Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 8 Issue 4

Structural model and scheme of a piezoengine for aeronautics and aerospace

SM Afonin

National Research University of Electronic Technology, MIET, Russia

Correspondence: SM Afonin, National Research University of Electronic Technology, MIET, Moscow, Russia, Tel +74997314441

Received: December 06, 2024 | Published: December 18, 2024

Citation: Afonin SM. Structural model and scheme of a piezoengine for aeronautics and aerospace. Aeron Aero Open Access J. 2024;8(4):212-217. DOI: 10.15406/aaoaj.2024.08.00213

Download PDF

Abstract

In the work the structural model and the structural scheme of a piezoengine are calculated for aeronautics and aerospace. The matrix equation of a piezoactuator is determined. The mechanical characteristic and the parameters of the PZT piezoactuator are obtained in control systems for aeronautics and aerospace. A piezoengine is used for nanoalignment and nanopositioning, compensation of temperature and gravitational deformations in aeronautics and aerospace, nanoresearh for tunel microscopy, adaptive optics, astronomy for compound telescope and satellite telescope. The linear change in the size of a piezoengine occurs by the electric field changes. A piezoengine is a piezomechanical device for converting electrical energy into mechanical energy and for actuating mechanisms, systems or its controlling by using inverse piezoeeffect. Piezoceramics include barium titanate or ferroelectric ceramics, based on lead zirconate titanate type PZT, are widely used for the production of piezoengines. The PZT piezoengine is characterized by high accuracy, small overall dimensions, simple design and control, reliability and cost effectiveness. The structural general model, the scheme and the functions a piezoengine are obtained for aeronautics and aerospace. Method of applied mathematical physics is applied for determinations the characteristics of a piezoengine with using the piezoelasticity equation and the differential equation. The static and dynamic characteristics of the PZT piezoengine are determined.

Keywords: piezoengine, structural model and scheme

Introduction

A piezoengine is used for aeronautics and aerospace.1–19 This piezoengine is applied in adaptive optics system for compound telescope and satellite telescope, astrophysics, deformable mirrors, interferometers, damping vibration, scanning microscopy.14–59 The structural model and scheme of a piezoengine are constructed.

Method

For the structural model a piezoengine is used method of mathematical physics with the solution the piezoelasticity equationfor reverse piezoeffect and differential equation at the voltage control.8–41

S i = d mi E m + s ij E T j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcaWGKbWaaSbaaSqaaiaad2gacaWG PbaabeaakiaadweadaWgaaWcbaGaamyBaaqabaGccqGHRaWkcaWGZb Waa0baaSqaaiaadMgacaWGQbaabaGaamyraaaakiaadsfadaWgaaWc baGaamOAaaqabaaaaa@44FC@

and at current the control

S i = g mi D m + s ij D T j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcaWGNbWaaSbaaSqaaiaad2gacaWG PbaabeaakiaadseadaWgaaWcbaGaamyBaaqabaGccqGHRaWkcaWGZb Waa0baaSqaaiaadMgacaWGQbaabaGaamiraaaakiaadsfadaWgaaWc baGaamOAaaqabaaaaa@44FD@

here S i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaamyAaaqabaaaaa@384F@ , E m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaamyBaaqabaaaaa@3845@ , d mi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaamyBaiaadMgaaeqaaaaa@3952@ , T j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOAaaqabaaaaa@3851@ , d mi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaamyBaiaadMgaaeqaaaaa@3952@ , g mi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEgadaWgaa WcbaGaamyBaiaadMgaaeqaaaaa@3955@ , s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohadaqhaa WcbaGaamyAaiaadQgaaeaacaWGfbaaaaaa@3A29@  are the relative displacement, the electric field strength, the electric induction, the mechanical field strength, its modules, the elastic compliance, the indexes i, j, m. The ordinary differential equation a piezoengine 8–41 has form

d 2 Ξ( x,s ) d x 2 γ 2 Ξ( x,s )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izamaaCaaabeWcbaGaaGOmaaaakiabf65aynaabmaabaGaamiEaiaa cYcacaWGZbaacaGLOaGaayzkaaaabaGaamizaiaadIhalmaaCaaabe qaaiaaikdaaaaaaOGaeyOeI0Iaeq4SdC2aaWbaaSqabeaacaaIYaaa aOGaeuONdG1aaeWaaeaacaWG4bGaaiilaiaadohaaiaawIcacaGLPa aacqGH9aqpcaaIWaaaaa@4BCD@

here Ξ( x,s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaabm aabaGaamiEaiaacYcacaWGZbaacaGLOaGaayzkaaaaaa@3C0F@ , x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@375A@ , s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Caaaa@3774@ , γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNbaa@3804@  are the transform of the displacement, its coordinate  and parameter, the propagation coefficient and the general length l={ l, δ,b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgacqGH9a qpdaGabaqaaiaaysW7caWGSbGaaiilaaGaay5EaaGaaGjbVlabes7a KjaacYcacaaMe8UaamOyaaaa@42F2@ an engine. For the transverse engine for, x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaaIWaaaaa@391A@ Ξ( 0,s )= Ξ 1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaabm aabaGaaGimaiaacYcacaWGZbaacaGLOaGaayzkaaGaeyypa0JaeuON dG1cdaWgaaqaaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaay zkaaaaaa@41C8@ ;and x=h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaWGObaaaa@394D@ , Ξ( h,s )= Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaabm aabaGaamiAaiaacYcacaWGZbaacaGLOaGaayzkaaGaeyypa0JaeuON dG1cdaWgaaqaaiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaay zkaaaaaa@41FC@ .

Model and scheme

Its transverse solution is written

Ξ( x,s )= { Ξ 1 ( s )sh[ ( hx )γ ]+ Ξ 2 ( s )sh( xγ ) }/ sh( hγ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaabm aabaGaamiEaiaacYcacaWGZbaacaGLOaGaayzkaaGaeyypa0ZaaSGb aeaadaGadaqaaiabf65aynaaBaaaleaacaaIXaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaiaadohacaWGObWaamWaaeaadaqadaqa aiaadIgacqGHsislcaWG4baacaGLOaGaayzkaaGaeq4SdCgacaGLBb GaayzxaaGaey4kaSIaeuONdG1aaSbaaSqaaiaaikdaaeqaaOWaaeWa aeaacaWGZbaacaGLOaGaayzkaaGaam4CaiaadIgadaqadaqaaiaadI hacqaHZoWzaiaawIcacaGLPaaaaiaawUhacaGL9baaaeaacaWGZbGa amiAamaabmaabaGaamiAaiabeo7aNbGaayjkaiaawMcaaaaaaaa@601D@

here Ξ 1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaaBa aaleaacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaaa @3B53@ , Ξ 2 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65ayTWaaS baaeaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaaa @3B54@ ;are the transforms its end displacements.

The system equations of the boundary conditions for the transverse piezoengine is determined

T 1 ( 0,s )= 1 s 11 E dΞ( x,s ) dx | x=0 d 31 s 11 E E 3 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaaicdacaGGSaGaam4CaaGaayjk aiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaadohadaqhaaWcba GaaGymaiaaigdaaeaacaWGfbaaaaaakmaaeiaabaWaaSaaaeaacaWG KbGaeuONdG1aaeWaaeaacaWG4bGaaiilaiaadohaaiaawIcacaGLPa aaaeaacaWGKbGaamiEaaaaaiaawIa7amaaBaaaleaacaWG4bGaeyyp a0JaaGimaaqabaGccqGHsisldaWcaaqaaiaadsgadaWgaaWcbaGaaG 4maiaaigdaaeqaaaGcbaGaam4CamaaDaaaleaacaaIXaGaaGymaaqa aiaadweaaaaaaOGaamyramaaBaaaleaacaaIZaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@59AD@

T 1 ( h,s )= 1 s 11 E dΞ( x,s ) dx | x=h d 31 s 11 E E 3 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadIgacaGGSaGaam4CaaGaayjk aiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaadohadaqhaaWcba GaaGymaiaaigdaaeaacaWGfbaaaaaakmaaeiaabaWaaSaaaeaacaqG KbGaeuONdG1aaeWaaeaacaWG4bGaaiilaiaadohaaiaawIcacaGLPa aaaeaacaqGKbGaamiEaaaaaiaawIa7amaaBaaaleaacaWG4bGaeyyp a0JaamiAaaqabaGccqGHsisldaWcaaqaaiaadsgadaWgaaWcbaGaaG 4maiaaigdaaeqaaaGcbaGaam4CamaaDaaaleaacaaIXaGaaGymaaqa aiaadweaaaaaaOGaamyramaaBaaaleaacaaIZaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@5A0F@

From the reverse piezoeffect of a piezoengine at the voltage control the Laplace transform of the force causes displacement is determined

F( s )= d mi S 0 E m ( s ) s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadsgadaWg aaWcbaGaamyBaiaadMgaaOqabaGaam4uamaaBaaaleaacaaIWaaabe aakiaadwealmaaBaaabaGaamyBaaqabaGcdaqadaqaaiaadohaaiaa wIcacaGLPaaaaeaacaWGZbWcdaqhaaqaaiaadMgacaWGQbaabaGaam yraaaaaaaaaa@47C5@

here S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofalmaaBa aabaGaaGimaaqabaaaaa@381B@ is cross sectional area.

The transform of the force causes displacement for the transverse piezoengine at the voltage control is written

F( s )= d 31 S 0 E 3 ( s ) s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadsgadaWg aaWcbaGaaG4maiaaigdaaOqabaGaam4uamaaBaaaleaacaaIWaaabe aakiaadwealmaaBaaabaGaaG4maaqabaGcdaqadaqaaiaadohaaiaa wIcacaGLPaaaaeaacaWGZbWcdaqhaaqaaiaaigdacaaIXaaabaGaam yraaaaaaaaaa@46C1@

Then the reverse coefficient at the voltage control with U( s )= E m ( s )δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfadaqada qaaiaadohaaiaawIcacaGLPaaacqGH9aqpcaWGfbWaaSbaaSqaaiaa d2gaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeqiTdqgaaa@40D6@ is determined in the form

k r = F( s ) U( s ) = d mi S 0 δ s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamOCaaqabaGccqGH9aqpdaWcaaqaaiaadAeadaqadaqaaiaa dohaaiaawIcacaGLPaaaaeaacaWGvbWaaeWaaeaacaWGZbaacaGLOa Gaayzkaaaaaiabg2da9maalaaabaGaamizaSWaaSbaaeaacaWGTbGa amyAaaqabaGccaWGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaeqiTdq Maam4CamaaDaaaleaacaWGPbGaamOAaaqaaiaadweaaaaaaaaa@4B85@

The transverse reverse coefficient at the voltage control is obtained

k r = F( s ) U( s ) = d 31 S 0 δ s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamOCaaqabaGccqGH9aqpdaWcaaqaaiaadAeadaqadaqaaiaa dohaaiaawIcacaGLPaaaaeaacaWGvbWaaeWaaeaacaWGZbaacaGLOa Gaayzkaaaaaiabg2da9maalaaabaGaamizaSWaaSbaaeaacaaIZaGa aGymaaqabaGccaWGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaeqiTdq Maam4CamaaDaaaleaacaaIXaGaaGymaaqaaiaadweaaaaaaaaa@4AB6@

Its transverse model is determined

Ξ 1 ( s )= ( M 1 s 2 ) 1 { F 1 ( s )+ ( χ 11 E ) 1 ×[ d 31 E 3 ( s )[ γ/ sh( hγ ) ] ×[ ch( hγ ) Ξ 1 ( s ) Ξ 2 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaaBa aaleaacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiab g2da9maabmaabaGaamytamaaBaaaleaacaaIXaaabeaakiaadohada ahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiab gkHiTiaaigdaaaGcdaGadaabaeqabaGaeyOeI0IaamOramaaBaaale aacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUca RmaabmaabaGaeq4Xdm2aa0baaSqaaiaaigdacaaIXaaabaGaamyraa aaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqa aiabgEna0oaadmaaeaqabeaacaWGKbWaaSbaaSqaaiaaiodacaaIXa aabeaakiaadweadaWgaaWcbaGaaG4maaqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaacqGHsisldaWadaqaamaalyaabaGaeq4SdCgaba Gaam4CaiaadIgadaqadaqaaiaadIgacqaHZoWzaiaawIcacaGLPaaa aaaacaGLBbGaayzxaaGaaGjbVdqaaiabgEna0oaadmaabaGaam4yai aadIgadaqadaqaaiaadIgacqaHZoWzaiaawIcacaGLPaaacqqHEoaw daWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPa aacqGHsislcqqHEoawdaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaa dohaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaGaay5waiaaw2faaa aacaGL7bGaayzFaaaaaa@7F2E@

Ξ 2 ( s )= ( M 2 s 2 ) 1 { F 2 ( s )+ ( χ 11 E ) 1 ×[ d 31 E 3 ( s )[ γ/ sh( hγ ) ] ×[ ch( hγ ) Ξ 2 ( s ) Ξ 1 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65ayTWaaS baaeaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiab g2da9maabmaabaGaamytamaaBaaaleaacaaIYaaabeaakiaadohada ahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiab gkHiTiaaigdaaaGcdaGadaabaeqabaGaeyOeI0IaamOraSWaaSbaae aacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUca RmaabmaabaGaeq4Xdm2aa0baaSqaaiaaigdacaaIXaaabaGaamyraa aaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqa aiabgEna0oaadmaaeaqabeaacaWGKbWaaSbaaSqaaiaaiodacaaIXa aabeaakiaadweadaWgaaWcbaGaaG4maaqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaacqGHsisldaWadaqaamaalyaabaGaeq4SdCgaba Gaae4CaiaabIgadaqadaqaaiaadIgacqaHZoWzaiaawIcacaGLPaaa aaaacaGLBbGaayzxaaaabaGaey41aq7aamWaaeaacaqGJbGaaeiAam aabmaabaGaamiAaiabeo7aNbGaayjkaiaawMcaaiabf65aynaaBaaa leaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgk HiTiabf65aynaaBaaaleaacaaIXaaabeaakmaabmaabaGaam4CaaGa ayjkaiaawMcaaaGaay5waiaaw2faaaaacaGLBbGaayzxaaaaaiaawU hacaGL9baaaaa@7D9C@

χ 11 E = s 11 E / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaDa aaleaacaaIXaGaaGymaaqaaiaadweaaaGccqGH9aqpdaWcgaqaaiaa dohadaqhaaWcbaGaaGymaiaaigdaaeaacaWGfbaaaaGcbaGaam4uam aaBaaaleaacaaIWaaabeaaaaaaaa@40D4@

For the longitudinal piezoengine its longitudinal solution of the differential equation is written

Ξ( x,s )= { Ξ 1 ( s )sh[ ( δx )γ ]+ Ξ 2 ( s )sh( xγ ) }/ sh( δγ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaabm aabaGaamiEaiaacYcacaWGZbaacaGLOaGaayzkaaGaeyypa0ZaaSGb aeaadaGadaqaaiabf65aynaaBaaaleaacaaIXaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaiaadohacaWGObWaamWaaeaadaqadaqa aiabes7aKjabgkHiTiaadIhaaiaawIcacaGLPaaacqaHZoWzaiaawU facaGLDbaacqGHRaWkcqqHEoawdaWgaaWcbaGaaGOmaaqabaGcdaqa daqaaiaadohaaiaawIcacaGLPaaacaWGZbGaamiAamaabmaabaGaam iEaiabeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiaadoha caWGObWaaeWaaeaacqaH0oazcqaHZoWzaiaawIcacaGLPaaaaaaaaa@618D@

The system of the boundary conditions for the longitudinal piezoengine is obtained

T 3 ( 0,s )= 1 s 33 E dΞ( x,s ) dx | x=0 d 33 s 33 E E 3 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaaG4maaqabaGcdaqadaqaaiaaicdacaGGSaGaam4CaaGaayjk aiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaadohadaqhaaWcba GaaG4maiaaiodaaeaacaWGfbaaaaaakmaaeiaabaWaaSaaaeaacaWG KbGaeuONdG1aaeWaaeaacaWG4bGaaiilaiaadohaaiaawIcacaGLPa aaaeaacaWGKbGaamiEaaaaaiaawIa7amaaBaaaleaacaWG4bGaeyyp a0JaaGimaaqabaGccqGHsisldaWcaaqaaiaadsgadaWgaaWcbaGaaG 4maiaaiodaaeqaaaGcbaGaam4CamaaDaaaleaacaaIZaGaaG4maaqa aiaadweaaaaaaOGaamyramaaBaaaleaacaaIZaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@59B9@

T 3 ( δ,s )= 1 s 33 E dΞ( x,s ) dx | x=δ d 33 s 33 E E 3 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaaG4maaqabaGcdaqadaqaaiabes7aKjaacYcacaWGZbaacaGL OaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaam4CamaaDaaale aacaaIZaGaaG4maaqaaiaadweaaaaaaOWaaqGaaeaadaWcaaqaaiaa dsgacqqHEoawdaqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaawM caaaqaaiaadsgacaWG4baaaaGaayjcSdWaaSbaaSqaaiaadIhacqGH 9aqpcqaH0oazaeqaaOGaeyOeI0YaaSaaaeaacaWGKbWaaSbaaSqaai aaiodacaaIZaaabeaaaOqaaiaadohadaqhaaWcbaGaaG4maiaaioda aeaacaWGfbaaaaaakiaadweadaWgaaWcbaGaaG4maaqabaGcdaqada qaaiaadohaaiaawIcacaGLPaaaaaa@5B8F@

The transform of the force causes displacement for the longitudinal piezo engine at the voltage control is written

F( s )= d 33 S 0 E 3 ( s ) s 33 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadsgadaWg aaWcbaGaaG4maiaaiodaaOqabaGaam4uamaaBaaaleaacaaIWaaabe aakiaadwealmaaBaaabaGaaG4maaqabaGcdaqadaqaaiaadohaaiaa wIcacaGLPaaaaeaacaWGZbWcdaqhaaqaaiaaiodacaaIZaaabaGaam yraaaaaaaaaa@46C7@

The longitudinal reverse coefficient at the voltage control is obtained

k r = F( s ) U( s ) = d 33 S 0 δ s 33 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamOCaaqabaGccqGH9aqpdaWcaaqaaiaadAeadaqadaqaaiaa dohaaiaawIcacaGLPaaaaeaacaWGvbWaaeWaaeaacaWGZbaacaGLOa Gaayzkaaaaaiabg2da9maalaaabaGaamizaSWaaSbaaeaacaaIZaGa aG4maaqabaGccaWGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaeqiTdq Maam4CamaaDaaaleaacaaIZaGaaG4maaqaaiaadweaaaaaaaaa@4ABC@

Its longitudinal structural model is determined

Ξ 1 ( s )= ( M 1 s 2 ) 1 { F 1 ( s )+ ( χ 33 E ) 1 ×[ d 33 E 3 ( s )[ γ/ sh( δγ ) ] ×[ ch( δγ ) Ξ 1 ( s ) Ξ 2 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaaBa aaleaacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiab g2da9maabmaabaGaamytamaaBaaaleaacaaIXaaabeaakiaadohada ahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiab gkHiTiaaigdaaaGcdaGadaabaeqabaGaeyOeI0IaamOramaaBaaale aacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUca RmaabmaabaGaeq4Xdm2aa0baaSqaaiaaiodacaaIZaaabaGaamyraa aaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqa aiabgEna0oaadmaaeaqabeaacaWGKbWaaSbaaSqaaiaaiodacaaIZa aabeaakiaadweadaWgaaWcbaGaaG4maaqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaacqGHsisldaWadaqaamaalyaabaGaeq4SdCgaba Gaae4CaiaabIgadaqadaqaaiabes7aKjabeo7aNbGaayjkaiaawMca aaaaaiaawUfacaGLDbaacaaMe8oabaGaey41aq7aamWaaeaacaqGJb GaaeiAamaabmaabaGaeqiTdqMaeq4SdCgacaGLOaGaayzkaaGaeuON dG1aaSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaay zkaaGaeyOeI0IaeuONdG1aaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaa caWGZbaacaGLOaGaayzkaaaacaGLBbGaayzxaaaaaiaawUfacaGLDb aaaaGaay5Eaiaaw2haaaaa@809C@

Ξ 2 ( s )= ( M 2 s 2 ) 1 { F 2 ( s )+ ( χ 33 E ) 1 ×[ d 33 E 3 ( s )[ γ/ sh( δγ ) ] ×[ ch( δγ ) Ξ 2 ( s ) Ξ 1 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65ayTWaaS baaeaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiab g2da9maabmaabaGaamytamaaBaaaleaacaaIYaaabeaakiaadohada ahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiab gkHiTiaaigdaaaGcdaGadaabaeqabaGaeyOeI0IaamOraSWaaSbaae aacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUca RmaabmaabaGaeq4Xdm2aa0baaSqaaiaaiodacaaIZaaabaGaamyraa aaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqa aiabgEna0oaadmaaeaqabeaacaWGKbWaaSbaaSqaaiaaiodacaaIZa aabeaakiaadweadaWgaaWcbaGaaG4maaqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaacqGHsisldaWadaqaamaalyaabaGaeq4SdCgaba Gaae4CaiaabIgadaqadaqaaiabes7aKjabeo7aNbGaayjkaiaawMca aaaaaiaawUfacaGLDbaaaeaacqGHxdaTdaWadaqaaiaabogacaqGOb WaaeWaaeaacqaH0oazcqaHZoWzaiaawIcacaGLPaaacqqHEoawdaWg aaWcbaGaaGOmaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaacq GHsislcqqHEoawdaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaaaiaawUfacaGLDbaaaaGaay5waiaaw2faaaaaca GL7bGaayzFaaaaaa@7F12@

χ 33 E = s 33 E / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaDa aaleaacaaIZaGaaG4maaqaaiaadweaaaGccqGH9aqpdaWcgaqaaiaa dohadaqhaaWcbaGaaG4maiaaiodaaeaacaWGfbaaaaGcbaGaam4uam aaBaaaleaacaaIWaaabeaaaaaaaa@40DC@

From the differential equation of for the shift piezoengine its shift solution is written

Ξ( x,s )= { Ξ 1 ( s )sh[ ( bx )γ ]+ Ξ 2 ( s )sh( xγ ) }/ sh( bγ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaabm aabaGaamiEaiaacYcacaWGZbaacaGLOaGaayzkaaGaeyypa0ZaaSGb aeaadaGadaqaaiabf65aynaaBaaaleaacaaIXaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaiaadohacaWGObWaamWaaeaadaqadaqa aiaadkgacqGHsislcaWG4baacaGLOaGaayzkaaGaeq4SdCgacaGLBb GaayzxaaGaey4kaSIaeuONdG1aaSbaaSqaaiaaikdaaeqaaOWaaeWa aeaacaWGZbaacaGLOaGaayzkaaGaam4CaiaadIgadaqadaqaaiaadI hacqaHZoWzaiaawIcacaGLPaaaaiaawUhacaGL9baaaeaacaWGZbGa amiAamaabmaabaGaamOyaiabeo7aNbGaayjkaiaawMcaaaaaaaa@6011@

The system of the boundary conditions for the shift piezoengine is obtained

T 5 ( 0,s )= 1 s 55 E dΞ( x,s ) dx | x=0 d 15 s 55 E E 1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaaGynaaqabaGcdaqadaqaaiaaicdacaGGSaGaam4CaaGaayjk aiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaadohadaqhaaWcba GaaGynaiaaiwdaaeaacaWGfbaaaaaakmaaeiaabaWaaSaaaeaacaWG KbGaeuONdG1aaeWaaeaacaWG4bGaaiilaiaadohaaiaawIcacaGLPa aaaeaacaWGKbGaamiEaaaaaiaawIa7amaaBaaaleaacaWG4bGaeyyp a0JaaGimaaqabaGccqGHsisldaWcaaqaaiaadsgadaWgaaWcbaGaaG ymaiaaiwdaaeqaaaGcbaGaam4CamaaDaaaleaacaaI1aGaaGynaaqa aiaadweaaaaaaOGaamyramaaBaaaleaacaaIXaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@59C1@

T 5 ( b,s )= 1 s 55 E dΞ( x,s ) dx | x=b d 15 s 55 E E 1 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaaGynaaqabaGcdaqadaqaaiaadkgacaGGSaGaam4CaaGaayjk aiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaadohadaqhaaWcba GaaGynaiaaiwdaaeaacaWGfbaaaaaakmaaeiaabaWaaSaaaeaacaqG KbGaeuONdG1aaeWaaeaacaWG4bGaaiilaiaadohaaiaawIcacaGLPa aaaeaacaqGKbGaamiEaaaaaiaawIa7amaaBaaaleaacaWG4bGaeyyp a0JaamOyaaqabaGccqGHsisldaWcaaqaaiaadsgadaWgaaWcbaGaaG ymaiaaiwdaaeqaaaGcbaGaam4CamaaDaaaleaacaaI1aGaaGynaaqa aiaadweaaaaaaOGaamyramaaBaaaleaacaaIXaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@5A17@

The transform of the force causes displacement for the shift piezo engine at the voltage control is written

F( s )= d 15 S 0 E 3 ( s ) s 55 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadsgadaWg aaWcbaGaaGymaiaaiwdaaOqabaGaam4uamaaBaaaleaacaaIWaaabe aakiaadwealmaaBaaabaGaaG4maaqabaGcdaqadaqaaiaadohaaiaa wIcacaGLPaaaaeaacaWGZbWcdaqhaaqaaiaaiwdacaaI1aaabaGaam yraaaaaaaaaa@46CB@

The shif reverse coefficient at the voltage control is obtained

k r = F( s ) U( s ) = d 15 S 0 δ s 55 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamOCaaqabaGccqGH9aqpdaWcaaqaaiaadAeadaqadaqaaiaa dohaaiaawIcacaGLPaaaaeaacaWGvbWaaeWaaeaacaWGZbaacaGLOa Gaayzkaaaaaiabg2da9maalaaabaGaamizaSWaaSbaaeaacaaIXaGa aGynaaqabaGccaWGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaeqiTdq Maam4CamaaDaaaleaacaaI1aGaaGynaaqaaiaadweaaaaaaaaa@4AC0@

Its structural shift model is determined

Ξ 1 ( s )= ( M 1 s 2 ) 1 { F 1 ( s )+ ( χ 55 E ) 1 ×[ d 15 E 1 ( s )[ γ/ sh( bγ ) ] ×[ ch( bγ ) Ξ 1 ( s ) Ξ 2 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaaBa aaleaacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiab g2da9maabmaabaGaamytamaaBaaaleaacaaIXaaabeaakiaadohada ahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiab gkHiTiaaigdaaaGcdaGadaabaeqabaGaeyOeI0IaamOramaaBaaale aacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUca RmaabmaabaGaeq4Xdm2aa0baaSqaaiaaiwdacaaI1aaabaGaamyraa aaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqa aiabgEna0oaadmaaeaqabeaacaWGKbWaaSbaaSqaaiaaigdacaaI1a aabeaakiaadweadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaacqGHsisldaWadaqaamaalyaabaGaeq4SdCgaba Gaam4CaiaadIgadaqadaqaaiaadkgacqaHZoWzaiaawIcacaGLPaaa aaaacaGLBbGaayzxaaGaaGjbVdqaaiabgEna0oaadmaabaGaam4yai aadIgadaqadaqaaiaadkgacqaHZoWzaiaawIcacaGLPaaacqqHEoaw daWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPa aacqGHsislcqqHEoawdaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaa dohaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaGaay5waiaaw2faaa aacaGL7bGaayzFaaaaaa@7F2A@

Ξ 2 ( s )= ( M 2 s 2 ) 1 { F 2 ( s )+ ( χ 55 E ) 1 ×[ d 15 E 1 ( s )[ γ/ sh( bγ ) ] ×[ ch( bγ ) Ξ 2 ( s ) Ξ 1 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65ayTWaaS baaeaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiab g2da9maabmaabaGaamytamaaBaaaleaacaaIYaaabeaakiaadohada ahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiab gkHiTiaaigdaaaGcdaGadaabaeqabaGaeyOeI0IaamOraSWaaSbaae aacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUca RmaabmaabaGaeq4Xdm2aa0baaSqaaiaaiwdacaaI1aaabaGaamyraa aaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqa aiabgEna0oaadmaaeaqabeaacaWGKbWaaSbaaSqaaiaaigdacaaI1a aabeaakiaadweadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadoha aiaawIcacaGLPaaacqGHsisldaWadaqaamaalyaabaGaeq4SdCgaba Gaae4CaiaabIgadaqadaqaaiaadkgacqaHZoWzaiaawIcacaGLPaaa aaaacaGLBbGaayzxaaaabaGaey41aq7aamWaaeaacaqGJbGaaeiAam aabmaabaGaamOyaiabeo7aNbGaayjkaiaawMcaaiabf65aynaaBaaa leaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgk HiTiabf65aynaaBaaaleaacaaIXaaabeaakmaabmaabaGaam4CaaGa ayjkaiaawMcaaaGaay5waiaaw2faaaaacaGLBbGaayzxaaaaaiaawU hacaGL9baaaaa@7D98@

χ 55 E = s 55 E / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaDa aaleaacaaI1aGaaGynaaqaaiaadweaaaGccqGH9aqpdaWcgaqaaiaa dohadaqhaaWcbaGaaGynaiaaiwdaaeaacaWGfbaaaaGcbaGaam4uam aaBaaaleaacaaIWaaabeaaaaaaaa@40E4@

The equation of inverse piezo effect 3–41 is written in the general form

S i = ν mi Ψ m + s ij Ψ T j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofalmaaBa aabaGaamyAaaqabaGccqGH9aqpcqaH9oGBdaWgaaWcbaGaamyBaiaa dMgaaOqabaGaeuiQdK1cdaWgaaqaaiaad2gaaeqaaOGaey4kaSIaam 4CaSWaa0baaeaacaWGPbGaamOAaaqaaiabfI6azbaakiaadsfadaWg aaWcbaGaamOAaaGcbeaaaaa@475F@

here Ψ m = E m , D m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI6aznaaBa aaleaacaWGTbaabeaakiabg2da9iaadweadaWgaaWcbaGaamyBaaqa baGccaGGSaGaaGjbVlaadseadaWgaaWcbaGaamyBaaqabaaaaa@4030@ is control parameter at the voltage or current control.

At x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaaIWaaaaa@391A@ and x=l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaWGSbaaaa@3951@ for l={ δ, h,b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgacqGH9a qpdaGabaqaaiaaysW7cqaH0oazcaGGSaaacaGL7baacaaMe8UaamiA aiaacYcacaaMe8UaamOyaaaa@42EE@ the system of the boundary conditions for a piezoengine is obtained

T j ( 0,s )= 1 s ij Ψ dΞ( x,s ) dx | x=0 ν mi s ij Ψ Ψ m ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOAaaqabaGcdaqadaqaaiaaicdacaGGSaGaam4CaaGaayjk aiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaadohadaqhaaWcba GaamyAaiaadQgaaeaacqqHOoqwaaaaaOWaaqGaaeaadaWcaaqaaiaa dsgacqqHEoawdaqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaawM caaaqaaiaadsgacaWG4baaaaGaayjcSdWaaSbaaSqaaiaadIhacqGH 9aqpcaaIWaaabeaakiabgkHiTmaalaaabaGaeqyVd42aaSbaaSqaai aad2gacaWGPbaabeaaaOqaaiaadohadaqhaaWcbaGaamyAaiaadQga aeaacqqHOoqwaaaaaOGaeuiQdK1aaSbaaSqaaiaad2gaaeqaaOWaae WaaeaacaWGZbaacaGLOaGaayzkaaaaaa@5E6A@

T j ( l,s )= 1 s ij Ψ dΞ( x,s ) dx | x=l ν mi s ij Ψ Ψ m ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOAaaqabaGcdaqadaqaaiaadYgacaGGSaGaam4CaaGaayjk aiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaadohadaqhaaWcba GaamyAaiaadQgaaeaacqqHOoqwaaaaaOWaaqGaaeaadaWcaaqaaiaa dsgacqqHEoawdaqadaqaaiaadIhacaGGSaGaam4CaaGaayjkaiaawM caaaqaaiaadsgacaWG4baaaaGaayjcSdWaaSbaaSqaaiaadIhacqGH 9aqpcaWGSbaabeaakiabgkHiTmaalaaabaGaeqyVd42aaSbaaSqaai aad2gacaWGPbaabeaaaOqaaiaadohadaqhaaWcbaGaamyAaiaadQga aeaacqqHOoqwaaaaaOGaeuiQdK1aaSbaaSqaaiaad2gaaeqaaOWaae WaaeaacaWGZbaacaGLOaGaayzkaaaaaa@5ED8@

The transform of the force causes displacement has the general form

F( s )= ν mi S 0 Ψ m ( s ) s ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaqada qaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabe27aUnaa BaaaleaacaWGTbGaamyAaaGcbeaacaWGtbWaaSbaaSqaaiaaicdaae qaaOGaeuiQdK1cdaWgaaqaaiaad2gaaeqaaOWaaeWaaeaacaWGZbaa caGLOaGaayzkaaaabaGaam4CaSWaa0baaeaacaWGPbGaamOAaaqaai abfI6azbaaaaaaaa@4A1E@

The general structural model and scheme are obtained on Figure 1

Figure 1 General scheme engine.

Ξ 1 ( s )= ( M 1 s 2 ) 1 { F 1 ( s )+ ( χ ij Ψ ) 1 ×[ ν mi Ψ m ( s )[ γ/ sh( lγ ) ] ×[ ch( lγ ) Ξ 1 ( s ) Ξ 2 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaaBa aaleaacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiab g2da9maabmaabaGaamytamaaBaaaleaacaaIXaaabeaakiaadohada ahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiab gkHiTiaaigdaaaGcdaGadaabaeqabaGaeyOeI0IaamOramaaBaaale aacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUca RmaabmaabaGaeq4Xdm2aa0baaSqaaiaadMgacaWGQbaabaGaeuiQdK faaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGc baGaey41aq7aamWaaqaabeqaaiabe27aUnaaBaaaleaacaWGTbGaam yAaaqabaGccqqHOoqwdaWgaaWcbaGaamyBaaqabaGcdaqadaqaaiaa dohaaiaawIcacaGLPaaacqGHsisldaWadaqaamaalyaabaGaeq4SdC gabaGaae4CaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaawIcacaGL PaaaaaaacaGLBbGaayzxaaaabaGaey41aq7aamWaaeaacaqGJbGaae iAamaabmaabaGaamiBaiabeo7aNbGaayjkaiaawMcaaiabf65aynaa BaaaleaacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaai abgkHiTiabf65aynaaBaaaleaacaaIYaaabeaakmaabmaabaGaam4C aaGaayjkaiaawMcaaaGaay5waiaaw2faaaaacaGLBbGaayzxaaaaai aawUhacaGL9baaaaa@80FE@

Ξ 2 ( s )= ( M 2 s 2 ) 1 { F 2 ( s )+ ( χ ij Ψ ) 1 ×[ ν mi Ψ m ( s )[ γ/ sh( lγ ) ] ×[ ch( lγ ) Ξ 2 ( s ) Ξ 1 ( s ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65ayTWaaS baaeaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiab g2da9maabmaabaGaamytamaaBaaaleaacaaIYaaabeaakiaadohada ahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiab gkHiTiaaigdaaaGcdaGadaabaeqabaGaeyOeI0IaamOraSWaaSbaae aacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiabgUca RmaabmaabaGaeq4Xdm2aa0baaSqaaiaadMgacaWGQbaabaGaeuiQdK faaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaaGc baGaey41aq7aamWaaqaabeqaaiabe27aUnaaBaaaleaacaWGTbGaam yAaaqabaGccqqHOoqwdaWgaaWcbaGaamyBaaqabaGcdaqadaqaaiaa dohaaiaawIcacaGLPaaacqGHsisldaWadaqaamaalyaabaGaeq4SdC gabaGaae4CaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaawIcacaGL PaaaaaaacaGLBbGaayzxaaaabaGaey41aq7aamWaaeaacaqGJbGaae iAamaabmaabaGaamiBaiabeo7aNbGaayjkaiaawMcaaiabf65aynaa BaaaleaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaai abgkHiTiabf65aynaaBaaaleaacaaIXaaabeaakmaabmaabaGaam4C aaGaayjkaiaawMcaaaGaay5waiaaw2faaaaacaGLBbGaayzxaaaaai aawUhacaGL9baaaaa@8101@

χ ij Ψ = s ij Ψ / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaDa aaleaacaWGPbGaamOAaaqaaiabfI6azbaakiabg2da9maalyaabaGa am4CamaaDaaaleaacaWGPbGaamOAaaqaaiabfI6azbaaaOqaaiaado fadaWgaaWcbaGaaGimaaqabaaaaaaa@432C@

here

v mi ={ d 33 , d 31 , d 15 g 33 , g 31 , g 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAhadaWgaa WcbaGaamyBaiaadMgaaeqaaOGaeyypa0ZaaiqaaeaafaqabeGabaaa baGaamizamaaBaaaleaacaaIZaGaaG4maaqabaGccaGGSaGaamizam aaBaaaleaacaaIZaGaaGymaaqabaGccaGGSaGaamizamaaBaaaleaa caaIXaGaaGynaaqabaaakeaacaWGNbWaaSbaaSqaaiaaiodacaaIZa aabeaakiaacYcacaWGNbWaaSbaaSqaaiaaiodacaaIXaaabeaakiaa cYcacaWGNbWaaSbaaSqaaiaaigdacaaI1aaabeaaaaaakiaawUhaaa aa@4DF6@ ,

, Ψ m ={ E 3 , E 3 , E 1 D 3 , D 3 , D 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI6aznaaBa aaleaacaWGTbaabeaakiabg2da9maaceaabaqbaeqabiqaaaqaaiaa dweadaWgaaWcbaGaaG4maaqabaGccaGGSaGaamyramaaBaaaleaaca aIZaaabeaakiaacYcacaWGfbWaaSbaaSqaaiaaigdaaeqaaaGcbaGa amiramaaBaaaleaacaaIZaaabeaakiaacYcacaWGebWaaSbaaSqaai aaiodaaeqaaOGaaiilaiaadseadaWgaaWcbaGaaGymaaqabaaaaaGc caGL7baaaaa@4868@ , s ij Ψ ={ s 33 E , s 11 E , s 55 E s 33 D , s 11 D , s 55 D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohadaqhaa WcbaGaamyAaiaadQgaaeaacqqHOoqwaaGccqGH9aqpdaGabaqaauaa beqaceaaaeaacaWGZbWaa0baaSqaaiaaiodacaaIZaaabaGaamyraa aakiaacYcacaWGZbWaa0baaSqaaiaaigdacaaIXaaabaGaamyraaaa kiaacYcacaWGZbWaa0baaSqaaiaaiwdacaaI1aaabaGaamyraaaaaO qaaiaadohadaqhaaWcbaGaaG4maiaaiodaaeaacaWGebaaaOGaaiil aiaadohadaqhaaWcbaGaaGymaiaaigdaaeaacaWGebaaaOGaaiilai aadohadaqhaaWcbaGaaGynaiaaiwdaaeaacaWGebaaaaaaaOGaay5E aaaaaa@5494@ , γ={ γ E , γ D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maaceaabaGaeq4SdC2aaWbaaSqabeaacaWGfbaaaOGaaiilaiaa ysW7cqaHZoWzdaahaaWcbeqaaiaadseaaaaakiaawUhaaaaa@41B0@ ,

c Ψ ={ c E , c D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadogadaahaa WcbeqaaiabfI6azbaakiabg2da9maaceaabaGaaGjbVlaadogadaah aaWcbeqaaiaadweaaaGccaGGSaGaaGjbVlaadogadaahaaWcbeqaai aadseaaaaakiaawUhaaaaa@42C6@

The general structural model and scheme of a piezoengine on Figure 1 are used to calculate systems in aeronautics and aerospace. The displacement matrix is written

( Ξ 1 ( s ) Ξ 2 ( s ) )=( W( s ) )( Ψ m ( s ) F 1 ( s ) F 2 ( s ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiqaaaqaaiabf65aynaaBaaaleaacaaIXaaabeaakmaabmaabaGa am4CaaGaayjkaiaawMcaaaqaaiabf65aynaaBaaaleaacaaIYaaabe aakmaabmaabaGaam4CaaGaayjkaiaawMcaaaaaaiaawIcacaGLPaaa cqGH9aqpdaqadaqaaiaadEfadaqadaqaaiaadohaaiaawIcacaGLPa aaaiaawIcacaGLPaaacaaMe8+aaeWaaeaafaqabeWabaaabaGaeuiQ dK1aaSbaaSqaaiaad2gaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaay zkaaaabaGaamOramaaBaaaleaacaaIXaaabeaakmaabmaabaGaam4C aaGaayjkaiaawMcaaaqaaiaadAeadaWgaaWcbaGaaGOmaaqabaGcda qadaqaaiaadohaaiaawIcacaGLPaaaaaaacaGLOaGaayzkaaaaaa@58A4@

( W( s ) )=( W 11 ( s ) W 12 ( s ) W 13 ( s ) W 21 ( s ) W 22 ( s ) W 23 ( s ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam 4vamaabmaabaGaam4CaaGaayjkaiaawMcaaaGaayjkaiaawMcaaiab g2da9maabmaabaqbaeqabiqaaaqaauaabeqabmaaaeaacaWGxbWaaS baaSqaaiaaigdacaaIXaaabeaakmaabmaabaGaam4CaaGaayjkaiaa wMcaaaqaaiaadEfadaWgaaWcbaGaaGymaiaaikdaaeqaaOWaaeWaae aacaWGZbaacaGLOaGaayzkaaaabaGaam4vamaaBaaaleaacaaIXaGa aG4maaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaaaabaqbae qabeWaaaqaaiaadEfadaWgaaWcbaGaaGOmaiaaigdaaeqaaOWaaeWa aeaacaWGZbaacaGLOaGaayzkaaaabaGaam4vamaaBaaaleaacaaIYa GaaGOmaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaeaacaWG xbWaaSbaaSqaaiaaikdacaaIZaaabeaakmaabmaabaGaam4CaaGaay jkaiaawMcaaaaaaaaacaGLOaGaayzkaaaaaa@5C3C@

here its functions

W 11 ( s )= Ξ 1 ( s )/ Ψ m ( s ) = ν mi [ M 2 χ ij Ψ s 2 +γth( lγ/2 ) ]/A ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfalmaaBa aabaGaaGymaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzk aaGaeyypa0ZaaSGbaeaacqqHEoawlmaaBaaabaGaaGymaaqabaGcda qadaqaaiaadohaaiaawIcacaGLPaaaaeaacqqHOoqwdaWgaaWcbaGa amyBaaGcbeaadaqadaqaaiaadohaaiaawIcacaGLPaaaaaGaeyypa0 ZaaSGbaeaacqaH9oGBdaWgaaWcbaGaamyBaiaadMgaaeqaaOWaa0ba aSqaaaqaaaaakmaadmaabaGaamytaSWaaSbaaeaacaaIYaaabeaaki abeE8aJTWaa0baaeaacaWGPbGaamOAaaqaaiabfI6azbaakiaadoha lmaaCaaabeqaaiaaikdaaaGccqGHRaWkcqaHZoWzcaWG0bGaamiAam aabmaabaWaaSGbaeaacaWGSbGaeq4SdCgabaGaaGOmaaaaaiaawIca caGLPaaaaiaawUfacaGLDbaaaeaacaWGbbaaaSWaaSbaaeaacaWGPb GaamOAaaqabaaaaa@62FD@

A ij = M 1 M 2 ( χ ij Ψ ) 2 s 4 +{ ( M 1 + M 2 ) χ ij Ψ / [ c Ψ th( lγ ) ] } s 3 + +[ ( M 1 + M 2 ) χ ij Ψ α/ th( lγ ) +1/ ( c Ψ ) 2 ] s 2 + 2αs/ c Ψ + α 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyqaS WaaSbaaeaacaWGPbGaamOAaaqabaGccqGH9aqpcaWGnbWcdaWgaaqa aiaaigdaaeqaaOGaamytaSWaaSbaaeaacaaIYaaabeaakmaabmaaba Gaeq4Xdm2cdaqhaaqaaiaadMgacaWGQbaabaGaeuiQdKfaaaGccaGL OaGaayzkaaWcdaahaaqabeaacaaIYaaaaOGaam4CaSWaaWbaaeqaba GaaGinaaaakiabgUcaRmaacmaabaWaaSGbaeaadaqadaqaaiaad2ea lmaaBaaabaGaaGymaaqabaGccqGHRaWkcaWGnbWcdaWgaaqaaiaaik daaeqaaaGccaGLOaGaayzkaaGaeq4Xdm2cdaqhaaqaaiaadMgacaWG QbaabaGaeuiQdKfaaaGcbaWaamWaaeaacaWGJbWaaWbaaeqaleaacq qHOoqwaaGccaqG0bGaaeiAamaabmaabaGaamiBaiabeo7aNbGaayjk aiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaaaaaaaaOGaay5Eai aaw2haaiaadohalmaaCaaabeqaaiaaiodaaaGccqGHRaWkaeaacqGH RaWkdaWadaqaamaalyaabaWaaeWaaeaacaWGnbWcdaWgaaqaaiaaig daaeqaaOGaey4kaSIaamytaSWaaSbaaeaacaaIYaaabeaaaOGaayjk aiaawMcaaiabeE8aJTWaa0baaeaacaWGPbGaamOAaaqaaiabfI6azb aakiabeg7aHbqaaiaadshacaWGObWaaeWaaeaacaWGSbGaeq4SdCga caGLOaGaayzkaaaaaiabgUcaRmaalyaabaGaaGymaaqaamaabmaaba Gaam4yamaaCaaabeWcbaGaeuiQdKfaaaGccaGLOaGaayzkaaWcdaah aaqabeaacaaIYaaaaaaaaOGaay5waiaaw2faaiaadohalmaaCaaabe qaaiaaikdaaaGccqGHRaWkdaWcgaqaaiaaikdacqaHXoqycaWGZbaa baGaam4yaSWaaWbaaeqabaGaeuiQdKfaaaaakiabgUcaRiabeg7aHT WaaWbaaeqabaGaaGOmaaaaaaaa@8CB1@

W 21 ( s )= Ξ 2 ( s )/ Ψ m ( s ) = ν mi [ M 1 χ ij Ψ s 2 +γth( lγ/2 ) ] /A ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaGOmaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzk aaGaeyypa0ZaaSGbaeaacqqHEoawdaWgaaWcbaGaaGOmaaqabaGcda qadaqaaiaadohaaiaawIcacaGLPaaaaeaacqqHOoqwdaWgaaWcbaGa amyBaaGcbeaadaqadaqaaiaadohaaiaawIcacaGLPaaaaaGaeyypa0 ZaaSGbaeaacqaH9oGBdaWgaaWcbaGaamyBaiaadMgaaeqaaOWaa0ba aSqaaaqaaaaakmaadmaabaGaamytamaaBaaaleaacaaIXaaabeaaki abeE8aJTWaa0baaeaacaWGPbGaamOAaaqaaiabfI6azbaakiaadoha daahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHZoWzcaqG0bGaaeiAam aabmaabaWaaSGbaeaacaWGSbGaeq4SdCgabaGaaGOmaaaaaiaawIca caGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaaaaaOqaaiaadgeaaa WaaSbaaSqaaiaadMgacaWGQbaabeaaaaa@6331@

W 12 ( s )= Ξ 1 ( s )/ F 1 ( s ) = χ ij Ψ [ M 2 χ ij Ψ s 2 +γ/ th( lγ ) ]/A ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaGymaiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzk aaGaeyypa0ZaaSGbaeaacqqHEoawdaWgaaWcbaGaaGymaaqabaGcda qadaqaaiaadohaaiaawIcacaGLPaaaaeaacaWGgbWaaSbaaSqaaiaa igdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaiabg2da9i abgkHiTmaalyaabaGaeq4Xdm2cdaqhaaqaaiaadMgacaWGQbaabaGa euiQdKfaaOWaa0baaSqaaaqaaaaakmaadmaabaGaamytamaaBaaale aacaaIYaaabeaakiabeE8aJTWaa0baaeaacaWGPbGaamOAaaqaaiab fI6azbaakiaadohalmaaCaaabeqaaiaaikdaaaGccqGHRaWkdaWcga qaaiabeo7aNbqaaiaabshacaqGObWaaeWaaeaacaWGSbGaeq4SdCga caGLOaGaayzkaaaaaaGaay5waiaaw2faaaqaaiaadgeaaaWaaSbaaS qaaiaadMgacaWGQbaabeaaaaa@63BC@

W 13 ( s )= Ξ 1 ( s )/ F 2 ( s ) = = W 22 ( s )= Ξ 2 ( s )/ F 1 ( s ) = [ χ ij Ψ γ/ sh( lγ ) ]/A ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4vam aaBaaaleaacaaIXaGaaG4maaqabaGcdaqadaqaaiaadohaaiaawIca caGLPaaacqGH9aqpdaWcgaqaaiabf65aynaaBaaaleaacaaIXaaabe aakmaabmaabaGaam4CaaGaayjkaiaawMcaaaqaaiaadAeadaWgaaWc baGaaGOmaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaaGaey ypa0dabaGaeyypa0Jaam4vamaaBaaaleaacaaIYaGaaGOmaaqabaGc daqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcgaqaaiabf6 5aynaaBaaaleaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaa wMcaaaqaaiaadAeadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaado haaiaawIcacaGLPaaaaaGaeyypa0ZaaSGbaeaadaWadaqaamaalyaa baGaeq4Xdm2cdaqhaaqaaiaadMgacaWGQbaabaGaeuiQdKfaaOGaeq 4SdCgabaGaam4CaiaadIgadaqadaqaaiaadYgacqaHZoWzaiaawIca caGLPaaaaaaacaGLBbGaayzxaaaabaGaamyqaaaadaWgaaWcbaGaam yAaiaadQgaaeqaaaaaaa@6A20@

W 23 ( s )= Ξ 2 ( s )/ F 2 ( s ) = χ ij Ψ [ M 1 χ ij Ψ s 2 +γ/ th( lγ ) ]/A ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaWgaa WcbaGaaGOmaiaaiodaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzk aaGaeyypa0ZaaSGbaeaacqqHEoawdaWgaaWcbaGaaGOmaaqabaGcda qadaqaaiaadohaaiaawIcacaGLPaaaaeaacaWGgbWaaSbaaSqaaiaa ikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaiabg2da9i abgkHiTmaalyaabaGaeq4Xdm2cdaqhaaqaaiaadMgacaWGQbaabaGa euiQdKfaamaaDaaameaaaeaaaaGcdaWadaqaaiaad2eadaWgaaWcba GaaGymaaqabaGccqaHhpWylmaaDaaabaGaamyAaiaadQgaaeaacqqH OoqwaaGccaWGZbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSYaaSGbae aacqaHZoWzaeaacaWG0bGaamiAamaabmaabaGaamiBaiabeo7aNbGa ayjkaiaawMcaaaaaaiaawUfacaGLDbaaaeaacaWGbbaaamaaBaaale aacaWGPbGaamOAaaqabaaaaa@63BA@

The settled longitudinal displacements at the voltage control are used

ξ 1 = d 33 U M 2 / ( M 1 + M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4TWaaS baaeaacaaIXaaabeaakiabg2da9maalyaabaGaamizamaaBaaaleaa caaIZaGaaG4maaqabaGccaWGvbGaamytamaaBaaaleaacaaIYaaabe aaaOqaamaabmaabaGaamytamaaBaaaleaacaaIXaaabeaakiabgUca Riaad2eadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaaaaa@4556@

ξ 2 = d 33 U M 1 /( M 1 + M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaaIYaaabeaakiabg2da9iaadsgadaWgaaWcbaGaaG4maiaa iodaaeqaaOGaamyvaiaad2eadaWgaaWcbaGaaGymaaqabaGccaGGVa Gaaiikaiaad2eadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaWGnbWa aSbaaSqaaiaaikdaaeqaaOGaaiykaaaa@45C3@

To the PZT piezoengine d 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaaG4maiaaiodaaeqaaaaa@38EC@ = 4×10-10 m/V, U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D1@ = 50 V, M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaaGymaaqabaaaaa@3816@ = 0.5 kg, M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIYaaabeaaaaa@37B1@ = 2 kg we have displacements ξ 1 + ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4TWaaS baaeaacaaIXaaabeaakiabgUcaRiabe67a4TWaaSbaaeaacaaIYaaa beaaaaa@3C9E@ = 20 nm, ξ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4TWaaS baaeaacaaIXaaabeaaaaa@3907@ = 16 nm, ξ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4TWaaS baaeaacaaIYaaabeaaaaa@3908@ = 4 nm with 10% error.

For the voltage control the equation of the direct piezo effect is written8–41

D m = d mi T i + ε mk E E k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadseadaWgaa WcbaGaamyBaaqabaGccqGH9aqpcaWGKbWaaSbaaSqaaiaad2gacaWG PbaabeaakiaadsfadaWgaaWcbaGaamyAaaqabaGccqGHRaWkcqaH1o qzlmaaDaaabaGaamyBaiaadUgaaeaacaWGfbaaaOGaamyramaaBaaa leaacaWGRbaabeaaaaa@45A2@

here i, m, k are the indexes, ε mk E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaDa aaleaacaWGTbGaam4Aaaqaaiaadweaaaaaaa@3ADD@ is the permittivity. The direct coefficient k d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamizaaqabaaaaa@3862@ ;for the engine at the voltage control is founded

k d = d mi S 0 δ s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamizaaqabaGccqGH9aqpdaWcaaqaaiaadsgalmaaBaaabaGa amyBaiaadMgaaeqaaOGaam4uaSWaaSbaaeaacaaIWaaabeaaaOqaai abes7aKjaadohadaqhaaWcbaGaamyAaiaadQgaaeaacaWGfbaaaaaa aaa@43BA@

At the voltage control the transform of the voltage for the feedback on Figure 2 is obtained

Figure 2 Scheme engine with two feedbacks.

U d ( s )= d mi S 0 R δ s ij E Ξ n ( s )= k d R Ξ n ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfadaWgaa WcbaGaamizaaqabaGcdaqadaqaaiaadohaaiaawIcacaGLPaaacqGH 9aqpdaWcaaqaaiaadsgalmaaBaaabaGaamyBaiaadMgaaeqaaOGaam 4uaSWaaSbaaeaacaaIWaaabeaakiaadkfaaeaacqaH0oazcaWGZbWa a0baaSqaaiaadMgacaWGQbaabaGaamyraaaaaaGcdaWfGaqaaiabf6 5aybWcbeqaaiaackciaaWaaSbaaeaadaWgaaqaaiaad6gaaeqaaaqa baGcdaqadaqaaiaadohaaiaawIcacaGLPaaacqGH9aqpcaWGRbWaaS baaSqaaiaadsgaaeqaaOGaamOuamaaxacabaGaeuONdGfaleqabaGa aiOiGaaadaWgaaqaamaaBaaabaGaamOBaaqabaaabeaakmaabmaaba Gaam4CaaGaayjkaiaawMcaaaaa@5798@ , n=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabg2 da9iaaigdacaGGSaGaaGjbVlaaikdaaaa@3BA4@

here the number n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaaaa@36EA@ of the ends engine.

Let us consider the elastic compliance of a piezoengine. At voltage control its maximum parameters are written

T jmax = E m d mi / s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOAaiGac2gacaGGHbGaaiiEaaGcbeaacqGH9aqpdaWcgaqa aiaadweadaWgaaWcbaGaamyBaaGcbeaacaWGKbWcdaWgaaqaaiaad2 gacaWGPbaabeaaaOqaaiaadohalmaaDaaabaGaamyAaiaadQgaaeaa caWGfbaaaaaaaaa@4508@

F max = E m d mi S 0 / s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAealmaaBa aabaGaaeyBaiaabggacaqG4baabeaakiabg2da9maalyaabaGaamyr aSWaaSbaaeaacaWGTbaabeaakiaadsgalmaaBaaabaGaamyBaiaadM gaaeqaaOGaam4uaSWaaSbaaeaacaaIWaaabeaaaOqaaiaadohalmaa DaaabaGaamyAaiaadQgaaeaacaWGfbaaaaaaaaa@45CE@

At current control the maximum force is founded

F max = U δ d mi S 0 s ij E + F max S 0 d mi S c 1 ε mk T S c /δ 1 δ d mi S 0 s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAealmaaBa aabaGaciyBaiaacggacaGG4baabeaakiabg2da9maalaaabaGaamyv aaqaaiabes7aKbaacaWGKbWcdaWgaaqaaiaad2gacaWGPbaabeaakm aalaaabaGaam4uaSWaaSbaaeaacaaIWaaabeaaaOqaaiaadohalmaa DaaabaGaamyAaiaadQgaaeaacaWGfbaaaaaakiabgUcaRmaalaaaba GaamOraSWaaSbaaeaaciGGTbGaaiyyaiaacIhaaeqaaaGcbaGaam4u aSWaaSbaaeaacaaIWaaabeaaaaGccaWGKbWcdaWgaaqaaiaad2gaca WGPbaabeaakiaadofalmaaBaaabaGaam4yaaqabaGcdaWcaaqaaiaa igdaaeaadaWcgaqaaiabew7aLTWaa0baaeaacaWGTbGaam4Aaaqaai aadsfaaaGccaWGtbWcdaWgaaqaaiaadogaaeqaaaGcbaGaeqiTdqga aaaadaWcaaqaaiaaigdaaeaacqaH0oazaaGaamizaSWaaSbaaeaaca WGTbGaamyAaaqabaGcdaWcaaqaaiaadofalmaaBaaabaGaaGimaaqa baaakeaacaWGZbWcdaqhaaqaaiaadMgacaWGQbaabaGaamyraaaaaa aaaa@6620@

here S c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofalmaaBa aabaGaam4yaaqabaaaaa@3849@ , C 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaSWaaS baaeaacaaIWaaabeaaaaa@37A5@ are the sectional area of the capacitor, its capacitance.

Then at current control the parameters are written

T jmax = E m d mi ( 1 k mi 2 ) s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfalmaaBa aabaGaamOAaiGac2gacaGGHbGaaiiEaaqabaGccqGH9aqpdaWcaaqa aiaadwealmaaBaaabaGaamyBaaqabaGccaWGKbWcdaWgaaqaaiaad2 gacaWGPbaabeaaaOqaamaabmaabaGaaGymaiabgkHiTiaadUgalmaa DaaabaGaamyBaiaadMgaaeaacaaIYaaaaaGccaGLOaGaayzkaaGaam 4CaSWaa0baaeaacaWGPbGaamOAaaqaaiaadweaaaaaaaaa@4BF6@

k mi = d mi / s ij E ε mk T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgalmaaBa aabaGaamyBaiaadMgaaeqaaOGaeyypa0ZaaSGbaeaacaWGKbWcdaWg aaqaaiaad2gacaWGPbaabeaaaOqaamaakaaabaGaam4CaSWaa0baae aacaWGPbGaamOAaaqaaiaadweaaaGccqaH1oqzlmaaDaaabaGaamyB aiaadUgaaeaacaWGubaaaaGcbeaaaaaaaa@45FD@

here k mi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaamyBaiaadMgaaeqaaaaa@3959@ is the coefficient of electromechanical coupling.

At current control of the parameters are founded

T jmax = E m d mi / s ij D , s ij D =(1 k mi 2 ) s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOAaiGac2gacaGGHbGaaiiEaaqabaGccqGH9aqpcaWGfbWa aSbaaSqaaiaad2gaaeqaaOGaamizamaaBaaaleaacaWGTbGaamyAaa qabaGccaGGVaGaam4CamaaDaaaleaacaWGPbGaamOAaaqaaiaadsea aaGccaGGSaGaam4CamaaDaaaleaacaWGPbGaamOAaaqaaiaadseaaa GccqGH9aqpcaGGOaGaaGymaiabgkHiTiaadUgadaqhaaWcbaGaamyB aiaadMgaaeaacaaIYaaaaOGaaiykaiaadohadaqhaaWcbaGaamyAai aadQgaaeaacaWGfbaaaaaa@55C9@

The elastic compliance s ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohadaWgaa WcbaGaamyAaiaadQgaaeqaaaaa@395E@ is written s ij E > s ij > s ij D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohadaqhaa WcbaGaamyAaiaadQgaaeaacaWGfbaaaOGaeyOpa4Jaam4CamaaBaaa leaacaWGPbGaamOAaaqabaGccqGH+aGpcaWGZbWaa0baaSqaaiaadM gacaWGQbaabaGaamiraaaaaaa@4319@ , here s ij E / s ij D 1.2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalyaabaGaam 4CaSWaa0baaeaacaWGPbGaamOAaaqaaiaadweaaaaakeaacaWGZbWc daqhaaqaaiaadMgacaWGQbaabaGaamiraaaaaaGccqGHKjYOcaaIXa GaaiOlaiaaikdaaaa@41FC@ . Then C ij E = S 0 / ( s ij E l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoealmaaDa aabaGaamyAaiaadQgaaeaacaWGfbaaaOGaeyypa0ZaaSGbaeaacaWG tbWcdaWgaaqaaiaaicdaaeqaaaGcbaWaaeWaaeaacaWGZbWcdaqhaa qaaiaadMgacaWGQbaabaGaamyraaaakiaadYgaaiaawIcacaGLPaaa aaaaaa@4337@ is the stiffness of the engine at voltage control, C ij D = S 0 / ( s ij D l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoealmaaDa aabaGaamyAaiaadQgaaeaacaWGebaaaOGaeyypa0ZaaSGbaeaacaWG tbWcdaWgaaqaaiaaicdaaeqaaaGcbaWaaeWaaeaacaWGZbWcdaqhaa qaaiaadMgacaWGQbaabaGaamiraaaakiaadYgaaiaawIcacaGLPaaa aaaaaa@4335@ is the stiffness at current control, C ij E <C < ij C ij D MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoealmaaDa aabaGaamyAaiaadQgaaeaacaWGfbaaaOGaeyipaWJaam4qaSWaaSra aeaacaWGPbGaamOAaaqabaGccqGH8aapcaWGdbWcdaqhaaqaaiaadM gacaWGQbaabaGaamiraaaaaaa@4282@ , C ij = S 0 / ( s ij l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaWgaa WcbaGaamyAaiaadQgaaeqaaOGaeyypa0ZaaSGbaeaacaWGtbWcdaWg aaqaaiaaicdaaeqaaaGcbaWaaeWaaeaacaWGZbWaaSbaaSqaaiaadM gacaWGQbaabeaakiaadYgaaiaawIcacaGLPaaaaaaaaa@41A1@ is a general stiffness of an engine.

The mechanical characteristic of a piezoengine 8–41

S i ( T j )| Ψ=const = ν mi Ψ m | Ψ=const + s ij Ψ T j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaeiaabaGaam 4uaSWaaSbaaeaacaWGPbaabeaakmaabmaabaGaamivamaaBaaaleaa caWGQbaakeqaaaWccaGLOaGaayzkaaaakiaawIa7amaaBaaaleaacq qHOoqwcqGH9aqpcaWGJbGaam4Baiaad6gacaWGZbGaamiDaaqabaGc cqGH9aqpdaabcaqaaiabe27aUnaaBaaaleaacaWGTbGaamyAaaGcbe aacqqHOoqwlmaaBaaabaGaamyBaaqabaaakiaawIa7amaaBaaaleaa cqqHOoqwcqGH9aqpcaWGJbGaam4Baiaad6gacaWGZbGaamiDaaqaba GccqGHRaWkcaWGZbWcdaqhaaqaaiaadMgacaWGQbaabaGaeuiQdKfa aOGaamivamaaBaaaleaacaWGQbaakeqaaaaa@5D3D@

The adjustment characteristic

S i ( Ψ m ) | T=const = v mi Ψ m + s ij Ψ T j | T=const MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaamyAaaqabaGcdaqadaqaaiabfI6aznaaBaaaleaacaWGTbaa beaaaOGaayjkaiaawMcaamaaemaabaWaaSbaaSqaaiaadsfacqGH9a qpcaWGJbGaam4Baiaad6gacaWGZbGaamiDaaqabaGccqGH9aqpcaWG 2bWaaSbaaSqaaiaad2gacaWGPbaabeaakiabfI6aznaaBaaaleaaca WGTbaabeaakiabgUcaRiaadohadaqhaaWcbaGaamyAaiaadQgaaeaa cqqHOoqwaaGccaWGubWaaSbaaSqaaiaadQgaaeqaaaGccaGLhWUaay jcSdWaaSbaaSqaaiaadsfacqGH9aqpcaWGJbGaam4Baiaad6gacaWG ZbGaamiDaaqabaaaaa@5BA4@

Then the mechanical characteristic is written

Δl=Δ l max ( 1F/ F max ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadY gacqGH9aqpcqqHuoarcaWGSbWcdaWgaaqaaiGac2gacaGGHbGaaiiE aaqabaGcdaqadaqaaiaaigdacqGHsisldaWcgaqaaiaadAeaaeaaca WGgbWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaaGccaGLOaGa ayzkaaaaaa@4702@

Δ l max = ν mi Ψ m l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadY galmaaBaaabaGaciyBaiaacggacaGG4baabeaakiabg2da9iabe27a UTWaaSbaaeaacaWGTbGaamyAaaqabaGccqqHOoqwdaWgaaWcbaGaam yBaaGcbeaacaWGSbaaaa@443A@ , F max = T j max S 0 = ν mi Ψ m S 0 / s ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaciyBaiaacggacaGG4baabeaakiabg2da9iaadsfalmaaBaaa baGaamOAaiaabccaciGGTbGaaiyyaiaacIhaaeqaaOGaam4uaSWaaS baaeaacaaIWaaabeaakiabg2da9maalyaabaGaeqyVd42cdaWgaaqa aiaad2gacaWGPbaabeaakiabfI6aznaaBaaaleaacaWGTbaakeqaai aadofalmaaBaaabaGaaGimaaqabaaakeaacaWGZbWcdaqhaaqaaiaa dMgacaWGQbaabaGaeuiQdKfaaaaaaaa@506F@

here Δ l max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadY galmaaBaaabaGaciyBaiaacggacaGG4baabeaaaaa@3BB4@ , F max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAealmaaBa aabaGaciyBaiaacggacaGG4baabeaaaaa@3A28@ are the maximum of the displacement and the force. The transverse mechanical characteristic is founded

Δh=Δ h max ( 1F/ F max ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadI gacqGH9aqpcqqHuoarcaWGObWcdaWgaaqaaiGac2gacaGGHbGaaiiE aaqabaGcdaqadaqaaiaaigdacqGHsisldaWcgaqaaiaadAeaaeaaca WGgbWaaSbaaSqaaiGac2gacaGGHbGaaiiEaaqabaaaaaGccaGLOaGa ayzkaaaaaa@46FA@

Δ h max = d 31 E 3 h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadI galmaaBaaabaGaciyBaiaacggacaGG4baabeaakiabg2da9iaadsga lmaaBaaabaGaaG4maiaaigdaaeqaaOGaamyramaaBaaaleaacaaIZa aakeqaaiaadIgaaaa@4201@ , F max = d 31 E 3 S 0 / s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaciyBaiaacggacaGG4baabeaakiabg2da9maalyaabaGaamiz aSWaaSbaaeaacaaIZaGaaGymaaqabaGccaWGfbWaaSbaaSqaaiaaio daaOqabaGaam4uaSWaaSbaaeaacaaIWaaabeaaaOqaaiaadohalmaa DaaabaGaaGymaiaaigdaaeaacaWGfbaaaaaaaaa@44CF@

To the PZT piezoengine d 31 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaaG4maiaaigdaaeqaaaaa@38EA@ = 2∙10-10 m/V, E 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraSWaaS baaeaacaaIZaaabeaaaaa@37AA@ = 0.25∙105 V/m, h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaaaa@36E4@ = 2.5∙10-2 m, S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaaIWaaabeaaaaa@37B5@ = 1.5∙10-5 m2, s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohadaqhaa WcbaGaaGymaiaaigdaaeaacaWGfbaaaaaa@39C2@ = 15∙10-12 m2/N the parameters are determined Δ h max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadI galmaaBaaabaGaciyBaiaacggacaGG4baabeaaaaa@3BB0@ = 125 nm and F max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaqGTbGaaeyyaiaabIhaaeqaaaaa@39BD@ = 5 N with 10% error.

The relative displacement at elastic load

Δl l = ν mi Ψ m s ij Ψ C e S 0 Δl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeu iLdqKaamiBaaqaaiaadYgaaaGaeyypa0JaeqyVd42cdaWgaaqaaiaa d2gacaWGPbaabeaakiabfI6aznaaBaaaleaacaWGTbaakeqaaiabgk HiTmaalaaabaGaam4CaSWaa0baaeaacaWGPbGaamOAaaqaaiabfI6a zbaakiaadoeadaWgaaWcbaGaamyzaaGcbeaaaeaacaWGtbWcdaWgaa qaaiaaicdaaeqaaaaakiabfs5aejaadYgaaaa@4CDF@ , F= C e Δl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOraiabg2 da9iaadoeadaWgaaWcbaGaamyzaaqabaGccqqHuoarcaWGSbaaaa@3C07@

The adjustment characteristic

Δl= ν mi l Ψ m 1+ C e / C ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadY gacqGH9aqpdaWcaaqaaiabe27aUTWaaSbaaeaacaWGTbGaamyAaaqa baGccaWGSbGaeuiQdK1aaSbaaSqaaiaad2gaaOqabaaabaGaaGymai abgUcaRmaalyaabaGaam4qamaaBaaaleaacaWGLbaabeaaaOqaaiaa doeadaqhaaWcbaGaamyAaiaadQgaaeaacqqHOoqwaaaaaaaaaaa@493C@

The general elastic compliance

s ij = k s s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohalmaaBa aabaGaamyAaiaadQgaaeqaaOGaeyypa0Jaam4AamaaBaaaleaacaWG ZbaabeaakiaadohalmaaDaaabaGaamyAaiaadQgaaeaacaWGfbaaaa aa@4058@ , ( 1 k mi 2 ) k s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaaG ymaiabgkHiTiaadUgalmaaDaaabaGaamyBaiaadMgaaeaacaaIYaaa aaGccaGLOaGaayzkaaGaeyizImQaam4AaSWaaSbaaeaacaWGZbaabe aakiabgsMiJkaaigdaaaa@4394@

The scheme on Figure 3 we have at the voltage control the piezoengine with first fixed end and elastic-inertial load.

Figure 3 Scheme engine with one feedback.

The function at the voltage control with fixed first end and elastic-inertial load on second end for Figure 3 has the form

W( s )= Ξ 2 ( s )/ U( s ) = k r / ( a 3 p 3 + a 2 p 2 + a 1 p+ a 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaqada qaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcgaqaaiabf65aynaa BaaaleaacaaIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaa qaaiaadwfadaqadaqaaiaadohaaiaawIcacaGLPaaaaaGaeyypa0Za aSGbaeaacaWGRbWaaSbaaSqaaiaadkhaaeqaaaGcbaWaaeWaaeaaca WGHbWaaSbaaSqaaiaaiodaaeqaaOGaamiCaSWaaWbaaeqabaGaaG4m aaaakiabgUcaRiaadggadaWgaaWcbaGaaGOmaaqabaGccaWGWbWcda ahaaqabeaacaaIYaaaaiabgUcaROGaamyyamaaBaaaleaacaaIXaaa beaakiaadchacqGHRaWkcaWGHbWaaSbaaSqaaiaaicdaaeqaaaGcca GLOaGaayzkaaaaaaaa@56B4@

a 3 =R C 0 M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaG4maaqabaGccqGH9aqpcaWGsbGaam4qamaaBaaaleaacaaI Waaabeaakiaad2eadaWgaaWcbaGaaGOmaaqabaaaaa@3D85@ , a 2 = M 2 +R C 0 k v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGOmaaqabaGccqGH9aqpcaWGnbWaaSbaaSqaaiaaikdaaeqa aOGaey4kaSIaamOuaiaadoeadaWgaaWcbaGaaGimaaqabaGccaWGRb WaaSbaaSqaaiaadAhaaeqaaaaa@4087@

a 1 = k v +R C 0 C + ij R C 0 C + e R k r k d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcaWGRbWaaSbaaSqaaiaadAhaaeqa aOGaey4kaSIaamOuaiaadoeadaWgaaWcbaGaaGimaaqabaGccaWGdb WcdaWgbaqaaiaadMgacaWGQbaabeaakiabgUcaRiaadkfacaWGdbWa aSbaaSqaaiaaicdaaeqaaOGaam4qaSWaaSraaeaacaWGLbaabeaaki abgUcaRiaadkfacaWGRbWaaSbaaSqaaiaadkhaaeqaaOGaam4Aamaa BaaaleaacaWGKbaabeaaaaa@4CDD@ , a 0 =C + e C ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGimaaqabaGccqGH9aqpcaWGdbWcdaWgbaqaaiaadwgaaeqa aOGaey4kaSIaam4qaSWaaSraaeaacaWGPbGaamOAaaqabaaaaa@3ED6@

The function withis obtained

W( s )= Ξ( s ) U( s ) = k 31 U T t 2 s 2 +2 T t ξ t s+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaqada qaaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiabf65aynaa bmaabaGaam4CaaGaayjkaiaawMcaaaqaaiaadwfadaqadaqaaiaado haaiaawIcacaGLPaaaaaGaeyypa0ZaaSaaaeaacaWGRbWaa0baaSqa aiaaiodacaaIXaaabaGaamyvaaaaaOqaaiaaysW7caWGubWcdaqhaa qaaiaadshaaeaacaaIYaaaaOGaam4CaSWaaWbaaeqabaGaaGOmaaaa kiabgUcaRiaaikdacaWGubWcdaWgaaqaaiaadshaaeqaaOGaeqOVdG 3cdaWgaaqaaiaadshaaeqaaOGaam4CaiabgUcaRiaaigdaaaaaaa@5629@

k 31 U = d 31 ( h/δ )/( 1+ C e / C 11 E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaqhaa WcbaGaaG4maiaaigdaaeaacaWGvbaaaOGaeyypa0JaamizamaaBaaa leaacaaIZaGaaGymaaqabaGcdaqadaqaaiaadIgacaGGVaGaeqiTdq gacaGLOaGaayzkaaGaai4lamaabmaabaGaaGymaiabgUcaRiaadoea daWgaaWcbaGaamyzaaqabaGccaGGVaGaam4qamaaDaaaleaacaaIXa GaaGymaaqaaiaadweaaaaakiaawIcacaGLPaaaaaa@4BF4@

T t = M 2 / ( C e + C 11 E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamiDaaqabaGccqGH9aqpdaGcaaqaamaalyaabaqcLbuacaWG nbGcdaWgaaWcbaGaaGOmaaqcLbuabeaaaOqaamaabmaabaGaam4qam aaBaaaleaacaWGLbaabeaakiabgUcaRiaadoealmaaDaaabaqcLbma caaIXaGaaGymaaWcbaqcLbmacaWGfbaaaaGccaGLOaGaayzkaaaaaa Wcbeaaaaa@46C1@ , ω t =1/ T t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3cda WgaaqaaiaadshaaeqaaOGaeyypa0ZaaSGbaeaacaaIXaaabaGaamiv amaaBaaaleaacaWG0baabeaaaaaaaa@3CC8@

To the PZT piezoengine M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIYaaabeaaaaa@37B1@ = 4 kg, C e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaSWaaS baaeaacaWGLbaabeaaaaa@37D5@ = 0.1×107 N/m, C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaqhaa WcbaGaaGymaiaaigdaaeaacaWGfbaaaaaa@3992@ = 1.5×107 N/m the parameters are founded T t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaSWaaS baaeaacaWG0baabeaaaaa@37F5@ = 0.5×10-3 s, ω t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3cda Wgaaqaaiaadshaaeqaaaaa@38E9@ = 2×103 s-1 with 10% error.

To d 31 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgadaWgaa WcbaGaaG4maiaaigdaaeqaaaaa@38EA@ = 2∙10-10 m/V, h/δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGObaabaGaeqiTdqgaaaaa@389F@ = 22, C e / C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaWgaa WcbaGaamyzaaqabaGccaGGVaGaam4qamaaDaaaleaacaaIXaGaaGym aaqaaiaadweaaaaaaa@3C2D@ = 0.1 the coefficient is determined k 31 U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaqhaa WcbaGaaG4maiaaigdaaeaacaWGvbaaaaaa@39CC@ = 4 nm/V with 10% error.

Discussion

A piezoengine is used for aeronautics and aerospace in system of adaptive optics for compound telescope and satellite telescope, deformable mirrors, interferometers, damping vibration, astrophysics for displacements of mirrors and scanning microscopy. The structural model and scheme of a piezoengine are constructed by applied method mathematical physics. For a piezoengine its displacement matrix is obtained. The schemes with the feedbacks at the voltage control are determined.

The structural model and scheme of a piezoengine for aeronautics and aerospace are obtained taking into account equation of piezoeffects and decision wave equation. We have the general structural model and scheme of a piezoengine for the longitudinal, transverse and shift deformations. The structural scheme of the piezoactuator for longitudinal, transverse, shift piezoelectric effects at voltage control converts to the general structural scheme of the piezoactuator for aeronautics and aerospace with the replacement of the following parameters:

Ψ m = E 3 , E 3 , E 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI6aznaaBa aaleaacaWGTbaabeaakiabg2da9iaadweadaWgaaWcbaGaaG4maaqa baGccaGGSaGaamyramaaBaaaleaacaaIZaaabeaakiaacYcacaWGfb WaaSbaaSqaaiaaigdaaeqaaaaa@40A5@ , ν mi = d 33 , d 31 , d 15 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe27aUnaaBa aaleaacaWGTbGaamyAaaqabaGccqGH9aqpcaWGKbWaaSbaaSqaaiaa iodacaaIZaaabeaakiaacYcacaWGKbWaaSbaaSqaaiaaiodacaaIXa aabeaakiaacYcacaWGKbWaaSbaaSqaaiaaigdacaaI1aaabeaaaaa@4450@ s ij Ψ = s 33 E , s 11 E , s 55 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohadaqhaa WcbaGaamyAaiaadQgaaeaacqqHOoqwaaGccqGH9aqpcaWGZbWaa0ba aSqaaiaaiodacaaIZaaabaGaamyraaaakiaacYcacaWGZbWaa0baaS qaaiaaigdacaaIXaaabaGaamyraaaakiaacYcacaWGZbWaa0baaSqa aiaaiwdacaaI1aaabaGaamyraaaaaaa@47AD@ ,

, l=δ,h,b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=grVeeu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgacqGH9a qpcqaH0oazcaGGSaGaamiAaiaacYcacaWGIbaaaa@3D2D@ .

It is possible to construct the general structural model and scheme, the transfer functions in matrix form of the piezoengine, using the solutions of the wave equation of the piezoactuator and taking into account the features of the deformations actuator along the coordinate axes. The general structural model and scheme of the piezoengine after algebraic transformations are produced the transfer functions of the piezoengine. The piezoengine with the transverse piezoeffect compared to the piezoengine for the longitudinal piezoeffect provides greater range its displacement and less force.

 

Conclusion

The general structural model model and the scheme of a piezoengine are obtained. The systems of equations are determined for the structural models of the piezoengines for aeronautics and aerospace. Using the obtained solutions of the wave equation and taking into account the features of the deformations along the coordinate axes, it is possible to construct the general structural model and scheme of a piezoengine for systems of adaptive optics and to describe its dynamic and static properties. The transfer functions in matrix form are described the deformations of the piezoengines during its operation as a part of systems of adaptive optics.

The general structural scheme and the transfer functions of a piezoengine for aeronautics and aerospace are obtained from the structural model of a piezoengine for the transverse, longitudinal, shift piezoelectric effects. The displacement matrix is founded. The parameters of the piezoengine at the voltage control are determined for aeronautics and aerospace. The static and dynamic characteristics of the PZT piezoengine are obtained.

Acknowledgments

None.

Funding

None.

Conflicts of interest

The author declares that there are no conflicts of interest.

References

  1. Uchino K. Piezoelectric actuator and ultrasonic motors. Kluwer academic publisher, Boston, MA. 350 p. 1997.
  2. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Mathematics. 2006:74(3):943–948.
  3. Liu Y, Zhang S, Yan P, et al. Finite element modeling and test of piezo disk with local ring electrodes for micro displacement. Micromachines. 2022;13(6):951.
  4. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 2005;50(2):77–82.
  5. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  6. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Mathematics. 2006;73(2):307–313.
  7. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. New York: McGraw-Hill Book Company. 1946:806.
  8. Mason W. Physical acoustics: Principles and methods. Vol.1. Part A. Methods and Devices. New York: Academic Press. 1964. p. 515.
  9. Yang Y, Tang L. Equivalent circuit modeling of piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures. 2009;20(18):2223–2235.
  10. Zwillinger D. Handbook of Differential Equations. Boston: Academic Press. 1989;673.
  11. Afonin SM. A generalized structural-parametric model of an elecromagnetoelastic converter for nano- and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano- and micrometric movement control systems. Journal of Computer and Systems Sciences International. 2006;45(2):317–325.
  12. Afonin SM. Generalized structural-parametric model of an electromagnetoelastic converter for control systems of nano-and micrometric movements: IV. Investigation and calculation of characteristics of step-piezodrive of nano-and micrometric movements. Journal of Computer and Systems Sciences International. 2006;45(6):1006–1013.
  13. Afonin SM. Decision wave equation and block diagram of electromagnetoelastic actuator nano- and microdisplacement for communications systems. International Journal of Information and Communication Sciences. 2016;1(2):22–29.
  14. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. In: Ed. Parinov IA, editor. Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. New York: Nova Science. 2015. pp. 225-242.
  15. Afonin SM. A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. In: Bartul Z, Trenor J, editors. Chapter 8 in Advances in Nanotechnology. New York: Nova Science. 2017;19:259–284.
  16. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric actuators and generators for energy harvesting. Research and Development. Springer. 2018;182.
  17. Adaptive optics - CoreMorrow. Harbin, China: CoreMorrow Ltd. 2024
  18. Precision machining – CoreMorrow. Harbin, China: CoreMorrow Ltd. 2024.
  19. Baraniuk R, Drossel WG. Simplification of the model of piezoelectric actuator control based on preliminary measurements. 2020;9(3):90.
  20. Afonin SM. Electromagnetoelastic nano- and microactuators for mechatronic systems. Russian Engineering Research. 2018;38(12):938–944.
  21. Afonin SM. Nano- and micro-scale piezomotors. Russian Engineering Research. 2012;32(7-8):519–522.
  22. Afonin SM. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers, Mechanics of Solids. 2007;42(1):43–49.
  23. Afonin SM. Stability of strain control systems of nano-and microdisplacement piezotransducers. Mechanics of Solids. 2014;49(2):196–207.
  24. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics. 2017;5(1):9–15.
  25. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics. 2019;7(2):50–57.
  26. Afonin SM. Calculation deformation of an engine for nano biomedical research. International Journal of Biomed Research. 2021;1(5):1–4.
  27. Afonin SM. Precision engine for nanobiomedical research. Biomedical Research and Clinical Reviews. 2021;3(4):1–5.
  28. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano- and microdisplacement. International Journal of Mathematical Analysis and Applications. 2016;3(4):31–38.
  29. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):6.
  30. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):52.
  31. Afonin SM. Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and microdisplacement for mechatronic systems. International Journal of Theoretical and Applied Mathematics. 2016;2(2):52–59.
  32. Afonin SM. Design static and dynamic characteristics of a piezoelectric nanomicrotransducers. Mechanics of Solids. 2010;45(1):123–132.
  33. Afonin SM. Electromagnetoelastic actuator for nanomechanics. Global Journal of Research in Engineering: A Mechanical and Mechanics Engineering. 2018;18(2):19–23.
  34. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. Proceedings of the 2018 IEEE Conference EIConRus. 2018:1698–1701.
  35. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transactions on Networks and Communicatio 2018;6(3):1–9.
  36. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems. Transactions on Networks and Communications. 2019;7(3):11–21.
  37. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Transactions on Networks and Communications. 2020;8(1):8–15.
  38. Afonin SM. A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Transactions on Machine Learning and Artificial Intelligence. 2020;8(4):23–33.
  39. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Applied System Innovation. 2020;3(4):53.
  40. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Applied System Innovation. 2021;4(3):47.
  41. Afonin SM. Structural-parametric model actuator of adaptive optics for composite telescope and astrophysics equipment. Phy Astron Int J. 2020;4(1):18–21.
  42. Afonin SM. An actuator nano and micro displacements for composite telescope in astronomy and physics research. Phy Astron Int J. 2020;4(4):165–167.
  43. Afonin SM. Calculation of the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment. Phy Astron Int J. 2021;5(2):55–58.
  44. Afonin SM. Structural scheme actuator for nano research. COJ Reviews and Research. 2020;2(5):1–3.
  45. Afonin SM. Structural–parametric model electroelastic actuator nano- and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Eco Environ Sci. 2018;3(5):306–309.
  46. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeron Aero Open Access J. 2018;2(5):270–272.
  47. Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surgery & Case Studies Open Access Journal. 2019;3(3):307–309.
  48. Afonin SM. Piezo actuators for nanomedicine research. MOJ App Bio Biomech. 2019;3(2):56–57.
  49. Afonin SM. Frequency criterion absolute stability of electromagnetoelastic system for nano and micro displacement in biomechanics. MOJ App Bio Biomech. 2019;3(6):137–140.
  50. Afonin SM. A structural-parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology. In: Bartul Z., Trenor J, Editors. Chapter 7 in Advances in Nanotechnology. New York: Nova Science, 2019;22:169–186.
  51. Afonin SM. Electroelastic digital-to-analog converter actuator nano and microdisplacement for nanotechnology. In: Bartul Z, Trenor J, editors. Chapter 6 in Advances in Nanotechnology. New York: Nova Science. 2020;24:205–218.
  52. Afonin SM. Characteristics of an electroelastic actuator nano- and microdisplacement for nanotechnology. In: Bartul Z, Trenor J, editors. Chapter 8 in Advances in Nanotechnology. New York: Nova Science. 2021;25:251–266.
  53. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russian Engineering Research. 2021;41(4):2852-88.
  54. Afonin SM. Structural scheme of electroelastic actuator for nanomechatronics. In: Parinov I.A., Chang S.H. Long B.T , editors. Chapter 40 in Advanced Materials. Proceedings of the International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2019. Switzerland, Cham: Springer. 2020:487–502.
  55. Afonin SM. Absolute stability of control system for deformation of electromagnetoelastic actuator under random impacts in nanoresearch. In: Parinov I.A., Chang S.H., Kim Y.H., Noda N.A, editors. Chapter 43 in Physics and Mechanics of New Materials and Their Applications. PHENMA 2020. Springer Proceedings in Materials. Switzerland:Springer,. 2021;10:519–531.
  56. Afonin SM. Electroelastic actuator of nanomechatronics systems for nanoscience. Chapter 2 in Recent Progress in Chemical Science Research. 2023;6:15-27.
  57. Afonin SM. Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. In: Parinov IA, Chang SH, Soloviev AN, editors. Chapter 34 in Physics and Mechanics of New Materials and Their Applications. Proceedings of the International Conference PHENMA 2021-2022. Springer Proceedings in Materials series. 2023;20:419–428.
  58. Liu Y, Zhang S, Yan P, et al. Finite element modeling and test of piezo disk with local ring electrodes for micro displacement. Micromachines. 2022;13(6):951.
  59. Nalwa HS. Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers. 2019;30.
Creative Commons Attribution License

©2024 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.