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Corrected mathematical models for inertial torques
generated by a spinning sphere

Abstract

The recent publications about inertial torques acting on spinning objects describe their
physics by mathematical models. The several inertial torques are generated by the
rotating mass which produces centrifugal, Coriolis forces, and the change in the angular
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momentum. The values of the inertial torques depend on the geometries of the spinning

objects. The volumetric geometries of the objects request complex analytical processing
of the expressions for the inertial torques. The analysis of the known publication related
to the spinning sphere shows the expressions of inertial torques derived from errors in the
mathematical processing of integral equations. The wrong limits of the integral equations
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that give incorrect values for the inertial torques of the spinning sphere present these

errors. This manuscript presents the corrected mathematical model for the inertial torques

generated by the rotating mass of the spinning solid and hollow sphere.
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Introduction

The textbooks and research publications describe the various
designs of spinning machine parts and mechanisms in engineering.
They circumscribe how rotating objects exhibit gyroscopic effects,
which can be calculated using inertial forces and torques to determine
the actual dynamic properties for mathematical models of their
movements.? The rotating parts and components come in different
shapes, such as discs, rings, cylinders, spheres, circular cones,
paraboloids, propellers, etc. The texts also mention that inertial
torques for simple designs can be calculated using known methods
and equations, while more complex forms require new mathematical
models.>* The publications explain how to apply standard methods
to compute inertial torques for various spinning objects encountered
in engineering. They also suggest using a universal method for
calculating inertial torques for unique designs.>® The texts mention
that researchers face challenges in applying these methods to derive
inertial torques and mathematical models for the motions of different
rotating objects. The textbooks of classical mechanics attract the
attention of readers on gyroscope problems.”® Gyroscopic effects
remain as a problem for researchers who published numerous works
and tried to find analytical and confirm practically.”!® The new
generation tries to give answers to unsolved properties of spinning
objects whose rotating masses produce the system of inertial torques
that manifest gyroscopic effects.!1?

In the field of engineering, all spinning objects exhibit
gyroscopic effects resulting from their inertial torques. Numerous
designs of gyroscopic devices produce inertial torques generated
by their rotating masses, which should be calculated by the defined
expressions.'® Rotating masses of objects with unique geometry
are base for the analytical expressions of their inertial torque.'* The
known publications related to the gyroscopic effects are confined
by the use of the gyroscopic torque of the change in the angular
momentum which does not solve all aspects of gyroscopic devices.'
The gyroscopic effects are more diverse and their unsolved problems
of inertial torques solve numerical models. The modern tendency
of intensification of processes in engineering requests accurate

commuting and designs of the mechanisms and devices. This
direction is important for the gyroscopic devices in which spinning
components generate considerable inertial torques. The publications
related to the theory of gyroscopic effects comprise a limited
number of analytical approaches that do not satisfy engineering
requirements.'® The new and original design of gyroscopic devices
remains an unsolved problem and presents a challenge for researchers
and practitioners because of the absence of mathematical models for
the inertial torques.!” A known publication that comprises the inertial
torques acting on a spinning sphere is presented by analytical errors
in mathematical processing that yield incorrect solutions.'® The theory
of gyroscopic effects for rotating objects opens a new direction in the
dynamics of machines." The specificity of inertial torques generated
by the rotating mass of spinning objects is presented by dependency on
their geometries. The volumetric designs of the spinning components
complicate the mathematical models of inertial torques generated by
rotating bodies.? The correct mathematical modelling for the inertial
torques generated by rotating masses of solid and hollow spheres is
presented in this manuscript.

Methodology

Centrifugal torques acting on a spinning sphere

The rotating center mass and mass elements generate several
inertial forces acting on the spinning sphere. The inertial torques are
acting simultaneously on the spinning sphere with a uniform circular
motion.' This section considers the action of the inertial torques on
the solid and hollow spheres where mass elements are distributed on
the spherical surfaces. The rotation of mass elements generates the
centrifugal forces acting strictly perpendicular to the axis oz and ox of
the spinning sphere. The analytical approach for the modeling of the
action of the centrifugal forces of the spinning sphere is the same as for
the spinning disc represented in Chapter 3 of the gyroscope theory."
The rotating mass elements of the sphere are located on the spherical
surface of the 2/3 radius for the solid sphere and the middle radius for
the hollow sphere. The analysis of the acting inertial forces generated
by the mass element of the sphere is considered on the arbitrary planes
that parallel to the plane xoy of the maximal diameter of the sphere
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Corrected mathematical models for inertial torques generated by a spinning sphere

(Figure 1). The arbitrary circle plane of the sphere is the same as the
plane of the thin disc represented in."” The plane of the mass elements
generates the change in the vector components f,, , , whose directions
are parallel to the spinning sphere axle oz . The integrated product of
components for the vector change in the centrifugal forces f,, , and
their variable radius of location relative to axis ox and oy generate the
resistance torque 7,, .~ and precession torque 7, acting about axes

ct,x ct,x ©
ox and oy , respectively, whose expressions are identical.'
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Figure | Schematic of the spinning sphere, its motions, and acting external

torque.

The mass element m is disposed on the radius R; of the sphere,
=(2/3)R
for the solid sphere and R,, = R for the hollow sphere). The sphere
rotates in a uniform circular motion with a constant angular velocity
o in the counter-clockwise direction and generates the plane of the
centrifugal forces f, acting perpendicular to axis oz . The centrifugal
forces f,, represent the distributed load where the sphere’s mass
elements are located. The inclination of the spinning sphere on the
minor angle Ay generates the change in the vector’s components f, ,
, whose directions are parallel to the sphere axle oz. The integrated
product of the vector change in the centrifugal forces f, , and their
variable radius r about axis ox generates the resistance torque7,
acting opposite to the external torque 7" .

where i indicates the solid ss and hollow /s spheres (R,

The resistance torque A7,
by the following:

AT;‘L = f;‘t,zym (1)

where y = Rsinfisina is the normal component of r to axis o,x,
other components are as specified above.

T,, of the centrifugal force f, , is expressed

The component of the centrifugal force f,, , for arbitrarily chosen
plane is represented by the following equation:

Sors=f,sinAy = mro® sinAy 2)

where £, =mro® is the centrifugal force of the mass element

m;, m= M2 ASR,.2 =%A6, M 1is the mass of the sphere; 4m is
4nR; 47

the spherical angle; A8 is the spherical angle of the mass element;
the radiusr of the mass element rotation at the planeo,x,y, is

r=(2/3)R;sinP, where

R,, =(2/3)R is the radius of the solid sphere; R,; = R is the radius
of the hollow sphere; ® is the constant angular velocity of the sphere;
o is the angle of the mass element’s location on the plane that parallel
to plane xoy; B is the angle of the mass element’s location on the
plane yoz; Ay is the angle of turn for the sphere’s plane around axis

ox(sinAy = Ay for the small values of the angle)
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Substituting the defined parameters into Eq. (1) yields the following:
-for the solid sphere
2
Sts :—%mzABAngsinﬁ sina:—@ASAysinﬂ sina. (3)
; 4n 3 61

-for the hollow sphere

M o MRo® o
for. =——@*ASAy x Rsin 8 sm(x:—imABAysmﬂ sina. (4)
’ 4n 4n
where all components are as specified above.

The change in the vectors of the centrifugal forces f,, on the angle
Ay presents the vectors f, , which act around axis ox in Figure 2.

The resultant torque is the product of the integrated centrifugal
forces f,,, and the centroid y, (point 4, Figure 2). The centroid is
defined by the following expression:”$
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Figure 2 Schematic of acting centrifugal forces and torques on the cross-
section of the sphere about the axis ox.

-for the solid sphere
n w2

T m/2 2
[ Sozymdodp I MRiASAysinﬂ sinaszsinﬂ sinadod B
a=0p=0""" _ a=0p=0 6 3

Ya="an / =

T w2 2
[ 1 f,.dadp [T MR Asaysin g sinad Bda
a=0p=0" "~ a=0p=0 6T
n o2 n w2
MR’ ASAy 2R J j smﬁ sinosin S sinoadd B 2R [ [ sin® B sin® ad Bda 5
3 o= _3 a=0p=0 ( )
© n2
Mgw ASAy R I ,[ smﬁ sinod fda. I Isinﬂsinudﬂdu
a=0p=0
-for the hollow sphere

:f ch,zymdadﬂ J jMRw ASAy sin Bsina x Rsin fsinad fda

y4=n0ﬁ0 a=0 f=0 - _ (6)
. MRw . .
J J- f..dadp J I ASAy sin Bsinad fda
a=0 f=0 = f=0 An

J xl2 o 72
Mfa) A&AyxRJ Ismﬁsmasmﬂsmadﬂda RJ Ism Bsin® ad fda

=0 =0 _ _ 4=0p=0
- 72

ASAy I J sin Ssinad fda j sinﬂdﬂjsinada
=0 f=0 B=0 0

MR’
67

MR’ MR’
where the components ® ASAy , l ASAy are accepted at

this stage of computing as a constant for Egs. (5) and (6), respectively.

Substituting defined parameters v,, into Eqs. (3) and (4), where
sina=Jcosado , sinf=lcosBdf |, sinzoc:%(lfcosZa) ,
0 0

sin® f = (1 cos2f) and represented by the integral forms: and
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expressed by the integral forms with the limit for the hemisphere, the
following equations emerge:

-for the solid sphere

Tet ¥y /2
[ ar, :—MRO) IdSIdy I cosﬂdﬂfcosocd(x

0o 6m
2 1'(/2 (7)
§R><f | (I—COSZﬂ)dﬁxfj‘(l cosQ(x)dot

n/2

fosmﬂdﬂjsmadot

X

-for the hollow sphere

Tet v /2
Jcht = Mfm Idedy f cosﬂdﬁfcosocd(x
0 T
1 /2
ER [ (1-cos2B)dpx— _f(l—cos2oc)d ®)
X

/2
f smﬂdﬁ J sinodo
Solving of integral Egs. (7) and (8) yield the following:
-for the solid sphere

OTct :_Mé:nz x(8 6‘)><(y|(7))><s1nﬁ'

n2 x(a —%sin2(x)|(’§
5% x(~cosa)

(—cos B)[o

that gave rise to the following

/2 /2

x2sina|

T,

ct

éR[,B —%sin2ﬂj

X

b

0

T, :_Mg‘:)z x (1= 0)x(y-0)x(1-0)x2(1-0)

LG o le00 e
X[101][171]_ 7 !

-for the hollow sphere

2
7. _ MRo /2

T, | =— ”/2><251noc

ct

x(s

oo

1
/2 -
3 x(a—5s1n2ocj|g

x(—cosa)|§

1 1.
Rx—| f——sin2
s(p-sm2]
x /2

(—cos B)|5

that gave rise to the following

Mf:)Z x(TC—O)x(y—O)x(l_())X2(1_0)

AGoofde-o-a MR

T, =-

(10)

[1-(0-1)]x[-(-1-1)] 32

where the change of the limits is taken for a quarter of the sphere.

The angle y is variable and depends on the angular velocity @, of
the sphere about axis ox.

The rate of change in the torque 7, per time is expressed by the
differential equation
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-for the solid sphere

2.2 2
&z_MR T ﬂ (11
dt 72 dt

-for the hollow sphere

2,2 2
ar, _ MRTe’ dy 1)
dt 32 dr

where f = o / @ is the time taken relative to the angular velocity of
the spinning sphere and other parameters are as specified above.

The differential of time and the angle is: dt = d—a, the expression
®

a

p = o, is the angular velocity of the sphere’s precession around axis
t

ox . Substituting the defined components into Eqgs. (11) and (12),
separation of variables, presentation by the integral forms with defined
limits, and solutions yield the following:

-for the solid sphere

2,2 .2 2,2
odl,, _ MR'mo o, .dT, __ MRt oo, da |
da. 32 ’ 72

Ter Ter MRZTE OO,

T, =—- —d 1 —71 1327520)()) (13)
< < 72 *
0

-for the hollow sphere
2,2 2 22
wcht:7Mch(n wx,chtszRnww"da,
do 32 32
Tot T MR*t*o® 1 ) 2
[dr, =—[———do T,=-—MRT’00, (14)
: . 32 32

The torque acts on the upper and lower and left and right sides of
the sphere then the total resistance torque 7, of Eq. (13) and (14) is
increased four times

-for the solid sphere

2x2
T,=+ X MR’ T’00, = iiTEZJ(D(Dx (15)
72 36
-for the hollow sphere
T, = i&MRzn%)mx = iircho)u)( (16)
32 16 ’

where J = 2MR? / 5and J = 2MR? / 3is the sphere mass moment

of inertia for solid and hollow spheres respectively, other parameters
are as specified above. The sign (£) is (+) for the precession torque
whose direction is counter-clockwise about axis oy and (-) for the
resistance torque whose direction is clockwise about the axis ox.

The expression for the precession torque generated by the
centrifugal forces of the mass element is the same as for the resistance
torque of the sphere considered above. The precession torque of the
centrifugal forces acts around the axis oy as illustrated in Figure 2.

Coriolis torque and the change in the angular
momentum acting on a spinning sphere

The modeling of the action of Coriolis forces generated by the
mass elements of the spinning sphere is almost the same as for the
centrifugal forces."” Coriolis forces are generated by the rotating mass
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elements located on parallel planes of the sphere. The resistance torque
AT, of Coriolis force of the mass elements f,, of the spinning sphere
is expressed by the following:

AT, ==forVm = (a7

_mazym

where y,, = Rsinasinfis the distance to the mass element’s
location along with axes oz and ox ; other components are represented
in Eq. (2).

The expression for a, is represented by the following:

o = _%: d(V cosasin Ay) :—Vcosa%:

—R. sinf3cos om®
: dt dt ! *

(18)
where a, =dV, /dt is Coriolis acceleration of the mass element

along with axisoz;V, =VcosasinAy = R.owcosocosBsinAy is the

change in the tangential velocity V' of the mass element; sinAy = Ay
for the small-angle; other components are as specified above.

Substituting defined parameters into the expression of Coriolis
force f,, (Eq. (17)) brings the following equations:

-for the solid sphere

= —M—AS—RC\)(D sinffcoso = oo, sinfcosa (19)
4t 3
-for the hollow sphere
MAS .
= —?Rmm sinficosa = oo, sinfcosa (20)

Substituting defined parameters into (Eq. 17) yields the following
equations:

-for the solid sphere

MR AS .
AT, :Msm[}cosax)@n @D
6m
for the hollow sphere
AT, = Msinﬁcosa X Y
4n (22)

The change in the tangential velocity V' of the mass elements of
the cross-section of the sphere rotating about the axis ox presents the
Coriolis acceleration a, (Figure 3).

We T Tar

Figure 3 Schematic of the acting Coriolis forces, torques, and motions of the
spinning sphere.

The location of the resultant force is the centroid of the area under
the Coriolis force curve calculated by Eq. (5) for the centroid A. The
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centroid point C is defined for the resultant Coriolis force acting
around the axis ox.

-for the solid sphere
n w2 n on/2 S2
[T foypdadp 1 [ m“;&sinﬁ cosux%Rsina sin fdad f
a=0p=0 a=0p=0 T

V=" = - = (23)

w2 S
J Jﬁ,dadﬁ J JMSinﬂcosadeﬁ

/2 b
M&;iwAS I 3Rsmﬂ cosada x f sin fcos fd gR ['sin pd x[sinacosada
T 0 0

72 ™
MRow, A 7 j sin Bd % J cosada [ sin pdpx[cosada
6m =0 0 as0 0

-for the hollow sphere
nom/2 n /2 MR A52
I ] fyyadodp | [ 222020
a=0p=0 _ a=0p=0 4n

Ye="7 2 © n2
MR Ad
S 3 fudoap [
=0B=0 a=0p=0 4n

/2 /2

MR%:imAS f Rsina cosado x f sin ﬂdﬂ Rfsmocdsmax Jsm pdp
T a=0

sin # cosa x Rsina sin fdod

- (24)
sin f} cosadad B

M J smﬁdﬁ’xjcosqdu
a=0 0

I sin fd 3 x fcosocda
6m 0 0

where the components MRoo AS . MRoo,AS

constant and the expression 0™ an

is accepted as

The expressions of y_. (Egs. (23) and (24)) are substituted into Egs.
(21) and (22) respectively where

cosa = [—-sinada., sinfB =[cosfdp , sinzﬁ:%(l—coszﬂ),
0 0

and represented by the integral forms:

-for the solid sphere:

T,
er MRoo® 2

IdT "Idax Icosﬁdﬁj

/2

fRfsmocdsmocx Ism pap
0
/2

f sin® Bd 8 x fcosocdoc

(25)

—sinadao x

-for the hollow sphere:

TCV

I dr, _MR(,OO)

xdex f cosﬁdﬂj—

/2

Rfsmocdsmotx f sin® Bd B
0

(26)

sinada x

w2
f sin fd f x fcosowla

where the limits of integration for the trigonometric expressions
are taken for the hemisphere.

Solving of integrals Eq. (25) and (26) yields the following:

- for the solid sphere
T _ MRO)O) n/z)
Told” == ( )Slﬂﬂ(
.2
ngzsm a n/2 (ﬁ_sm2ﬁj g/z
/2 3 2
(ZCOSOL 0 )

—cos A5 *x(sin B)|§
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that gave rise to the following

_ MRow,
6m

T,

cr

x (1= 0)x (1= 0)x (=)(~1—1)

2 I(m
“R(I-0)x—| =0
Xs( )Xz[z )__MRznw(ox

—(0—1)x2(1-0) 36

@7

-for the hollow sphere

Ter _
T, 1" =

cr

3

MRoo, N (
4

) x(sin )52

/2 1 st,B]
X— —
e

n/2
0

/2
0

.2
sin” o
Rx2——

;)
that gave rise to the following

_ MRow,
4n

(cosoc
(—cos,B)|g><25inoc

T,

cr

x(m—0)x(1-0)x

R(l—O)x%(g—Oj '
=-—MR* 100,

—(0-1)x2(1-0) 16

The change of the limits at Eqs. (27) and (28) are taken for the
quarter hemisphere.

(28)
(-1-1)x

Coriolis forces act on the upper and lower and left and right sides
of the quarter hemisphere, and then the total resistance torque 7, is
obtained when the result of Egs. (27) and (28) is increased four times:

- for the solid sphere

2

T, = 2x2x METOO _ 5 e, (29)
36 18

-for the hollow sphere
2

Tcr:_zmmz_%m% (30)

16

where J = 2MR? / 5and J = 2MR?* / 3 78 is the sphere mass moment
of inertia for solid and hollow spheres, respectively, other parameters
are as specified above, and the sign (-) means the action of the torque
in the clockwise direction.

The inertial torque of the change in the angular momentum is well-
known in publications and presented by the following expression:
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©2024 Usubamatov et al. 93

The analysis of Egs. (17) and (31) show the resistance torques
generated by centrifugal and Coriolis forces of the spinning sphere’s
mass elements showing their summary action is opposite to the external
torque. The precession torques are the sum of torques generated by the
centrifugal inertial torque and the change in the angular momentum.
The total resistance 7, and precession torque T, have represented a
sum of these torques whose equations are as follows:

2
Trzin3Jcou)x+i7choo)K=in n—+1 Jow, (32)
36 18 To18 2
5 3 5 3
T, =—nJoo, +Joo, = —n +1|Joo, (33)
36 36
-for the hollow sphere
2
TrzinﬂwooxﬁLgnJo)wX:gn L Jowo, (34)
16 8 8 2 ’
33 33
T, =—nmJoo, +Joo, = —1 +1 |Joo, (35)
16 16

where all components are as specified above

Attributes of the inertial torques acting on the
spinning sphere

The obtained expressions of the inertial torques generated by
the rotating mass of the solid and hollow sphere give the ability to
formulate the mathematical models for its motions and compute the
gyroscopic effects. The centrifugal, common inertial, and Coriolis
forces of the mass element, as well as the change in the angular
momentum, generate the inertial torques. These torques contain the
principal components that are the change in the angular momentum
and coefficients which belong to the defined type of inertial forces.
The several inertial torques generated by the one rotating mass present
active physical components. The total initial precession torque acting
about axis oy of the spinning sphere has represented a sum of the
precession torques generated by the common inertial forces of the
mass elements and the change in the angular momentum. The total
initial resistance torque 7, acting around axis ox has represented a
sum of the resistance torques generated by the centrifugal and Coriolis
forces of the sphere’s mass elements. The mathematical models for
internal torques acting on the spinning sphere are represented in Table

The parameters of Table 1 are J is the moment of inertia of the
sphere; w is the angular velocity of the sphere; w, is the angular
velocity of the sphere about axis ox,.The equations used to calculate

T, =Joo, (31)  the gyroscopic effects in engineering are derived from the inertial
torques acting on the spinning solid and hollow sphere.
Table | Equations of the internal torques acting on the spinning sphere
Equation for the spinning sphere
Type of the torque generated by Action Solid Hollow
Centrifugal forces (axis ox) Resistance
T, —iano)m T, =in3Joow
Centrifugal forces (axis oy) Precession < * 16 *
- : 5 3
Coriolis forces Resistance T, =—n/oon, T, =—nJoo,
18 8
Change in an angular momentum Precession T, =Joo,
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New studies of the inertial torques have shown that their values
depend on the form of the spinning objects, whose geometry can be
original designs. The equality of inertial torques originating along each
axis defines the dependency of the angular velocities of the spinning
sphere around two axes. This principle is formulated by the equality
of kinetic energies of the sphere rotation about two axes ([], Chapter
4, Section 4.1.2). The relationship between the angular velocities of
a spinning sphere around the oy and ox axes is defined for both solid
and hollow spheres..

- The solid sphere

—in3Jom)X —inJmmX —irf Joo, -Joo, = in3 Joo, +
36 36

36 18 (36)

Jm(aniﬂ?me 7311:‘/(9«)_
©36 718 ”

Simplification of Eq. (36) yields the following ratio of the angular
velocities of the spinning solid sphere:

50 +5m+18
0, = ———|o,
7 18-5=n

Table 2 Substituting the initial data into equations

(37

Copyright:
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For the hollow sphere

—iTC3J0)(Dx —ETEJ(DO)X —iTES Joo, —Joo
16 8 16 7 7 38
3 3 (38)
=7 Joo, +Joo, - Joo
16 T 16

,—EnJ(no)
8

P y

Simplification of Eq. (38) yields the following ratio of the angular
velocities of the spinning hollow sphere:

31 +3n+8
0,=——|0,
8-3n
The dependency of the spinning sphere’s angular velocities is used
to create mathematical models for its rotation around axes ox and oy

(39)

Working example

The sphere has a mass of 1.0 kg, a radius of 0.1 m, and spinning
at 3000 rpm. An external torque acts on the sphere, which rotates
with an angular velocity of 0.05 rpm. It is determined the value of
the resistance and precession torques acting on the spinning sphere
(Figure 1). Substituting the initial data into equations of Table 1 and
transformation yields the following result (Table 2).

Torque generated by Solid sphere

Hollow sphere

T, = S Tc3Jc0coX= S TE3
36 36

Centrifugal fore T,

3000x 27 « 0,05x27
60 0

Coriolis forces T
300027 § 0,05x27
60 60

T,

Change in the angular momentum am

T

am

:Joomx:%xl,OXO,le

3000% 21 N 0,05%x2m
60 0

=0,028335 Nm

T, = el tJow, = El nxgxl,Oxo,lzx
18 18 5

=0,005741 Nm

=0,003289 Nm

xgx1,0x0,12>< T, = 3 TC3J(1)(1)I= 3 ><n3><g><1,0><0,12><
5 16 16 3

3000><27t><0,05(>)<2n:0’063754 Nm

60

T, = 3 TJow, = 3 TEXEXI,OXO,IZX
8 A8 3

3000 %27 « 0,05%x 27
60 0

=0,012919 Nm

T,

am

=J0)00X=§><1,0><0,12><

=0,005483 Nm

3000% 21 “ 0,05%x2m
60 0

The method for deriving the mathematical models for the inertial
torques has been demonstrated on the spinning sphere. This analytical
approach opens new possibilities to solve engineering problems
related to the gyroscopic effect and presents the physical principles
behind the acting forces. The new mathematical models for the inertial
torques generated by the spinning sphere bring new knowledge to the
dynamic of rotating objects of engineering mechanics.

Result and discussions

The existing publications containing mathematical models for the
inertial torques generated by the rotating mass of a spinning sphere
have been found to have errors in the analytical processing of the acting
forces of integral equations. There were inaccuracies in the limits of
the integral equations of torques generated by the rotating mass of the

sphere. The corrected mathematical models for the inertial torques of
the centrifugal and Coriolis forces of the spinning sphere have been
derived. These corrected inertial torques and the ratio of the angular
velocities of the sphere about its axes of rotation allow for the exact
solution in computing gyroscopic effects. This result presents a correct
mathematical model for the inertial torques generated by the spinning
sphere in the dynamics of rotating objects. The expressions of inertial
torques and the ratio of the angular velocities of the sphere about its
axes of rotation allow for the planning of mathematical models for its
motion in space. The analytical models for the kinetically interrelated
inertial torques of the spinning sphere describe the physics of its
gyroscopic effects, provide a high level of accuracy in computing and
open new possibilities for solving gyroscopic problems of spherical
objects.
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Conclusion

Analytical solutions for gyroscopic effects of the spinning objects
of complex geometries are a sophisticated process that is linked with
complex mathematical modelling of the inertial torques. In such cases,
omissions in solutions and following corrections are inevitable. This
statement is confirmed by the new solutions to gyroscopic effects,
publications, and criticism of mistakes. The error in the expression
of the limits for the integrals of the inertial torques generated by the
spinning object is not fundamental but can yield distorted results in the
calculation. The corrected mathematical model for the inertial torques
in the aggregate with others was tested by the working example of
their mathematical models for the sphere and can be used for solutions
to gyroscope problems in engineering. The presented mathematical
method for deriving the inertial torques acting on the spinning sphere
gives the ability to solve similar problems for gyroscopic devices
with curvilinear revolving components. Numerous rotating objects
in engineering do not have analytical methods for computing inertial
torques acting on the objects and their motions which represents a
challenge to researchers and engineers.
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