaCbmaeaacqGHRiI8aSqaaiaaicdaaeaacq aHapaCcaGGVaGaaGOmaaaakiGacogacaGGVbGaai4Caiabeg7aHjaa dsgacqaHXoqycaaMc8oaaiabg2da9maalaaabaWdbmaalaaabaGaaG OmaaqaaiaaiodaaaGaamOua8aadaWfWaqaaiabgUIiYdWcbaGaaGim aaqaaiabec8aWjaac+cacaaIYaaaaOGaci4CaiaacMgacaGGUbWaaW baaSqabeaacaaIYaaaaOGae8NSdiMaaGPaVlaadsgacqGHxdaTdaWf WaqaaiabgUIiYdWcbaGaaGimaaqaaiabec8aWbaakiGacohacaGGPb GaaiOBaiabeg7aHjGacogacaGGVbGaai4Caiabeg7aHjaadsgacqaH XoqyaeaadaWfWaqaaiabgUIiYdWcbaGaeqySdeMaeyypa0JaaGimaa qaaiabec8aWjaac+cacaaIYaaaaOGaci4CaiaacMgacaGGUbGae8NS diMaamizaiab=j7aIjabgEna0oaaxadabaGaey4kIipaleaacaaIWa aabaGaeqiWdahaaOGaci4yaiaac+gacaGGZbGaeqySdeMaamizaiab eg7aHbaaaaaa@9782@  (23)

-for the hollow sphere

y c = α=0 π β=0 π/2 f cr y m dαdβ α=0 π β=0 π/2 f cr dαdβ = α=0 π β=0 π/2 MRω ω x Δ δ 2 4π sinβcosα×Rsinαsinβdαdβ α=0 π β=0 π/2 MRω ω x Δδ 4π sinβcosαdαdβ = MRω ω x Δδ 4π α=0 π Rsinαcosαdα× 0 π/2 sin 2 βdβ MRω ω x Δδ 6π α=0 π/2 sinβdβ× 0 π cosαdα = R 0 π sinαdsinα× 0 π/2 sin 2 βdβ 0 π/2 sinβdβ× 0 π cosαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaaeaaaaaa aaa8qacaWG5bWdamaaBaaaleaacaWGJbaabeaakiabg2da9maalaaa baWaaCbmaeaacqGHRiI8aSqaaiabeg7aHjabg2da9iaaicdaaeaacq aHapaCaaGccaaMc8+aaCbmaeaacqGHRiI8aSqaaiabek7aIjabg2da 9iaaicdaaeaacqaHapaCcaGGVaGaaGOmaaaak8qacaWGMbWaaSbaaS qaaiaadogacaWGYbaabeaak8aacaWG5bWaaSbaaSqaaiaad2gaaeqa aOGaamizaiabeg7aHjaadsgaiiGacqWFYoGycaaMc8oabaWaaCbmae aacqGHRiI8aSqaaiabeg7aHjabg2da9iaaicdaaeaacqaHapaCaaGc caaMc8+aaCbmaeaacqGHRiI8aSqaaiabek7aIjabg2da9iaaicdaae aacqaHapaCcaGGVaGaaGOmaaaak8qacaWGMbWaaSbaaSqaaiaadoga caWGYbaabeaak8aacaWGKbGaeqySdeMaamizaiab=j7aIbaacqGH9a qpdaWcaaqaamaaxadabaGaey4kIipaleaacqaHXoqycqGH9aqpcaaI WaaabaGaeqiWdahaaOGaaGPaVpaaxadabaGaey4kIipaleaacqaHYo GycqGH9aqpcaaIWaaabaGaeqiWdaNaai4laiaaikdaaaGcdaWcaaqa aiaad2eacaWGsbGaeqyYdCNaeqyYdC3aaSbaaSqaaiaadIhaaeqaaO GaeuiLdqKaeqiTdq2aaWbaaSqabeaacaaIYaaaaaGcbaGaaGinaiab ec8aWbaaciGGZbGaaiyAaiaac6gacqWFYoGycaaMc8UaaGPaVlGaco gacaGGVbGaai4CaiaaykW7cqaHXoqypeGaey41aq7daiaadkfaciGG ZbGaaiyAaiaac6gacqaHXoqycaaMc8UaaGPaVlGacohacaGGPbGaai OBaiab=j7aIjaadsgacqaHXoqycaWGKbGae8NSdiMaaGPaVdqaamaa xadabaGaey4kIipaleaacqaHXoqycqGH9aqpcaaIWaaabaGaeqiWda haaOGaaGPaVpaaxadabaGaey4kIipaleaacqaHYoGycqGH9aqpcaaI WaaabaGaeqiWdaNaai4laiaaikdaaaGcdaWcaaqaaiaad2eacaWGsb GaeqyYdCNaeqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaeuiLdqKaeqiT dqgabaGaaGinaiabec8aWbaaciGGZbGaaiyAaiaac6gacqWFYoGyca aMc8UaaGPaVlGacogacaGGVbGaai4CaiaaykW7cqaHXoqycaWGKbGa eqySdeMaamizaiab=j7aIjaaykW7aaGaeyypa0dabaWaaSaaaeaada Wcaaqaaiaad2eacaWGsbGaeqyYdCNaeqyYdC3aaSbaaSqaaiaadIha aeqaaOGaeuiLdqKaeqiTdqgabaGaaGinaiabec8aWbaadaWfWaqaai abgUIiYdWcbaGaeqySdeMaeyypa0JaaGimaaqaaiabec8aWbaakiaa ykW7peGaamOua8aaciGGZbGaaiyAaiaac6gacqaHXoqycaaMc8UaaG PaVlGacogacaGGVbGaai4CaiaaykW7cqaHXoqycaWGKbGaeqySdeMa ey41aqRaaGPaVpaaxadabaGaey4kIipaleaacaaIWaaabaGaeqiWda Naai4laiaaikdaaaGcciGGZbGaaiyAaiaac6gadaahaaWcbeqaaiaa ikdaaaGccqWFYoGycaWGKbGae8NSdigabaWaaSaaaeaacaWGnbGaam OuaiabeM8a3jabeM8a3naaBaaaleaacaWG4baabeaakiabfs5aejab es7aKbqaaiaaiAdacqaHapaCaaGaaGPaVpaaxadabaGaey4kIipale aacqaHXoqycqGH9aqpcaaIWaaabaGaeqiWdaNaai4laiaaikdaaaGc ciGGZbGaaiyAaiaac6gacqWFYoGycaaMc8Uaamizaiab=j7aIjabgE na0kaaykW7daWfWaqaaiabgUIiYdWcbaGaaGimaaqaaiabec8aWbaa kiGacogacaGGVbGaai4Caiabeg7aHjaadsgacqaHXoqycaaMc8oaai abg2da9maalaaabaWdbiaadkfapaWaaCbmaeaacqGHRiI8aSqaaiaa icdaaeaacqaHapaCaaGcciGGZbGaaiyAaiaac6gacqaHXoqycaaMc8 UaamizaiGacohacaGGPbGaaiOBaiabeg7aHjabgEna0oaaxadabaGa ey4kIipaleaacaaIWaaabaGaeqiWdaNaai4laiaaikdaaaGcciGGZb GaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccqWFYoGycaWGKbGa e8NSdigabaWaaCbmaeaacqGHRiI8aSqaaiaaicdaaeaacqaHapaCca GGVaGaaGOmaaaakiGacohacaGGPbGaaiOBaiab=j7aIjaadsgacqWF YoGycqGHxdaTdaWfWaqaaiabgUIiYdWcbaGaaGimaaqaaiabec8aWb aakiGacogacaGGVbGaai4Caiabeg7aHjaadsgacqaHXoqyaaaaaaa@8B56@ (24)

where the components MRω ω x Δδ 6π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ytaiaadkfacqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaGcqaaa aaaaaaWdbiabfs5aejabes7aKbWdaeaacaaI2aGaeqiWdahaaaaa@4349@ and MRω ω x Δδ 4π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaam ytaiaadkfacqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaGcqaaa aaaaaaWdbiabfs5aejabes7aKbWdaeaacaaI0aGaeqiWdahaaaaa@4347@ is accepted as constant and the expression

The expressions of yC (Eqs. (23) and (24)) are substituted into Eqs. (21) and (22) respectively where

cosα= 0 π sinαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiGacogacaGGVb Gaai4CaiaaykW7cqaHXoqycqGH9aqpdaWfWaqaaiabgUIiYdWcbaGa aGimaaqaaiabec8aWbaakiabgkHiTiGacohacaGGPbGaaiOBaiabeg 7aHjaadsgacqaHXoqyaaa@4A9F@ , sinβ= 0 π cosβdβ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiGacohacaGGPb GaaiOBaGGaciab=j7aIjab=1da9maaxadabaGaey4kIipaleaacaaI WaaabaGaeqiWdahaaOGaci4yaiaac+gacaGGZbGae8NSdiMaamizai ab=j7aIbaa@4823@ , sin 2 β= 1 2 (1cos2β) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaaykW7ciGGZb GaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaacciGccqWFYoGycqWF 9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacIcacaaIXaGaeyOeI0 Iaci4yaiaac+gacaGGZbGaaGOmaiab=j7aIjab=LcaPaaa@48E6@ , and represented by the integral forms:

-for the solid sphere:                                                                                     

0 T cr d T cr = MRω ω x 6π 0 π dδ× 0 π/2 cosβdβ 0 π sinαdα× 2 3 R 0 π sinαdsinα× 0 π/2 sin 2 βdβ 0 π/2 sin 2 βdβ× 0 π cosαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaxadabaGaey 4kIipaleaacaaIWaaabaGaamivamaaBaaameaacaWGJbGaamOCaaqa baaaaOGaamizaiaadsfadaWgaaWcbaGaam4yaiaadkhaaeqaaOGaey ypa0ZaaSaaaeaacaWGnbGaamOuaiabeM8a3jabeM8a3naaBaaaleaa caWG4baabeaaaOqaaiaaiAdacqaHapaCaaWaaCbmaeaacqGHRiI8aS qaaiaaicdaaeaacqaHapaCaaGccaWGKbGaeqiTdqMaey41aq7aaCbm aeaacqGHRiI8aSqaaiaaicdaaeaacqaHapaCcaGGVaGaaGOmaaaaki GacogacaGGVbGaai4CaGGaciab=j7aIjaadsgacqWFYoGydaWfWaqa aiabgUIiYdWcbaGaaGimaaqaaiabec8aWbaakiabgkHiTiGacohaca GGPbGaaiOBaiabeg7aHjaadsgacqaHXoqycqGHxdaTdaWcaaqaamaa laaabaGaaGOmaaqaaiaaiodaaaGaamOuamaaxadabaGaey4kIipale aacaaIWaaabaGaeqiWdahaaOGaci4CaiaacMgacaGGUbGaeqySdeMa amizaiGacohacaGGPbGaaiOBaiabeg7aHjabgEna0oaaxadabaGaey 4kIipaleaacaaIWaaabaGaeqiWdaNaai4laiaaikdaaaGcciGGZbGa aiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccqWFYoGycaWGKbGae8 NSdigabaWaaCbmaeaacqGHRiI8aSqaaiaaicdaaeaacqaHapaCcaGG VaGaaGOmaaaakiGacohacaGGPbGaaiOBamaaCaaaleqabaGaaGOmaa aakiab=j7aIjaadsgacqWFYoGycqGHxdaTdaWfWaqaaiabgUIiYdWc baGaaGimaaqaaiabec8aWbaakiGacogacaGGVbGaai4Caiabeg7aHj aadsgacqaHXoqyaaaaaa@AC70@ (25)

-for the hollow sphere:

0 T cr d T cr = MRω ω x 4π 0 π dδ× 0 π/2 cosβdβ 0 π sinαdα× R 0 π sinαdsinα× 0 π/2 sin 2 βdβ 0 π/2 sinβdβ× 0 π cosαdα MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaxadabaGaey 4kIipaleaacaaIWaaabaGaamivamaaBaaameaacaWGJbGaamOCaaqa baaaaOGaamizaiaadsfadaWgaaWcbaGaam4yaiaadkhaaeqaaOGaey ypa0ZaaSaaaeaacaWGnbGaamOuaiabeM8a3jabeM8a3naaBaaaleaa caWG4baabeaaaOqaaiaaisdacqaHapaCaaWaaCbmaeaacqGHRiI8aS qaaiaaicdaaeaacqaHapaCaaGccaWGKbGaeqiTdqMaey41aq7aaCbm aeaacqGHRiI8aSqaaiaaicdaaeaacqaHapaCcaGGVaGaaGOmaaaaki GacogacaGGVbGaai4CaGGaciab=j7aIjaadsgacqWFYoGydaWfWaqa aiabgUIiYdWcbaGaaGimaaqaaiabec8aWbaakiabgkHiTiGacohaca GGPbGaaiOBaiabeg7aHjaadsgacqaHXoqycqGHxdaTdaWcaaqaaiaa dkfadaWfWaqaaiabgUIiYdWcbaGaaGimaaqaaiabec8aWbaakiGaco hacaGGPbGaaiOBaiabeg7aHjaadsgaciGGZbGaaiyAaiaac6gacqaH XoqycqGHxdaTdaWfWaqaaiabgUIiYdWcbaGaaGimaaqaaiabec8aWj aac+cacaaIYaaaaOGaci4CaiaacMgacaGGUbWaaWbaaSqabeaacaaI YaaaaOGae8NSdiMaamizaiab=j7aIbqaamaaxadabaGaey4kIipale aacaaIWaaabaGaeqiWdaNaai4laiaaikdaaaGcciGGZbGaaiyAaiaa c6gacqWFYoGycaWGKbGae8NSdiMaey41aq7aaCbmaeaacqGHRiI8aS qaaiaaicdaaeaacqaHapaCaaGcciGGJbGaai4BaiaacohacqaHXoqy caWGKbGaeqySdegaaaaa@A9F2@ (26)

where the limits of integration for the trigonometric expressions are taken for the hemisphere.

Solving of integrals Eq. (25) and (26) yields the following:

- for the solid sphere

T cr | 0 T cr = MRω ω x 6π ×( δ| 0 π )sinβ( δ| 0 π/2 )×( 2cosα| 0 π/2 ) 2 3 R×2 sin 2 α 2 | 0 π/2 × 1 2 ( β sin2β 2 )| 0 π/2 cosβ| 0 π/2 ×( sinβ )| 0 π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadkhaaeqaaOWaaqqaaeaadaqhaaWcbaGaaGimaaqa aiaadsfadaWgaaadbaGaam4yaiaadkhaaeqaaaaaaOGaay5bSdGaey ypa0ZaaSaaaeaacaWGnbGaamOuaiabeM8a3jabeM8a3naaBaaaleaa caWG4baabeaaaOqaaiaaiAdacqaHapaCaaGaey41aq7aaeWaaeaacq aH0oazdaabbaqaamaaDaaaleaacaaIWaaabaGaeqiWdahaaaGccaGL hWoaaiaawIcacaGLPaaaciGGZbGaaiyAaiaac6gaiiGacqWFYoGyda qadaqaaiabes7aKnaaeeaabaWaa0baaSqaaiaaicdaaeaacqaHapaC caGGVaGaaGOmaaaaaOGaay5bSdaacaGLOaGaayzkaaGaey41aq7aae WaaeaacaaIYaGaci4yaiaac+gacaGGZbGaeqySde2aaqqaaeaadaqh aaWcbaGaaGimaaqaaiabec8aWjaac+cacaaIYaaaaaGccaGLhWoaai aawIcacaGLPaaadaWcaaqaamaalaaabaGaaGOmaaqaaiaaiodaaaGa amOuaiabgEna0kaaikdadaWcaaqaaiGacohacaGGPbGaaiOBamaaCa aaleqabaGaaGOmaaaakiabeg7aHbqaaiaaikdaaaWaaqqaaeaadaqh aaWcbaGaaGimaaqaaiabec8aWjaac+cacaaIYaaaaOGaey41aq7aaS aaaeaacaaIXaaabaGaaGOmaaaadaqadaqaaiab=j7aIjabgkHiTmaa laaabaGaci4CaiaacMgacaGGUbGaaGOmaiab=j7aIbqaaiaaikdaaa aacaGLOaGaayzkaaWaaqqaaeaadaqhaaWcbaGaaGimaaqaaiabec8a Wjaac+cacaaIYaaaaaGccaGLhWoaaiaawEa7aaqaaiabgkHiTiGaco gacaGGVbGaai4Caiab=j7aInaaeeaabaWaa0baaSqaaiaaicdaaeaa cqaHapaCcaGGVaGaaGOmaaaakiabgEna0oaabmaabaGaci4CaiaacM gacaGGUbGae8NSdigacaGLOaGaayzkaaaacaGLhWoadaabbaqaamaa DaaaleaacaaIWaaabaGaeqiWdahaaaGccaGLhWoaaaaaaa@AABC@

that gave rise to the following

T cr = MRω ω x 6π ×(π0)×(10)×()(11)× 2 3 R(10)× 1 2 ( π 2 0 ) (01)×2(10) = M R 2 πω ω x 36 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadkhaaeqaaOGaeyypa0ZaaSaaaeaacaWGnbGaamOu aiabeM8a3jabeM8a3naaBaaaleaacaWG4baabeaaaOqaaiaaiAdacq aHapaCaaGaey41aqRaaiikaiabec8aWjabgkHiTiaaicdacaGGPaGa ey41aqRaaiikaiaaigdacqGHsislcaaIWaGaaiykaiabgEna0kaacI cacqGHsislcaGGPaGaaiikaiabgkHiTiaaigdacqGHsislcaaIXaGa aiykaiabgEna0oaalaaabaWaaSaaaeaacaaIYaaabaGaaG4maaaaca WGsbGaaiikaiaaigdacqGHsislcaaIWaGaaiykaiabgEna0oaalaaa baGaaGymaaqaaiaaikdaaaWaaeWaaeaadaWcaaqaaiabec8aWbqaai aaikdaaaGaeyOeI0IaaGimaaGaayjkaiaawMcaaaqaaiabgkHiTiaa cIcacaaIWaGaeyOeI0IaaGymaiaacMcacqGHxdaTcaaIYaGaaiikai aaigdacqGHsislcaaIWaGaaiykaaaacqGH9aqpcqGHsisldaWcaaqa aiaad2eacaWGsbWaaWbaaSqabeaacaaIYaaaaOGaeqiWdaNaeqyYdC NaeqyYdC3aaSbaaSqaaiaadIhaaeqaaaGcbaGaaG4maiaaiAdaaaaa aa@8324@ (27)

-for the hollow sphere

T cr | 0 T cr = MRω ω x 4π ×( δ| 0 π )×( sinβ | 0 π/2 )×( cosα| 0 π )× R×2 sin 2 α 2 | 0 π/2 × 1 2 ( β sin2β 2 )| 0 π/2 ( cosβ )| 0 π ×2sinα| 0 π/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadkhaaeqaaOWaaqqaaeaadaqhaaWcbaGaaGimaaqa aiaadsfadaWgaaadbaGaam4yaiaadkhaaeqaaaaaaOGaay5bSdGaey ypa0ZaaSaaaeaacaWGnbGaamOuaiabeM8a3jabeM8a3naaBaaaleaa caWG4baabeaaaOqaaiaaisdacqaHapaCaaGaey41aq7aaeWaaeaacq aH0oazdaabbaqaamaaDaaaleaacaaIWaaabaGaeqiWdahaaaGccaGL hWoaaiaawIcacaGLPaaacqGHxdaTdaqadaqaaiGacohacaGGPbGaai OBaGGaciab=j7aIjab=bcaGmaaeeaabaWaa0baaSqaaiaaicdaaeaa cqaHapaCcaGGVaGaaGOmaaaaaOGaay5bSdaacaGLOaGaayzkaaGaey 41aq7aaeWaaeaaciGGJbGaai4BaiaacohacqaHXoqydaabbaqaamaa DaaaleaacaaIWaaabaGaeqiWdahaaaGccaGLhWoaaiaawIcacaGLPa aacqGHxdaTdaWcaaqaaiaadkfacqGHxdaTcaaIYaWaaSaaaeaaciGG ZbGaaiyAaiaac6gadaahaaWcbeqaaiaaikdaaaGccqaHXoqyaeaaca aIYaaaamaaeeaabaWaa0baaSqaaiaaicdaaeaacqaHapaCcaGGVaGa aGOmaaaakiabgEna0oaalaaabaGaaGymaaqaaiaaikdaaaWaaeWaae aacqWFYoGycqGHsisldaWcaaqaaiGacohacaGGPbGaaiOBaiaaikda cqWFYoGyaeaacaaIYaaaaaGaayjkaiaawMcaamaaeeaabaWaa0baaS qaaiaaicdaaeaacqaHapaCcaGGVaGaaGOmaaaaaOGaay5bSdaacaGL hWoaaeaadaqadaqaaiabgkHiTiGacogacaGGVbGaai4Caiab=j7aIb GaayjkaiaawMcaamaaeeaabaWaa0baaSqaaiaaicdaaeaacqaHapaC aaGccqGHxdaTcaaIYaGaci4CaiaacMgacaGGUbGaeqySdegacaGLhW oadaabbaqaamaaDaaaleaacaaIWaaabaGaeqiWdaNaai4laiaaikda aaaakiaawEa7aaaaaaa@AB13@

that gave rise to the following

T cr = MRω ω x 4π ×(π0)×(10)×(11)× R(10)× 1 2 ( π 2 0 ) (01)×2(10) = 1 16 M R 2 πω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadkhaaeqaaOGaeyypa0ZaaSaaaeaacaWGnbGaamOu aiabeM8a3jabeM8a3naaBaaaleaacaWG4baabeaaaOqaaiaaisdacq aHapaCaaGaey41aqRaaiikaiabec8aWjabgkHiTiaaicdacaGGPaGa ey41aqRaaiikaiaaigdacqGHsislcaaIWaGaaiykaiabgEna0kaacI cacqGHsislcaaIXaGaeyOeI0IaaGymaiaacMcacqGHxdaTdaWcaaqa aiaadkfacaGGOaGaaGymaiabgkHiTiaaicdacaGGPaGaey41aq7aaS aaaeaacaaIXaaabaGaaGOmaaaadaqadaqaamaalaaabaGaeqiWdaha baGaaGOmaaaacqGHsislcaaIWaaacaGLOaGaayzkaaaabaGaeyOeI0 IaaiikaiaaicdacqGHsislcaaIXaGaaiykaiabgEna0kaaikdacaGG OaGaaGymaiabgkHiTiaaicdacaGGPaaaaiabg2da9iabgkHiTmaala aabaGaaGymaaqaaiaaigdacaaI2aaaaiaad2eacaWGsbWaaWbaaSqa beaacaaIYaaaaOGaeqiWdaNaeqyYdCNaeqyYdC3aaSbaaSqaaiaadI haaeqaaaaa@8002@ (28)

The change of the limits at Eqs. (27) and (28) are taken for the quarter hemisphere.

Coriolis forces act on the upper and lower and left and right sides of the quarter hemisphere, and then the total resistance torque T cr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadkhaaeqaaaaa@39F0@ is obtained when the result of Eqs. (27) and (28) is increased four times:

- for the solid sphere

T cr =2×2× M R 2 πω ω x 36 = 5 18 πJω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadkhaaeqaaOGaeyypa0JaeyOeI0IaaGOmaiabgEna 0kaaikdacqGHxdaTdaWcaaqaaiaad2eacaWGsbWaaWbaaSqabeaaca aIYaaaaOGaeqiWdaNaeqyYdCNaeqyYdC3aaSbaaSqaaiaadIhaaeqa aaGcbaGaaG4maiaaiAdaaaGaeyypa0JaeyOeI0YaaSaaaeaacaaI1a aabaGaaGymaiaaiIdaaaGaeqiWdaNaaGPaVlaadQeacqaHjpWDcqaH jpWDdaWgaaWcbaGaamiEaaqabaaaaa@595F@ (29)

-for the hollow sphere

T cr =2×2× M R 2 πω ω x 16 = 3 8 πJω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadkhaaeqaaOGaeyypa0JaeyOeI0IaaGOmaiabgEna 0kaaikdacqGHxdaTdaWcaaqaaiaad2eacaWGsbWaaWbaaSqabeaaca aIYaaaaOGaeqiWdaNaeqyYdCNaeqyYdC3aaSbaaSqaaiaadIhaaeqa aaGcbaGaaGymaiaaiAdaaaGaeyypa0JaeyOeI0YaaSaaaeaacaaIZa aabaGaaGioaaaacqaHapaCcaaMc8UaamOsaiabeM8a3jabeM8a3naa BaaaleaacaWG4baabeaaaaa@58A0@ (30)

where J=2M R 2 /5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQeacqGH9a qpcaaIYaGaamytaiaadkfadaahaaWcbeqaaiaaikdaaaGccaGGVaGa aGynaaaa@3DAB@ and J=2M R 2 /3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadQeacqGH9a qpcaaIYaGaamytaiaadkfadaahaaWcbeqaaiaaikdaaaGccaGGVaGa aG4maaaa@3DA9@ 7,8 is the sphere mass moment of inertia for solid and hollow spheres, respectively, other parameters are as specified above, and the sign (-) means the action of the torque in the clockwise direction.

The inertial torque of the change in the angular momentum is well-known in publications and presented by the following expression:

T am =Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamyyaiaad2gaaeqaaOGaeyypa0JaamOsaiabeM8a3jabeM8a 3naaBaaaleaacaWG4baabeaaaaa@408B@ (31)

The analysis of Eqs. (17) and (31) show the resistance torques generated by centrifugal and Coriolis forces of the spinning sphere’s mass elements showing their summary action is opposite to the external torque. The precession torques are the sum of torques generated by the centrifugal inertial torque and the change in the angular momentum. The total resistance T r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadkhaa8aabeaaaaa@3956@ and precession torque T p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadchaa8aabeaaaaa@3954@ have represented a sum of these torques whose equations are as follows:

T r = 5 36 π 3 Jω ω x + 5 18 πJω ω x = 5 18 π( π 2 2 +1 )Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadkhaa8aabeaakiabg2da9maalaaa baGaaGynaaqaaiaaiodacaaI2aaaaiabec8aWnaaCaaaleqabaGaaG 4maaaakiaadQeacqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaGc cqGHRaWkdaWcaaqaaiaaiwdaaeaacaaIXaGaaGioaaaacqaHapaCca aMc8UaamOsaiabeM8a3jabeM8a3naaBaaaleaacaWG4baabeaakiab g2da9maalaaabaGaaGynaaqaaiaaigdacaaI4aaaaiabec8aWnaabm aabaWaaSaaaeaacqaHapaCdaahaaWcbeqaaiaaikdaaaaakeaacaaI YaaaaiabgUcaRiaaigdaaiaawIcacaGLPaaacaWGkbGaeqyYdCNaeq yYdC3aaSbaaSqaaiaadIhaaeqaaaaa@6254@ (32)

T p = 5 36 π 3 Jω ω x +Jω ω x =( 5 36 π 3 +1 )Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamiCaaqabaGccqGH9aqpdaWcaaqaaiaaiwdaaeaacaaIZaGa aGOnaaaacqaHapaCdaahaaWcbeqaaiaaiodaaaGccaWGkbGaeqyYdC NaeqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamOsaiabeM8a 3jabeM8a3naaBaaaleaacaWG4baabeaakiabg2da9maabmaabaWaaS aaaeaacaaI1aaabaGaaG4maiaaiAdaaaGaeqiWda3aaWbaaSqabeaa caaIZaaaaOGaey4kaSIaaGymaaGaayjkaiaawMcaaiaadQeacqaHjp WDcqaHjpWDdaWgaaWcbaGaamiEaaqabaaaaa@59E8@ (33)

-for the hollow sphere

T r = 3 16 π 3 Jω ω x + 3 8 πJω ω x = 3 8 π( π 2 2 +1 )Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadkhaa8aabeaakiabg2da9maalaaa baGaaG4maaqaaiaaigdacaaI2aaaaiabec8aWnaaCaaaleqabaGaaG 4maaaakiaadQeacqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaGc cqGHRaWkdaWcaaqaaiaaiodaaeaacaaI4aaaaiabec8aWjaaykW7ca WGkbGaeqyYdCNaeqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaeyypa0Za aSaaaeaacaaIZaaabaGaaGioaaaacqaHapaCdaqadaqaamaalaaaba GaeqiWda3aaWbaaSqabeaacaaIYaaaaaGcbaGaaGOmaaaacqGHRaWk caaIXaaacaGLOaGaayzkaaGaamOsaiabeM8a3jabeM8a3naaBaaale aacaWG4baabeaaaaa@60D6@ (34)

T p = 3 16 π 3 Jω ω x +Jω ω x =( 3 16 π 3 +1 )Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamiCaaqabaGccqGH9aqpdaWcaaqaaiaaiodaaeaacaaIXaGa aGOnaaaacqaHapaCdaahaaWcbeqaaiaaiodaaaGccaWGkbGaeqyYdC NaeqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaamOsaiabeM8a 3jabeM8a3naaBaaaleaacaWG4baabeaakiabg2da9maabmaabaWaaS aaaeaacaaIZaaabaGaaGymaiaaiAdaaaGaeqiWda3aaWbaaSqabeaa caaIZaaaaOGaey4kaSIaaGymaaGaayjkaiaawMcaaiaadQeacqaHjp WDcqaHjpWDdaWgaaWcbaGaamiEaaqabaaaaa@59E0@ (35)

where all components are as specified above

Attributes of the inertial torques acting on the spinning sphere

The obtained expressions of the inertial torques generated by the rotating mass of the solid and hollow sphere give the ability to formulate the mathematical models for its motions and compute the gyroscopic effects. The centrifugal, common inertial, and Coriolis forces of the mass element, as well as the change in the angular momentum, generate the inertial torques. These torques contain the principal components that are the change in the angular momentum and coefficients which belong to the defined type of inertial forces. The several inertial torques generated by the one rotating mass present active physical components. The total initial precession torque acting about axis oy of the spinning sphere has represented a sum of the precession torques generated by the common inertial forces of the mass elements and the change in the angular momentum. The total initial resistance torque T r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaadkhaa8aabeaaaaa@3956@ acting around axis ox has represented a sum of the resistance torques generated by the centrifugal and Coriolis forces of the sphere’s mass elements. The mathematical models for internal torques acting on the spinning sphere are represented in Table 1.

Type of the torque generated by

Action

Equation for the spinning sphere

Solid

Hollow

Centrifugal forces (axis ox)

Resistance

T ct = 5 36 π 3 Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOGaeyypa0ZaaSaaaeaacaaI1aaabaGa aG4maiaaiAdaaaGaeqiWda3aaWbaaSqabeaacaaIZaaaaOGaamOsai abeM8a3jabeM8a3naaBaaaleaacaWG4baabeaaaaa@4591@ T ct = 3 16 π 3 Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadshaaeqaaOGaeyypa0ZaaSaaaeaacaaIZaaabaGa aGymaiaaiAdaaaGaeqiWda3aaWbaaSqabeaacaaIZaaaaOGaamOsai abeM8a3jabeM8a3naaBaaaleaacaWG4baabeaaaaa@458D@

Centrifugal forces (axis oy)

Precession

Coriolis forces

Resistance

T cr = 5 18 πJω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadkhaaeqaaOGaeyypa0ZaaSaaaeaacaaI1aaabaGa aGymaiaaiIdaaaGaeqiWdaNaamOsaiabeM8a3jabeM8a3naaBaaale aacaWG4baabeaaaaa@449B@ T cr = 3 8 πJω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4yaiaadkhaaeqaaOGaeyypa0ZaaSaaaeaacaaIZaaabaGa aGioaaaacqaHapaCcaWGkbGaeqyYdCNaeqyYdC3aaSbaaSqaaiaadI haaeqaaaaa@43DE@

Change in an angular momentum

Precession

T am =Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamyyaiaad2gaaeqaaOGaeyypa0JaamOsaiabeM8a3jabeM8a 3naaBaaaleaacaWG4baabeaaaaa@408B@

Table 1 Equations of the internal torques acting on the spinning sphere

The parameters of Table 1 are J is the moment of inertia of the sphere; ω is the angular velocity of the sphere; is the angular velocity of the sphere about axis ox,.The equations used to calculate the gyroscopic effects in engineering are derived from the inertial torques acting on the spinning solid and hollow sphere.

New studies of the inertial torques have shown that their values depend on the form of the spinning objects, whose geometry can be original designs. The equality of inertial torques originating along each axis defines the dependency of the angular velocities of the spinning sphere around two axes. This principle is formulated by the equality of kinetic energies of the sphere rotation about two axes ([], Chapter 4, Section 4.1.2). The relationship between the angular velocities of a spinning sphere around the oy and ox axes is defined for both solid and hollow spheres..

-The solid sphere

5 36 π 3 Jω ω x 5 18 πJω ω x 5 36 π 3 Jω ω y Jω ω y = 5 36 π 3 Jω ω x +Jω ω x 5 36 π 3 Jω ω y 5 18 πJω ω y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaeyOeI0 YaaSaaaeaacaaI1aaabaGaaG4maiaaiAdaaaGaeqiWda3aaWbaaSqa beaacaaIZaaaaOGaamOsaiabeM8a3jabeM8a3naaBaaaleaacaWG4b aabeaakiabgkHiTmaalaaabaGaaGynaaqaaiaaigdacaaI4aaaaiab ec8aWjaaykW7caWGkbGaeqyYdCNaeqyYdC3aaSbaaSqaaiaadIhaae qaaOGaeyOeI0YaaSaaaeaacaaI1aaabaGaaG4maiaaiAdaaaGaeqiW da3aaWbaaSqabeaacaaIZaaaaOGaaGPaVlaadQeacqaHjpWDcqaHjp WDdaWgaaWcbaGaamyEaaqabaGccqGHsislcaWGkbGaeqyYdCNaeqyY dC3aaSbaaSqaaiaadMhaaeqaaOGaeyypa0dabaWaaSaaaeaacaaI1a aabaGaaG4maiaaiAdaaaGaeqiWda3aaWbaaSqabeaacaaIZaaaaOGa aGPaVlaadQeacqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaGccq GHRaWkcaaMc8UaamOsaiabeM8a3jabeM8a3naaBaaaleaacaWG4baa beaakiabgkHiTmaalaaabaGaaGynaaqaaiaaiodacaaI2aaaaiabec 8aWnaaCaaaleqabaGaaG4maaaakiaaykW7caWGkbGaeqyYdCNaeqyY dC3aaSbaaSqaaiaadMhaaeqaaOGaeyOeI0YaaSaaaeaacaaI1aaaba GaaGymaiaaiIdaaaGaeqiWdaNaaGPaVlaadQeacqaHjpWDcqaHjpWD daWgaaWcbaGaamyEaaqabaaaaaa@90AB@ (36)

Simplification of Eq. (36) yields the following ratio of the angular velocities of the spinning solid sphere:

ω y =( 5 π 3 +5π+18 185π ) ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWG5baabeaakiabg2da9maabmaabaWaaSaaaeaacaaI1aGa eqiWda3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaGynaiabec8aWj abgUcaRiaaigdacaaI4aaabaGaaGymaiaaiIdacqGHsislcaaI1aGa eqiWdahaaaGaayjkaiaawMcaaiabeM8a3naaBaaaleaacaWG4baabe aaaaa@4DB5@ (37)

For the hollow sphere

3 16 π 3 Jω ω x 3 8 πJω ω x 3 16 π 3 Jω ω y Jω ω y = 3 16 π 3 Jω ω x +Jω ω x 3 16 π 3 Jω ω y 3 8 πJω ω y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaeyOeI0 YaaSaaaeaacaaIZaaabaGaaGymaiaaiAdaaaGaeqiWda3aaWbaaSqa beaacaaIZaaaaOGaamOsaiabeM8a3jabeM8a3naaBaaaleaacaWG4b aabeaakiabgkHiTmaalaaabaGaaG4maaqaaiaaiIdaaaGaeqiWdaNa aGPaVlaadQeacqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaGccq GHsisldaWcaaqaaiaaiodaaeaacaaIXaGaaGOnaaaacqaHapaCdaah aaWcbeqaaiaaiodaaaGccaaMc8UaamOsaiabeM8a3jabeM8a3naaBa aaleaacaWG5baabeaakiabgkHiTiaadQeacqaHjpWDcqaHjpWDdaWg aaWcbaGaamyEaaqabaGccqGH9aqpaeaadaWcaaqaaiaaiodaaeaaca aIXaGaaGOnaaaacqaHapaCdaahaaWcbeqaaiaaiodaaaGccaaMc8Ua amOsaiabeM8a3jabeM8a3naaBaaaleaacaWG4baabeaakiabgUcaRi aaykW7caWGkbGaeqyYdCNaeqyYdC3aaSbaaSqaaiaadIhaaeqaaOGa eyOeI0YaaSaaaeaacaaIZaaabaGaaGymaiaaiAdaaaGaeqiWda3aaW baaSqabeaacaaIZaaaaOGaaGPaVlaadQeacqaHjpWDcqaHjpWDdaWg aaWcbaGaamyEaaqabaGccqGHsisldaWcaaqaaiaaiodaaeaacaaI4a aaaiabec8aWjaaykW7caWGkbGaeqyYdCNaeqyYdC3aaSbaaSqaaiaa dMhaaeqaaaaaaa@8F21@ (38)

Simplification of Eq. (38) yields the following ratio of the angular velocities of the spinning hollow sphere:

ω y =( 3 π 3 +3π+8 83π ) ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabeM8a3naaBa aaleaacaWG5baabeaakiabg2da9maabmaabaWaaSaaaeaacaaIZaGa eqiWda3aaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG4maiabec8aWj abgUcaRiaaiIdaaeaacaaI4aGaeyOeI0IaaG4maiabec8aWbaaaiaa wIcacaGLPaaacqaHjpWDdaWgaaWcbaGaamiEaaqabaaaaa@4C39@ (39)

The dependency of the spinning sphere's angular velocities is used to create mathematical models for its rotation around axes ox and oy

Working example

The sphere has a mass of 1.0 kg, a radius of 0.1 m, and spinning at 3000 rpm. An external torque acts on the sphere, which rotates with an angular velocity of 0.05 rpm. It is determined the value of the resistance and precession torques acting on the spinning sphere (Figure 1). Substituting the initial data into equations of Table 1 and transformation yields the following result (Table 2).

Torque generated by

 Solid sphere

 Hollow sphere

Centrifugal fore Tct

T ct =( 5 36 ) π 3 Jω ω x =( 5 36 ) π 3 × 2 5 ×1,0×0, 1 2 × 3000×2π 60 × 0,05×2π 60 =0,028335Nm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamivam aaBaaaleaacaWGJbGaamiDaaqabaGccqGH9aqpdaqadaqaamaalaaa baGaaGynaaqaaiaaiodacaaI2aaaaaGaayjkaiaawMcaaiabec8aWn aaCaaaleqabaGaaG4maaaakiaadQeacqaHjpWDcqaHjpWDdaWgaaWc baGaamiEaaqabaGccqGH9aqpdaqadaqaamaalaaabaGaaGynaaqaai aaiodacaaI2aaaaaGaayjkaiaawMcaaiabec8aWnaaCaaaleqabaGa aG4maaaakiabgEna0oaalaaabaGaaGOmaaqaaiaaiwdaaaGaey41aq RaaGymaiaacYcacaaIWaGaey41aqRaaGimaiaacYcacaaIXaWaaWba aSqabeaacaaIYaaaaOGaey41aqlabaWaaSaaaeaacaaIZaGaaGimai aaicdacaaIWaGaey41aqRaaGOmaiabec8aWbqaaiaaiAdacaaIWaaa aiabgEna0oaalaaabaGaaGimaiaacYcacaaIWaGaaGynaiabgEna0k aaikdacqaHapaCaeaacaaI2aGaaGimaaaacqGH9aqpcaaIWaGaaiil aiaaicdacaaIYaGaaGioaiaaiodacaaIZaGaaGynaiaaykW7caaMc8 UaamOtaiaad2gaaaaa@7DB0@ T ct =( 3 16 ) π 3 Jω ω x =( 3 16 )× π 3 × 2 3 ×1,0×0, 1 2 × 3000×2π 60 × 0,05×2π 60 =0,063754Nm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamivam aaBaaaleaacaWGJbGaamiDaaqabaGccqGH9aqpdaqadaqaamaalaaa baGaaG4maaqaaiaaigdacaaI2aaaaaGaayjkaiaawMcaaiabec8aWn aaCaaaleqabaGaaG4maaaakiaadQeacqaHjpWDcqaHjpWDdaWgaaWc baGaamiEaaqabaGccqGH9aqpdaqadaqaamaalaaabaGaaG4maaqaai aaigdacaaI2aaaaaGaayjkaiaawMcaaiabgEna0kabec8aWnaaCaaa leqabaGaaG4maaaakiabgEna0oaalaaabaGaaGOmaaqaaiaaiodaaa Gaey41aqRaaGymaiaacYcacaaIWaGaey41aqRaaGimaiaacYcacaaI XaWaaWbaaSqabeaacaaIYaaaaOGaey41aqlabaWaaSaaaeaacaaIZa GaaGimaiaaicdacaaIWaGaey41aqRaaGOmaiabec8aWbqaaiaaiAda caaIWaaaaiabgEna0oaalaaabaGaaGimaiaacYcacaaIWaGaaGynai abgEna0kaaikdacqaHapaCaeaacaaI2aGaaGimaaaacqGH9aqpcaaI WaGaaiilaiaaicdacaaI2aGaaG4maiaaiEdacaaI1aGaaGinaiaayk W7caaMc8UaamOtaiaad2gaaaaa@7FC1@

Coriolis forces Tcr

T cr =( 5 18 )πJω ω x =( 5 18 )π× 2 5 ×1,0×0, 1 2 × 3000×2π 60 × 0,05×2π 60 =0,005741Nm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamivam aaBaaaleaacaWGJbGaamOCaaqabaGccqGH9aqpdaqadaqaamaalaaa baGaaGynaaqaaiaaigdacaaI4aaaaaGaayjkaiaawMcaaiabec8aWj aadQeacqaHjpWDcqaHjpWDdaWgaaWcbaGaamiEaaqabaGccqGH9aqp daqadaqaamaalaaabaGaaGynaaqaaiaaigdacaaI4aaaaaGaayjkai aawMcaaiabec8aWjabgEna0oaalaaabaGaaGOmaaqaaiaaiwdaaaGa ey41aqRaaGymaiaacYcacaaIWaGaey41aqRaaGimaiaacYcacaaIXa WaaWbaaSqabeaacaaIYaaaaOGaey41aqlabaWaaSaaaeaacaaIZaGa aGimaiaaicdacaaIWaGaey41aqRaaGOmaiabec8aWbqaaiaaiAdaca aIWaaaaiabgEna0oaalaaabaGaaGimaiaacYcacaaIWaGaaGynaiab gEna0kaaikdacqaHapaCaeaacaaI2aGaaGimaaaacqGH9aqpcaaIWa GaaiilaiaaicdacaaIWaGaaGynaiaaiEdacaaI0aGaaGymaiaaykW7 caaMc8UaamOtaiaad2gaaaaa@7BC2@ T cr =( 3 8 )πJω ω x =( 3 8 )π× 2 3 ×1,0×0, 1 2 × 3000×2π 60 × 0,05×2π 60 =0,012919Nm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamivam aaBaaaleaacaWGJbGaamOCaaqabaGccqGH9aqpdaqadaqaamaalaaa baGaaG4maaqaaiaaiIdaaaaacaGLOaGaayzkaaGaeqiWdaNaamOsai abeM8a3jabeM8a3naaBaaaleaacaWG4baabeaakiabg2da9maabmaa baWaaSaaaeaacaaIZaaabaGaaGioaaaaaiaawIcacaGLPaaacqaHap aCcqGHxdaTdaWcaaqaaiaaikdaaeaacaaIZaaaaiabgEna0kaaigda caGGSaGaaGimaiabgEna0kaaicdacaGGSaGaaGymamaaCaaaleqaba GaaGOmaaaakiabgEna0cqaamaalaaabaGaaG4maiaaicdacaaIWaGa aGimaiabgEna0kaaikdacqaHapaCaeaacaaI2aGaaGimaaaacqGHxd aTdaWcaaqaaiaaicdacaGGSaGaaGimaiaaiwdacqGHxdaTcaaIYaGa eqiWdahabaGaaGOnaiaaicdaaaGaeyypa0JaaGimaiaacYcacaaIWa GaaGymaiaaikdacaaI5aGaaGymaiaaiMdacaaMc8UaaGPaVlaad6ea caWGTbaaaaa@7A4B@

Change in the angular momentum Tam

T am =Jω ω x = 2 5 ×1,0×0, 1 2 × 3000×2π 60 × 0,05×2π 60 =0,003289Nm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamivam aaBaaaleaacaWGHbGaamyBaaqabaGccqGH9aqpcaWGkbGaeqyYdCNa eqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaeyypa0ZaaSaaaeaacaaIYa aabaGaaGynaaaacqGHxdaTcaaIXaGaaiilaiaaicdacqGHxdaTcaaI WaGaaiilaiaaigdadaahaaWcbeqaaiaaikdaaaGccqGHxdaTaeaada WcaaqaaiaaiodacaaIWaGaaGimaiaaicdacqGHxdaTcaaIYaGaeqiW dahabaGaaGOnaiaaicdaaaGaey41aq7aaSaaaeaacaaIWaGaaiilai aaicdacaaI1aGaey41aqRaaGOmaiabec8aWbqaaiaaiAdacaaIWaaa aiabg2da9iaaicdacaGGSaGaaGimaiaaicdacaaIZaGaaGOmaiaaiI dacaaI5aGaaGPaVlaaykW7caWGobGaamyBaaaaaa@6E85@ T am =Jω ω x = 2 5 ×1,0×0, 1 2 × 3000×2π 60 × 0,05×2π 60 =0,005483Nm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamivam aaBaaaleaacaWGHbGaamyBaaqabaGccqGH9aqpcaWGkbGaeqyYdCNa eqyYdC3aaSbaaSqaaiaadIhaaeqaaOGaeyypa0ZaaSaaaeaacaaIYa aabaGaaGynaaaacqGHxdaTcaaIXaGaaiilaiaaicdacqGHxdaTcaaI WaGaaiilaiaaigdadaahaaWcbeqaaiaaikdaaaGccqGHxdaTaeaada WcaaqaaiaaiodacaaIWaGaaGimaiaaicdacqGHxdaTcaaIYaGaeqiW dahabaGaaGOnaiaaicdaaaGaey41aq7aaSaaaeaacaaIWaGaaiilai aaicdacaaI1aGaey41aqRaaGOmaiabec8aWbqaaiaaiAdacaaIWaaa aiabg2da9iaaicdacaGGSaGaaGimaiaaicdacaaI1aGaaGinaiaaiI dacaaIZaGaaGPaVlaaykW7caWGobGaamyBaaaaaa@6E83@

Table 2 Substituting the initial data into equations

The method for deriving the mathematical models for the inertial torques has been demonstrated on the spinning sphere. This analytical approach opens new possibilities to solve engineering problems related to the gyroscopic effect and presents the physical principles behind the acting forces. The new mathematical models for the inertial torques generated by the spinning sphere bring new knowledge to the dynamic of rotating objects of engineering mechanics.

Result and discussions

The existing publications containing mathematical models for the inertial torques generated by the rotating mass of a spinning sphere have been found to have errors in the analytical processing of the acting forces of integral equations. There were inaccuracies in the limits of the integral equations of torques generated by the rotating mass of the sphere. The corrected mathematical models for the inertial torques of the centrifugal and Coriolis forces of the spinning sphere have been derived. These corrected inertial torques and the ratio of the angular velocities of the sphere about its axes of rotation allow for the exact solution in computing gyroscopic effects. This result presents a correct mathematical model for the inertial torques generated by the spinning sphere in the dynamics of rotating objects. The expressions of inertial torques and the ratio of the angular velocities of the sphere about its axes of rotation allow for the planning of mathematical models for its motion in space. The analytical models for the kinetically interrelated inertial torques of the spinning sphere describe the physics of its gyroscopic effects, provide a high level of accuracy in computing and open new possibilities for solving gyroscopic problems of spherical objects.

Conclusion

Analytical solutions for gyroscopic effects of the spinning objects of complex geometries are a sophisticated process that is linked with complex mathematical modelling of the inertial torques. In such cases, omissions in solutions and following corrections are inevitable. This statement is confirmed by the new solutions to gyroscopic effects, publications, and criticism of mistakes. The error in the expression of the limits for the integrals of the inertial torques generated by the spinning object is not fundamental but can yield distorted results in the calculation. The corrected mathematical model for the inertial torques in the aggregate with others was tested by the working example of their mathematical models for the sphere and can be used for solutions to gyroscope problems in engineering. The presented mathematical method for deriving the inertial torques acting on the spinning sphere gives the ability to solve similar problems for gyroscopic devices with curvilinear revolving components. Numerous rotating objects in engineering do not have analytical methods for computing inertial torques acting on the objects and their motions which represents a challenge to researchers and engineers.

Acknowledgments

The Kyrgyz State Technical University after I. Razzakov supported the research work for a publication that was performed as part of the employment and without financial support. The authors did not use copyediting or translation services for the preparation of the manuscript.

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

Authors contributions

R. Usubamatov wrote the methodology and compiled the manuscript text, A. Arzybaev wrote the working example, and designed drawings of figures.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Funding Statement

The authors declare that this research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

  1. Muller D. The bizarre behavior of rotating bodies, explained. Veritasium. 2020.
  2. Liang WC, Lee SC. Vorticity, gyroscopic precession, and spin-curvature force. Physical Review D. 2013;87:044024.
  3. Cordeiro FJB, The gyroscope. Createspace. NV, USA. 2015.
  4. Greenhill G. Report on gyroscopic theory. Relink Books, Fallbrook, CA, USA. 2015.
  5. Scarborough JB. The gyroscope theory and applications. Nabu Press, London. 2014.
  6. Weinberg H. Gyro mechanical Performance: the most important parameter. Analog Devices. Technical Article MS-2158. 2011;1–5.
  7. Aardema MD. Analytical dynamics. Theory and application. Academic/Plenum Publishers; New York. 2005.
  8. Hibbeler RC, Yap KB. Mechanics for engineers-statics and dynamics. 13th edn. Prentice-Hall: Pearson Singapore. 2013.
  9. Gregory DR. Classical Mechanics. Cambridge University Press: New York. 2006.
  10. Taylor JR. Classical Mechanics. University Science Books: California; USA. 2005.
  11. Goldstein H, Poole C, Safko J. Classical Mechanics. 3rd edn. Addison Wesley: San Fransisco. 2017.
  12. MacKay NM. Theory of physics, classical mechanics & electromagnetism, independently published. 2020.
  13. Jewett J, Serway RA. Physics for scientists and engineers, cengage learning. 10th edn. USA: Boston. 2018.
  14. Knight RD. Physics for scientists and engineers: a strategic approach with modern physics, Pearson, 4th edn. UK: London. 2016.
  15. Nanamori Y, Takahashi M. An integrated steering law considering biased loads and singularity for control moment gyroscopes. AIAA guidance, navigation, and control conference. 2015.
  16. Crassidis JL, Markley FL. Three-axis attitude estimation using rate-integrating gyroscopes. Journal of Guidance, Control, and Dynamics. 2016;39:1513–1526.
  17. Sands T, Kim JJ, Agrawal BN. Nonredundant single-gimbaled control moment gyroscopes. Journal of Guidance, Control, and Dynamics. 2012;35:578–587.
  18. Usubamatov R, Arzybaev A. Inertial torques acting on a spinning sphere. Int Rob Auto J. 2021;7(3):94–101.
  19. Usubamatov R. Theory of gyroscopic effects for rotating objects. International Journal of Innovative Research in Science, Engineering and Technology. 2020;1(1).
  20. Polyanin AD, Manzhirov AV. Handbook of mathematics for engineers and scientists. Chapman & Hall/CRC: Taylor & Francis Group. 2007.
Creative Commons Attribution License

©2024 Usubamatov, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.