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Introduction 
The textbooks and research publications describe the various 

designs of spinning machine parts and mechanisms in engineering. 
They circumscribe how rotating objects exhibit gyroscopic effects, 
which can be calculated using inertial forces and torques to determine 
the actual dynamic properties for mathematical models of their 
movements.1,2 The rotating parts and components come in different 
shapes, such as discs, rings, cylinders, spheres, circular cones, 
paraboloids, propellers, etc. The texts also mention that inertial 
torques for simple designs can be calculated using known methods 
and equations, while more complex forms require new mathematical 
models.3,4 The publications explain how to apply standard methods 
to compute inertial torques for various spinning objects encountered 
in engineering. They also suggest using a universal method for 
calculating inertial torques for unique designs.5,6 The texts mention 
that researchers face challenges in applying these methods to derive 
inertial torques and mathematical models for the motions of different 
rotating objects. The textbooks of classical mechanics attract the 
attention of readers on gyroscope problems.7,8 Gyroscopic effects 
remain as a problem for researchers who published numerous works 
and tried to find analytical and confirm practically.9,10 The new 
generation tries to give answers to unsolved properties of spinning 
objects whose rotating masses produce the system of inertial torques 
that manifest gyroscopic effects.11,12

In the field of engineering, all spinning objects exhibit 
gyroscopic effects resulting from their inertial torques. Numerous 
designs of gyroscopic devices produce inertial torques generated 
by their rotating masses, which should be calculated by the defined 
expressions.13 Rotating masses of objects with unique geometry 
are base for the analytical expressions of their inertial torque.14 The 
known publications related to the gyroscopic effects are confined 
by the use of the gyroscopic torque of the change in the angular 
momentum which does not solve all aspects of gyroscopic devices.15 
The gyroscopic effects are more diverse and their unsolved problems 
of inertial torques solve numerical models. The modern tendency 
of intensification of processes in engineering requests accurate 

commuting and designs of the mechanisms and devices. This 
direction is important for the gyroscopic devices in which spinning 
components generate considerable inertial torques. The publications 
related to the theory of gyroscopic effects comprise a limited 
number of analytical approaches that do not satisfy engineering 
requirements.16 The new and original design of gyroscopic devices 
remains an unsolved problem and presents a challenge for researchers 
and practitioners because of the absence of mathematical models for 
the inertial torques.17 A known publication that comprises the inertial 
torques acting on a spinning sphere is presented by analytical errors 
in mathematical processing that yield incorrect solutions.18 The theory 
of gyroscopic effects for rotating objects opens a new direction in the 
dynamics of machines.19 The specificity of inertial torques generated 
by the rotating mass of spinning objects is presented by dependency on 
their geometries. The volumetric designs of the spinning components 
complicate the mathematical models of inertial torques generated by 
rotating bodies.20 The correct mathematical modelling for the inertial 
torques generated by rotating masses of solid and hollow spheres is 
presented in this manuscript.

Methodology
Centrifugal torques acting on a spinning sphere

The rotating center mass and mass elements generate several 
inertial forces acting on the spinning sphere. The inertial torques are 
acting simultaneously on the spinning sphere with a uniform circular 
motion.1–5 This section considers the action of the inertial torques on 
the solid and hollow spheres where mass elements are distributed on 
the spherical surfaces. The rotation of mass elements generates the 
centrifugal forces acting strictly perpendicular to the axis oz and ox of 
the spinning sphere. The analytical approach for the modeling of the 
action of the centrifugal forces of the spinning sphere is the same as for 
the spinning disc represented in Chapter 3 of the gyroscope theory.19 
The rotating mass elements of the sphere are located on the spherical 
surface of the 2/3 radius for the solid sphere and the middle radius for 
the hollow sphere. The analysis of the acting inertial forces generated 
by the mass element of the sphere is considered on the arbitrary planes 
that parallel to the plane xoy of the maximal diameter of the sphere 
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(Figure 1). The arbitrary circle plane of the sphere is the same as the 
plane of the thin disc represented in.19 The plane of the mass elements 
generates the change in the vector components .ct zf , whose directions 
are parallel to the spinning sphere axle oz . The integrated product of 
components for the vector change in the centrifugal forces .ct zf and 
their variable radius of location relative to axis ox and oy generate the 
resistance torque ,ct xT and precession torque ,ct xT . acting about axes
ox and oy , respectively, whose expressions are identical.19

Figure 1 Schematic of the spinning sphere, its motions, and acting external 
torque.

 The mass element m is disposed on the radius iR of the sphere, 

where i indicates the solid ss and hollow hs spheres ( )( 2 / 3ssR R=

for the solid sphere and hsR R= for the hollow sphere). The sphere 
rotates in a uniform circular motion with a constant angular velocity
ω in the counter-clockwise direction and generates the plane of the 
centrifugal forces ctf acting perpendicular to axis oz . The centrifugal 
forces ctf represent the distributed load where the sphere’s mass 
elements are located. The inclination of the spinning sphere on the 
minor angle Δγ generates the change in the vector’s components .ct zf
, whose directions are parallel to the sphere axle oz . The integrated 
product of the vector change in the centrifugal forces .ct zf and their 
variable radius r about axis ox generates the resistance torque ctT
acting opposite to the external torque T . 

The resistance torque ctT∆ of the centrifugal force .ct zf is expressed 
by the following: 

. .ct ct z mT f y=∆ 	                                                                                        (1) 

where ym = Risinβsinα is the normal component of r to axis 1 1,o x
other components are as specified above. 

The component of the centrifugal force .ct zf for arbitrarily chosen 
plane is represented by the following equation:

2
. sin sinct z ctf f mr= ∆ γ = ω ∆ γ                                                                (2) 

where 2
ctf mr= ω  is the centrifugal force of the mass element 

m;, 2
2 44 i
i

M Mm R
R

= ∆δ = ∆δ
ππ

, M is the mass of the sphere; 4π is 

the spherical angle; ∆δ  is the spherical angle of the mass element; 
the radius r of the mass element rotation at the plane 1 1 1o x y is

(2 / 3) sinir R= β , where 

(2 / 3)ssR R= is the radius of the solid sphere; hsR R= is the radius 
of the hollow sphere; ω is the constant angular velocity of the sphere; 
α is the angle of the mass element’s location on the plane that parallel 
to plane ;xoy β is the angle of the mass element’s location on the 

plane ;  yoz ∆γ is the angle of turn for the sphere’s plane around axis
(  ox sin∆γ = ∆γ for the small values of the angle)

Substituting the defined parameters into Eq. (1) yields the following:

-for the solid sphere
2

2
. sin sin sin sin

6
2
34ct sf M MRR ω

= − ω ∆δ α = − ∆δ α
π

∆
π

∆ γ βγ β       (3) 

-for the hollow sphere 
2

2
. sin sin sin sin

4 4ct zf M MRR ω
= − ω ∆δ α = − ∆δ α

π π
∆ × ∆γ βγ β       (4)

where all components are as specified above.

The change in the vectors of the centrifugal forces cff on the angle
∆γ presents the vectors .ct zf which act around axis ox  in Figure 2.

The resultant torque is the product of the integrated centrifugal 
forces ctzf and the centroid Ay (point A, Figure 2). The centroid is 
defined by the following expression:7,8

Figure 2 Schematic of acting centrifugal forces and torques on the cross-
section of the sphere about the axis ox.
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-for the hollow sphere 
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∫ ∫ ∫

   

(6) 

where the components
2

6
MRω

∆δ
π

∆γ , 
2

4
MRω

∆δ
π

∆γ are accepted at 

this stage of computing as a constant for Eqs. (5) and (6), respectively.

 Substituting defined parameters mv into Eqs. (3) and (4), where

0
cossin d

π

α = ∫ α α ,
0
cossin d

π

= ∫β β β , ( )2 1sin 1 cos2
2

α = − α , 

( )2 1sin 1 cos2
2

= −β β  and represented by the integral forms: and 
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expressed by the integral forms with the limit for the hemisphere, the 
following equations emerge:	

-for the solid sphere	  	  

( ) ( )

2 /2

0 0 0 0 0
/2

0 0
/2

0 0

cos cos
6

2 1 11 cos2 1 cos2
3 2 2

sin sin

T yct

ct
MRdT d d d d

R d d

d d
β

β β

β β

β β

π π π

π π

π π

=

ω
∫ = − ∫ δ ∫ γ ∫ ∫ α α

π

× ∫ − × ∫ − α α
×

∫ ∫ α α

                             (7) 

-for the hollow sphere 

( ) ( )

2 /2

0 0 0 0 0
/2

0 0
/2

0 0

cos cos
4

1 11 cos2 1 cos2
2 2

sin sin

T yct

ct
MRdT d d d d

R d d

d d
β β
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π π π

π π

π π

= =

ω
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π
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                          (8) 

Solving of integral Eqs. (7) and (8) yield the following:

-for the solid sphere

( ) ( )

( ) ( )

2
/2 /2

0 0 0 0 0

/2
0 0

/2
0 0

sin 2sin
6

1 1 1sin 2 sin 2
6 2 2

cos cos

Tct
ct
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R

β

β β

β

π γ π π

π π

π π

ω
= − × δ × γ × × α

π
   − × α − α   
   ×

− × − α

 

that gave rise to the following 

( ) ( ) ( ) ( )

( )

( ) ( )

2

2 2 2

0 0 1 0 2 1 0
6

1 0 0 0 0
6 2

721 0 1 1 1

ct
MRT

R
MR

ω
= − × π − × γ − × − × −

π
 π − − ×  π − −      π ω  × = − γ

 − −  × − − −    

                    (9) 

-for the hollow sphere 	
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that gave rise to the following 

( ) ( ) ( ) ( )

( )

( ) ( )

2

2 2 2

0 0 1 0 2 1 0
4

0 0 0 0
4 2

321 0 1 1 1

ct
MRT

R
MR

ω
= − × π − × γ − × − × −

π
 π − − ×  π − −      π ω  × = − γ
 − −  × − − −                       

 (10) 	
 	

where the change of the limits is taken for a quarter of the sphere. 

The angle γ is variable and depends on the angular velocity xω of 
the sphere about axis ox. 

The rate of change in the torque ctT per time is expressed by the 
differential equation

-for the solid sphere	
 

2 2 2

72
ctdT MR d

dt dt
π ω γ

= −                                                                  (11)

-for the hollow sphere 
2 2 2

32
ctdT MR d

dt dt
π ω γ

= −
                                                                 

 (12)

where /t = α ω is the time taken relative to the angular velocity of 
the spinning sphere and other parameters are as specified above.

The differential of time and the angle is: ddt α
=

ω
, the expression

x
d
dt
γ

= ω is the angular velocity of the sphere’s precession around axis

ox . Substituting the defined components into Eqs. (11) and (12), 
separation of variables, presentation by the integral forms with defined 
limits, and solutions yield the following:

-for the solid sphere
2 2 2

32
ct

x
dT MR
d

ω π ω
= − ω

α
,

2 2

72
x

ct
MRdT dπ ωω

= − α  ,

2 2

0 0 72

T Tct ct
x

ct
MRdT dπ ωω

= − α∫ ∫  2 21
72ct xT MR= − π ωω  (13) 

-for the hollow sphere
2 2 2

32
ct

x
dT MR
d

ω π ω
= − ω

α
, 

2 2

32
x

ct
MRdT dπ ωω

= − α , 

2 2

0 0 32

Tct
x

ct
MRdT d

π π ωω
= − α∫ ∫  2 21

32ct xT MR= − π ωω                      (14) 

The torque acts on the upper and lower and left and right sides of 
the sphere then the total resistance torque ctT of Eq. (13) and (14) is 
increased four times

-for the solid sphere	

 2 2 22 2 5
72 36ct x xT MR J×

= ± π ωω = ± π ωω                                           (15) 

-for the hollow sphere 

 2 2 22 2 3
32 16ct x xT MR J×

= ± π ωω = ± π ωω                                   (16)	

where 22 / 5J MR= and 22 / 3J MR= is the sphere mass moment 
of inertia for solid and hollow spheres respectively, other parameters 
are as specified above. The sign (±) is (+) for the precession torque 
whose direction is counter-clockwise about axis oy and (-) for the 
resistance torque whose direction is clockwise about the axis ox. 

The expression for the precession torque generated by the 
centrifugal forces of the mass element is the same as for the resistance 
torque of the sphere considered above. The precession torque of the 
centrifugal forces acts around the axis oy as illustrated in Figure 2.

Coriolis torque and the change in the angular 
momentum acting on a spinning sphere	

The modeling of the action of Coriolis forces generated by the 
mass elements of the spinning sphere is almost the same as for the 
centrifugal forces.19 Coriolis forces are generated by the rotating mass 
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elements located on parallel planes of the sphere. The resistance torque
crT∆ of Coriolis force of the mass elements crf of the spinning sphere 

is expressed by the following:

	 z mcr mcr y mT f a y= − = −∆                                                    (17)

where  m iy R sin sin= α β is the distance to the mass element’s 

location along with axes oz and ox ; other components are represented 
in Eq. (2).

 The expression for za is represented by the following:	

	
( cos sin ) cos sin cosz

z i x
dV d V dV R
dt dt dt

α
α =

∆γ γ
β= − = − α = − αωω    (18) 

where /z za dV dt= is Coriolis acceleration of the mass element 

along with axis oz ; z iV Vcos sin R cos cos sin= α ∆γ = ω α β ∆γ  is the 

change in the tangential velocity V of the mass element;  sin∆γ = ∆γ
for the small-angle; other components are as specified above. 

Substituting defined parameters into the expression of Coriolis 
force crf (Eq. (17)) brings the following equations:

-for the solid sphere

 2 sin cos sin cos
4 3 6x xcrf M MRR= − ωω α = ωω α

π
∆δ

β
π
∆δ

β          (19)

-for the hollow sphere 

sin cos sin cos
4 4x xcrf M MRR= − ωω α = ωω α

π
∆δ

β
π
∆δ

β                    (20)

Substituting defined parameters into (Eq. 17) yields the following 
equations:

-for the solid sphere

sin cos
6

x
mcr

MRT y∆δ
∆ β

ωω
= α ×

π
                                                                                      (21)

for the hollow sphere 

sin cos
4

x
mcr

MRT y∆δ
∆ β

ωω
= α ×

π
                                                  		

					                                     (22) 

The change in the tangential velocity V of the mass elements of 
the cross-section of the sphere rotating about the axis ox presents the 
Coriolis acceleration za  (Figure 3). 

Figure 3 Schematic of the acting Coriolis forces, torques, and motions of the 
spinning sphere.

The location of the resultant force is the centroid of the area under 
the Coriolis force curve calculated by Eq. (5) for the centroid A. The 

centroid point C is defined for the resultant Coriolis force acting 
around the axis ox . 

-for the solid sphere
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-for the hollow sphere
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where the components 
6

xMRωω ∆δ
π

 and 
4

xMRωω ∆δ
π

 is accepted as 
constant and the expression

The expressions of yC (Eqs. (23) and (24)) are substituted into Eqs. 
(21) and (22) respectively where

0
cos sin d

π

α = ∫− α α , 
0

sin cos d
π

∫β = β β  , 2 1sin (1 cos2
2

−β = β) , 

and represented by the integral forms: 

-for the solid sphere:	
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-for the hollow sphere:
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                                    (26)

where the limits of integration for the trigonometric expressions 
are taken for the hemisphere. 

Solving of integrals Eq. (25) and (26) yields the following:

- for the solid sphere
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( ) ( )
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that gave rise to the following 
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                                 (27) 

-for the hollow sphere
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sin 1 sin 22
2 2 2cos

cos 2sin

T xcr
cr

MRT

R

β 

ββ

β

π π

π π

π
π π

ωω
= × δ × ×

π
α  × × − 

 α ×
− × α

	  

that gave rise to the following 

2

( 0) (1 0)
4

1(1 0) 0
12 2( 1 1)

(0 1) 2(1 0) 16

x
cr

x

MRT

R
MR

ωω
= × π − × − ×

π
π − × − 

 − − × = − πωω
− − × −

                           (28) 

The change of the limits at Eqs. (27) and (28) are taken for the 
quarter hemisphere. 

Coriolis forces act on the upper and lower and left and right sides 
of the quarter hemisphere, and then the total resistance torque crT is 
obtained when the result of Eqs. (27) and (28) is increased four times:

- for the solid sphere
2 52 2
36 18

x
cr x

MRT Jπωω
= − × × = − π ωω                                         (29)

-for the hollow sphere
2 32 2
16 8

x
cr x

MRT Jπωω
= − × × = − π ωω

                                             
 (30) 

where 22 / 5J MR= and 22 / 3J MR= 7,8 is the sphere mass moment 
of inertia for solid and hollow spheres, respectively, other parameters 
are as specified above, and the sign (-) means the action of the torque 
in the clockwise direction.

The inertial torque of the change in the angular momentum is well-
known in publications and presented by the following expression:  

     am xT J= ωω                                                                                           (31) 

The analysis of Eqs. (17) and (31) show the resistance torques 
generated by centrifugal and Coriolis forces of the spinning sphere’s 
mass elements showing their summary action is opposite to the external 
torque. The precession torques are the sum of torques generated by the 
centrifugal inertial torque and the change in the angular momentum. 
The total resistance rT and precession torque pT have represented a 
sum of these torques whose equations are as follows:

 
2

35 5 5 1
36 18 18 2x xr xT J J J

 π
= π ωω + π ωω = π + ωω  

                      
 (32)

3 35 5 1
36 36p x x xT J J J = π ωω + ωω = π + ωω 

 
                                 (33)

-for the hollow sphere

 
2

33 3 3 1
16 8 8 2x x xrT J J J

 π
= π ωω + π ωω = π + ωω  

 
                          (34) 

3 33 3 1
16 16p x x xT J J J = π ωω + ωω = π + ωω 

 
                                     (35)

where all components are as specified above

Attributes of the inertial torques acting on the 
spinning sphere

The obtained expressions of the inertial torques generated by 
the rotating mass of the solid and hollow sphere give the ability to 
formulate the mathematical models for its motions and compute the 
gyroscopic effects. The centrifugal, common inertial, and Coriolis 
forces of the mass element, as well as the change in the angular 
momentum, generate the inertial torques. These torques contain the 
principal components that are the change in the angular momentum 
and coefficients which belong to the defined type of inertial forces. 
The several inertial torques generated by the one rotating mass present 
active physical components. The total initial precession torque acting 
about axis oy of the spinning sphere has represented a sum of the 
precession torques generated by the common inertial forces of the 
mass elements and the change in the angular momentum. The total 
initial resistance torque rT acting around axis ox has represented a 
sum of the resistance torques generated by the centrifugal and Coriolis 
forces of the sphere’s mass elements. The mathematical models for 
internal torques acting on the spinning sphere are represented in Table 

The parameters of Table 1 are J is the moment of inertia of the 
sphere; ω is the angular velocity of the sphere; xω is the angular 
velocity of the sphere about axis ox ,.The equations used to calculate 
the gyroscopic effects in engineering are derived from the inertial 
torques acting on the spinning solid and hollow sphere.

Table 1 Equations of the internal torques acting on the spinning sphere

Type of the torque generated by Action
Equation for the spinning sphere
Solid Hollow

Centrifugal forces (axis ox) Resistance

Centrifugal forces (axis oy) Precession

Coriolis forces Resistance

Change in an angular momentum Precession

35
36ct xT J= π ωω 33

16ct xT J= π ωω

5
18cr xT J= π ωω

3
8cr xT J= π ωω

am xT J= ωω
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New studies of the inertial torques have shown that their values 
depend on the form of the spinning objects, whose geometry can be 
original designs. The equality of inertial torques originating along each 
axis defines the dependency of the angular velocities of the spinning 
sphere around two axes. This principle is formulated by the equality 
of kinetic energies of the sphere rotation about two axes ([], Chapter 
4, Section 4.1.2). The relationship between the angular velocities of 
a spinning sphere around the oy and ox axes is defined for both solid 
and hollow spheres..

-	 The solid sphere

3 3 3

3

5 5 5 5
36 18 36 36

5 5
36 18

x x y y x

x y y

J J J J J

J J J

− π ωω − π ωω − π ωω − ωω = π ωω +

ωω − π ωω − π ωω

            (36) 

Simplification of Eq. (36) yields the following ratio of the angular 
velocities of the spinning solid sphere:

35 5 18
18 5y x

 π + π +
ω = ω  − π 

                                                                (37)

For the hollow sphere

3 3

3 3

3 3 3
16 8 16
3 3 3

16 16 8

x x y y

x x y y

J J J J

J J J J

− π ωω − π ωω − π ωω − ωω

= π ωω + ωω − π ωω − π ωω
                           (38) 

Simplification of Eq. (38) yields the following ratio of the angular 
velocities of the spinning hollow sphere:

33 3 8
8 3y x

 π + π +
ω = ω  − π 

                                                                  (39)

The dependency of the spinning sphere’s angular velocities is used 
to create mathematical models for its rotation around axes ox and oy 

Working example 

The sphere has a mass of 1.0 kg, a radius of 0.1 m, and spinning 
at 3000 rpm. An external torque acts on the sphere, which rotates 
with an angular velocity of 0.05 rpm. It is determined the value of 
the resistance and precession torques acting on the spinning sphere 
(Figure 1). Substituting the initial data into equations of Table 1 and 
transformation yields the following result (Table 2).

Table 2 Substituting the initial data into equations

Torque generated by  Solid sphere  Hollow sphere

Centrifugal fore Tct 

3 3 25 5 2 1,0 0,1
36 36 5

3000 2 0,05 2 0,028335
60 60

ct xT J

Nm

   = π ωω = π × × × ×   
   
× π × π

× =

3 3 23 3 2 1,0 0,1
16 16 3

3000 2 0,05 2 0,063754
60 60

ct xT J

Nm

   = π ωω = × π × × × ×   
   
× π × π

× =

Coriolis forces Tcr

25 5 2 1,0 0,1
18 18 5

3000 2 0,05 2 0,005741
60 60

cr xT J

Nm

   = π ωω = π× × × ×   
   
× π × π

× =

23 3 2 1,0 0,1
8 8 3

3000 2 0,05 2 0,012919
60 60

cr xT J

Nm

   = π ωω = π× × × ×   
   
× π × π

× =

Change in the angular momentum
Tam

22 1,0 0,1
5

3000 2 0,05 2 0,003289
60 60

am xT J

Nm

= ωω = × × ×

× π × π
× =

22 1,0 0,1
5

3000 2 0,05 2 0,005483
60 60

am xT J

Nm

= ωω = × × ×

× π × π
× =

The method for deriving the mathematical models for the inertial 
torques has been demonstrated on the spinning sphere. This analytical 
approach opens new possibilities to solve engineering problems 
related to the gyroscopic effect and presents the physical principles 
behind the acting forces. The new mathematical models for the inertial 
torques generated by the spinning sphere bring new knowledge to the 
dynamic of rotating objects of engineering mechanics.

Result and discussions
The existing publications containing mathematical models for the 

inertial torques generated by the rotating mass of a spinning sphere 
have been found to have errors in the analytical processing of the acting 
forces of integral equations. There were inaccuracies in the limits of 
the integral equations of torques generated by the rotating mass of the 

sphere. The corrected mathematical models for the inertial torques of 
the centrifugal and Coriolis forces of the spinning sphere have been 
derived. These corrected inertial torques and the ratio of the angular 
velocities of the sphere about its axes of rotation allow for the exact 
solution in computing gyroscopic effects. This result presents a correct 
mathematical model for the inertial torques generated by the spinning 
sphere in the dynamics of rotating objects. The expressions of inertial 
torques and the ratio of the angular velocities of the sphere about its 
axes of rotation allow for the planning of mathematical models for its 
motion in space. The analytical models for the kinetically interrelated 
inertial torques of the spinning sphere describe the physics of its 
gyroscopic effects, provide a high level of accuracy in computing and 
open new possibilities for solving gyroscopic problems of spherical 
objects. 
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Conclusion
Analytical solutions for gyroscopic effects of the spinning objects 

of complex geometries are a sophisticated process that is linked with 
complex mathematical modelling of the inertial torques. In such cases, 
omissions in solutions and following corrections are inevitable. This 
statement is confirmed by the new solutions to gyroscopic effects, 
publications, and criticism of mistakes. The error in the expression 
of the limits for the integrals of the inertial torques generated by the 
spinning object is not fundamental but can yield distorted results in the 
calculation. The corrected mathematical model for the inertial torques 
in the aggregate with others was tested by the working example of 
their mathematical models for the sphere and can be used for solutions 
to gyroscope problems in engineering. The presented mathematical 
method for deriving the inertial torques acting on the spinning sphere 
gives the ability to solve similar problems for gyroscopic devices 
with curvilinear revolving components. Numerous rotating objects 
in engineering do not have analytical methods for computing inertial 
torques acting on the objects and their motions which represents a 
challenge to researchers and engineers.
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