Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Research Article Volume 4 Issue 2

Design of single-mode optical fiber for low latency used in IoT optical transport networks

Faramarz E Seraji, Shima Safari, Ali Emami, Davood Ranjbar Raf

Optical Communication Group, Communication Technol, Department, Iran telecom Research Center, Tehran, Iran

Correspondence: Faramarz E Seraji, Optical Communication Group, Communication Technol, Department, Iran telecom Research Center, Tehran, Iran

Received: April 22, 2020 | Published: April 30, 2020

Citation: Seraji FE, Safari S, Emami A, et al. Design of single-mode optical fiber for low latency used in IoT optical transport networks. Phys Astron Int J. 2020;4(2):85-91. DOI: 10.15406/paij.2020.04.00205

Download PDF

Abstract

Optical Fiber as a transmission medium is now playing a major role in communication industry. A low latency is a vital element for any network design. Optical path optimization is the key to designing a network with low latency. Group delay coefficient is a fiber design variable used to optimize the propagation time. Dimensions, material composition and refractive-index profile, dispersion, and non-linearity of the fiber should be carefully selected to provide a satisfactory design for a given program. In this paper, several refractive index profiles are designed, using the OptiFiber software. Different refractive index profiles with triangular core, exponential core and ring, with exponential core and parabolic ring, and two-segmented core are considered to design SMFs for low latencies transmissions. Among other designed SMFs, two-segmented core fiber with core profile transformation is compared to the commercially available product, whose latency is improved by 0.73% with macro- and micro-bending losses of 3.29592e+2 dB/km and 0.0532336 dB/km, respectively, total dispersion of 16.7981 ps/nm.km, and mode field diameter (MFD) of 11.9422 µm at the wavelength of 1550 nm.

Keywords: design, low latency, refractive index profile, dispersion, optical transport network

Abbreviations

MFD, mode field diameter; OFCS, optical fiber communication systems; PCFs, photonic crystal fibers; SMF, single-mode fibers; CD, chromatic dispersion; HCF, hollow core fiber; DCM, dispersion compensating module; DCF, dispersion compensating fibers; FBG, bragg grating fibers

Introduction

The latency in optical networks has recently attracted a lot of attentions among researchers and industries. This is especially evident in financial and commercial firms that are critical to the speed of transactions. A latency of a fraction of a second in trade can turn into millions of dollars losses or lost opportunities.1,2 A latency in the optical fiber communication systems (OFCS) explains how much time it takes to transmit data from a sender to a recipient. The latency of the physical layers in optical fibers networks consists of three main parts: fiber, optical components, and optical-electrical components. In the OFCS, the lag time is obtained by dividing the fiber length by the speed of light in the fiber core.3 In addition to fiber-induced latency, there are other building blocks that affect the total data transmission time.1,2 These elements include optoelectronic conversions, switching and routing, signal reconstruction, amplification, dispersion compensation, polarization dispersion compensation, data packet, digital signal processing, protocols, and forward error correction.1 Therefore, some companies use a logical diagnosis for low latency networks solutions.4

From one of the fiber parameters, i.e., the group index, is used as a fiber design variable to optimize the low propagation latency time.5 The lower refractive index means more speed and hence lower signal latency, depending on the fiber waveguide, material system, design, signal wavelength, spectral properties and the surrounding environmental parameters, such as temperature and pressure. Some optical fibers have lower group index coefficient, such as photonic crystal fibers (PCFs) can have a lower refractive index and can let light propagate much faster than standard single-mode fibers (SMF).6 For example, hollow core fiber (HCF) may provide up to 31% reduction in latency than older fibers.7,8 But there is a problem that the attenuation in HCF fibers is much higher compared to the SMFs of a previously used fabrication (for SMF and HCF fibers, the losses are 0.2 dB/km and 3.3 dB/m at wavelength 1550 nm), respectively.9

The chromatic dispersion (CD) occurs due to the different wavelengths of light propagating in optical fibers, which can be compensated using the dispersion compensating module (DCM) made of dispersion compensating fibers (DCF) or Bragg grating fibers (FBG).10 To avoid the need to compensate for chromatic dispersion or to reduce the length of the DCF fiber, use of fiber optics with a small amount of CD required. For example, non-zero dispersion shifted fibers (NZDSFs) are available to simplify dispersion compensation when constructing a wideband channels. The NZDSF fiber parameters are defined in Recommendation ITU-T G. 655.11 The DCM with the FBG can provide some compensation for a 100 km or so without any sign of latency, effectively eliminating all additional latency that a DCF-based network add to it.12 In FBG, when these spectral components are combined, the pulse is compressed and the effects of fiber dispersion are eliminated.13 A solution to avoid excessive latency in case of a need for amplification, the Raman amplifier with/without EDFA is used. This combination boosts the maximum signal with a minimum latency. Raman amplifiers use a variety of optical features to amplify the optical signal.5,14 There are a few advanced fiber optics technologies to reduce group delays. For example, with regard to fused silica as a fiber optic material, the refractive index decreases with wavelengths.

The signals with a wavelength longer than 1550 nm in fiber experience a lesser group delays. At the same time, the varying absorptions of SiO2 lattice at these wavelengths increases the loss and requires an amplifier that in turn increases the network latency. Another approach is the use of glasses that exhibit low refractive index characteristics with proper transmission at these wavelengths. The samples of these glasses are based on fluoride material, including ZBLAN glass.15 A final option is to reduce the signal latency is use of photonic crystal fibers. In these fibers, compared with Germanium silica fiber, high loss of 1.2 dB/km is reported.16 In addition, the equipment and methods for connecting and splicing PCF fibers have not yet been developed. Recently, we have reported designs of a non-zero dispersion shifted fibers (NZDSF) used as the transmission medium with minimal latency in an optical network. The latency were improved by 0.01 μs17 and 0.002 μs.18 A literature survey has revealed that much academic research works on the latency and IoT networks have not been reported till date. In this paper, by using OptiFiber software, attempts are made to reduce the pulse propagation latency by modifying the profile of the core refractive index and the cladding of a sample of commercially available optical fibers, by taking into account the parameters such as bending losses, dispersion, fiber MFD, while assuming the designed fiber to remain single-mode.

Group delay, dispersion, attenuation, and MFD

In this section, the parameters to be considered in our design are presented as follows.19

By considering propagation constant, angular frequency of the light, and the propagation length, the group delay time is then calculated as follows:

T g =L dβ dω =L dλ dω d(n k 0 ) dλ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4zaaqabaGccqGH9aqpcaWGmbWaaSaaaeaacaWGKbGaeqOS digabaGaamizaiabeM8a3baacqGH9aqpcaWGmbWaaSaaaeaacaWGKb Gaeq4UdWgabaGaamizaiabeM8a3baadaWcaaqaaiaadsgacaGGOaGa amOBaiaadUgadaWgaaqcbasaaiaabcdaaSqabaGccaGGPaaabaGaam izaiabeU7aSbaaaaa@4F4C@       (1)

where  is the refractive index, λ(=2πc/ω) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiabeU7aSjaacI cacqGH9aqpcaqGYaGaeqiWdaNaam4yaiaac+cacqaHjpWDcaGGPaaa aa@40F8@  denotes the wavelength of light, c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadogaaaa@37F3@  shows the velocity of the light in a vacuum, and k 0 =2π/λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadUgadaWgaa qcbawaaiaaicdaaSqabaGccqGH9aqpcaaIYaGaeqiWdaNaai4laiab eU7aSbaa@3F3B@  represents the wave number, therefore, we can write:

T g = 2πcL w 2 ( k 0 dn dλ +n d k 0 dλ )= L c ( nλ dn dλ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaam4zaaqabaGccqGH9aqpdaWcaaqaaiabgkHiTiaabkdacqaH apaCcaWGJbGaamitaaqaaiaadEhadaahaaWcbeqcbasaaiaabkdaaa aaaOWaaeWaaeaacaWGRbWaaSbaaKqaGeaacaqGWaaaleqaaOWaaSaa aeaacaWGKbGaamOBaaqaaiaadsgacqaH7oaBaaGaey4kaSIaamOBam aalaaabaGaamizaiaadUgadaWgaaqcbasaaiaabcdaaSqabaaakeaa caWGKbGaeq4UdWgaaaGaayjkaiaawMcaaiabg2da9maalaaabaGaam itaaqaaiaadogaaaWaaeWaaeaacaWGUbGaeyOeI0Iaeq4UdW2aaSaa aeaacaWGKbGaamOBaaqaaiaadsgacqaH7oaBaaaacaGLOaGaayzkaa aaaa@5D3E@          (2)

The dispersion causes the pulse to spread along the transmission line and thus limiting the transmission capacity of the optical communication networks.20,21 The dispersion coefficient is defined as:

D= d T g dλ = L c λ d 2 n d λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadseacqGH9a qpdaWcaaqaaiaadsgacaWGubWaaSbaaSqaaiaadEgaaeqaaaGcbaGa amizaiabeU7aSbaacqGH9aqpcqGHsisldaWcaaqaaiaadYeaaeaaca WGJbaaaiabeU7aSnaalaaabaGaamizamaaCaaaleqabaGaaeOmaaaa kiaad6gaaeaacaWGKbGaeq4UdW2aaWbaaSqabeaacaqGYaaaaaaaaa a@4A32@             (3)

In general, the dispersion in an optical fiber is determined using the following procedure:22

D= 2πc λ 2 d 2 β d ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadseacqGH9a qpdaWcaaqaaiabgkHiTiaabkdacqaHapaCcaWGJbaabaGaeq4UdW2a aWbaaSqabeaacaqGYaaaaaaakmaalaaabaGaamizamaaCaaaleqaba GaaeOmaaaakiabek7aIbqaaiaadsgacqaHjpWDdaahaaWcbeqaaiaa bkdaaaaaaaaa@46EF@        (4)

where λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVG0di9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGcbaGaeq4UdWgaaa@370C@  is the optical wavelength. The second derivative of the propagation constant with respect to the angular frequency of the light is equal to:

d 2 β d ω 2 = 1 c ( 2 d n eff dω +w d 2 n eff d ω 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaamaalaaabaGaam izamaaCaaaleqabaGaaeOmaaaakiabek7aIbqaaiaadsgacqaHjpWD daahaaWcbeqaaiaabkdaaaaaaOGaeyypa0ZaaSaaaeaacaqGXaaaba Gaam4yaaaadaqadaqaaiaabkdadaWcaaqaaiaadsgacaWGUbWaaSba aSqaaiaadwgacaWGMbGaamOzaaqabaaakeaacaWGKbGaeqyYdChaai abgUcaRiaadEhadaWcaaqaaiaadsgadaahaaWcbeqaaiaabkdaaaGc caWGUbWaaSbaaSqaaiaadwgacaWGMbGaamOzaaqabaaakeaacaWGKb GaeqyYdC3aaWbaaSqabeaacaqGYaaaaaaaaOGaayjkaiaawMcaaaaa @5609@                 (5)

where n eff = n clad +Δ n eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaamyzaiaadAgacaWGMbaabeaakiabg2da9iaad6gadaWgaaWc baGaam4yaiaadYgacaWGHbGaamizaaqabaGccqGHRaWkcqGHuoarca WGUbWaaSbaaSqaaiaadwgacaWGMbGaamOzaaqabaaaaa@46F3@  is the core effective index, n clad MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaam4yaiaadYgacaWGHbGaamizaaqabaaaaa@3BD2@  represents the cladding index, Δ n eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiabgs5aejaad6 gadaWgaaWcbaGaamyzaiaadAgacaWGMbaabeaaaaa@3C51@  denotes the effective relative index difference between the core and the cladding, and β= k 0 n eff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiabek7aIjabg2 da9iaadUgadaWgaaqcbasaaiaabcdaaSqabaGccaWGUbWaaSbaaSqa aiaadwgacaWGMbGaamOzaaqabaaaaa@3F94@ . The total disperesion, due to the material and the the waveguide dispersions, is obtained as follows:22

D= 2πc λ 2 [ d 2 k 0 Δ n eff d ω 2 + d 2 k 0 n clad d ω 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadseacqGH9a qpdaWcaaqaaiabgkHiTiaabkdacqaHapaCcaWGJbaabaGaeq4UdW2a aWbaaSqabeaacaqGYaaaaaaakmaadmaabaWaaSaaaeaacaWGKbWaaW baaSqabeaacaqGYaaaaOGaam4AamaaBaaajeaqbaGaaeimaaWcbeaa kiabgs5aejaad6gadaWgaaWcbaGaamyzaiaadAgacaWGMbaabeaaaO qaaiaadsgacqaHjpWDdaahaaWcbeqaaiaabkdaaaaaaOGaey4kaSYa aSaaaeaacaWGKbWaaWbaaSqabeaacaqGYaaaaOGaam4AamaaBaaaje aqbaGaaeimaaWcbeaakiaad6gadaWgaaWcbaGaam4yaiaadYgacaWG HbGaamizaaqabaaakeaacaWGKbGaeqyYdC3aaWbaaSqabeaacaqGYa aaaaaaaOGaay5waiaaw2faaaaa@5C1A@         (6)

where γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVG0di9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGcbaGaeq4SdCgaaa@36FF@  is the attenuation coefficient of fiber in the transmission line due to the bending radius, which is large compared to the diameter of the fiber:23,24 

γ= ( π V 8 16 r c R b W 3 ) 1/2 ×exp( 4 3 R b r c Δ W 3 V 2 ) [ 0 (1f) F 0 RdR ] 0 F 0 2 RdR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiabeo7aNjabg2 da9maabmaabaWaaSaaaeaacqaHapaCcaWGwbWaaWbaaSqabeaacaqG 4aaaaaGcbaGaaeymaiaabAdacaWGYbWaaSbaaSqaaiaadogaaeqaaO GaamOuamaaBaaaleaacaWGIbaabeaakiaadEfadaahaaWcbeqaaiaa bodaaaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcgaqaaiaabg daaeaacaqGYaaaaaaakiabgEna0kGacwgacaGG4bGaaiiCamaabmaa baGaeyOeI0YaaSaaaeaacaqG0aaabaGaae4maaaadaWcaaqaaiaadk fadaWgaaWcbaGaamOyaaqabaaakeaacaWGYbWaaSbaaSqaaiaadoga aeqaaaaakmaalaaabaGaeyiLdqKaam4vamaaCaaaleqabaGaae4maa aaaOqaaiaadAfadaahaaWcbeqaaiaabkdaaaaaaaGccaGLOaGaayzk aaWaaSaaaeaadaWadaqaamaapedabaGaaiikaiaaigdacqGHsislca WGMbGaaiykaiaadAeadaWgaaWcbaGaaeimaaqabaGccaWGsbGaamiz aiaadkfaaSqaaiaabcdaaeaacqGHEisPa0Gaey4kIipaaOGaay5wai aaw2faaaqaamaapedabaGaamOramaaDaaaleaacaqGWaaabaGaaeOm aaaakiaadkfacaWGKbGaamOuaaWcbaGaaeimaaqaaiabg6HiLcqdcq GHRiI8aaaaaaa@71B3@                  (7) 

where F 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipG0di9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaGaamOramaaBa aaleaacaqGWaaabeaaaaa@36E4@  is the field radius of the principle mode, R b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadkfadaWgaa WcbaGaamOyaaqabaaaaa@38F5@  bending radius,  fiber core radius, r c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadkhadaWgaa WcbaGaam4yaaqabaaaaa@3916@ V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadAfaaaa@37E6@  normalized frequency, and f, W  are given as follows:

f= n (r) 2 n min 2 n max 2 n min 2 ,W= r c β 2 ( k 0 n min ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadAgacqGH9a qpdaWcaaqaaiaad6gacaGGOaGaamOCaiaacMcadaahaaWcbeqaaiaa bkdaaaGccqGHsislcaWGUbWaa0baaSqaaiGac2gacaGGPbGaaiOBaa qaaiaabkdaaaaakeaacaWGUbWaa0baaSqaaiGac2gacaGGHbGaaiiE aaqaaiaabkdaaaGccqGHsislcaWGUbWaa0baaSqaaiGac2gacaGGPb GaaiOBaaqaaiaabkdaaaaaaOGaaiilaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4vaiabg2da9iaadkhada WgaaWcbaGaam4yaaqabaGcdaGcaaqaaiabek7aInaaCaaaleqabaGa aeOmaaaakiabgkHiTiaacIcacaWGRbWaaSbaaSqaaiaabcdaaeqaaO GaamOBamaaBaaaleaaciGGTbGaaiyAaiaac6gaaeqaaOGaaiykamaa CaaaleqabaGaaeOmaaaaaeqaaaaa@69C2@           (8)

where n(r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaad6gacaGGOa GaamOCaiaacMcaaaa@3A4E@  represents the refractive index profile, n max MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaciyBaiaacggacaGG4baabeaaaaa@3AFE@ , and n min MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaad6gadaWgaa WcbaGaciyBaiaacMgacaGGUbaabeaaaaa@3AFC@ , denote the maximum and minimum refractive indices, respectively. The parameters V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadAfaaaa@37E6@  and Δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiabgs5aebaa@3872@ are expressed as follows:

V= k 0 r c n max 2 n min 2 ,Δ=( n max 2 n min 2 )/2 n max 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadAfacqGH9a qpcaWGRbWaaSbaaSqaaiaabcdaaeqaaOGaamOCamaaBaaaleaacaWG JbaabeaakmaakaaabaGaamOBamaaDaaaleaaciGGTbGaaiyyaiaacI haaeaacaqGYaaaaOGaeyOeI0IaamOBamaaDaaaleaaciGGTbGaaiyA aiaac6gaaeaacaqGYaaaaaqabaGccaGGSaGaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlabgs5aejabg2da9iaacIcacaWG UbWaa0baaSqaaiGac2gacaGGHbGaaiiEaaqaaiaabkdaaaGccqGHsi slcaWGUbWaa0baaSqaaiGac2gacaGGPbGaaiOBaaqaaiaabkdaaaGc caGGPaGaai4laiaabkdacaWGUbWaa0baaSqaaiGac2gacaGGHbGaai iEaaqaaiaabkdaaaaaaa@66E0@        (9)

The macrobending loss is defined by considering the attenuation coefficient as follows:

α macro = 10 L log( P in / P out )= 10 L log[ exp(γL) ]=4.35γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaWGTbGaamyyaiaadogacaWGYbGaam4BaaqabaGccqGH9aqp daWcaaqaaiaabgdacaqGWaaabaGaamitaaaaciGGSbGaai4BaiaacE gadaqadaqaaiaadcfadaWgaaWcbaGaamyAaiaad6gaaeqaaOGaai4l aiaadcfadaWgaaWcbaGaam4BaiaadwhacaWG0baabeaaaOGaayjkai aawMcaaiabg2da9maalaaabaGaaeymaiaabcdaaeaacaWGmbaaaiGa cYgacaGGVbGaai4zamaadmaabaGaciyzaiaacIhacaGGWbGaaiikai abeo7aNjaadYeacaGGPaaacaGLBbGaayzxaaGaeyypa0Jaaeinaiaa b6cacaqGZaGaaeynaiabeo7aNbaa@6102@             (10)

where L  is the length of the transmission line in km, Pin denotes the input power and Pout represents the output power at the end of the transmission line. The mode field diameter (MFD) is referred to as the intensity distribution width, which is an important parameter associated with the field of light. The MFD provides useful information on cabling, including large losses and fine-tuning. The effective area of the fibers is directly related to the nonlinearity of the fiber. The mode field diameter (MFD) of the near-field, known as Petermann-I, is the intensity of the near-field |E(r) | 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaacYhacaWGfb GaaiikaiaadkhacaGGPaGaaiiFamaaCaaaleqabaGaaGOmaaaaaaa@3D0E@  close to 1/ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaaigdacaGGVa GaamyzamaaCaaaleqabaGaaGOmaaaaaaa@3A4C@  times the maximum intensity. The light intensity on the core axis, that is, at the radius r=0 in SMFs, has the highest value. The near-field MFD nf MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaab2eacaqGgb GaaeiramaaBaaaleaacaWGUbGaamOzaaqabaaaaa@3B75@  and the far-field MFD ff MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaab2eacaqGgb GaaeiramaaBaaaleaacaqGMbGaaeOzaaqabaaaaa@3B69@ , known as Petermann-II, are expressed, respectively as follow:25

MFD nf =2 2 ( 0 E 2 (r) r 3 dr 0 E 2 (r)rdr ) 1/2 , MFD ff =2 2 ( 0 F 2 (p)pdr 0 F 2 (p) p 3 dr ) 1/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaab2eacaqGgb GaaeiramaaBaaaleaacaWGUbGaamOzaaqabaGccqGH9aqpcaqGYaWa aOaaaeaacaqGYaaaleqaaOWaaeWaaeaadaWcaaqaamaapedabaGaam yramaaCaaaleqabaGaaeOmaaaakiaacIcacaWGYbGaaiykaiaadkha daahaaWcbeqaaiaabodaaaGccaWGKbGaamOCaaWcbaGaaeimaaqaai abg6HiLcqdcqGHRiI8aaGcbaWaa8qmaeaacaWGfbWaaWbaaSqabeaa caqGYaaaaOGaaiikaiaadkhacaGGPaGaamOCaiaaykW7caWGKbGaam OCaaWcbaGaaeimaaqaaiabg6HiLcqdcqGHRiI8aaaaaOGaayjkaiaa wMcaamaaCaaaleqabaWaaSGbaeaacaqGXaaabaGaaeOmaaaaaaGcca GGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caqGnbGaaeOraiaa bseadaWgaaWcbaGaaeOzaiaabAgaaeqaaOGaeyypa0JaaeOmamaaka aabaGaaeOmaaWcbeaakmaabmaabaWaaSaaaeaadaWdXaqaaiaadAea daahaaWcbeqaaiaabkdaaaGccaGGOaGaamiCaiaacMcacaWGWbGaaG PaVlaadsgacaWGYbaaleaacaqGWaaabaGaeyOhIukaniabgUIiYdaa keaadaWdXaqaaiaadAeadaahaaWcbeqaaiaabkdaaaGccaGGOaGaam iCaiaacMcacaWGWbWaaWbaaSqabeaacaqGZaaaaOGaaGPaVlaadsga caWGYbaaleaacaqGWaaabaGaeyOhIukaniabgUIiYdaaaaGccaGLOa GaayzkaaWaaWbaaSqabeaadaWcgaqaaiaabgdaaeaacaqGYaaaaaaa aaa@8751@                (11)

where F(p) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiaadAeacaGGOa GaamiCaiaacMcaaaa@3A24@  represents the far field distribution of the light state.25

Design of single-mode optical fiber with low latency

Triangular Core and Ring profiles

Figure 1 shows the refractive index of the fiber that is designed with structural data of a commercial fiber with a triangular core of four regions by using Optifiber software. The region #1 is the fiber core with a radius of 1.3  and a refractive index varying from 1.446692 to 1.4684. The cladding of the fiber is divided into regions #2, #3, and #4, having widths of 1, 1.8, and 56.6 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiabeY7aTjaab2 gaaaa@39B1@ , respectively. The total fiber diameter is 125 . The refractive index of the ring (region #3) is 1.45247 with triangular shape. The wavelength of 1550 nm has been selected.26 The designed fiber profile shown in Figure 1 is single-moded. The group delay diagram of the fiber is shown in terms of wavelength in Fig. 2, where the group delay decreases with increasing wavelength and its value at 1550 nm is 4.93275 μs MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiabeY7aTjaako haaaa@39C0@ /km. For the design of a fiber with lesser latency, one can modify the core and cladding geometries. In the original fiber shown in Figure 1, the shape of the core and the ring are made triangular. By changing the shape of the core and the cladding to exponential, parabolic, and triangular, by keeping the value of other parameters of the designed fiber unchanged, we have determined the fiber parameters including latency, material dispersion, bending losses, and MFD at 1550 nm, as given in Table 1.

Figure 1 Refractive index profile of the designed fiber with triangular core and cladding.

Figure 2 Group delay (Latency) in terms of wavelength.

Profile types

Latency (Group delay) (μm/km) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0di9asFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaGGOa GaeqiVd0MaaeyBaiaab+cacaqGRbGaaeyBaiaacMcaaaa@3F8B@  

Dispersion (ps/nm.km)

Bending losses (dB/km) @1550 nm

MFD (μm) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0di9asFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaGGOa GaeqiVd0MaaeyBaiaabMcaaaa@3CFA@

Material

Total

Macro

Micro

Triangular core and ring (Ref.)

4.93275

20.397

-7.46203

4.99E-28

0.014563

6.09748

Table 1 The calculated parameters of the fiber with triangular core and ring

Exponential core and ring profile

Of course, given the fact that the fiber has to remain single-moded, we have come to an intermediate conclusion that if the fibers and rings are exponential (Figure 3), the latency will be less than that of the original fiber in Figure 1. As compared to the fiber of Figure 1, the dispersion value has decreased by -8.63014 ps/nm.km, but, the value of material dispersion has increased to 20.7912 ps/nm.km, the macrobending loss to 1.1638e-12 dB/km, microbending loss to 0.0353171 dB/km, and finally MFD to 6.940  as shown in Table 2. The latency for this fiber is obtained as 4.92090.

Profile types

Latency (Group delay) (μm/km) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0di9asFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaGGOa GaeqiVd0MaaeyBaiaab+cacaqGRbGaaeyBaiaacMcaaaa@3F8B@

Bending losses (dB/km) @1550 nm

Dispersions (ps/nm.km)

MFD (μm) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0di9asFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaGGOa GaeqiVd0MaaeyBaiaabMcaaaa@3CFA@

Macro

Micro

Material

Total

Exponential core/ring

4.9209

1.16E-12

0.035317

20.7912

-8.63014

6.9402

Table 2 Parameters values of the designed fiber with exponential core/ring

Exponential core and parabolic ring profiles

Another approach for the profile variation of the fiber in Figure 3 is to use a depressed ring, where the fiber structure will have four regions, as shown in Figure 4. The region #1 constitutes the fiber core with a radius of 3.1  and a refractive index ranging from 1.446692 to 1.4684. The cladding of the fiber is divided into regions #2, #3, and #4, having a width of 1, 1.8, and 56.6 μm, respectively, which is the same as that of the reference fiber (Figure 1). The refractive index of the ring (region #3) is 1.44 and depressed. In this design, it is also intended that the fiber remains in single mode regime. In this design, the fiber with exponential core and depressed parabolic ring has the least latency of 4.92590 μs/km MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiabeY7aTjaako hacaGIVaGaaO4Aaiaak2gaaaa@3C6B@ , which is, of course, lower than the latency of the reference fiber. Worthy to note that other parameters such as the dispersion has increased to -4.2269, microbending loss to 0.744189 dB/km, macrobending loss to 4.98261e-9 dB/km, and MFD to 6.14963 μm, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKaaGkabeY7aTj aak2gakiaakYcaaaa@3B25@  as listed in Table 3.

Figure 3 Profile of the designed fiber with exponential core and ring.

Figure 4 Profile of the designed fiber with exponential core and parabolic ring.

Profile types

Latency (Group delay) (μm/km) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0di9asFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaGGOa GaeqiVd0MaaeyBaiaab+cacaqGRbGaaeyBaiaacMcaaaa@3F8B@  

Bending losses (dB/km) @1550 nm

Dispersions (ps/nm.km)

MFD (μm) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0di9asFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaGGOa GaeqiVd0MaaeyBaiaabMcaaaa@3CFA@

Macro

Micro

Material

Total

Exponential core/depressed parabolic ring

4.9259

4.98E-09

0.744189

20.7541

-4.2269

6.14963

Table 3 Parameters values of the designed fiber with exponential core/depressed parabolic ring

Two-segmented core profile

To further obtain a fiber profile with a lower latency level, we can design a different core shape in the form of Figure 5, whose two-segmented core is divided into two regions #1 and #2. The region #1 is 0.6  with an exponential refractive index in the range of 1.468 to 1.452 and total core size of 3.1 μm, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKaaGkabeY7aTj aak2gakiaakYcaaaa@3B25@  which is equal to the reference fiber size. The region #2 is 2.5 μm, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKaaGkabeY7aTj aak2gakiaakYcaaaa@3B25@  in size with a refractive index of 1.45. The distance between the ring and the core of the region #3 is 1 μm, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKaaGkabeY7aTj aak2gakiaakYcaaaa@3B25@  with a fixed refractive index of 1.446692. The width of the ring #4 is 1.8 μm, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKaaGkabeY7aTj aak2gakiaakYcaaaa@3B25@  and exponential with a refractive index of 1.446692 to 1.4524. The radius of the cladding of the fiber is the fifth region of size 56.6 μm, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKaaGkabeY7aTj aak2gakiaakYcaaaa@3B25@  with a refractive index of 1.446692. 

Figure 5 Refractive index profile of the designed fiber with two-segmented core.

The fiber parameters of the designed two-segmented core are presented in Table 4. By comparing Tables 1 and 4, fiber with two-segmented core has a lower latency of 4.89988  but other parameters such as dispersion, bending losses, and its MFD relative to fiber in Figure 2 has increased. The latency (group delay ps/km) in terms of the distance between the core and the ring (width of region #3 in Figure 5) is plotted in Figure 6. We note that latency is directly related to this width, thus, by reducing the width, the latency will increase and the MFD value crosses the single-mode value. In our final attempt, we have tried to modify the structural parameters to bring back the designed two-segmented core fiber to operate in single-mode regime with the following profile alteration, as shown in Figure 7. The profile includes the region #1 of width 0.6 with exponential refractive index from 1.4684 to 1.452, the region #2 of width 2.5 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKaaGkabeY7aTj aak2gaaaa@3A63@  with a constant refractive index of 1.45, the region #3, i.e., the distance between the ring and the core of width 0.2  (minimum size) with a constant refractive index of 1.446692, and the region #4 of width 1.8  with refractive index exponentially changing from 1.446692 to 1.4524. Finally, the fifth region, i.e., the cladding region with a width of 57.4 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKaaGkabeY7aTj aak2gaaaa@3A63@  and refractive index of 1.446692. The characteristic parameters of this designed SMF are listed in Table 5. In this case by changing the width of the region #3 from 1 to 0.2 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKaaGkabeY7aTj aak2gaaaa@3A63@  the single-mode operation is achieved. As we can note from the Table 5, in two-segmented core profile, by reducing the distance between the core and the ring, among other profiles, a minimum latency of 4.89805 μs/km MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiabeY7aTjaako hacaGIVaGaaO4Aaiaak2gaaaa@3C6B@  is obtained. However, it should be noted that other calculated parameters such as bending losses, dispersion, and the MFD, with respect to the reference fiber, have increased.

Figure 6 The group delay versus the distance between the core and the ring.

Figure 7 Refractive index profile of the designed fiber with two-segmented core for 0.2 width of region #3.

Profile types

Latency (Group delay) (μm/km) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0di9asFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaGGOa GaeqiVd0MaaeyBaiaab+cacaqGRbGaaeyBaiaacMcaaaa@3F8B@

Bending losses (dB/km) @1550 nm

Dispersions (ps/nm.km)

MFD (μm) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0di9asFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaGGOa GaeqiVd0MaaeyBaiaabMcaaaa@3CFA@

Macro

Micro

Material

Total

Two-segmented core

4.89988

1.95E+03

0.115935

21.4066

17.0987

13.0499

Table 4 Parameters of the designed fiber with two-segmented core

Profile type

Latency (Group delay) (μm/km) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0di9asFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaGGOa GaeqiVd0MaaeyBaiaab+cacaqGRbGaaeyBaiaacMcaaaa@3F8B@

Bending losses (dB/km) @1550 nm

Dispersions (ps/nm.km)

MFD (μm) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0di9asFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacaGGOa GaeqiVd0MaaeyBaiaabMcaaaa@3CFA@

Macro

Micro

Material

Total

Two-segmented core

4.89805

3.30E+02

0.053234

21.3442

16.7981

11.9422

Table 5 The parameters of the designed SMF with two-segmented core with width of the region#3 = 0.2 μm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVG0di9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGacaGaaiaabaqaamaabaabaaGcbaqcLbsacqaH8o qBcaGITbaaaa@3899@

Discussion

In an optical networks, fiber is not always tracked along the direct path between two locations, so the cost of deployment of the fiber can be very high. Some operators have created low-latency fiber paths between major financial centers, and have used low-latency systems to run these links. This is an expensive measure and is likely to be possible only in the core financial services where the willingness to pay is high enough to support the business flow. In most cases, the fiber path and the latency are fixed with complexity and cost. The proper choice of passive optical components, such as optical cables and dispersion compensation approaches, one can further reduce network latency. The large effective area increases the MFD in optical fibers; and high-MFD fibers make the fiber more susceptible not only to bending loss,27 but also leads to the polarization mode dispersion (PMD).26 Considering the results of fiber design, if we consider a 100-km route, the latency for the reference fiber will amount to 0.493275  and for the designed fiber will be 0.489805 . Therefore, the latency of 100 km distance is decreased by almost 0.73%. As stated, a one-millisecond reduction in the transmission paths of financial institutions can bring back million dollars profit. It should be noted, however, that the reference fiber has a dispersion of -746.20 ps/nm.km along 100 km path, but the designed two-segmented core fiber has dispersion of 1679.81 ps/nm.km. As it is observed, the amount of dispersion has significantly increased. Regarding total loss, it should be noted that direct network routing can minimize the amount of losses caused by the optical path. Therefore, there should be a trade-off between the latency and the total loss in an optical fiber network.

In Table 6, we have compared the two-segmented designed fiber to a commercial fiber, which has been selected as design reference. The latencies of the two-segmented core fiber and the reference fiber are plotted in Figure 8 for a comparison. We note that over almost all the designated wavelengths, the latencies of the designed SMF are less than that of the reference fiber. The minimum latency of the designed optical fiber is obtained as 4.89775  at wavelength of 1465 nm, whereas that of the reference fiber is 4.93360 , i.e., 0.73% improvement of latency. Above wavelength 1550 nm, the latency of the reference fiber at the lowest of 4.9325 is obtained at wavelength 1600 nm, whereas that of the designed fiber is 2.8985.

Refractive index profile

Designed two-segmented core SMF

Reference fiber26

Wavelength (nm)

1550/1465

1550/1465

Latency (Group delay) ( μs/km ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iVd0Maam4Caiaac+cacaWGRbGaamyBaaGaayjkaiaawMcaaaaa@3DDA@

4.89805/4.89775 (min)

4.93275/4.9336

Total dispersion (ps/nm.km)

16.7981

-7.462

Material dispersion (ps/nm.km)

21.3442

20.397

MFD ( μm ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq iVd0MaamyBaaGaayjkaiaawMcaaaaa@3B3F@

11.9422

6.09748

Bending loss (dB/km)

Macro

3.30E+02

4.99E-28

Micro

0.053234

0.014563

Table 6 Comparison of parameters values of the designed two-segmented core fiber with the reference fiber

Figure 8 The comparison of the group delay of the designed two-segmented core fiber and the reference fiber versus wavelength.

Conclusion

In the first design, the fiber has four regions in the fiber core with a radius of 3.1 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKqzGeGaeqiVd0 MaaOyBaaaa@3A49@  and a refractive index of 1.446692 to 1.4684. The cladding of this fiber is segmented into regions #2, #3, and #4, respectively, having a width of 1, 1.8 and 56.6 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKqzGeGaeqiVd0 MaaOyBaaaa@3A49@  at wavelength of 1550 nm. First, by changing the structure of the fiber core, we have calculated the latency of each designed fiber, and concluded that the fiber with a two-segmented core and exponential ring had the least latency. Then, to further reduce the latency, we have divided the fiber core with a radius of 3.1 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKqzGeGaeqiVd0 MaaOyBaaaa@3A49@  into two-segments of 0.6 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKqzGeGaeqiVd0 MaaOyBaaaa@3A49@  and 2.5 μm. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKqzGeGaeqiVd0 MaaOyBaiaak6caaaa@3B03@  In this design, the core and the ring are exponential and the distance between them is 0.2 μm MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKaaGkabeY7aTj aak2gaaaa@3A63@  the widths of the each ring is 1.8 μm. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaKqzGeGaeqiVd0 MaaOyBaiaak6caaaa@3B03@ In this case, the fiber with respect to all previous designs, has a relative lower latency. The minimum latency of the designed optical fiber is obtained as 4.89775 μs/km MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiabeY7aTjaako hacaGIVaGaaO4Aaiaak2gaaaa@3C6B@  at wavelength of 1465 nm. The latency of the reference fiber at the lowest value of 4.9325 μs/km MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiabeY7aTjaako hacaGIVaGaaO4Aaiaak2gaaaa@3C6B@ is obtained at wavelength 1600 nm, whereas the corresponding value of the designed fiber is 4.8985 μs/km. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqaaeaadaqaaqaaaOqaaiabeY7aTjaako hacaGIVaGaaO4Aaiaak2gacaGIUaaaaa@3D25@

Acknowledgments

The authors acknowledge the allocation of the project with Code No. 440950900 to Optical Communication Group approved by Communication Technology Dept. of Iran Telecom Research Center, Tehran.

Conflicts of interest

The authors declare there are no conflicts of interest against this article.

References

  1. Narottam Das. Advances in Optical Communication, Publisher: InTech, Croatia, 2014.
  2. Xiaolin Jiang, Hossein Shokri-ghadikolaei, Gabor Fodor, et al. Low-Latency Networking: Where Latency Lurks and How to Tame It. Proc IEEE. 2019;107(2):1–25.
  3. Nordell S. Network latency: how low can you go. Lightwave, Nov. 1, 2012.
  4. D Mazzarese. Minimizing latency in long-haul networks. Lightwave, Oct. 19, 2011.
  5. Kawanishi T, Kanno A, Yoshida Y, et al. Impact of wave propagation delay on latency in optical communication systems. Proc SPIE Photon. 2012.
  6. Lam S. Low latency drives HK data center services for financials. 2013.
  7. Corning Inc. Explanation of the Sources of Variation in Optical Fiber Effective Group Index of Refraction Values. White paper, 2012.
  8. Corning Inc. Corning SMF-28e+ optical fiber specification datasheet. 201.
  9. Poletti F, Wheeler NV, Petrovich MN, Baddela, et al. Towards, "High-capacity fibre-optic communications at the speed of light in vacuum. Nature Photonics. 2013;7:279–284.
  10. Jung Y, Sleiffer VAJM, Baddela N, et al. First demonstration of a broadband 37-cell hollow core photonic bandgap fiber: an application to high capacity mode division multiplexing. Opt Fiber Commun Con and Exposition and the National Fiber Optic Engineers Conf. 2013;1(3):17–21.
  11. Bobrovs V, Spolitis S, Ivanovs G. Comparison of chromatic dispersion compensation techniques for WDM-PON solution. Proc 2nd Baltic Congress on Future Interne Commun. 2012;25–27.
  12. Spolitis S, Bobrovs V, Ivanovs G. Realization of combined chromatic dispersion compensation methods in high speed WDM optical transmission systems. Electric Eng. 2011;10(116):33–38.
  13.  Sjostrom, Fredrik. Fiber Bragg Gratings: The Dispersion Compensation Technology For 40G and 100G Optical Transport. Electron. Design, Mar. 24, 2009.
  14. Bobrovs V, Udalcovs A, Spolitis S, et al. Mixed chromatic dispersion compensation methods for combined HDWDM systems. Proc Int Conf Broadband and Wireless Computing, Commun. Apps. (BWCCA), 2011. p. 313–319.
  15. Stephen H. Breaking Barriers to Low Latency. Lightwave Mag., June 1, 2010.
  16. Roberts PJ, F Couny, H Sabert, et al. Ultimate low loss of hollow-core photonic crystal fibres. Opt Exp. 2005;13(1):236–244.
  17. Faramarz E Seraji, Shima Safari, Marzieh Sadat Kiaee. Design optimization of non-zero dispersion shifted fiber for latency mitigation in optical fiber network. Phys Astron Int J. 2019;3(1):3336.
  18. Faramarz E Seraji, Marzieh S Kiaee. Design optimization of NZDSF for low latency in IoT optical fiber network. Phys Astron Int J. 2018;2(5):448–450.
  19. Opti Fiber CAD. Optical Fiber Design Software. Ver 2.2, Optiwave, Canada.  2008.
  20. RK Varshney, AK Ghatak, IC Goyal, et al. Design of a flat field fiber with small dispersion slope. Opt Fiber Technol. 2003;9(4):189–198.
  21. P Sillard, JC Antona, S Bigo. Optimized Chromatic Dispersion of DCMs in WDM Transmission Systems at 40 Gbps. Proc Opt Fiber Commun. National Fiber Opt. Eng. Conf., OFC/NFOEC. 2008.
  22. Marie Wandel, Poul Kristensen. Fiber designs for high figure of merit and high slope dispersion compensating fibers. J Opt Fiber Commun Rep. 2005;3:25–60.
  23. AW Snyder, JD Love. Optical Waveguide Theory, Chapman and Hall, London, 1983.
  24. J Sakai, T Kimura. Birefringence and Polarization Characteristics of Single-Mode Optical Fibers under Elastic Deformations. IEEE J Quant Electron. 1981;17(6):1041–1051.
  25. M Artiglia, G Coppa, P Di Vita, et al. Mode field Diameter measurements in single-mode optical fibers. J Lightwave Tech. 1989;7(8):1139–1152.
  26.  Corning LEAF Optical Fiber/Product Information. Issue: May 2006, PI 1107, 2012.
  27. Shashi Kant, Hrudaya Ranjan Sahu, Abhay Arora. Enhanced bend insensitive high effective area NZDS fiber. Intl Wire and Cable Symp Proc. 2006;12–15:330–333.
Creative Commons Attribution License

©2020 Seraji, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.