Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 6 Issue 2

Design of non-zero dispersion shifted fiber with large effective area based on variational method

Faramarz E Seraji, Ali Emami, Niloofar Pakzad Afshar

Optical Communication Group, Communication Technology Dept, Iran Telecom Research Center, Iran

Correspondence: Faramarz E. Seraji, Optical Communication Group, Communication Technology Dept, Iran Telecom Research Center, Tehran, Iran

Received: November 18, 2021 | Published: April 21, 2022

Citation: Seraji FE, Emami A, Afshar NP. Design of non-zero dispersion shifted fiber with large effective area based on variational method. Phys Astron Int J. 2022;6(2):31-36. DOI: 10.15406/paij.2022.06.00247

Download PDF

Abstract

The determination of design parameters of large effective area fiber with segmented-core profile is presented by using simple variational method to obtain the effective area, mode field diameter, and dispersion of the fiber. The designed fiber has a large effective area of 171.1 μ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaGITb WaaWbaaSqabeaacaGIYaaaaaaa@3B5C@ with mode field diameter, dispersion, and normalized cut off frequency of 9.7 μm, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaGITb GaaOilaaaa@38E9@  2.85 ps/nm.km, 2.491, respectively. The results have shown that the fiber with a bending radius of 35 mm, has a very low bending loss of 0.0053 dB/km. The calculated of parameters values of designed non-zero dispersion-shifted fiber (NZDSF) have shown that with a segmented-core profile of radius 3.5 μm, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaGITb GaaOilaaaa@38E9@  with a ring width of 0.2 μm, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaGITb GaaOilaaaa@38E9@  the core effective area A eff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B74@ increases from 152.3 μ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaGITb WaaWbaaSqabeaacaGIYaaaaaaa@3B5C@  to 189 μ m 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaGITb WaaWbaaSqabeaacaGIYaaaaOGaaiilaaaa@3C16@  which in practical point of view, is an achievement to reduce the nonlinearity effects in the NZDSF as transmission medium.

Keywords: NZDSF design, Large effective area fiber, Variational method

Introduction

To fulfill the rapid growth of bandwidth requirements in different fiber optic communication system applications, wavelength division multiplexing (WDM), dense wavelength division multiplexing (DWDM) systems, and fiber-to-the home (FTTH) networks have been introduced to employ newly designed optical fibers for better performance and reliabilities of high bit rate optical networks1 and long haul transmission optical systems.2-6 To increase the channel bit rate in a long haul transmission, the fiber nonlinearity effects should be avoided recommended by.7-10 Recent years, new fiber designs and further work have been introduced in high-capacity WDM transmission systems so as to minimize the nonlinearity effects and reduce down the signal distortion.11-18 In another work, a triangular segmented-core dispersion-shifted fibers was designed and fabricated with effective areas more than 80 µm2 which was later enhanced to about 90 µm2 by using a dual-ring profile.19

One of the popular fiber design, termed as Non-Zero Dispersion Shifted Fibers (NZDSF), operates in longer wavelength regions of 1530 to 1565 nm.20 A newer version of NZDSF is a large effective area fiber (LEAF), which provides greater effective area with a better performance compared with the previous NZDSF designs. It is shown that employing fibers with effective areas of 70 μm2 to 90 μm2 would increase the amplifier spacing considerably in comparison to systems using conventional 50 μm2 fibers.21

For the LEAF, different profiles are considered, e.g., Gaussian profile with ring,12 triangular–core profile with single ring and with dual ring,20 and depressed core triple-clad or quadruple-clad profile.22 The effective area, which could be obtained, ranges from 78 μm2 to 210 μm2.23 To minimize the dispersion penalty, the total dispersion should be small.24 Thus the concept of NZDSF was proposed.25-28 Typical dispersion value for NZDSFs is in the range of 3-8 ps/nm/km at 1550 nm with an effective area of about 50 μm2.29-32 NZDSFs have been widely deployed worldwide for high capacity WDM networks. Since the nonlinear effects are inversely proportional to the effective area of fiber, increasing the effective area will reduce further the nonlinear effects. To increase the effective area, different profiles designs with maximum large effective area of about 95 μm2 , 100 μm2, 100 μm2,150 μm2 were developed30,33 and fabricated34,35 respectively.

A design of depressed clad graded index NZDSF fiber with/without a central dip in the refractive index profile is reported, using the spot size optimization technique, by changing different fiber profile parameters to study the performance characteristics of the proposed NZDSF. By suitably adjusting these parameters, the obtained effective core area was about 80 μm2.36 In our previous attempt, we designed NZDSF fiber profile to reduce the positive dispersion and to enhance the negative dispersion. The obtained negative dispersion at 1550 nm wavelength were -528, -660, -710 ps/nm.km, from step-, triangular-, and exponential-index profiles, respectively.37

In later designs of NZDSFs, we have attempted to optimize theoretically the structural parameters of NZDSFs to improve the latency of optical networks such as internet of things (IoT), along with minimization of macro-bending losses of the designed fibers.38-41 In some particular cases the latencies were improved to 0.002 38 and 0.016.39

In this paper determination of design parameters for NZDSF of large effective area with a segmented-core profile with a raised ring is presented by using variational method based on Gaussian approximation for obtaining the effective area and other parameters of the designed fiber. We will show that with such a profile, if the parameters of the ring are determined appropriately, by using variational method, one can obtain enough large effective area for the LEAF fiber. We will show that among other parameters, the effective area is strongly dependent on the rate of evanescent field and the ring distance from the core. Our calculation have shown that the design values for the profile and variational parameters, such as values of the effective area, the mode field diameter (MFD), and the dispersion can be obtained with a simple mathematical calculations.

Index profile formulation

Let us consider a segmented-core profile with a raised ring located in the cladding in the vicinity of the core with a distance of p from the center, as shown in Figure 1.41 Mathematically, the profile of the fiber may be written as:

Figure 1 Segmented-core refractive index profile.

n 1 (R)={ n 1 2 (12 Δ 1 R),R1 n 3 2 (12 Δ 2 ),1<Rp n 3 2 ,p<Rp+q n 3 2 (12 Δ 2 ),p+q<R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaSbaaS qaaiaaigdaaeqaaOGaaiikaiaadkfacaGGPaGaeyypa0Zaaiqaaqaa beqaaiaad6gadaqhaaWcbaGaaGymaaqaaiaaikdaaaGccaGGOaGaaG ymaiabgkHiTiaaikdacqqHuoardaWgaaWcbaGaaGymaaqabaGccaWG sbGaaiykaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadk facqGHKjYOcaaIXaaabaGaamOBamaaDaaaleaacaaIZaaabaGaaGOm aaaakiaacIcacaaIXaGaeyOeI0IaaGOmaiabfs5aenaaBaaaleaaca aIYaaabeaakiaacMcacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaigdacqGH8aapcaWGsbGaeyizImQaamiCaa qaaiaad6gadaqhaaWcbaGaaG4maaqaaiaaikdaaaGccaGGSaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caWGWbGaeyipaWJaamOuaiabgsMiJkaadchacqGHRaWkcaWG XbaabaGaamOBamaaDaaaleaacaaIZaaabaGaaGOmaaaakiaacIcaca aIXaGaeyOeI0IaaGOmaiabfs5aenaaBaaaleaacaaIYaaabeaakiaa cMcacaGGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam iCaiabgUcaRiaadghacqGH8aapcaWGsbaaaiaawUhaaaaa@B6C3@   (1)

where R=ρ/a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbGaeyypa0 JaeqyWdiNaai4laiaadggaaaa@3CF8@  in which a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbaaaa@38A8@  and ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHbpGCaaa@3982@  are fiber core radius and the distance from the radius, respectively, and Δ 1 ( n 1 n 2 )/ n 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqqHuoardaWgaa WcbaGaaGymaaqabaGccqGHfjcqcaGGOaGaamOBamaaBaaaleaacaaI XaaabeaakiabgkHiTiaad6gadaWgaaWcbaGaaGOmaaqabaGccaGGPa Gaai4laiaad6gadaWgaaWcbaGaaGymaaqabaGccaGGSaaaaa@44A2@   Δ 2 ( n 3 n 2 )/ n 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqqHuoardaWgaa WcbaGaaGOmaaqabaGccqGHfjcqcaGGOaGaamOBamaaBaaaleaacaaI ZaaabeaakiabgkHiTiaad6gadaWgaaWcbaGaaGOmaaqabaGccaGGPa Gaai4laiaad6gadaWgaaWcbaGaaG4maaqabaGccaGGSaaaaa@44A7@  are the respective relative index heights of the core and the ring, and q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbaaaa@38B8@   n 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaSbaaS qaaiaaigdaaeqaaOGaaiilaaaa@3A56@   n 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaSbaaS qaaiaaikdaaeqaaOGaaiilaaaa@3A56@   n 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaSbaaS qaaiaaiodaaeqaaaaa@399D@  are width of the ring, refractive indices of core, cladding, and ring, respectively.

The fundamental mode field with a Gaussian function near and far from the fiber center is defined as:42,43

F(R)={ exp( γ R 2 / R 0 2 ),R R 0 ( R 0 /R) exp[ (γ1/2)( 2γ1/2 )(R/ R 0 ) ],R R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGgbGaaiikai aadkfacaGGPaGaeyypa0ZaaiqaaqaabeqaaiGacwgacaGG4bGaaiiC amaabmaabaGaeyOeI0Iaeq4SdCMaaGPaVlaadkfadaahaaWcbeqaai aaikdaaaGccaGGVaGaamOuamaaDaaaleaacaaIWaaabaGaaGOmaaaa aOGaayjkaiaawMcaaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaamOuaiabgsMiJkaadkfadaWgaaWcbaGaaGimaaqabaaakeaa daGcaaqaaiaacIcacaWGsbWaaSbaaSqaaiaaicdaaeqaaOGaai4lai aadkfacaGGPaaaleqaaOGaaGPaVlaaykW7ciGGLbGaaiiEaiaaccha daWadaqaaiaacIcacqaHZoWzcqGHsislcaaIXaGaai4laiaaikdaca GGPaGaeyOeI0YaaeWaaeaacaaIYaGaeq4SdCMaeyOeI0IaaGymaiaa c+cacaaIYaaacaGLOaGaayzkaaGaaGPaVlaacIcacaWGsbGaai4lai aadkfadaWgaaWcbaGaaGimaaqabaGccaGGPaaacaGLBbGaayzxaaGa aGPaVlaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadkfacq GHLjYScaWGsbWaaSbaaSqaaiaaicdaaeqaaaaakiaawUhaaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7aaa@FEBF@   (2)

where γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHZoWzaaa@3728@  and R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaaicdaaeqaaaaa@373E@  are constants for a given fiber and are found by minimizing the eigenvalue and obtaining a dimensionless parameters as:44

U 2 = V 2 0 R F 2 (R)g(R)dR+ 0 R( dF/ dR ) 2 dR 0 R F 2 (R)dR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbWaaWbaaS qabeaacaaIYaaaaOGaeyypa0ZaaSaaaeaacaWGwbWaaWbaaSqabeaa caaIYaaaaOWaa8qmaeaacaaMc8UaaGPaVlaaykW7caWGsbGaaGPaVl aadAeadaahaaWcbeqaaiaaikdaaaGccaGGOaGaamOuaiaacMcacaaM c8Uaam4zaiaacIcacaWGsbGaaiykaiaaykW7caWGKbGaamOuaiaayk W7caaMc8UaaGPaVlaaykW7cqGHRaWkcaaMc8UaaGPaVlaaykW7daWd XaqaaiaaykW7caWGsbGaaGPaVpaabmaabaWaaSGbaeaacaWGKbGaam OraaqaaiaadsgacaWGsbaaaaGaayjkaiaawMcaaaWcbaGaaGPaVlaa icdaaeaacaaMc8UaeyOhIukaniabgUIiYdGcdaahaaWcbeqaaiaaik daaaGccaaMc8UaamizaiaadkfacaaMc8oaleaacaaMc8UaaGimaaqa aiaaykW7cqGHEisPa0Gaey4kIipaaOqaamaapedabaGaamOuaiaayk W7caWGgbWaaWbaaSqabeaacaaIYaaaaOGaaiikaiaadkfacaGGPaGa aGPaVlaadsgacaWGsbGaaGPaVdWcbaGaaGPaVlaaicdaaeaacaaMc8 UaeyOhIukaniabgUIiYdaaaaaa@8B45@   (3)

where V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGwbaaaa@389C@  and g(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbGaaiikai aadkfacaGGPaaaaa@3ADD@ are the normalized frequency and profile function, respectively. From Figure 1, we define the function g(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbGaaiikai aadkfacaGGPaaaaa@3ADD@ and its integral as follows:

g(R)={ RR1 11<Rp 0p<Rp+q 1p+q<R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGNbGaaiikai aadkfacaGGPaGaeyypa0ZaaiqaaqaabeqaaiaadkfacaaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaamOuaiabgsMiJkaaigdaaeaacaaIXaGaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGymaiabgYda8iaadkfacqGHKjYOcaWGWbaabaGaaGimaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaamiCaiabgYda8iaadkfacqGHKjYOcaWGWbGa ey4kaSIaamyCaiaaykW7caaMc8oabaGaaGymaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaadchacqGHRaWkcaWGXbGaeyipaWJaamOuaaaacaGL7b aaaaa@9D13@ , dg(R) dR ={ 1R1 01<Rp δ(pR)p<Rp+q δ(p+qR)p+q<R MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiaads gacaWGNbGaaiikaiaadkfacaGGPaaabaGaamizaiaadkfaaaGaeyyp a0ZaaiqaaqaabeqaaiaaykW7caaIXaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadkfacqGHKj YOcaaIXaaabaGaaGPaVlaaicdacaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaIXaGaeyipaWJaamOuaiab gsMiJkaadchaaeaacaaMc8UaeqiTdqMaaiikaiaadchacaaMc8Uaey OeI0IaaGPaVlaadkfacaGGPaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caWGWbGaeyipaWJaamOuaiab gsMiJkaadchacqGHRaWkcaWGXbGaaGPaVdqaaiaaykW7cqaH0oazca GGOaGaamiCaiabgUcaRiaadghacqGHsislcaWGsbGaaiykaiaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aadchacqGHRaWkcaWGXbGaeyipaWJaamOuaaaacaGL7baaaaa@FD47@   (4)

where δ(p) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH0oazcaGGOa GaamiCaiaacMcaaaa@3BB4@  and δ(p+q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH0oazcaGGOa GaamiCaiabgUcaRiaadghacaGGPaaaaa@3D8C@  are delta Dirac functions at the beginning and end of the ring, respectively. In variational method, the value of U MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGvbaaaa@389B@ in equ. (3) should be minimized, which is equivalent to equating the parameter W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGxbaaaa@389D@  to zero as follows:42

W= K V 2 0 R 2 ( dg(R)/ dR ) F 2 (R) dR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGxbGaeyypa0 ZaaSaaaeaacaWGlbaabaGaamOvamaaCaaaleqabaGaaGOmaaaaaaGc cqGHsislcaaMc8+aa8qmaeaacaaMc8UaamOuamaaCaaaleqabaGaaG OmaaaakiaaykW7daqadaqaamaalyaabaGaamizaiaadEgacaGGOaGa amOuaiaacMcaaeaacaWGKbGaamOuaaaaaiaawIcacaGLPaaacaaMc8 UaamOramaaCaaaleqabaGaaGOmaaaakiaacIcacaWGsbGaaiykaaWc baGaaGPaVlaaicdaaeaacaaMc8UaeyOhIukaniabgUIiYdGccaaMc8 Uaamizaiaadkfaaaa@5B45@   (5)

in which K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGlbaaaa@3891@  is defined as:

K=2 0 R ( dF(R)/ dR ) 2 dR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGlbGaeyypa0 JaaGPaVlaaikdacaaMc8+aa8qmaeaacaaMc8UaamOuaiaaykW7daqa daqaamaalyaabaGaamizaiaadAeacaGGOaGaamOuaiaacMcaaeaaca WGKbGaamOuaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGc caWGKbGaamOuaaWcbaGaaGPaVlaaicdaaeaacaaMc8UaeyOhIukani abgUIiYdaaaa@52B6@   (6)

By applying the modified Gaussian approximation, K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGlbaaaa@3891@ can be written as:

K=1exp(2γ)+( 2γ1/2 )exp( 2γ1 ) E 1 ( 4γ1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGlbGaeyypa0 JaaGPaVlaaigdacqGHsislcaaMc8UaciyzaiaacIhacaGGWbGaaiik aiabgkHiTiaaikdacqaHZoWzcaGGPaGaey4kaSIaaGPaVpaabmaaba GaaGOmaiabeo7aNjabgkHiTiaaigdacaGGVaGaaGOmaaGaayjkaiaa wMcaaiaaykW7ciGGLbGaaiiEaiaacchadaqadaqaaiaaikdacqaHZo WzcqGHsislcaaIXaaacaGLOaGaayzkaaGaaGPaVlaadweadaWgaaWc baGaaGymaaqabaGcdaqadaqaaiaaisdacqaHZoWzcqGHsislcaaIXa aacaGLOaGaayzkaaaaaa@621F@   (7)

where E 1 ( 4γ1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaSbaaS qaaiaaigdaaeqaaOWaaeWaaeaacaaI0aGaeq4SdCMaeyOeI0IaaGym aaGaayjkaiaawMcaaaaa@3F12@  is an incomplete Gamma function given as:45

E 1 ( 4γ1 )= 4γ1 e x x dx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaSbaaS qaaiaaigdaaeqaaOWaaeWaaeaacaaI0aGaeq4SdCMaeyOeI0IaaGym aaGaayjkaiaawMcaaiabg2da9iaaykW7daWdXaqaaiaaykW7daWcaa qaaiaadwgadaahaaWcbeqaaiabgkHiTiaadIhaaaaakeaacaWG4baa aiaaykW7caWGKbGaamiEaaWcbaGaaGPaVlaaykW7caaI0aGaeq4SdC MaeyOeI0IaaGymaaqaaiaaykW7cqGHEisPa0Gaey4kIipaaaa@56FF@   (8)

Figure 2 shows the variation of K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGlbaaaa@3891@  in terms of variational parameter γ. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajaaOcqaHZoWzki aac6caaaa@3ACD@  

It is shown that for values of γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajaaOcqaHZoWzaa a@3A11@  greater than unity, K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajaaOcaWGlbaaaa@393A@ takes nearly constant values. On the other hand, equ. (2) shows that for a evanescent wave function in the cladding, we should have (2γ1/2)>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaGOmai abeo7aNjabgkHiTiaaigdacaGGVaGaaGOmaiaacMcacqGH+aGpcaaI Waaaaa@4056@ , i.e., γ>1/4. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHZoWzcqGH+a GpcaaIXaGaai4laiaaisdacaGGUaaaaa@3D4E@ Thus, from Figure 2 for every value of K, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGlbGaaiilaa aa@3701@ γ greater than unity, for almost constant value of K, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGlbGaaiilaa aa@3701@  γ should satisfy the inequality 1/4<γ<1. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaaIXaGaai4lai aaisdacqGH8aapjaaOcqaHZoWzkiabgYda8iaaigdacaGGUaaaaa@3FBC@

Figure 2 The Variations of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGlbaaaa@3632@ with respect to γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajaaOcqaHZoWzaa a@3A12@ .42

From F(R) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGgbGaaiikai aadkfacaGGPaaaaa@3ABC@  in equ. (2), we can determine the effective area A eff , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaGccaGGSaaaaa@3C2D@  the MFD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@37D7@ , the normalized cutoff frequency V c , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaSbaaK qaGgaacaWGJbaaleqaaOGaaiilaaaa@3B14@  and the bending loss R c , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaK qaahaacaWGJbaaleqaaOGaaiilaaaa@3B30@  by using the following equations:43,46

A eff = 2π [ 0 F 2 (R)RdR ] 2 0 F 4 (R)RdR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaGccqGH9aqpdaWcaaqaaiaaikda cqaHapaCdaWadaqaamaapedabaGaaGPaVlaadAeadaahaaWcbeqaai aaikdaaaGccaGGOaGaamOuaiaacMcacaaMc8UaamOuaiaaykW7caWG KbGaamOuaaWcbaGaaGPaVlaaicdaaeaacaaMc8UaeyOhIukaniabgU IiYdaakiaawUfacaGLDbaadaahaaWcbeqaaiaaikdaaaaakeaadaWd XaqaaiaaykW7caWGgbWaaWbaaSqabeaacaaI0aaaaOGaaiikaiaadk facaGGPaGaaGPaVlaadkfacaaMc8UaamizaiaadkfaaSqaaiaaykW7 caaIWaaabaGaaGPaVlabg6HiLcqdcqGHRiI8aaaaaaa@671D@ , MFD=2 2 [ 0 F 2 (R)RdR 0 ( dF(R)/dR ) 2 RdR ] 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbGaamOrai aadseacqGH9aqpcaaIYaWaaOaaaeaacaaIYaaaleqaaOWaamWaaeaa daWcaaqaamaapedabaGaaGPaVlaadAeadaahaaWcbeqaaiaaikdaaa GccaGGOaGaamOuaiaacMcacaaMc8UaamOuaiaaykW7caWGKbGaamOu aaWcbaGaaGPaVlaaicdaaeaacaaMc8UaeyOhIukaniabgUIiYdaake aadaWdXaqaaiaaykW7daqadaqaaiaadsgacaWGgbGaaiikaiaadkfa caGGPaGaai4laiaadsgacaWGsbaacaGLOaGaayzkaaWaaWbaaSqabe aacaaIYaaaaOGaaGPaVlaadkfacaaMc8UaamizaiaadkfaaSqaaiaa ykW7caaIWaaabaGaaGPaVlabg6HiLcqdcqGHRiI8aaaaaOGaay5wai aaw2faamaaCaaaleqabaGaaGymaiaac+cacaaIYaaaaaaa@6B3C@   (9)

V c =2.405 { 2 0 [ 1g(R)RdR ] } 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaSbaaK qaGgaacaWGJbaaleqaaOGaeyypa0JaaGOmaiaac6cacaaI0aGaaGim aiaaiwdacaaMc8+aaiWaaeaacaaIYaGaaGPaVpaapedabaWaamWaae aacaaIXaGaeyOeI0Iaam4zaiaacIcacaWGsbGaaiykaiaaykW7caWG sbGaaGPaVlaadsgacaWGsbaacaGLBbGaayzxaaaaleaacaaMc8UaaG imaaqaaiaaykW7cqGHEisPa0Gaey4kIipaaOGaay5Eaiaaw2haamaa CaaaleqabaGaaGymaiaac+cacaaIYaaaaaaa@5B40@ , α b = π κ 2 exp{ 2 3 R γ 3 β 2 } 2 γ 3/2 V 2 R c { K 1 ( γa ) } 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHXoqydaWgaa qcbaAaaiaadkgaaSqabaGccqGH9aqpdaWcaaqaamaakaaabaGaeqiW dahaleqaaOGaaGPaVlaaykW7cqaH6oWAdaahaaWcbeqaaiaaikdaaa GcciGGLbGaaiiEaiaacchadaGadaqaaiabgkHiTmaalaaabaGaaGOm aaqaaiaaiodaaaGaaGPaVlaadkfacaaMc8+aaSaaaeaacqaHZoWzda ahaaWcbeqaaiaaiodaaaaakeaacqaHYoGydaahaaWcbeqaaiaaikda aaaaaaGccaGL7bGaayzFaaaabaGaaGOmaiabeo7aNnaaCaaaleqaba GaaG4maiaac+cacaaIYaaaaOGaaGPaVlaadAfadaahaaWcbeqaaiaa ikdaaaGccaaMc8+aaOaaaeaacaWGsbWaaSbaaSqaaiaadogaaeqaaa qabaGccaaMc8+aaiWaaeaacaWGlbWaaSbaaSqaaiaaigdaaeqaaOWa aeWaaeaacqaHZoWzcaaMc8UaamyyaaGaayjkaiaawMcaaaGaay5Eai aaw2haamaaCaaaleqabaGaaGOmaaaaaaaaaa@6C3E@

where a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajaaOcaWGHbaaaa@3950@  is the fiber radius, β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaHYoGyaaa@3962@ is the propagation constant, V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGwbaaaa@389C@ is the normalized frequency, κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH6oWAaaa@3973@ and γ are constant related to β, and K 1 (γa) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGlbWaaSbaaS qaaiaaigdaaeqaaOGaaiikaiabeo7aNjaadggacaGGPaaaaa@3D68@  represents the modified Bessel function.

For the chosen fiber profile, the variation of refractive index with respect to wavelength obtained by three-term Sellmeier formula, is determined by assuming 19.3% GeO2 for the core, 10.5% P2O5 for the ring indices, and a pure silica for the cladding region as follows:47

n 2 (λ)=1+ b 1 λ 2 λ 2 a 1 + b 2 λ 2 λ 2 a 2 + b 3 λ 2 λ 2 a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGUbWaaWbaaS qabeaacaaIYaaaaOGaaiikaiabeU7aSjaacMcacqGH9aqpcaaMc8Ua aGymaiaaykW7cqGHRaWkcaaMc8+aaSaaaeaacaWGIbWaaSbaaSqaai aaigdaaeqaaOGaaGPaVlabeU7aSnaaCaaaleqabaGaaGOmaaaaaOqa aiabeU7aSnaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadggadaWgaa WcbaGaaGymaaqabaaaaOGaey4kaSIaaGPaVpaalaaabaGaamOyamaa BaaaleaacaaIYaaabeaakiaaykW7cqaH7oaBdaahaaWcbeqaaiaaik daaaaakeaacqaH7oaBdaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG HbWaaSbaaSqaaiaaikdaaeqaaaaakiabgUcaRiaaykW7daWcaaqaai aadkgadaWgaaWcbaGaaG4maaqabaGccaaMc8Uaeq4UdW2aaWbaaSqa beaacaaIYaaaaaGcbaGaeq4UdW2aaWbaaSqabeaacaaIYaaaaOGaey OeI0IaamyyamaaBaaaleaacaaIZaaabeaaaaaaaa@6B5D@   (10)

where a 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaigdaaeqaaOGaaiilaaaa@3A48@ a 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaaiilaaaa@3A49@ a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiodaaeqaaaaa@3990@  and b 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaiaaigdaaeqaaOGaaiilaaaa@3A49@ b 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaiaaikdaaeqaaOGaaiilaaaa@3A4A@ b 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaiaaiodaaeqaaaaa@3991@ are Sellmeier coefficients, and λ denotes the wavelength. Then one can find β in terms of wavelength and thus calculate the total dispersion as:46

D T = λ 2πc ( 2 dβ dλ +λ d 2 β d λ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGebWaaSbaaS qaaiaaykW7caWGubaabeaakiabg2da9iaaykW7cqGHsisldaWcaaqa aiabeU7aSbqaaiaaikdacqaHapaCcaaMc8Uaam4yaaaadaqadaqaai aaykW7caaIYaWaaSaaaeaacaWGKbGaeqOSdigabaGaamizaiabeU7a SbaacaaMc8Uaey4kaSIaaGPaVlabeU7aSnaalaaabaGaamizamaaCa aaleqabaGaaGOmaaaakiabek7aIbqaaiaadsgacqaH7oaBdaahaaWc beqaaiaaykW7caaIYaaaaaaaaOGaayjkaiaawMcaaaaa@5CAD@   (11)

where c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGJbaaaa@38A9@  is the velocity of light in vacuum and λ denotes the operating wavelength. In Table 1, values of the coefficient in Sellmeier's formula for pure and doped silica are presented and the corresponding variations of d 2 n/d λ 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaGaamizamaaCa aaleqabaGaaGOmaaaakiaad6gacaGGVaGaamizaiabeU7aSnaaDaaa leaacaaIWaaabaGaaGOmaaaaaaa@3D96@  are illustrated in Figure 3.48 It is shown that the doping slightly changes the ZMDW.48

Samples: Dopants

(Mole%)

A: Pure SiO2

B: GeO2 (19.3%)

C: P2O5 (10.5%)

a1

0.004679148

0.005847345

0.005202431

a2

0.01351206

0.01552717

0.01287730

a3

97.93400

97.93484

97.93401

b1

0.6961663

0.7347008

0.7058489

b2

0.4079426

0.4461191

0.4176021

b3

0.8974794

0.8081698

0.8952753

Table 1 Values of coefficient in Sellmeier's formula for pure and doped silica48

Figure 3 Variation of d 2 n/d λ 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGKbWaaWbaaS qabeaacaaIYaaaaOGaamOBaiaac+cacaWGKbGaeq4UdW2aa0baaSqa aiaaicdaaeaacaaIYaaaaaaa@3F84@ for pure and doped silica. Curve indicators A to C: correspond various samples given in Table 1.

Determination of design parameters

We assume that the propagating wave is a modified Gaussian function. If R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaaicdaaeqaaaaa@373E@  is used in the core region, then we can write from equs. (7) and (11) as:

W= K V 2 0 R 0 R 2 exp( 2γ R 2 / R 0 2 )dR R 0 1 R R 0 exp [ 2γ1( 4γ1 )R/ R 0 ]dR p R 0 exp[ 2γ1( 4γ1 )R/ R 0 ]( p+q ) R 0 exp[ 2γ1( 4γ1 )R/ R 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakqaabeqaaiaadEfacq GH9aqpdaWcaaqaaiaadUeaaeaacaWGwbWaaWbaaSqabeaacaaIYaaa aaaakiabgkHiTmaapedabaGaamOuamaaCaaaleqabaGaaGOmaaaaki aaykW7ciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTiaaikdacqaH ZoWzcaWGsbWaaWbaaSqabeaacaaIYaaaaOGaai4laiaadkfadaqhaa WcbaGaaGimaaqaaiaaikdaaaaakiaawIcacaGLPaaacaaMc8Uaamiz aiaadkfacaaMc8UaeyOeI0caleaacaaMc8UaaGimaaqaaiaaykW7ca WGsbWaaSbaaWqaaiaaicdaaeqaaaqdcqGHRiI8aOGaaGPaVpaapeda baGaamOuaiaaykW7caWGsbWaaSbaaSqaaiaaicdaaeqaaOGaciyzai aacIhacaGGWbaaleaacaWGsbWaaSbaaWqaaiaaicdaaeqaaaWcbaGa aGymaaqdcqGHRiI8aOWaamWaaeaacaaMc8UaaGOmaiabeo7aNjabgk HiTiaaigdacqGHsisldaqadaqaaiaaisdacqaHZoWzcqGHsislcaaI XaaacaGLOaGaayzkaaGaamOuaiaac+cacaWGsbWaaSbaaSqaaiaaic daaeqaaaGccaGLBbGaayzxaaGaaGPaVlaadsgacaWGsbaabaGaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaeyOeI0IaaGPaVlaadchacaWGsbWaaSbaaSqaaiaaicdaaeqaaOGa aGPaVlGacwgacaGG4bGaaiiCamaadmaabaGaaGPaVlaaikdacqaHZo WzcqGHsislcaaIXaGaeyOeI0YaaeWaaeaacaaI0aGaeq4SdCMaeyOe I0IaaGymaaGaayjkaiaawMcaaiaadkfacaGGVaGaamOuamaaBaaale aacaaIWaaabeaaaOGaay5waiaaw2faaiaaykW7caaMc8UaeyOeI0Ya aeWaaeaacaWGWbGaey4kaSIaamyCaaGaayjkaiaawMcaaiaadkfada WgaaWcbaGaaGimaaqabaGccaaMc8UaciyzaiaacIhacaGGWbWaamWa aeaacaaMc8UaaGOmaiabeo7aNjabgkHiTiaaigdacqGHsisldaqada qaaiaaisdacqaHZoWzcqGHsislcaaIXaaacaGLOaGaayzkaaGaamOu aiaac+cacaWGsbWaaSbaaSqaaiaaicdaaeqaaaGccaGLBbGaayzxaa GaaGPaVdaaaa@C706@   (12)

A eff = 2π R 0 2 a 1 2 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaGccqGH9aqpdaWcaaqaaiaaikda cqaHapaCcaaMc8UaamOuamaaDaaaleaacaaIWaaabaGaaGOmaaaaki aaykW7caWGHbWaa0baaSqaaiaaigdaaeaacaaIYaaaaaGcbaGaamyy amaaBaaaleaacaaIYaaabeaaaaaaaa@4908@ MFD= 2 R 0 2 a 1 a 3 a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbGaamOrai aadseacqGH9aqpdaWcaaqaaiaaikdacaWGsbWaaSbaaSqaaiaaicda aeqaaOWaaOaaaeaacaaMc8UaaGOmaiaaykW7caWGHbWaaSbaaSqaai aaigdaaeqaaOGaamyyamaaBaaaleaacaaIZaaabeaaaeqaaaGcbaGa amyyamaaBaaaleaacaaIZaaabeaaaaaaaa@4721@ , V c =2.405 ( 1/3+ q 2 +2pq ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaSbaaS qaaiaadogaaeqaaOGaeyypa0JaaGOmaiaac6cacaaI0aGaaGimaiaa iwdacaaMc8+aaeWaaeaacaaIXaGaai4laiaaiodacqGHRaWkcaWGXb WaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiaadchacaWGXbaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIXaGaai4laiaaikdaaaaaaa@4C4F@   (13)

where a 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaigdaaeqaaOGaaiilaaaa@3A48@ a 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaaiilaaaa@3A49@ and a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiodaaeqaaaaa@3990@ are given as follows:

a 1 = 1exp(2γ) 4γ + exp(2γ) 4γ1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaigdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaGaeyOeI0Iaciyz aiaacIhacaGGWbGaaiikaiabgkHiTiaaikdacqaHZoWzcaGGPaaaba GaaGinaiaaykW7cqaHZoWzaaGaey4kaSYaaSaaaeaaciGGLbGaaiiE aiaacchacaGGOaGaeyOeI0IaaGOmaiabeo7aNjaacMcaaeaacaaI0a GaaGPaVlabeo7aNjabgkHiTiaaigdaaaaaaa@55D8@ , a 2 = 1exp(4γ) 8γ +exp(4γ2) E 1 (8γ2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaGaeyOeI0Iaciyz aiaacIhacaGGWbGaaiikaiabgkHiTiaaisdacqaHZoWzcaGGPaaaba GaaGioaiaaykW7cqaHZoWzaaGaey4kaSIaciyzaiaacIhacaGGWbGa aiikaiaaisdacqaHZoWzcqGHsislcaaIYaGaaiykaiaadweadaWgaa WcbaGaaGymaaqabaGccaGGOaGaaGioaiabeo7aNjabgkHiTiaaikda caGGPaaaaa@581B@ ,

a 3 = 1 2 + 1exp(2γ) 2 + (4γ1)exp(2γ1) 4 E 1 (4γ1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaa cqGHRaWkdaWcaaqaaiaaigdacqGHsislciGGLbGaaiiEaiaacchaca GGOaGaeyOeI0IaaGOmaiabeo7aNjaacMcaaeaacaaIYaaaaiabgUca RmaalaaabaGaaiikaiaaisdacqaHZoWzcqGHsislcaaIXaGaaiykai GacwgacaGG4bGaaiiCaiaacIcacaaIYaGaeq4SdCMaeyOeI0IaaGym aiaacMcaaeaacaaI0aaaaiaadweadaWgaaWcbaGaaGymaaqabaGcca GGOaGaaGinaiabeo7aNjabgkHiTiaaigdacaGGPaaaaa@5D77@   (14)

in which E 1 (4γ1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaSbaaS qaaiaaigdaaeqaaOGaaiikaiaaisdacqaHZoWzcqGHsislcaaIXaGa aiykaaaa@3EE2@ and E 1 (8γ2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaSbaaS qaaiaaigdaaeqaaOGaaiikaiaaiIdacqaHZoWzcqGHsislcaaIYaGa aiykaaaa@3EE7@ are incomplete Gamma functions and are evaluated by numerical integrations.

Numerical values and discussions

With reference to Figure 1, for every chosen values of p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@38B6@ and q, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbGaaiilaa aa@3967@ the values of V c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaSbaaK qaGgaacaWGJbaaleqaaaaa@3A5A@ should be greater than the calculated normalized frequency. The variations of V c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaSbaaK qaGgaacaWGJbaaleqaaaaa@3A5A@ in terms of p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@38B6@ and q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbaaaa@38B7@ are plotted in Figure 4, where the fiber radius is taken as 3.5μm.

Figure 4 The variations of V c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaSbaaK qaGgaacaWGJbaaleqaaaaa@3A5B@ as functions of (a) p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@38B7@ with q=0.18μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbGaeyypa0 JaaGimaiaac6cacaaIXaGaaGioaiaaykW7cqaH8oqBcaGITbaaaa@40E1@ and (b) q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbaaaa@3658@ with p=0.18μm. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbGaeyypa0 JaaGimaiaac6cacaaIXaGaaGioaiaaykW7cqaH8oqBcaGITbGaaiOl aaaa@4192@

From equ. (13), the effective area and the values of MFD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@37D7@  are directly evaluated in terms of variational parameters and are illustrated in Figure 5 respectively. The effective area A eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B73@ of the fiber strongly depends on γ values. Figure 5(a) indicates that for values of γ greater than 0.27, the A eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B73@ is less than that of NZDSF. Figure 5(b) shows that the MFD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@37D7@  depends on monotonically decreasing values of γ parameter.

Figure 5 Dependences of (a) A eff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B74@ on γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajaaOcqaHZoWzaa a@3A12@ and (b) MFD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@37C8@ on γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajaaOcqaHZoWzaa a@3A12@

On the other hand, A eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B73@ and MFD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@37D7@  increase when R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaaicdaaeqaaaaa@397E@ increases, as shown in Figure 6. According to Fig. 6(a), variational parameter R 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaaicdaaeqaaaaa@397E@ is a criterion for pulse spread. On calculations, the values of R 0 >0.6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaaicdaaeqaaOGaeyOpa4JaaGimaiaac6cacaaI2aaaaa@3CBC@  results in an MFD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@37D7@  of greater than 11 μm which outranges the value recommended by ITU-T standard. Therefore, based on curves of Figures 6(a) and 6(b), the values related to γ>0.27 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajaaOcqaHZoWzcq GH+aGpcaaIWaGaaiOlaiaaikdacaaI3aaaaa@3E02@ and R 0 >0.6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaaicdaaeqaaOGaeyOpa4JaaGimaiaac6cacaaI2aaaaa@3CBC@ are not considered further in our analysis.

Figure 6 The variations of (a) MFD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@37C8@ and (b) A eff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B74@ as functions of R 0 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaaicdaaeqaaOGaaiOlaaaa@3A3B@

In equ. (12), it is shown that the variations of W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGxbaaaa@389D@ directly depends on parameters such as R 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaaicdaaeqaaOGaaiilaaaa@3A38@ γ and the values of V, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGwbGaaiilaa aa@394C@ p, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbGaaiilaa aa@3966@ and q. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbGaaiOlaa aa@3969@ Thus, these parameters should be chosen in such a way to satisfy W=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGxbGaeyypa0 JaaGimaaaa@3A5D@ in equ. (12).

Figure 7 illustrates the quantity W MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGxbaaaa@389D@ in terms of R 0 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaaicdaaeqaaOGaaiilaaaa@3A38@ where other parameters are taken as γ=0.2665, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajaaOcqaHZoWzcq GH9aqpcaaIWaGaaiOlaiaaikdacaaI2aGaaGOnaiaaiwdacaGGSaaa aa@402E@ V=1.8, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGwbGaeyypa0 JaaGymaiaac6cacaaI4aGaaiilaaaa@3C81@ p=1.75μm, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbGaeyypa0 JaaGymaiaac6cacaaI3aGaaGynaiaaykW7cqaH8oqBcaGITbGaaiil aaaa@4193@  and q=0.2μm. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbGaeyypa0 JaaGimaiaac6cacaaIYaGaaGPaVlabeY7aTjaak2gacaGGUaaaaa@40D1@

Figure 7 Variation of W MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGxbaaaa@389E@ in terms of R 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaS qaaiaaicdaaeqaaaaa@397F@ with γ=0.2665, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajaaOcqaHZoWzcq GH9aqpcaaIWaGaaiOlaiaaikdacaaI2aGaaGOnaiaaiwdacaGGSaaa aa@402F@ V=1.8, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGwbGaeyypa0 JaaGymaiaac6cacaaI4aGaaiilaaaa@3C82@ p=1.75μm, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbGaeyypa0 JaaGymaiaac6cacaaI3aGaaGynaiaaykW7cqaH8oqBcaGITbGaaiil aaaa@41A3@ and q=0.2μm. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbGaeyypa0 JaaGimaiaac6cacaaIYaGaaGPaVlabeY7aTjaak2gacaGGUaaaaa@40D2@

In Figure 8, the variations of A eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B73@  and MFD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@37D7@  with respect to p, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbGaaiilaa aa@3727@  while q=0.2μm, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbGaeyypa0 JaaGimaiaac6cacaaIYaGaaGPaVlaaykW7cqaH8oqBcaGITbGaaiil aaaa@425A@  are plotted, respectively. These curves show that whenever p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@38B6@ varies between 1.5μm to 2.0 μm, A eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B73@ changes from 152.3 μ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaGITb WaaWbaaSqabeaacaGIYaaaaaaa@3B5B@  to 180 μ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaGITb WaaWbaaSqabeaacaGIYaaaaaaa@3B5B@ and the MFD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@37D7@  increase from 9.19μm  to 11.1μm respectively.

Figure 8 The variations of (a) A eff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B74@ and (b) MFD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@3A37@ as functions of p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@3657@ with q=0.2μm. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbGaeyypa0 JaaGimaiaac6cacaaIYaGaaGPaVlabeY7aTjaak2gacaGGUaaaaa@40D2@

Simultaneous consideration of the curves in Figure 8 reveals that although for a given value of p, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbGaaiilaa aa@3727@ A eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B73@  may be a maximum, but at the same time MFD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@3A27@ may exceed its upper standard limit. Thus the value of p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@3677@  should be chosen in such a way that both MFD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@3A27@ and A eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B73@ attain standard values.

Similarly, in Figure 9, the curves are plotted versus q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbaaaa@38B7@ while p=1.75μm. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbGaeyypa0 JaaGymaiaac6cacaaI3aGaaGynaiaaykW7caaMc8UaeqiVd0MaaOyB aiaac6caaaa@4320@ With the same reasoning, a design trade-off should be observed in this case, as well. Evaluation of Figures 8 and 9 show that A eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B73@  and MFD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@3A27@ are more sensitive to p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@38B6@ than to q, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbGaaiilaa aa@3967@ i.e., the ring distance from the core center and the ring width, respectively. The sensitivity of MFD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@3A27@ on p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@38B6@ variations is more than that of A eff . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaGccaGGUaaaaa@3C2F@

Figure 9 The variations of (a) A eff MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3914@ and (b) MFD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=xjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@3A37@ as functions of q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbaaaa@3658@ with p=1.75μm. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbGaeyypa0 JaaGymaiaac6cacaaI3aGaaGynaiaaykW7caaMc8UaeqiVd0MaaOyB aiaac6caaaa@4321@

Another parameter which is affected by p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@38B6@ and q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbaaaa@38B7@ variations, is the dispersion, as shown in Figure 10. In this case also, the variation of dispersion depends more on p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@38B6@  than on p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@38B6@ variations.

Figure 10 Dispersion (a) versus p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@3657@ with q=0.2μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbGaeyypa0 JaaGimaiaac6cacaaIYaGaaGPaVlabeY7aTjaak2gaaaa@4020@ and (b) versus q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbaaaa@3658@ with p=1.75μm. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbGaeyypa0 JaaGymaiaac6cacaaI3aGaaGynaiaaykW7caaMc8UaeqiVd0MaaOyB aiaac6caaaa@4321@

Bending loss is another parameter which is directly influenced by the height of the ring. To achieve a larger A eff , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaGccaGGSaaaaa@3C2D@ design parameters would change in such a way that MFD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@3A27@ and as a result, the bending loss increases, considerably. For this reason, a particular attention is needed to consider the bending loss as an important loss mechanism in the design procedure. In Figure 11, bending loss of the designed fiber is plotted versus the bending radius. The bending loss of 0.0053 dB/km is obtained against 35 mm bending radius by assuming q=0.2μm, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbGaeyypa0 JaaGimaiaac6cacaaIYaGaaGPaVlabeY7aTjaak2gacaGGSaaaaa@40CF@ p=1.75μm, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbGaeyypa0 JaaGymaiaac6cacaaI3aGaaGynaiaaykW7caaMc8UaeqiVd0MaaOyB aiaacYcaaaa@431E@ γ=0.2665, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaajaaOcqaHZoWzcq GH9aqpcaaIWaGaaiOlaiaaikdacaaI2aGaaGOnaiaaiwdacaGGSaaa aa@402E@ a=3.5μm, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGHbGaeyypa0 JaaG4maiaac6cacaaI1aGaaGPaVlabeY7aTjaak2gacaGISaaaaa@40CD@ and R 0 =0.565. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaSbaaK qaGfaacaaIWaaaleqaaOGaeyypa0JaaGimaiaac6cacaaI1aGaaGOn aiaaiwdacaGGUaaaaa@3F54@ The summary of the designed parameters compared with experimental values are given in Table 2.

Figure 11 Bending loss versus bending radius.

Figure 12 Designed segmented-core refractive index profile of NZDSF.

Parameters

Theoretical

Experimental

Δ 1 ( n 1 n 2 )/ n 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqqHuoardaWgaa WcbaGaaGymaaqabaGccqGHfjcqcaGGOaGaamOBamaaBaaaleaacaaI XaaabeaakiabgkHiTiaad6gadaWgaaWcbaGaaGOmaaqabaGccaGGPa Gaai4laiaad6gadaWgaaWcbaGaaGymaaqabaaaaa@43E8@  

0.01864

0.01490

Δ 2 ( n 3 n 2 )/ n 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqqHuoardaWgaa WcbaGaaGOmaaqabaGccqGHfjcqcaGGOaGaamOBamaaBaaaleaacaaI ZaaabeaakiabgkHiTiaad6gadaWgaaWcbaGaaGOmaaqabaGccaGGPa Gaai4laiaad6gadaWgaaWcbaGaaG4maaqabaaaaa@43EC@  

0.0046

0.0045

p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@38B8@ value

6.125μm

6.100μms

q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGXbaaaa@38B9@ value

0.70μm

0.92μm

V c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaSbaaK qaGgaacaWGJbaaleqaaaaa@3A5B@  

2.491

2.980

λ c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa qcbaAaaiaakogaaSqabaaaaa@3B3B@  

1175 nm

1216 nm

Core radius

3.5μm

3.25μm

Table 2 Theoretical and experimental values of some parameters of the designed NZDSF

Conclusion

We have determined the design parameters of a fiber with a segmented-core profile, having a raised side ring in the vicinity of the core. We have shown that the modified Gaussian approximation function with a simple calculation procedure can lead to a reasonable precision in evaluating the design parameters. We have determined the characteristic parameters of the ring, i.e., height, distance of the ring from the core center, and the ring width, by the variational method and designed a single mode fiber of large effective area with low bending loss of  0.0035 dB/km.

Among the calculated parameters values, the ring distance from the core axis and the rate of decaying field in modified Gaussian function create more sensitivity in evaluation of designed fiber parameters.

The design calculations have shown that in a large effective area fiber with a segmented-core profile of radius 3.5μm by choosing a ring width of 0.2μm at distance varying from 1.5μm to 2.0μm the effective area A eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B73@ changes from 152.3 μ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaGITb WaaWbaaSqabeaacaGIYaaaaaaa@3B5B@ to 189 μ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacqaH8oqBcaGITb WaaWbaaSqabeaacaGIYaaaaaaa@3B5B@ and the MFD MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@3A27@ increases from 9.19μm to 11.1μm, respectively.

The height of the ring is determined by the refractive index of the material used for creating it. This parameter directly affects the dispersion, but the A eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGbbWaaSbaaS qaaiaadwgacaWGMbGaamOzaaqabaaaaa@3B73@ and the MFD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@37D7@  values are affected by parameters such as MFD MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeaabaWaaeaaeaaakeaacaWGnbGaamOrai aadseaaaa@37D7@ p, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGWbGaaiilaa aa@3966@ q MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciaacaGaaeqabaWaaeaaeaaakeaacaWGXbaaaa@38B7@  (see Figure 1).

References

  1. Kazuo Hogari, Shigekatsu Tetsutani, Jian Zhou, et al. Optical‒Transmission Characteristics of Optical‒Fiber Cables and Installed Optical‒Fiber Cable Networks for WDM Systems. J Lightwave Technol. 2002;2(2):540‒545.
  2. Shinya Takaoka, Fumiyoshi Ohkubo, Kouichi Uchiyama, et al. Next Generation Non‒Zero Dispersion Shifted Optical Fiber PureMetro for DWDM & Full Spectrum CWDM Systems. SEI Tech. Rev. 2002;54:95‒98.
  3. Yoshinori Yamamoto, Masaaki Hirano. Next Generation Optical Transmission Fibers, IEEE Photon. Conf., Bellevue, Washington, USA. 2013;277‒278.
  4. Ming‒Jun Li, Daniel A Nolan. Optical Transmission Fiber Design Evolution. J. Lightwave Technol. 2009;26(9);1079‒1091.
  5. Louis‒Anne de Montmorillon, Gerard Kuyt, Pascale Nouchi, et al. Latest advances in optical fibers. C.R. Physique. 2008;9:1045‒1054.
  6. Kazunori Mukasa, Katsunori Imamura, Masanori Takahashi, et al. Development of novel fibers for telecoms application. Opt Fiber Technol. 2010;16;367‒377.
  7. ITU‒T Rec. G.655, Characteristics of a non‒zero dispersion‒shifted single‒mode optical fibre and cable, 11/2009.
  8. D Marcuse. Single‒channel operation in very long nonlinear fibers with optical amplifiers at zero dispersion. J Lightwave Technol. 1991;9(3);356‒361.
  9. S Arai, Y Akasaka, Y Suzuki, et al. Low nonlinear dispersion‒shifted fiber, Proc. Optical Fiber Commun. Conf. (OFC’ 97) Tech. Dig., Dallas, Texas, United States, Paper TuN1, 1997;65.
  10. Yoshinori Yamamoto, Masaaki Hirano, Takashi Sasaki. Low‒Loss and Low‒Nonlinearity Pure‒Silica‒Core Fiber for Large Capacity Transmission. SEI Tech Rev. 2013;76:63‒68.
  11. K Ohsono, T Nishio, Y Bing, et al. Hitachi Cable Rev. 2003;22:1‒5.
  12. Shizhuo Yina , Kun‒Wook Chung, Hongyu Liu, et al. A new design for non‒zero dispersion‒shifted fiber (NZ‒DSF) with a large effective area over 100 μm2 and low bending and splice loss. Opt. Commun. 2000;177(1‒6):225‒232.
  13. Wonkyoung Lee, W J Shin, H S Seo, et al. Study on the design of Non‒Zero Dispersion Shifted Fiber for ultra‒wide band WDM transmission. Proc. 27th Eur. Conf. on Opt. Commun. (ECOC'OI‒Amsterdam). 2001;392‒393.
  14. Masaharu Ohashi. History of Research and Development of Optical Fibers. IEICE Commun. Soc.‒Global Newslett. 2014;38(4):5‒7.
  15. Sivanantha Raja, S Selvendran, R Priya, et al. An optimized design for non‒zero dispersion shifted fiber with reduced nonlinear effects for future optical networks. Optica Applicata. 1994;24(4):503‒519.
  16. Sumitomo Fiber Specification, Non‒Zero Dispersion Shifted Single‒Mode Fiber. 1‒6.
  17. Pascale Nouchi, Louis‒Anne de Montmorillon, Pierre Sillard, et al. Optical fiber design for wavelength‒multiplexed transmission. C. R. Physique. 2003;4:29–39.
  18. Naomi Kumano, Kazunori Mukasa, Misao Sakano, et al. Development of a Non‒Zero Dispersion‒Shifted Fiber with Ultra‒low Dispersion Slope. Furukawa Rev. 2002;22.
  19. Yanming Liu, A Joe Antos, Mark A. Newhouse, Large effective area dispersion‒shifted fibers with dual‒ring index profiles, Opt. Fiber Commun. Conf. 1996, OSA Tech. Dig. Series (Opt. Soc. America)San Jose, Calif. USA, 1996, paper WK15.
  20. Y Liu. Single‒mode dispersion‒shifted fibers with large effective area for amplified systems, IOOC'95, Postdeadline paper PD‒19, Hong Kong, 1995;25‒30.
  21. O Audouin, J P Hamaide. Enhancement of amplifier spacing in long‒haul optical links through the use of large‒effective‒area transmission fiber, IEEE Photon. Technol Lett. 1995;7(11):1363‒1365.
  22. L G Cohen, W L Mammel, S J Jang. Low‒loss quadruple‒clad single‒mode lightguides with dispersion below 2 ps/km nm over the 1.28 μm‒1.65 μm wavelength range. Electron Lett. 1982;18(24):1023‒1024.
  23. Harold T Hattori, Ahmad Safaai‒Jazi. Fiber designs with significantly reduced nonlinearity for very long distance transmission. Appl Opt. 1998;37:3190‒3197.
  24. MJ Li, H Chen. Novel optical fibers for high‒capacity transmission system. Telecommun Sci. 2004;30(6):1–15.
  25. MA Newhouse, LJ Button, DQ Chowdhury, et al. Optical amplifiers and fibers for multiwavelength systems. Lasers and Electro‒Optics Soc. Annual Meeting Proc. 1995;2:44‒45.
  26. P Nouchi, P Sansonetti, S Landais, et al. Low‒loss single‒mode fiber with high nonlinear effective area. Proc OFC’95, 1995;260‒261.
  27. VL Da Silva, Y Liu, DQ Chowdhury, et al. Error free WDM transmission of 8×10 Gbit/s over km of LEAFTM optical fiber. 23rd Euro. Conf. Opt. Commun. 1997;1:154 –158.
  28. DW Peckham, AF Judy, RB Kummer. Reduced dispersion slope, non‒zero dispersion fiber. ECOC’98. 1998;1:139‒140.
  29. Y Liu. Dispersion shifted large‒effective‒area fiber for amplified high‒capacity long‒distance systems, OFC’97, Dallas, Texas. 1997;16‒21.
  30. P Nouchi. Maximum effective area for non‒zero dispersion‒shifted fiber. Opt. Fiber Commun. Conf. Exhibit. OFC '98, Tech Dig. 1998;303‒304.
  31. P Nouchi, P Sansonetti, J Von Wirth, et al. New dispersion shifted fiber with effective area larger than 90 μm2 ECOC '96. 1996;1:49‒52.
  32. Y Liu, G Berkey. Single‒mode dispersion‒shifted fibers with effective area over 100 μm2, ECOC’98. 1998;1:41‒42.
  33. Xiaoqiang Jiang, Ruichun Wang. Non‒zero dispersion‒shifted optical fiber with ultra‒large effective area and low dispersion slope for terabit communication system. Opt. Commun. 2004;236:69–74.
  34. Shoichiro Matsuo, Shoji Tanigawa, Kuniharu Himeno, et al. New medium‒dispersion fiber wlth large effective area and low dispersion slope. Opt. Fiber Commun Conf Exhibit. 2002;329‒330.
  35. K Mukasa, K Imamura, T Yagi. New type of positive medial dispersion fiber (P‒MDF150) with dispersion as 10 ps/nm.km and Aeff about 150 μm2. Opt Fiber Commun Conf. 2003;149‒150.
  36. Dipankar Ghosh, Debashri Ghosh, Mousumi Basu. Designing a graded index depressed clad non‒zero dispersion shifted optical fiber for wide band transmission system. Optik. 2008;119:63–68.
  37. Faramarz E Seraji, Razieh Kiaee. A Revisit of Refractive Index Profiles Design for Reduction of Positive Dispersion, Splice Loss, and Enhancement of Negative Dispersion in Optical Transmission Lines. Int J Opt App. 2014:4(2);62‒67.
  38. Faramarz E Seraji, Marzieh S Kiaee. Design optimization of NZDSF for low latency in IoT optical fiber network.  Phys Astron Int J. 2018;2(5)448‒450.
  39. Faramarz E Seraji, Shima Safari, Marzieh Sadat Kiaee, Design optimization of non‒zero dispersion shifted fiber for latency mitigation in optical fiber network. Phys Astron Int J. 2019;3(1):33‒36.
  40. Faramarz E Seraji, Shima Safari, Ali Emami, et al. Design of single‒mode optical fiber for low latency used in IoT optical transport networks. Phys Astron Int J. 2020:4(2):85‒91.
  41. T D Croft, JE Ritter, V A Bhagavatula. Low‒loss dispersion‒shifted single mode fiber manufactured by the OVD process. J Lightwave Technol. 1985;3(5):931‒934.
  42. Ankiewicz, GD Peng. Generalized Gaussian approximation for single‒mode fibers. J Lightwave Technol. 1992;10(1)22‒27.
  43. M Kato, K Kurokawa, Y Miyajima. A new design for dispersion shifted fiber with an effective core area larger than 100 μm2 and good bending characteristics. Opt. Fiber Commun. Conf., San Jose, Calif. USA, 22 1998, Tech . Dig., paper ThK1, ISBN: 1‒55752‒529‒3.
  44. Sharma S, I Hosain, A K Ghatak. The fundamental mode of graded‒index fibres: Simple and accurate variational methods. Opt. Quant. Electron. 1982;14:7‒15.
  45. YL Luke, Mathematical function and their approximations, Academic Press Inc., New York, 1975.
  46. W Snyder, J D. Love, Optical waveguide theory, Chapman & Hall, London, 1983.
  47. Ghatak, K Thyagarajan. Introduction to fiber optics, Cambridge University Press, New Delhi, 2002.
  48. Gowre S Mahapatra, P K Sahu. Dispersion characteristics of all‒glass crystal fibers, Optik: International Journal for Light and Electron Optics. 2013;124(18):3730‒3733.
Creative Commons Attribution License

©2022 Seraji, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.