Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 4 Issue 4

An actuator nano and micro displacements for composite telescope in astronomy and physics research

Afonin SM

National Research University of Electronic Technology, MIET, Russia

Correspondence: Afonin SM, National Research University of Electronic Technology, MIET, Moscow, Russia

Received: August 12, 2020 | Published: August 31, 2020

Citation: Afonin SM. An actuator nano and micro displacements for composite telescope in astronomy and physics research. Phys Astron Int J.2020;4(4):165-167. DOI: 10.15406/paij.2020.04.00216

Download PDF

Abstract

We obtained the deformation, the structural diagram, the transfer functions and the characteristics of the actuator nano and micro displacements for composite telescope in astronomy and physics research. The mechanical and regulation characteristics of the actuator are received.

Keywords: actuator nano and micro displacements, piezo actuator, deformation, transfer function, regulation characteristic, mechanical characteristic, nano and micro displacements, composite telescope

Introduction

The electromagnetoelastic actuator nano and micro displacements at the piezoelectric, electrostriction, magnetostriction, piezomagnetic effects is used for the control system the adaptive optics of the composite telescope and the interferometer. The multilayer actuator is increased the range of the displacement from nm to tens microns.6–31 The structural model and the structural diagram of the multilayer actuator are determined by using the equation of the electromagnetoelasticity, the differential equation and the boundary conditions of the actuator. The piezo actuator is applied in adaptive optics for composite telescope, laser systems, interferometry, scanning microscopy, nano manipulators for physics and astronomy research The electromagnetoelastic actuator is provided displacement from 1 nm to 20 μm, force 10-1000 N, response 1-10 ms.11–31

Deformation and structural diagram of actuator

The structural diagram of the actuator for composite telescope is obtained in difference from Cady's and Mason's electrical equivalent circuits of the piezo transducer. Electromagnetoelasticity equation has the form of the equation of reverse effect for the deformation of the actuator

S i = ν mi Ψ m + s ij Ψ T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcqaH9oGBdaWgaaWcbaGaamyBaiaa dMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2gaaeqaaOGaey4kaSIaam 4CamaaDaaaleaacaWGPbGaamOAaaqaaiabfI6azbaakiaadsfadaWg aaWcbaGaamOAaaqabaaaaa@4806@ ,

where S i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofalmaaBa aabaGaamyAaaqabaaaaa@3900@ , ν mi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe27aUnaaBa aaleaacaWGTbGaamyAaaqabaaaaa@3AD2@ , Ψ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI6azTWaaS baaeaacaWGTbaabeaaaaa@39BB@ , s ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohadaqhaa WcbaGaamyAaiaadQgaaeaacqqHOoqwaaaaaa@3B9F@ , T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamOAaaqabaaaaa@3902@  are the relative deformation; the module; the control parameter; the elastic compliance; the mechanical stress.10−25 The second order linear ordinary differential equation for the actuator.10−25,28 has the form

Figure 1 Structural diagram of actuator for composite telescopes in astronomy and physics research.

d 2 Ξ( x,p ) d x 2 γ 2 Ξ( x,p )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izamaaCaaaleqabaGaaGOmaaaakiabf65aynaabmaabaGaamiEaiaa cYcacaWGWbaacaGLOaGaayzkaaaabaGaamizaiaadIhadaahaaWcbe qaaiaaikdaaaaaaOGaeyOeI0Iaeq4SdC2aaWbaaSqabeaacaaIYaaa aOGaeuONdG1aaeWaaeaacaWG4bGaaiilaiaadchaaiaawIcacaGLPa aacqGH9aqpcaaIWaaaaa@4C78@ ,

where Ξ( x,p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaabm aabaGaamiEaiaacYcacaWGWbaacaGLOaGaayzkaaaaaa@3CBD@  is transform of Laplace the displacement, p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadchaaaa@3803@ , γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNbaa@38B5@ , x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@  are the parameter of transform, the propagation coefficient, the coordinate. For the structural diagram on Figure 1 and the structural model of the actuator for composite telescopes in astronomy and physics research the system of equations has the form

Ξ 1 ( p )=( 1/ ( M 1 p 2 ) )×{ F 1 ( p )+( 1/ χ ij Ψ ) ×[ ν mi Ψ m ( p )[ γ/ sh( lγ ) ] ×[ ch( lγ ) Ξ 1 ( p ) Ξ 2 ( p ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaaBa aaleaacaaIXaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaiab g2da9maabmaabaWaaSGbaeaacaaIXaaabaWaaeWaaeaacaWGnbWaaS baaSqaaiaaigdaaeqaaOGaamiCamaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaaaaaiaawIcacaGLPaaacqGHxdaTdaGadaabaeqaba GaeyOeI0IaamOramaaBaaaleaacaaIXaaabeaakmaabmaabaGaamiC aaGaayjkaiaawMcaaiabgUcaRmaabmaabaWaaSGbaeaacaaIXaaaba Gaeq4Xdm2aa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaaaaaOGa ayjkaiaawMcaaaqaaiabgEna0oaadmaaeaqabeaacqaH9oGBdaWgaa WcbaGaamyBaiaadMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2gaaeqa aOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaeyOeI0YaamWaaeaada Wcgaqaaiabeo7aNbqaaiaabohacaqGObWaaeWaaeaacaWGSbGaeq4S dCgacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaqaaiabgEna0oaadm aabaGaae4yaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaawIcacaGL PaaacqqHEoawdaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiaadchaai aawIcacaGLPaaacqGHsislcqqHEoawdaWgaaWcbaGaaGOmaaqabaGc daqadaqaaiaadchaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaGaay 5waiaaw2faaaaacaGL7bGaayzFaaaaaa@8321@ ;

Ξ 2 ( p )=( 1/ ( M 2 p 2 ) )×{ F 2 ( p )+( 1/ χ ij Ψ )× ×[ ν mi Ψ m ( p )[ γ/ sh( lγ ) ] ×[ ch( lγ ) Ξ 2 ( p ) Ξ 1 ( p ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaaBa aaleaacaaIYaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaiab g2da9maabmaabaWaaSGbaeaacaaIXaaabaWaaeWaaeaacaWGnbWaaS baaSqaaiaaikdaaeqaaOGaamiCamaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaaaaaiaawIcacaGLPaaacqGHxdaTdaGadaabaeqaba GaeyOeI0IaamOramaaBaaaleaacaaIYaaabeaakmaabmaabaGaamiC aaGaayjkaiaawMcaaiabgUcaRmaabmaabaWaaSGbaeaacaaIXaaaba Gaeq4Xdm2aa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaaaaaOGa ayjkaiaawMcaaiabgEna0cqaaiabgEna0oaadmaaeaqabeaacqaH9o GBdaWgaaWcbaGaamyBaiaadMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaa d2gaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGaeyOeI0Yaam WaaeaadaWcgaqaaiabeo7aNbqaaiaabohacaqGObWaaeWaaeaacaWG SbGaeq4SdCgacaGLOaGaayzkaaaaaaGaay5waiaaw2faaaqaaiabgE na0oaadmaabaGaae4yaiaabIgadaqadaqaaiaadYgacqaHZoWzaiaa wIcacaGLPaaacqqHEoawdaWgaaWcbaGaaGOmaaqabaGcdaqadaqaai aadchaaiaawIcacaGLPaaacqGHsislcqqHEoawdaWgaaWcbaGaaGym aaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaaaiaawUfacaGLDb aaaaGaay5waiaaw2faaaaacaGL7bGaayzFaaaaaa@853B@ ,

where χ ij Ψ = s ij Ψ / S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeE8aJnaaDa aaleaacaWGPbGaamOAaaqaaiabfI6azbaakiabg2da9maalyaabaGa am4CamaaDaaaleaacaWGPbGaamOAaaqaaiabfI6azbaaaOqaaiaado fadaWgaaWcbaGaaGimaaqabaaaaaaa@43DD@ , ν mi ={ d 33 , d 31 , d 15 d 33 , d 31 , d 15 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe27aUnaaBa aaleaacaWGTbGaamyAaaqabaGccqGH9aqpdaGabaqaauaabeqaceaa aeaacaWGKbWaaSbaaSqaaiaaiodacaaIZaaabeaakiaacYcacaWGKb WaaSbaaSqaaiaaiodacaaIXaaabeaakiaacYcacaWGKbWaaSbaaSqa aiaaigdacaaI1aaabeaaaOqaaiaadsgadaWgaaWcbaGaaG4maiaaio daaeqaaOGaaiilaiaadsgadaWgaaWcbaGaaG4maiaaigdaaeqaaOGa aiilaiaadsgadaWgaaWcbaGaaGymaiaaiwdaaeqaaaaaaOGaay5Eaa aaaa@4F5B@ , Ψ m ={ E 3 , E 1 H 3 , H 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI6aznaaBa aaleaacaWGTbaabeaakiabg2da9maaceaabaqbaeqabiqaaaqaaiaa dweadaWgaaWcbaGaaG4maaqabaGccaGGSaGaamyramaaBaaaleaaca aIXaaabeaaaOqaaiaadIeadaWgaaWcbaGaaG4maaqabaGccaGGSaGa amisamaaBaaaleaacaaIXaaabeaaaaaakiaawUhaaaaa@4448@ , s ij Ψ ={ s 33 E , s 11 E , s 55 E s 33 H , s 11 H , s 55 H MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohadaqhaa WcbaGaamyAaiaadQgaaeaacqqHOoqwaaGccqGH9aqpdaGabaqaauaa beqaceaaaeaacaWGZbWaa0baaSqaaiaaiodacaaIZaaabaGaamyraa aakiaacYcacaWGZbWaa0baaSqaaiaaigdacaaIXaaabaGaamyraaaa kiaacYcacaWGZbWaa0baaSqaaiaaiwdacaaI1aaabaGaamyraaaaaO qaaiaadohadaqhaaWcbaGaaG4maiaaiodaaeaacaWGibaaaOGaaiil aiaadohadaqhaaWcbaGaaGymaiaaigdaaeaacaWGibaaaOGaaiilai aadohadaqhaaWcbaGaaGynaiaaiwdaaeaacaWGibaaaaaaaOGaay5E aaaaaa@5551@ , E, H are the strengths of the electric and magnetic fields.

Therefore, the system of the equations for the structural model of the actuator has the form

Ξ 1 ( p )=( 1/ ( M 1 p 2 ) )×{ F 1 ( p )+ C ij Ψ l ×[ ν mi Ψ m ( p )[ γ/ sh( lγ ) ] ×[ ch( lγ ) Ξ 1 ( p ) Ξ 2 ( p ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaaBa aaleaacaaIXaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaiab g2da9maabmaabaWaaSGbaeaacaaIXaaabaWaaeWaaeaacaWGnbWaaS baaSqaaiaaigdaaeqaaOGaamiCamaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaaaaaiaawIcacaGLPaaacqGHxdaTdaGadaabaeqaba GaeyOeI0IaamOramaaBaaaleaacaaIXaaabeaakmaabmaabaGaamiC aaGaayjkaiaawMcaaiabgUcaRiaadoealmaaDaaabaGaamyAaiaadQ gaaeaacqqHOoqwaaGccaWGSbaabaGaey41aq7aamWaaqaabeqaaiab e27aUnaaBaaaleaacaWGTbGaamyAaaqabaGccqqHOoqwdaWgaaWcba GaamyBaaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaacqGHsisl daWadaqaamaalyaabaGaeq4SdCgabaGaae4CaiaabIgadaqadaqaai aadYgacqaHZoWzaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaabaGa ey41aq7aamWaaeaacaqGJbGaaeiAamaabmaabaGaamiBaiabeo7aNb GaayjkaiaawMcaaiabf65aynaaBaaaleaacaaIXaaabeaakmaabmaa baGaamiCaaGaayjkaiaawMcaaiabgkHiTiabf65aynaaBaaaleaaca aIYaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaaGaay5waiaa w2faaaaacaGLBbGaayzxaaaaaiaawUhacaGL9baaaaa@80C9@ ;

Ξ 2 ( p )=( 1/ ( M 2 p 2 ) )×{ F 2 ( p )+ C ij Ψ l ×[ ν mi Ψ m ( p )[ γ/ sh( lγ ) ] ×[ ch( lγ ) Ξ 2 ( p ) Ξ 1 ( p ) ] ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaaBa aaleaacaaIYaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaiab g2da9maabmaabaWaaSGbaeaacaaIXaaabaWaaeWaaeaacaWGnbWaaS baaSqaaiaaikdaaeqaaOGaamiCamaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaaaaaiaawIcacaGLPaaacqGHxdaTdaGadaabaeqaba GaeyOeI0IaamOramaaBaaaleaacaaIYaaabeaakmaabmaabaGaamiC aaGaayjkaiaawMcaaiabgUcaRiaadoealmaaDaaabaGaamyAaiaadQ gaaeaacqqHOoqwaaGccaWGSbaabaGaey41aqRaaGjbVpaadmaaeaqa beaacqaH9oGBdaWgaaWcbaGaamyBaiaadMgaaeqaaOGaeuiQdK1aaS baaSqaaiaad2gaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaGa eyOeI0YaamWaaeaadaWcgaqaaiabeo7aNbqaaiaabohacaqGObWaae WaaeaacaWGSbGaeq4SdCgacaGLOaGaayzkaaaaaaGaay5waiaaw2fa aaqaaiabgEna0oaadmaabaGaae4yaiaabIgadaqadaqaaiaadYgacq aHZoWzaiaawIcacaGLPaaacqqHEoawdaWgaaWcbaGaaGOmaaqabaGc daqadaqaaiaadchaaiaawIcacaGLPaaacqGHsislcqqHEoawdaWgaa WcbaGaaGymaaqabaGcdaqadaqaaiaadchaaiaawIcacaGLPaaaaiaa wUfacaGLDbaaaaGaay5waiaaw2faaaaacaGL7bGaayzFaaaaaa@8259@ ,

where C ij Ψ = S 0 / ( s ij Ψ l ) =1/ ( χ ij Ψ l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaqhaa WcbaGaamyAaiaadQgaaeaacqqHOoqwaaGccqGH9aqpdaWcgaqaaiaa dofadaWgaaWcbaGaaGimaaqabaaakeaadaqadaqaaiaadohadaqhaa WcbaGaamyAaiaadQgaaeaacqqHOoqwaaGccaWGSbaacaGLOaGaayzk aaaaaiabg2da9maalyaabaGaaGymaaqaamaabmaabaGaeq4Xdm2aa0 baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaOGaamiBaaGaayjkaiaa wMcaaaaaaaa@4F1D@  is the stiffness of actuator.

The matrix equation of the actuator has form

( Ξ 1 ( p ) Ξ 2 ( p ) )=( W 11 ( p ) W 12 ( p ) W 13 ( p ) W 21 ( p ) W 22 ( p ) W 23 ( p ) )( Ψ m ( p ) F 1 ( p ) F 2 ( p ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabiqaaaqaaiabf65aynaaBaaaleaacaaIXaaabeaakmaabmaabaGa amiCaaGaayjkaiaawMcaaaqaaiabf65aynaaBaaaleaacaaIYaaabe aakmaabmaabaGaamiCaaGaayjkaiaawMcaaaaaaiaawIcacaGLPaaa cqGH9aqpdaqadaqaauaabeqaceaaaeaafaqabeqadaaabaGaam4vam aaBaaaleaacaaIXaGaaGymaaqabaGcdaqadaqaaiaadchaaiaawIca caGLPaaaaeaacaWGxbWaaSbaaSqaaiaaigdacaaIYaaabeaakmaabm aabaGaamiCaaGaayjkaiaawMcaaaqaaiaadEfadaWgaaWcbaGaaGym aiaaiodaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaaaaqaau aabeqabmaaaeaacaWGxbWaaSbaaSqaaiaaikdacaaIXaaabeaakmaa bmaabaGaamiCaaGaayjkaiaawMcaaaqaaiaadEfadaWgaaWcbaGaaG OmaiaaikdaaeqaaOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaabaGa am4vamaaBaaaleaacaaIYaGaaG4maaqabaGcdaqadaqaaiaadchaai aawIcacaGLPaaaaaaaaaGaayjkaiaawMcaaiaaysW7daqadaqaauaa beqadeaaaeaacqqHOoqwdaWgaaWcbaGaamyBaaGcbeaadaqadaqaai aadchaaiaawIcacaGLPaaaaeaacaWGgbWaaSbaaSqaaiaaigdaaeqa aOWaaeWaaeaacaWGWbaacaGLOaGaayzkaaaabaGaamOramaaBaaale aacaaIYaaabeaakmaabmaabaGaamiCaaGaayjkaiaawMcaaaaaaiaa wIcacaGLPaaaaaa@7441@ .

From the electromagnetoelasticity equation at F= C e Δl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacqGH9a qpcaWGdbWaaSbaaSqaaiaadwgaaeqaaOGaeuiLdqKaamiBaaaa@3D1E@  the regulation characteristic of the actuator has the form

Δl l = d mi Ψ m s ij Ψ C e S 0 Δl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaeu iLdqKaamiBaaqaaiaadYgaaaGaeyypa0JaamizaSWaaSbaaeaacaWG TbGaamyAaaqabaGccqqHOoqwdaWgaaWcbaGaamyBaaGcbeaacqGHsi sldaWcaaqaaiaadohalmaaDaaabaGaamyAaiaadQgaaeaacqqHOoqw aaGccaWGdbWaaSbaaSqaaiaadwgaaOqabaaabaGaam4uaSWaaSbaae aacaaIWaaabeaaaaGccqqHuoarcaWGSbaaaa@4CC1@ ,

where C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaWgaa WcbaGaamyzaaGcbeaaaaa@38F6@ , F are stiffness and force of the load. Therefore, the regulation characteristic of the actuator has the form

Δl= d mi l Ψ m 1+ C e / C ij Ψ = k ij Ψ Ψ m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadY gacqGH9aqpdaWcaaqaaiaadsgalmaaBaaabaGaamyBaiaadMgaaeqa aOGaamiBaiabfI6aznaaBaaaleaacaWGTbaakeqaaaqaaiaaigdacq GHRaWkdaWcgaqaaiaadoeadaWgaaWcbaGaamyzaaqabaaakeaacaWG dbWaa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaaaaaaGccqGH9a qpcaWGRbWaa0baaSqaaiaadMgacaWGQbaabaGaeuiQdKfaaOGaeuiQ dK1aaSbaaSqaaiaad2gaaOqabaaaaa@5178@ ,

C ij Ψ = S 0 / ( s ij Ψ l ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaDa aaleaacaWGPbGaamOAaaqaaiabfI6azbaakiabg2da9maalyaabaGa am4uaSWaaSbaaeaacaaIWaaabeaaaOqaamaabmaabaGaam4CaSWaa0 baaeaacaWGPbGaamOAaaqaaiabfI6azbaakiaadYgaaiaawIcacaGL Paaaaaaaaa@445B@ , k ij Ψ = d ij l/ ( 1+ C e / C ij Ψ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaqhaa WcbaGaamyAaiaadQgaaeaacqqHOoqwaaGccqGH9aqpdaWcgaqaaiaa dsgalmaaBaaabaGaamyAaiaadQgaaeqaaOGaamiBaaqaamaabmaaba GaaGymaiabgUcaRmaalyaabaGaam4qamaaBaaaleaacaWGLbaabeaa aOqaaiaadoeadaqhaaWcbaGaamyAaiaadQgaaeaacqqHOoqwaaaaaa GccaGLOaGaayzkaaaaaaaa@4A39@ ,

where C ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoeadaqhaa WcbaGaamyAaiaadQgaaeaacqqHOoqwaaaaaa@3B6F@ , k ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaqhaa WcbaGaamyAaiaadQgaaeaacqqHOoqwaaaaaa@3B97@  are the stiffness and the transfer coefficient of the actuator. The transfer function with lumped parameter of the actuator7,11–30 has the form

W( p )= Ξ( p )/ Ψ m ( p ) = k ij Ψ / ( T t 2 p 2 +2 T t ξ t p+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaqada qaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWcgaqaaiabf65aynaa bmaabaGaamiCaaGaayjkaiaawMcaaaqaaiabfI6aznaaBaaaleaaca WGTbaakeqaamaabmaabaGaamiCaaGaayjkaiaawMcaaaaacqGH9aqp daWcgaqaaiaadUgadaqhaaWcbaGaamyAaiaadQgaaeaacqqHOoqwaa aakeaadaqadaqaaiaadsfalmaaDaaabaGaamiDaaqaaiaaikdaaaGc caWGWbWcdaahaaqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaadsfada WgaaWcbaGaamiDaaGcbeaacqaH+oaElmaaBaaabaGaamiDaaqabaGc caWGWbGaey4kaSIaaGymaaGaayjkaiaawMcaaaaaaaa@59CA@ ,

T t = M/ ( C + e C ij Ψ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfalmaaBa aabaGaamiDaaqabaGccqGH9aqpdaGcaaqaamaalyaabaGaamytaaqa amaabmaabaGaam4qaSWaaSraaeaacaWGLbaabeaakiabgUcaRiaado ealmaaDaaabaGaamyAaiaadQgaaeaacqqHOoqwaaaakiaawIcacaGL Paaaaaaaleqaaaaa@43DE@ ,

where Ξ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabf65aynaabm aabaGaamiCaaGaayjkaiaawMcaaaaa@3B10@ , Ψ m ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfI6aznaaBa aaleaacaWGTbaakeqaamaabmaabaGaamiCaaGaayjkaiaawMcaaaaa @3C43@  are the transforms of the displacement and the control parameter, T t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamiDaaqabaaaaa@390C@ , ξ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4naaBa aaleaacaWG0baabeaaaaa@39F6@  are the time constant and the damping coefficient of the actuator, M is the load mass. The transfer function with lumped parameter of the transverse piezo actuator7,11–30 has the form

W( p )= Ξ( p )/ U( p ) = k 31 U / ( T t 2 p 2 +2 T t ξ t p+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadEfadaqada qaaiaadchaaiaawIcacaGLPaaacqGH9aqpdaWcgaqaaiabf65aynaa bmaabaGaamiCaaGaayjkaiaawMcaaaqaaiaadwfadaqadaqaaiaadc haaiaawIcacaGLPaaaaaGaeyypa0ZaaSGbaeaacaWGRbWaa0baaSqa aiaaiodacaaIXaaabaGaamyvaaaaaOqaamaabmaabaGaamivaSWaa0 baaeaacaWG0baabaGaaGOmaaaakiaadchalmaaCaaabeqaaiaaikda aaGccqGHRaWkcaaIYaGaamivamaaBaaaleaacaWG0baakeqaaiabe6 7a4TWaaSbaaeaacaWG0baabeaakiaadchacqGHRaWkcaaIXaaacaGL OaGaayzkaaaaaaaa@56D3@ ,

k 31 U = ( d 31 l/δ )/ ( 1+ C e / C 11 E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaqhaa WcbaGaaG4maiaaigdaaeaacaWGvbaaaOGaeyypa0ZaaSGbaeaadaqa daqaaiaadsgadaWgaaWcbaGaaG4maiaaigdaaOqabaWaaSGbaeaaca WGSbaabaGaeqiTdqgaaaGaayjkaiaawMcaaaqaamaabmaabaGaaGym aiabgUcaRmaalyaabaGaam4qamaaBaaaleaacaWGLbaabeaaaOqaai aadoeadaqhaaWcbaGaaGymaiaaigdaaeaacaWGfbaaaaaaaOGaayjk aiaawMcaaaaaaaa@4AD2@ , T t = M/ ( C + e C 11 E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfalmaaBa aabaGaamiDaaqabaGccqGH9aqpdaGcaaqaamaalyaabaGaamytaaqa amaabmaabaGaam4qaSWaaSraaeaacaWGLbaabeaakiabgUcaRiaado ealmaaDaaabaGaaGymaiaaigdaaeaacaWGfbaaaaGccaGLOaGaayzk aaaaaaWcbeaaaaa@42B2@ ,

where U( p ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwfadaqada qaaiaadchaaiaawIcacaGLPaaaaaa@3A66@  is the Laplace transform of the voltage and k 31 U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaqhaa WcbaGaaG4maiaaigdaaeaacaWGvbaaaaaa@3A7D@  is the transfer coefficient. At d 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgalmaaBa aabaGaaG4maiaaigdaaeqaaaaa@399B@ =2×10-10 m/V, l/δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalyaabaGaam iBaaqaaiabes7aKbaaaaa@39BA@ =12, M=1 kg, C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoealmaaDa aabaGaaGymaiaaigdaaeaacaWGfbaaaaaa@3A43@ =3.4×107 N/m, C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoealmaaBa aabaGaamyzaaqabaaaaa@38EC@ =0.2×107 N/m the transfer coefficient k 31 U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaqhaa WcbaGaaG4maiaaigdaaeaacaWGvbaaaaaa@3A7D@ =2.27 nm/V and the time constant T t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfalmaaBa aabaGaamiDaaqabaaaaa@390C@ =0.17×10-3 s are obtained for the transverse piezo actuator from ceramic PZT.

From the electromagnetoelasticity equation at elastic load the regulation characteristic of the multilayer longitudinal piezo actuator is obtained in the following form

Δl= d 33 nU 1+ C e / C 33 E = k 33 U U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadY gacqGH9aqpdaWcaaqaaiaadsgalmaaBaaabaGaaG4maiaaiodaaeqa aOGaamOBaiaadwfaaeaacaaIXaGaey4kaSYaaSGbaeaacaWGdbWaaS baaSqaaiaadwgaaeqaaaGcbaGaam4qamaaDaaaleaacaaIZaGaaG4m aaqaaiaadweaaaaaaaaakiabg2da9iaadUgadaqhaaWcbaGaaG4mai aaiodaaeaacaWGvbaaaOGaamyvaaaa@4B1A@ ,

k 33 U = d 33 n/ ( 1+ C e / C 33 E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaqhaa WcbaGaaG4maiaaiodaaeaacaWGvbaaaOGaeyypa0ZaaSGbaeaacaWG KbWcdaWgaaqaaiaaiodacaaIZaaabeaakiaad6gaaeaadaqadaqaai aaigdacqGHRaWkdaWcgaqaaiaadoeadaWgaaWcbaGaamyzaaqabaaa keaacaWGdbWaa0baaSqaaiaaiodacaaIZaaabaGaamyraaaaaaaaki aawIcacaGLPaaaaaaaaa@4798@ , l=nδ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadYgacqGH9a qpcaWGUbGaeqiTdqgaaa@3B9D@ ,

where k 33 U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaqhaa WcbaGaaG4maiaaiodaaeaacaWGvbaaaaaa@3A7F@  is the transfer coefficient.

For the multilayer longitudinal piezo actuator from ceramic PZT at d 33 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgalmaaBa aabaGaaG4maiaaiodaaeqaaaaa@399D@ =4∙10-10 m/V, n = 6, C 33 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoealmaaDa aabaGaaG4maiaaiodaaeaacaWGfbaaaaaa@3A47@  =4∙107 N/m, C e MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadoealmaaBa aabaGaamyzaaqabaaaaa@38EC@ =0.2∙107 N/m, U=100 V are received k 33 U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaqhaa WcbaGaaG4maiaaiodaaeaacaWGvbaaaaaa@3A7F@  =2.29 nm/V and Δl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadY gaaaa@3965@ =229 nm.

The mechanical characteristic of the actuator has form S i ( T j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofalmaaBa aabaGaamyAaaqabaGcdaqadaqaaiaadsfadaWgaaWcbaGaamOAaaGc beaaaSGaayjkaiaawMcaaaaa@3C9C@  or Δl( F ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadY gadaqadaqaaiaadAeaaiaawIcacaGLPaaaaaa@3BB9@  and the regulation line of actuator has form S i ( Ψ m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofalmaaBa aabaGaamyAaaqabaGcdaqadaqaaiabfI6aznaaBaaaleaacaWGTbaa keqaaaWccaGLOaGaayzkaaaaaa@3D55@  or Δl( U ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadY gadaqadaqaaiaadwfaaiaawIcacaGLPaaaaaa@3BC8@ . The mechanical characteristic is obtained in the following form

S i | Ψ=const = d mi Ψ m | Ψ=const + s ij Ψ T j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaeiaabaGaam 4uaSWaaSbaaeaacaWGPbaabeaaaOGaayjcSdWaaSbaaSqaaiabfI6a zjabg2da9iaabogacaqGVbGaaeOBaiaabohacaqG0baabeaakiabg2 da9maaeiaabaGaamizamaaBaaaleaacaWGTbGaamyAaaGcbeaacqqH OoqwlmaaBaaabaGaamyBaaqabaaakiaawIa7amaaBaaaleaacqqHOo qwcqGH9aqpcaqGJbGaae4Baiaab6gacaqGZbGaaeiDaaqabaGccqGH RaWkcaWGZbWcdaqhaaqaaiaadMgacaWGQbaabaGaeuiQdKfaaOGaam ivamaaBaaaleaacaWGQbaakeqaaaaa@596F@ .

The regulation characteristic of the actuator has the form

S i | T=const = d mi E m + s ij E T j | T=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaeiaabaGaam 4uaSWaaSbaaeaacaWGPbaabeaaaOGaayjcSdWaaSbaaSqaaiaadsfa cqGH9aqpcaqGJbGaae4Baiaab6gacaqGZbGaaeiDaaqabaGccqGH9a qpcaWGKbWaaSbaaSqaaiaad2gacaWGPbaakeqaaiaadwealmaaBaaa baGaamyBaaqabaGccqGHRaWkdaabcaqaaiaadohalmaaDaaabaGaam yAaiaadQgaaeaacaWGfbaaaOGaamivamaaBaaaleaacaWGQbaakeqa aaGaayjcSdWaaSbaaSqaaiaadsfacqGH9aqpcaqGJbGaae4Baiaab6 gacaqGZbGaaeiDaaqabaaaaa@566F@ .

The mechanical characteristic of the actuator has the form

Δl=Δ l max ( 1F/ F max ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadY gacqGH9aqpcqqHuoarcaWGSbWcdaWgaaqaaiaab2gacaqGHbGaaeiE aaqabaGcdaqadaqaaiaaigdacqGHsisldaWcgaqaaiaadAeaaeaaca WGgbWaaSbaaSqaaiaab2gacaqGHbGaaeiEaaqabaaaaaGccaGLOaGa ayzkaaaaaa@47A9@ ,

Δ l max = d mi Ψ m l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadY galmaaBaaabaGaaeyBaiaabggacaqG4baabeaakiabg2da9iaadsga lmaaBaaabaGaamyBaiaadMgaaeqaaOGaeuiQdK1aaSbaaSqaaiaad2 gaaOqabaGaamiBaaaa@4417@ , F max = d mi Ψ m S 0 / s ij Ψ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaeyBaiaabggacaqG4baabeaakiabg2da9maalyaabaGaamiz aSWaaSbaaeaacaWGTbGaamyAaaqabaGccqqHOoqwdaWgaaWcbaGaam yBaaGcbeaacaWGtbWcdaWgaaqaaiaaicdaaeqaaaGcbaGaam4CaSWa a0baaeaacaWGPbGaamOAaaqaaiabfI6azbaaaaaaaa@4809@ ,

where Δ l max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadY galmaaBaaabaGaaeyBaiaabggacaqG4baabeaaaaa@3C60@  is the maximum displacement for F=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeacqGH9a qpcaaIWaaaaa@3999@  and F max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaeyBaiaabggacaqG4baabeaaaaa@3AD4@  is the maximum force for Δl=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadY gacqGH9aqpcaaIWaaaaa@3B25@ .

The maximum displacement and the maximum force of the transverse piezo actuator on Figure 2 have the form

Δ h max = d 31 E 3 h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadI galmaaBaaabaGaaeyBaiaabggacaqG4baabeaakiabg2da9iaadsga lmaaBaaabaGaaG4maiaaigdaaeqaaOGaamyramaaBaaaleaacaaIZa aakeqaaiaadIgaaaa@42AD@ , F max = d 31 E 3 S 0 / s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaeyBaiaabggacaqG4baabeaakiabg2da9maalyaabaGaamiz aSWaaSbaaeaacaaIZaGaaGymaaqabaGccaWGfbWaaSbaaSqaaiaaio daaOqabaGaam4uaSWaaSbaaeaacaaIWaaabeaaaOqaaiaadohalmaa DaaabaGaaGymaiaaigdaaeaacaWGfbaaaaaaaaa@457B@ .

At d 31 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsgalmaaBa aabaGaaG4maiaaigdaaeqaaaaa@399B@  =2∙10-10 m/V, E 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa WcbaGaaG4maaqabaaaaa@38C1@ = 2∙105 V/m, h = 2.5∙10-2 m, S 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadofalmaaBa aabaGaaGimaaqabaaaaa@38CC@ =1.5∙10-5 m2, s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadohalmaaDa aabaGaaGymaiaaigdaaeaacaWGfbaaaaaa@3A73@ =15∙10-12 m2/N parameters of the transverse piezo actuator are found Δ h max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfs5aejaadI galmaaBaaabaGaaeyBaiaabggacaqG4baabeaaaaa@3C5C@ =1000 nm and F max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAeadaWgaa WcbaGaaeyBaiaabggacaqG4baabeaaaaa@3AD4@ =40 N. The discrepancy between the experimental data for the piezo actuators and the calculation results is 10%.

Figure 2 Mechanical characteristic of transverse piezo actuator for composite telescopes in astronomy and physics research.

Conclusion

The regulation characteristic, the transfer function and the structural diagram of the actuator nano and micro displacements are obtained for composite telescope in astronomy and physics research. The mechanical and regulation characteristics of the actuator nano and micro displacements are found for nano manipulators in physics and astronomy research. The mechanical characteristic of actuator and its maximum displacement and maximum force are obtained. For the elastic load the regulation characteristics of the electromagnetoelastic actuator and the multilayer piezo actuator are calculated.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. Schultz J, Ueda J, Asada H. Cellular Actuators. Butterworth-Heinemann Publisher, Oxford, 2014. p. 382.
  2. Afonin SM. Piezo actuators for nanomedicine research. MOJ Applied Bionics and Biomechanics. 2019;3(2):56‒57.
  3. Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surgery and Case Studies Open Access Journal. 2019;3(3):307–309.
  4. Zhou S, Yao Z. Design and optimization of a modal-independent linear ultrasonic motor. IEEE transaction on ultrasonics, ferroelectrics, and frequency control. 2014;61(3):535–546.
  5. Uchino K. Piezoelectric actuator and ultrasonic motors. Boston, MA: Kluwer Academic Publisher. 1997. p. 347.
  6. Afonin SM. Block diagrams of a multilayer piezoelectric motor for nano- and microdisplacements based on the transverse piezoeffect. Journal of computer and systems sciences international. 2015;54(3):424–439.
  7. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transduser. Doklady physics. 2008;53(3):137–143.
  8. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady mathematics. 2006;73(2):307–313.
  9. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. McGraw-Hill Book Company, New York, London, 1946. p. 806.
  10. Mason W. Physical Acoustics: Principles and Methods. Vol.1. Part A. Methods and Devices. Academic Press, New York, 1964. p. 515.
  11. Afonin SM. Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. 2015.Chapter 9 in Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications. In: Parinov IA editor. Nova Science, New York, p. 225–242.
  12. Afonin SM. A structural-parametric model of electroelastic actuator for nano- and microdisplacement of mechatronic system. Chapter 8 in Advances in Nanotechnology. Volume 19. In: Bartul Z et al., editors. New York: Nova Science, 2017. p. 259–284.
  13. Afonin SM. Stability of strain control systems of nano-and microdisplacement piezo transducers. Mechanics of solids. 2014;49(2):196–207.
  14. Afonin SM. Structural-parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. International Journal of Physics. 2017;5(1):9–15.
  15. Afonin SM. Structural-parametric model multilayer electromagnetoelastic actuator for nanomechatronics. International Journal of Physics. 2015;7(2):50–57.
  16. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano- and microdisplacement. International Journal of Mathematical Analysis and Applications. 2016;3(4):31–38.
  17. Afonin SM. Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):1–9.
  18. Afonin SM. Structural-parametric models and transfer functions of electromagnetoelastic actuators nano- and microdisplacement for mechatronic systems. International Journal of Theoretical and Applied Mathematics. 2016;2(2):52–59.
  19. Afonin SM. Parametric block diagrams of a multi-layer piezoelectric transducer of nano- and microdisplacements under transverse piezoelectric effect. Mechanics of Solids. 2014;52(1):81–94.
  20. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. Proceedings of the 2018 IEEE Conference EIConRus, 2018. p. 1698–1701.
  21. Afonin SM. Electromagnetoelastic nano- and microactuators for mechatronic systems. Russian Engineering Research. 2018;38(12):938–944.
  22. Afonin SM. Structural-parametric model of electro elastic actuator for nanotechnology and biotechnology. Journal of Pharmacy and Pharmaceutics. 2018;5(1):8–12.
  23. Afonin SM. Electromagnetoelastic actuator for nanomechanics. Global Journal of Research in Engineering. A: Mechanical and Mechanics Engineering. 2018;18(2):19–23.
  24. Afonin SM. Structural–parametric model electroelastic actuator nano– and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Ecology and Environmental Sciences.2018;3(5):306‒309.
  25. Afonin SM. Static and dynamic characteristics of multilayered electromagnetoelastic transducer of nano- and micrometric movements. Journal of Computer and Systems Sciences International. 2010;49(1):73–85.
  26. Afonin SM. Static and dynamic characteristics of a multi-layer electroelastic solid. Mechanics of Solids. 2009;44(6):935–950.
  27. Afonin SM. Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):1–14.
  28. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transactions on Networks and Communications. 2008;6(3):1–9.
  29. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems. Transactions on Networks and Communications. 2019;7(3):11–21.
  30. Afonin SM. Structural-parametric model actuator of adaptive optics for composite telescope and astrophysics equipment. Physics and Astronomy International Journal. 2020;4(1):18‒21.
  31. Springer Handbook of Nanotechnology. In: Bhushan B editor. Springer, Berlin, New York, 2004. p. 1222.
Creative Commons Attribution License

©2020 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.