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 Introduction
A piezoengine is used for aeronautics and aerospace.1–19 This 

piezoengine is applied in adaptive optics system for compound 
telescope and satellite telescope, astrophysics, deformable mirrors, 
interferometers, damping vibration, scanning microscopy.14–59 The 
structural model and scheme of a piezoengine are constructed.

Method
For the structural model a piezoengine is used method of 

mathematical physics with the solution the piezoelasticity equationfor 
reverse piezoeffect and differential equation at the voltage control.8–41

E
i mi m ij jS d E s T= +

and at current the control 
D

i mi m ij jS g D s T= +

here iS , mE , mid , jT , mid , mig , E
ijs  are the relative displacement, 

the electric field strength, the electric induction, the mechanical field 
strength, its modules, the elastic compliance, the indexes i, j, m. The 
ordinary differential equation a piezoengine 8–41 has form
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here ( ),x sΞ , x , s , γ  are the transform of the displacement, its 

coordinate  and parameter, the propagation coefficient and the general 

length { , ,l l bδ= an engine. For the transverse engine for 0x = , 

( ) ( )10, s sΞ = Ξ  and x h= , ( ) ( )2,h s sΞ = Ξ .

 Model and scheme
Its transverse solution is written

( ) ( ) ( ) ( ) ( ){ } ( )1 2, sh sh shx s s h x s x hγ γ γΞ = Ξ  −  + Ξ 

here ( )1 sΞ , ( )2 sΞ  are the transforms its end displacements.

The system equations of the boundary conditions for the transverse 
piezoengine is determined

( ) ( ) ( )31
1 3

11 110

,10, E E
x

d x s dT s E s
dxs s=

Ξ
= −

( ) ( ) ( )31
1 3

11 11

d ,1,
dE E

x h

x s dT h s E s
xs s=

Ξ
= −

From the reverse piezoeffect of a piezoengine at the voltage control 
the Laplace transform of the force causes displacement is determined

( ) ( )0mi m
E
ij

d S E s
F s

s
=

here 0S  is cross sectional area.

The transform of the force causes displacement for the transverse 
piezoengine at the voltage control is written

( ) ( )31 0 3

11
E

d S E s
F s

s
=

Then the reverse coefficient at the voltage control with 

( ) ( )mU s E s δ=  is determined in the form
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Abstract

In the work the structural model and the structural scheme of a piezoengine are calculated 
for aeronautics and aerospace. The matrix equation of a piezoactuator is determined. The 
mechanical characteristic and the parameters of the PZT piezoactuator are obtained in 
control systems for aeronautics and aerospace. A piezoengine is used for nanoalignment and 
nanopositioning, compensation of temperature and gravitational deformations in aeronautics 
and aerospace, nanoresearh for tunel microscopy, adaptive optics, astronomy for compound 
telescope and satellite telescope. The linear change in the size of a piezoengine occurs by the 
electric field changes. A piezoengine is a piezomechanical device for converting electrical 
energy into mechanical energy and for actuating mechanisms, systems or its controlling 
by using inverse piezoeeffect. Piezoceramics include barium titanate or ferroelectric 
ceramics, based on lead zirconate titanate type PZT, are widely used for the production 
of piezoengines. The PZT piezoengine is characterized by high accuracy, small overall 
dimensions, simple design and control, reliability and cost effectiveness. The structural 
general model, the scheme and the functions a piezoengine are obtained for aeronautics 
and aerospace. Method of applied mathematical physics is applied for determinations the 
characteristics of a piezoengine with using the piezoelasticity equation and the differential 
equation. The static and dynamic characteristics of the PZT piezoengine are determined. 
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The transverse reverse coefficient at the voltage control is obtained

( )
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= =

Its transverse model is determined
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11 11 0
E Es Sχ =

For the longitudinal piezoengine its longitudinal solution of the 
differential equation is written

( ) ( ) ( ) ( ) ( ){ } ( )1 2, sh sh shx s s x s xδ γ γ δγΞ = Ξ  −  + Ξ 
The system of the boundary conditions for the longitudinal 

piezoengine is obtained 
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The transform of the force causes displacement for the longitudinal 
piezo engine at the voltage control is written

( ) ( )33 0 3
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E

d S E s
F s

s
=

The longitudinal reverse coefficient at the voltage control is 
obtained

( )
( )

33 0
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= =

Its longitudinal structural model is determined
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From the differential equation of for the shift piezoengine its shift 
solution is written

( ) ( ) ( ) ( ) ( ){ } ( )1 2, sh sh shx s s b x s x bγ γ γΞ = Ξ  −  + Ξ 

The system of the boundary conditions for the shift piezoengine is 
obtained 
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55 550
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The transform of the force causes displacement for the shift piezo 
engine at the voltage control is written

( ) ( )15 0 3

55
E

d S E s
F s

s
=

The shif reverse coefficient at the voltage control is obtained

( )
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15 0

55
r E
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= =

Its structural shift model is determined
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The equation of inverse piezo effect 3–41 is written in the general 
form

i mi m ij jS s Tν Ψ= Ψ +

here ,m m mE DΨ =  is control parameter at the voltage or current 
control. 

At 0x =  and x l=  for { , ,l h bδ=  the system of the boundary 

conditions for a piezoengine is obtained
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The transform of the force causes displacement has the general 
form
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The general structural model and scheme are obtained on Figure 1
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The general structural model and scheme of a piezoengine on 
Figure 1 are used to calculate systems in aeronautics and aerospace. 
The displacement matrix is written

Figure 1 General scheme engine
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( )
( )
( )

1
1

2
2

m s
s

W s F s
s

F s

Ψ 
 Ξ  =    Ξ   

 

( )( ) ( ) ( ) ( )
( ) ( ) ( )

11 12 13

21 22 23

W s W s W s
W s

W s W s W s
 

=   
 

here its functions
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Ψ Ψ Ψ

 = + + + 
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( ) ( ) ( ) ( )2
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W s s s M s l Aν χ γ γΨ = Ξ Ψ = + 

( ) ( ) ( ) ( )2
12 1 1 2 thij ij ij

W s s F s M s l Aχ χ γ γΨ Ψ = Ξ = − + 

( ) ( ) ( )
( ) ( ) ( ) ( )

13 1 2

22 2 1 shij ij

W s s F s

W s s F s l Aχ γ γΨ

= Ξ =
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( ) ( ) ( ) ( )2
23 2 2 1 thij ij ij
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The settled longitudinal displacements at the voltage control are 
used

( )1 33 2 1 2d UM M Mξ = +

2 33 1 1 2/ ( )d UM M Mξ = +

To the PZT piezoengine 33d  = 4⋅10-10 m/V, U  = 50 V, 1M  = 0.5 

kg, 2M  = 2 kg we have displacements 1 2ξ ξ+  = 20 nm, 1ξ  = 16 nm, 

2ξ  = 4 nm with 10% error.

For the voltage control the equation of the direct piezo effect is 
written8–41

E
m mi i mk kD d T Eε= +

here i, m, k are the indexes, E
mkε is the permittivity. The direct 

coefficient dk  for the engine at the voltage control is founded

0mi
d E

ij

d Sk
sδ

=

At the voltage control the transform of the voltage for the feedback 
on Figure 2 is obtained

Figure 2 Scheme engine with two feedbacks.

( ) ( ) ( )
• •

0mi
d dE n n

ij

d S RU s s k R s
sδ

= Ξ = Ξ ,   21,n =

here the number n  of the ends engine.

Let us consider the elastic compliance of a piezoengine. At voltage 
control its maximum parameters are written

max
E

j m mi ijT E d s=

max 0
E

m mi ijF E d S s=

At current control the maximum force is founded
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0 max 0
max

0

1 1
mi mi c miE T E

ij mk c ij

S F SUF d d S d
Ss S sδ δε δ

= +

here cS , 0C  are the sectional area of the capacitor, its capacitance.

Then at current control the parameters are written

( )max 21
m mi

j E
mi ij

E dT
k s

=
−

 

E T
mi mi ij mkk d s ε=

here mik  is the coefficient of electromechanical coupling.

At current control of the parameters are founded
2

max / , (1 )D D E
j m mi ij ij mi ijT E d s s k s= = −

The elastic compliance ijs  is written E D
ij ij ijs s s> > , here 

1.2E D
ij ijs s ≤ . Then ( )0

E E
ij ijC S s l=  is the stiffness of the engine at 

voltage control, ( )0
D D
ij ijC S s l=  is the stiffness at current control, 

E D
ij ij ijC C C< < , ( )0ij ijC S s l=  is a general stiffness of an engine.

The mechanical characteristic of a piezoengine 8–41

( )i j mi m ij jconstconst
S T s Tν Ψ

Ψ=Ψ=
= Ψ +

The adjustment characteristic

( )i m T const mi m ij j T const
S v s TΨ

= =
Ψ = Ψ +

	
Then the mechanical characteristic is written

( )max max1l l F F∆ = ∆ −

max mi ml lν∆ = Ψ , max  max 0 0j mi m ijF T S S sν Ψ= = Ψ

here maxl∆ , maxF  are the maximum of the displacement and the 

force. The transverse mechanical characteristic is founded

( )max max1h h F F∆ = ∆ −

max 31 3h d E h∆ = , max 31 3 0 11
EF d E S s=

To the PZT piezoengine 31d  = 2∙10-10 m/V, 3E  = 0.25∙105 V/m, h  

= 2.5∙10-2 m, 0S  = 1.5∙10-5 m2, 11
Es   = 15∙10-12 m2/N the parameters are 

determined maxh∆  = 125 nm and maxF  = 5 N with 10% error..

The relative displacement at elastic load

0

ij e
mi m

s Cl l
l S

ν
Ψ∆

= Ψ − ∆ , lCF e∆=

The adjustment characteristic

1
mi m

e ij

ll
C C

ν
Ψ

Ψ
∆ =

+

The general elastic compliance
E

ij s ijs k s= ¸ ( )21 1mi sk k− ≤ ≤

The scheme on Figure 3 we have at the voltage control the 
piezoengine with first fixed end and elastic-inertial load.

Figure 3 Scheme engine with one feedback.

The function at the voltage control with fixed first end and elastic-
inertial load on second end for Figure 3 has the form

( ) ( ) ( ) ( )3 2
2 3 2 1 0rW s s U s k a p a p a p a+= Ξ = + +

3 0 2a RC M= , 2 2 0 va M RC k= +

1 0 0v ij e r da k RC C RC C Rk k= + + + , 0 e ija C C= +

The function with 0R = is obtained 

( ) ( )
( )

31
2 2 2 1

U

t t t

s kW s
U s T s T sξ
Ξ

= =
+ +

( ) ( )31 31 11/ / 1 /U E
ek d h C Cδ= +

( )2 11
E

t eT C CM= + , tt T1=ω

To the PZT piezoengine 2M  = 4 kg, eC  = 0.1⋅107 N/m, 11
EC  = 

1.5⋅107 N/m the parameters are founded tT  = 0.5⋅10-3 s, tω  = 2⋅103 
s-1 with 10% error.

To 31d  = 2∙10-10 m/V, δh  = 22, 11/ E
eC C  = 0.1 the coefficient is 

determined 31
Uk  = 4 nm/V with 10% error.

 Discussion
A piezoengine is used for aeronautics and aerospace in system 

of adaptive optics for compound telescope and satellite telescope, 
deformable mirrors, interferometers, damping vibration, astrophysics 
for displacements of mirrors and scanning microscopy. The structural 
model and scheme of a piezoengine are constructed by applied method 
mathematical physics. For a piezoengine its displacement matrix is 
obtained. The schemes with the feedbacks at the voltage control are 
determined.

The structural model and scheme of a piezoengine for aeronautics 
and aerospace are obtained taking into account equation of piezoeffects 
and decision wave equation. We have the general structural model 
and scheme of a piezoengine for the longitudinal, transverse and 
shift deformations. The structural scheme of the piezoactuator for 
longitudinal, transverse, shift piezoelectric effects at voltage control 
converts to the general structural scheme of the piezoactuator for 
aeronautics and aerospace with the replacement of the following 
parameters:

3 3 1, ,m E E EΨ = , 33 31 15, ,mi d d dν = ,

33 11 55, ,E E E
ijs s s sΨ = , , ,l h bδ= .
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It is possible to construct the general structural model and scheme, 
the transfer functions in matrix form of the piezoengine, using the 
solutions of the wave equation of the piezoactuator and taking into 
account the features of the deformations actuator along the coordinate 
axes. The general structural model and scheme of the piezoengine after 
algebraic transformations are produced the transfer functions of the 
piezoengine. The piezoengine with the transverse piezoeffect compared 
to the piezoengine for the longitudinal piezoeffect provides greater 
range its displacement and less force.

 Conclusion
The general structural model model and the scheme of a 

piezoengine are obtained. The systems of equations are determined 
for the structural models of the piezoengines for aeronautics and 
aerospace. Using the obtained solutions of the wave equation 
and taking into account the features of the deformations along the 
coordinate axes, it is possible to construct the general structural model 
and scheme of a piezoengine for systems of adaptive optics and to 
describe its dynamic and static properties. The transfer functions in 
matrix form are described the deformations of the piezoengines during 
its operation as a part of systems of adaptive optics.

The general structural scheme and the transfer functions of a 
piezoengine for aeronautics and aerospace are obtained from the 
structural model of a piezoengine for the transverse, longitudinal, 
shift piezoelectric effects. The displacement matrix is founded. The 
parameters of the piezoengine at the voltage control are determined for 
aeronautics and aerospace. The static and dynamic characteristics of 
the PZT piezoengine are obtained.
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