Submit manuscript...
Journal of
eISSN: 2574-8114

Textile Engineering & Fashion Technology

Mini Review Volume 4 Issue 6

Mathematical modelling of direct drive of card machine drum

Jerzy Zajaczkowski

Lodz University of Technology, Poland

Correspondence: Jerzy Zajaczkowski, Lodz University of Technology, 116 Zeromskiego Street, 90-924 Lodz, Poland

Received: August 10, 2017 | Published: November 19, 2018

Citation: Zajaczkowski J. Mathematical modelling of direct drive of card machine drum. J Textile Eng Fashion Technol. 2018;4(6):364-366. DOI: 10.15406/jteft.2018.04.00166

Download PDF

Abstract

The paper is concerned with the mathematical modelling of a directly driven card machine drum. The equations of the motion are derived taking account of an interaction of a drum and the electric motor.

Introduction

The problem of vibration of cylindrical shells is technically important. The equations of the motion can be found in works.1–6 The natural vibrations have been studied in papers.7–9 The vibrations of rotating shells have been investigated in papers.10,11 The phenomena of bifurcation and chaos in externally excited circular cylindrical shells have been reported in work.12 The stress and transverse deflection of a card machine drum, in a form of a cylindrical shell with wound wire, have been calculated in.13 The purpose of this work is to formulate a mathematical model of a direct drive of a card machine drum.

Equations of the motion

The rotating shell of mean radius r is shown in Figure 1. Here, m denotes unit mass, g - gravity acceleration and t - time. The rotation angle of shell is denoted as α, the longitudinal and the angular co-ordinates of shell elements are denoted as x and φ. The longitudinal, circumferential and radial components of the shell surface deflection are denoted as u, v and w respectively.

Figure 1 The rotating shell.

The components of the acceleration of the shell element have the form

a v = 2 v t 2 2 dα dt w t + d 2 α d t 2 ( rw ) ( dα dt ) 2 v MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaamODaaqabaGccqGH9aqpdaWcaaqaaiabekGi2oaaCaaaleqa baGaaGOmaaaakiaadAhaaeaacqaHciITcaaMc8UaamiDamaaCaaale qabaGaaGOmaaaaaaGccqGHsislcaaIYaWaaSaaaeaacaqGKbGaeqyS degabaGaaeizaiaaykW7caWG0baaamaalaaabaGaeqOaIyRaaGPaVl aadEhaaeaacqaHciITcaaMc8UaamiDaaaacqGHRaWkdaWcaaqaaiaa bsgadaahaaWcbeqaaiaaikdaaaGccqaHXoqyaeaacaqGKbGaaGPaVl aadshadaahaaWcbeqaaiaaikdaaaaaaOWaaeWaaeaacaWGYbGaeyOe I0Iaam4DaaGaayjkaiaawMcaaiabgkHiTmaabmaabaWaaSaaaeaaca qGKbGaeqySdegabaGaaeizaiaaykW7caWG0baaaaGaayjkaiaawMca amaaCaaaleqabaGaaGOmaaaakiaadAhaaaa@6AA8@

a w = 2 w t 2 +2 dα dt v t + d 2 α d t 2 v+ ( dα dt ) 2 ( rw ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaam4DaaqabaGccqGH9aqpdaWcaaqaaiabekGi2kaaykW7daah aaWcbeqaaiaaikdaaaGccaWG3baabaGaeqOaIyRaaGPaVlaadshada ahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaaGOmamaalaaabaGaaeiz aiabeg7aHbqaaiaabsgacaaMc8UaamiDaaaadaWcaaqaaiabekGi2k aadAhaaeaacqaHciITcaaMc8UaamiDaaaacqGHRaWkdaWcaaqaaiaa bsgadaahaaWcbeqaaiaaikdaaaGccqaHXoqyaeaacaqGKbGaaGPaVl aadshadaahaaWcbeqaaiaaikdaaaaaaOGaamODaiabgUcaRmaabmaa baWaaSaaaeaacaqGKbGaeqySdegabaGaaeizaiaaykW7caWG0baaaa GaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakmaabmaabaGaamOC aiabgkHiTiaadEhaaiaawIcacaGLPaaaaaa@6A93@ (1)

Taking into account the inertia, damping and gravity forces, the loading of an element can be written as

q x = c 1 u t m 2 u t 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaamiEaaqabaGccqGH9aqpcqGHsislcaWGJbWaaSbaaSqaaiaa igdaaeqaaOWaaSaaaeaacqaHciITcaWG1baabaGaeqOaIyRaamiDaa aacqGHsislcaWGTbWaaSaaaeaacqaHciITdaahaaWcbeqaaiaaikda aaGccaWG1baabaGaeqOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaa aaaa@4B70@

q ϕ = c 2 v t m( 2 v t 2 2 dα dt w t + d 2 α d t 2 ( rw ) ( dα dt ) 2 v )+mgcos( α+ϕ ) q s δ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaeqy1dygabeaakiabg2da9iabgkHiTiaadogadaWgaaWcbaGa aGOmaaqabaGcdaWcaaqaaiabekGi2kaaykW7caWG2baabaGaeqOaIy RaaGPaVlaadshaaaGaeyOeI0IaamyBamaabmaabaWaaSaaaeaacqaH ciITdaahaaWcbeqaaiaaikdaaaGccaWG2baabaGaeqOaIyRaaGPaVl aadshadaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0IaaGOmamaalaaa baGaaeizaiabeg7aHbqaaiaabsgacaaMc8UaamiDaaaadaWcaaqaai abekGi2kaaykW7caWG3baabaGaeqOaIyRaaGPaVlaadshaaaGaey4k aSYaaSaaaeaacaqGKbWaaWbaaSqabeaacaaIYaaaaOGaeqySdegaba GaaeizaiaaykW7caWG0bWaaWbaaSqabeaacaaIYaaaaaaakmaabmaa baGaamOCaiabgkHiTiaadEhaaiaawIcacaGLPaaacqGHsisldaqada qaamaalaaabaGaaeizaiabeg7aHbqaaiaabsgacaaMc8UaamiDaaaa aiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWG2baacaGLOa GaayzkaaGaey4kaSIaamyBaiaadEgaciGGJbGaai4Baiaacohadaqa daqaaiabeg7aHjabgUcaRiabew9aMbGaayjkaiaawMcaaiabgkHiTi aadghadaWgaaWcbaGaam4CaaqabaGccqaH0oazdaqadaqaaiabgkHi Tiabeg7aHbGaayjkaiaawMcaaaaa@8DC6@
q z = c 3 w t m( 2 w t 2 +2 dα dt v t + d 2 α d t 2 v+ ( dα dt ) 2 ( rw ) )mgsin( α+ϕ )+ q n δ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadghadaWgaa WcbaGaamOEaaqabaGccqGH9aqpcqGHsislcaWGJbWaaSbaaSqaaiaa iodaaeqaaOWaaSaaaeaacqaHciITcaaMc8Uaam4DaaqaaiabekGi2k aaykW7caWG0baaaiabgkHiTiaad2gadaqadaqaamaalaaabaGaeqOa IyRaaGPaVpaaCaaaleqabaGaaGOmaaaakiaadEhaaeaacqaHciITca aMc8UaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkcaaIYaWa aSaaaeaacaqGKbGaeqySdegabaGaaeizaiaaykW7caWG0baaamaala aabaGaeqOaIyRaamODaaqaaiabekGi2kaaykW7caWG0baaaiabgUca RmaalaaabaGaaeizamaaCaaaleqabaGaaGOmaaaakiabeg7aHbqaai aabsgacaaMc8UaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaWG2bGa ey4kaSYaaeWaaeaadaWcaaqaaiaabsgacqaHXoqyaeaacaqGKbGaaG PaVlaadshaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWa aeWaaeaacaWGYbGaeyOeI0Iaam4DaaGaayjkaiaawMcaaaGaayjkai aawMcaaiabgkHiTiaad2gacaWGNbGaci4CaiaacMgacaGGUbWaaeWa aeaacqaHXoqycqGHRaWkcqaHvpGzaiaawIcacaGLPaaacqGHRaWkca WGXbWaaSbaaSqaaiaad6gaaeqaaOGaeqiTdq2aaeWaaeaacqGHsisl cqaHXoqyaiaawIcacaGLPaaaaaa@8CE9@ (2)

Here, (c1, c1, c1) are coefficients of damping. The internal forces are assumed to be of the form

N ϕ ' =m ( dα dt ) 2 r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaqhaa WcbaGaeqy1dygabaGaai4jaaaakiabg2da9iaad2gadaqadaqaamaa laaabaGaaeizaiabeg7aHbqaaiaabsgacaWG0baaaaGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaakiaadkhadaahaaWcbeqaaiaaikda aaaaaa@4671@
N x ' = N x 1 + N x 2 cosϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaqhaa WcbaGaamiEaaqaaiaacEcaaaGccqGH9aqpcaWGobWaaSbaaSqaaiaa dIhadaahaaadbeqaaKqzadGaaGymaaaaaSqabaGccqGHRaWkcaWGob WaaSbaaSqaaiaadIhadaahaaadbeqaaKqzadGaaGOmaaaaaSqabaGc ciGGJbGaai4BaiaacohacqaHvpGzaaa@49B0@

N xϕ ' =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaqhaa WcbaGaamiEaiabew9aMbqaaiaacEcaaaGccqGH9aqpcaaIWaaaaa@3E64@ (3)

The internal torque is

M s ( x )=m 0 x 0 2π ( 2 v t 2 2 dα dt w t + d 2 α d t 2 ( rw ) ( dα dt ) 2 v )( rw )rdϕdx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWgaa WcbaGaam4CaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH 9aqpcaWGTbWaa8qCaeaadaWdXbqaamaabmaabaWaaSaaaeaacqaHci ITdaahaaWcbeqaaiaaikdaaaGccaWG2baabaGaeqOaIyRaaGPaVlaa dshadaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0IaaGOmamaalaaaba Gaaeizaiabeg7aHbqaaiaabsgacaaMc8UaamiDaaaadaWcaaqaaiab ekGi2kaaykW7caWG3baabaGaeqOaIyRaaGPaVlaadshaaaGaey4kaS YaaSaaaeaacaqGKbWaaWbaaSqabeaacaaIYaaaaOGaeqySdegabaGa aeizaiaaykW7caWG0bWaaWbaaSqabeaacaaIYaaaaaaakmaabmaaba GaamOCaiabgkHiTiaadEhaaiaawIcacaGLPaaacqGHsisldaqadaqa amaalaaabaGaaeizaiabeg7aHbqaaiaabsgacaaMc8UaamiDaaaaai aawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaWG2baacaGLOaGa ayzkaaWaaeWaaeaacaWGYbGaeyOeI0Iaam4DaaGaayjkaiaawMcaai aadkhacaWGKbGaeqy1dyMaamizaiaadIhaaSqaaiaaicdaaeaacaaI YaGaeqiWdahaniabgUIiYdaaleaacaaIWaaabaGaamiEaaqdcqGHRi I8aaaa@8345@ (4)

The integration over entire length L of the shell gives the driving torque Ms. The angular acceleration is found as

d 2 α d t 2 = M s mr 0 L 0 2π ( ( 2 v t 2 2 dα dt w t ( dα dt ) 2 v )( rw ) )dϕdx 0 x 0 2π ( rw ) 2 dϕdx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaae izamaaCaaaleqabaGaaGOmaaaakiabeg7aHbqaaiaabsgacaaMc8Ua amiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpdaWcaaqaamaala aabaGaamytamaaBaaaleaacaWGZbaabeaaaOqaaiaad2gacaWGYbaa aiabgkHiTmaapehabaWaa8qCaeaadaqadaqaamaabmaabaWaaSaaae aacqaHciITdaahaaWcbeqaaiaaikdaaaGccaWG2baabaGaeqOaIyRa aGPaVlaadshadaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0IaaGOmam aalaaabaGaaeizaiabeg7aHbqaaiaabsgacaaMc8UaamiDaaaadaWc aaqaaiabekGi2kaaykW7caWG3baabaGaeqOaIyRaaGPaVlaadshaaa GaeyOeI0YaaeWaaeaadaWcaaqaaiaabsgacqaHXoqyaeaacaqGKbGa aGPaVlaadshaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaO GaamODaaGaayjkaiaawMcaamaabmaabaGaamOCaiabgkHiTiaadEha aiaawIcacaGLPaaaaiaawIcacaGLPaaacaWGKbGaeqy1dyMaamizai aadIhaaSqaaiaaicdaaeaacaaIYaGaeqiWdahaniabgUIiYdaaleaa caaIWaaabaGaamitaaqdcqGHRiI8aaGcbaWaa8qCaeaadaWdXbqaam aabmaabaGaamOCaiabgkHiTiaadEhaaiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaGccaWGKbGaeqy1dyMaamizaiaadIhaaSqaaiaaic daaeaacaaIYaGaeqiWdahaniabgUIiYdaaleaacaaIWaaabaGaamiE aaqdcqGHRiI8aaaaaaa@9197@ (5)

The components of the shell surface deflection can be expressed in the form

u( x.ϕ,t )=U T u ,v( x.ϕ,t )=V T v ,w( x.ϕ,t )=W T w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadwhadaqada qaaiaadIhacaGGUaGaeqy1dyMaaiilaiaadshaaiaawIcacaGLPaaa cqGH9aqpcaWGvbGaamivamaaBaaaleaacaWG1baabeaakiaacYcaca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaadAhadaqadaqaaiaadIhacaGGUaGaeqy1dy MaaiilaiaadshaaiaawIcacaGLPaaacqGH9aqpcaWGwbGaamivamaa BaaaleaacaWG2baabeaakiaacYcacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadEha daqadaqaaiaadIhacaGGUaGaeqy1dyMaaiilaiaadshaaiaawIcaca GLPaaacqGH9aqpcaWGxbGaamivamaaBaaaleaacaWG3baabeaakiaa ykW7aaa@7FB4@ (6)

Where

T u =[ T un (0) ( t ) T un (CN) ( t ) T un (SN) ( t ) ], T v =[ T vn (0) ( t ) T vn (SN) ( t ) T vn (CN) ( t ) ], T w =[ T wn (0) ( t ) T wn (CN) ( t ) T wn (SN) ( t ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadsfadaWgaa WcbaGaamyDaaqabaGccqGH9aqpdaWadaqaauaabeqadeaaaeaacaWG ubWaa0baaSqaaiaadwhacaWGUbaabaGaaiikaiaaicdacaGGPaaaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaaabaGaamivamaaDaaaleaa caWG1bGaamOBaaqaaiaacIcacaWGdbGaamOtaiaacMcaaaGcdaqada qaaiaadshaaiaawIcacaGLPaaaaeaacaWGubWaa0baaSqaaiaadwha caWGUbaabaGaaiikaiaadofacaWGobGaaiykaaaakmaabmaabaGaam iDaaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaacaGGSaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadsfadaWgaaWcba GaamODaaqabaGccqGH9aqpdaWadaqaauaabeqadeaaaeaacaWGubWa a0baaSqaaiaadAhacaWGUbaabaGaaiikaiaaicdacaGGPaaaaOWaae WaaeaacaWG0baacaGLOaGaayzkaaaabaGaamivamaaDaaaleaacaWG 2bGaamOBaaqaaiaacIcacaWGtbGaamOtaiaacMcaaaGcdaqadaqaai aadshaaiaawIcacaGLPaaaaeaacaWGubWaa0baaSqaaiaadAhacaWG UbaabaGaaiikaiaadoeacaWGobGaaiykaaaakmaabmaabaGaamiDaa GaayjkaiaawMcaaaaaaiaawUfacaGLDbaacaGGSaGaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadsfadaWgaaWcbaGaam 4DaaqabaGccqGH9aqpdaWadaqaauaabeqadeaaaeaacaWGubWaa0ba aSqaaiaadEhacaWGUbaabaGaaiikaiaaicdacaGGPaaaaOWaaeWaae aacaWG0baacaGLOaGaayzkaaaabaGaamivamaaDaaaleaacaWG3bGa amOBaaqaaiaacIcacaWGdbGaamOtaiaacMcaaaGcdaqadaqaaiaads haaiaawIcacaGLPaaaaeaacaWGubWaa0baaSqaaiaadEhacaWGUbaa baGaaiikaiaadofacaWGobGaaiykaaaakmaabmaabaGaamiDaaGaay jkaiaawMcaaaaaaiaawUfacaGLDbaacaGGSaaaaa@A8A8@ (7)

U=[ U n (0) ( x ), U n (CN) ( x )cosNϕ, U n (SN) ( x )sinNϕ ], V=[ V n (0) ( x ), V n (SN) ( x )sinNϕ, V n (CN) ( x )cosNϕ ], W=[ W n (0) ( x ), W n (CN) ( x )cosNϕ, W n (SN) ( x )sinNϕ ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyvai abg2da9maadmaabaGaamyvamaaDaaaleaacaWGUbaabaGaaiikaiaa icdacaGGPaaaaOWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaaiilai aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadwfadaqhaaWc baGaamOBaaqaaiaacIcacaWGdbGaamOtaiaacMcaaaGcdaqadaqaai aadIhaaiaawIcacaGLPaaaciGGJbGaai4BaiaacohacaWGobGaeqy1 dyMaaGPaVlaacYcacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadw fadaqhaaWcbaGaamOBaaqaaiaacIcacaWGtbGaamOtaiaacMcaaaGc daqadaqaaiaadIhaaiaawIcacaGLPaaaciGGZbGaaiyAaiaac6gaca WGobGaeqy1dygacaGLBbGaayzxaaGaaGPaVlaacYcaaeaacaWGwbGa eyypa0ZaamWaaeaacaWGwbWaa0baaSqaaiaad6gaaeaacaGGOaGaaG imaiaacMcaaaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaacaGGSaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadAfada qhaaWcbaGaamOBaaqaaiaacIcacaWGtbGaamOtaiaacMcaaaGcdaqa daqaaiaadIhaaiaawIcacaGLPaaaciGGZbGaaiyAaiaac6gacaWGob Gaeqy1dyMaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamOv amaaDaaaleaacaWGUbaabaGaaiikaiaadoeacaWGobGaaiykaaaakm aabmaabaGaamiEaaGaayjkaiaawMcaaiGacogacaGGVbGaai4Caiaa d6eacqaHvpGzcaaMc8oacaGLBbGaayzxaaGaaGPaVlaacYcaaeaaca WGxbGaeyypa0ZaamWaaeaacaWGxbWaa0baaSqaaiaad6gaaeaacaGG OaGaaGimaiaacMcaaaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaca GGSaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4vamaa DaaaleaacaWGUbaabaGaaiikaiaadoeacaWGobGaaiykaaaakmaabm aabaGaamiEaaGaayjkaiaawMcaaiGacogacaGGVbGaai4Caiaad6ea cqaHvpGzcaaMc8UaaiilaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaadEfadaqhaaWcbaGaamOBaaqaaiaacIcacaWGtbGaamOt aiaacMcaaaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaaciGGZbGaai yAaiaac6gacaWGobGaeqy1dygacaGLBbGaayzxaaGaaGPaVlaacYca aaaa@EAC5@ (8)

U n ( x )=[ U 1 ( x ), U 2 ( x ),..., U n ( x ) ], V n ( x )=[ V 1 ( x ), V 2 ( x ),..., V n ( x ) ], W n ( x )=[ W 1 ( x ), W 2 ( x ),..., W n ( x ) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaamyvam aaBaaaleaacaWGUbaabeaakmaabmaabaGaamiEaaGaayjkaiaawMca aiabg2da9maadmaabaGaamyvamaaBaaaleaacaaIXaaabeaakmaabm aabaGaamiEaaGaayjkaiaawMcaaiaacYcacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadwfadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaai aadIhaaiaawIcacaGLPaaacaGGSaGaaGPaVlaac6cacaaMc8UaaiOl aiaaykW7caGGUaGaaGPaVlaaykW7caGGSaGaaGPaVlaaykW7caaMc8 UaaGPaVlaadwfadaWgaaWcbaGaamOBaaqabaGcdaqadaqaaiaadIha aiaawIcacaGLPaaaaiaawUfacaGLDbaacaaMc8UaaiilaaqaaiaadA fadaWgaaWcbaGaamOBaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGL PaaacqGH9aqpdaWadaqaaiaadAfadaWgaaWcbaGaaGymaaqabaGcda qadaqaaiaadIhaaiaawIcacaGLPaaacaGGSaGaaGPaVlaaykW7caaM c8UaaGPaVlaadAfadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadI haaiaawIcacaGLPaaacaGGSaGaaGPaVlaac6cacaaMc8UaaiOlaiaa ykW7caGGUaGaaGPaVlaaykW7caGGSaGaaGPaVlaaykW7caaMc8UaaG PaVlaadAfadaWgaaWcbaGaamOBaaqabaGcdaqadaqaaiaadIhaaiaa wIcacaGLPaaaaiaawUfacaGLDbaacaaMc8UaaiilaaqaaiaadEfada WgaaWcbaGaamOBaaqabaGcdaqadaqaaiaadIhaaiaawIcacaGLPaaa cqGH9aqpdaWadaqaaiaadEfadaWgaaWcbaGaaGymaaqabaGcdaqada qaaiaadIhaaiaawIcacaGLPaaacaGGSaGaaGPaVlaaykW7caaMc8Ua aGPaVlaadEfadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadIhaai aawIcacaGLPaaacaGGSaGaaGPaVlaac6cacaaMc8UaaiOlaiaaykW7 caGGUaGaaGPaVlaaykW7caGGSaGaaGPaVlaaykW7caaMc8UaaGPaVl aadEfadaWgaaWcbaGaamOBaaqabaGcdaqadaqaaiaadIhaaiaawIca caGLPaaaaiaawUfacaGLDbaacaaMc8Uaaiilaaaaaa@C720@  (9)

For n=1,2,3,...nmax, N=1,2,3,...Nmax.

Substituting (6-9) into equation (5) and carrying out the integration (5), one obtains

d 2 α d t 2 = ( M s mr V ¯ d 2 T v d t 2 r+2 dα dt W ¯ d T w dt r+ ( dα dt ) 2 V ¯ T v r + V T W ¯ , d 2 T v d t 2 T w T 2 dα dt W T W ¯ , d T w dt T w T ( dα dt ) 2 V T W ¯ , T v T w T ) 2πL r 2 2r W ¯ T w + W T W ¯ , T w T w T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaae izamaaCaaaleqabaGaaGOmaaaakiabeg7aHbqaaiaabsgacaaMc8Ua amiDamaaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpdaWcaaqaamaabm aaeaGabeaadaWcaaqaaiaad2eadaWgaaWcbaGaam4Caaqabaaakeaa caWGTbGaamOCaaaacqGHsisldaqdaaqaaiaadAfaaaWaaSaaaeaaca WGKbWaaWbaaSqabeaacaaIYaaaaOGaamivamaaBaaaleaacaWG2baa beaaaOqaaiaadsgacaaMc8UaamiDamaaCaaaleqabaGaaGOmaaaaaa GccaWGYbGaey4kaSIaaGOmamaalaaabaGaaeizaiabeg7aHbqaaiaa bsgacaaMc8UaamiDaaaadaqdaaqaaiaadEfaaaWaaSaaaeaacaWGKb GaamivamaaBaaaleaacaWG3baabeaaaOqaaiaadsgacaaMc8UaamiD aaaacaWGYbGaey4kaSYaaeWaaeaadaWcaaqaaiaabsgacqaHXoqyae aacaqGKbGaaGPaVlaadshaaaaacaGLOaGaayzkaaWaaWbaaSqabeaa caaIYaaaaOWaa0aaaeaacaWGwbaaaiaadsfadaWgaaWcbaGaamODaa qabaGccaWGYbaabaGaey4kaSYaaaWaaeaadaqdaaqaaiaadAfadaah aaWcbeqaaiaadsfaaaGccaWGxbaaaiaacYcadaWcaaqaaiaadsgada ahaaWcbeqaaiaaikdaaaGccaWGubWaaSbaaSqaaiaadAhaaeqaaaGc baGaamizaiaaykW7caWG0bWaaWbaaSqabeaacaaIYaaaaaaakiaads fadaqhaaWcbaGaam4DaaqaaiaadsfaaaaakiaawMYicaGLQmcacqGH sislcaaIYaWaaSaaaeaacaqGKbGaeqySdegabaGaaeizaiaaykW7ca WG0baaamaaamaabaWaa0aaaeaacaWGxbWaaWbaaSqabeaacaWGubaa aOGaam4vaaaacaGGSaWaaSaaaeaacaWGKbGaamivamaaBaaaleaaca WG3baabeaaaOqaaiaadsgacaaMc8UaamiDaaaacaWGubWaa0baaSqa aiaadEhaaeaacaWGubaaaaGccaGLPmIaayPkJaGaeyOeI0YaaeWaae aadaWcaaqaaiaabsgacqaHXoqyaeaacaqGKbGaaGPaVlaadshaaaaa caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWaaaWaaeaadaqdaa qaaiaadAfadaahaaWcbeqaaiaadsfaaaGccaWGxbaaaiaacYcacaWG ubWaaSbaaSqaaiaadAhaaeqaaOGaamivamaaDaaaleaacaWG3baaba GaamivaaaaaOGaayzkJiaawQYiaaaacaGLOaGaayzkaaaabaGaaGOm aiabec8aWjaadYeacaWGYbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0 IaaGOmaiaadkhadaqdaaqaaiaadEfaaaGaamivamaaBaaaleaacaWG 3baabeaakiabgUcaRmaaamaabaWaa0aaaeaacaWGxbWaaWbaaSqabe aacaWGubaaaOGaam4vaaaacaGGSaGaamivamaaBaaaleaacaWG3baa beaakiaadsfadaqhaaWcbaGaam4DaaqaaiaadsfaaaaakiaawMYica GLQmcaaaaaaa@C08D@ ,

0 L 0 2π ( )dϕdx= ( ) ¯ , A,B = r c A rc B rc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaWaa8 qCaeaadaqadaqaaiaaykW7caaMc8oacaGLOaGaayzkaaGaamizaiab ew9aMjaadsgacaWG4bGaeyypa0Zaa0aaaeaadaqadaqaaiaaykW7ca aMc8oacaGLOaGaayzkaaaaaaWcbaGaaGimaaqaaiaaikdacqaHapaC a0Gaey4kIipaaSqaaiaaicdaaeaacaWGmbaaniabgUIiYdGccaGGSa GaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaaamaa baGaamyqaiaacYcacaWGcbaacaGLPmIaayPkJaGaeyypa0ZaaabCae aadaaeWbqaaiaadgeadaWgaaWcbaGaamOCaiaadogaaeqaaOGaamOq amaaBaaaleaacaWGYbGaam4yaaqabaaabaGaam4yaaqaaaqdcqGHri s5aaWcbaGaamOCaaqaaaqdcqGHris5aaaa@6D45@ .(10)

The partial differential equations governing the motion of shell element will now be replaced by ordinary differential equations using Ritz-Galerkin. Let’s pre-multiply those equations4,5 by the transposition of functions (8) and then integrate of the resultant expressions by parts with the use of the forces-displacement relationships and boundary conditions

0 2π 0 l U T ( N x x + 1 a N ϕx ϕ Q x 2 w x 2 N xϕ 2 v x 2 )dxdϕ + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaWaa8 qCaeaacaWGvbWaaWbaaSqabeaacaWGubaaaOWaaeWaaeaadaWcaaqa aiabekGi2kaad6eadaWgaaWcbaGaamiEaaqabaaakeaacqaHciITca WG4baaaiabgUcaRmaalaaabaGaaGymaaqaaiaadggaaaWaaSaaaeaa cqaHciITcaWGobWaaSbaaSqaaiabew9aMjaadIhaaeqaaaGcbaGaeq OaIyRaeqy1dygaaiabgkHiTiaadgfadaWgaaWcbaGaamiEaaqabaGc daWcaaqaaiabekGi2oaaCaaaleqabaGaaGOmaaaakiaadEhaaeaacq aHciITcaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTiaad6ea daWgaaWcbaGaamiEaiabew9aMbqabaGcdaWcaaqaaiabekGi2oaaCa aaleqabaGaaGOmaaaakiaadAhaaeaacqaHciITcaWG4bWaaWbaaSqa beaacaaIYaaaaaaaaOGaayjkaiaawMcaaiaadsgacaWG4bGaamizai abew9aMbWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipaaSqaaiaaicda aeaacaaIYaGaeqiWdahaniabgUIiYdGccqGHRaWkaaa@70CA@

0 2π 0 l U T ( Q ϕ a ( v x + 2 w xϕ ) N ϕ a ( 2 v xϕ w x )+ q x )dxdϕ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaWaa8 qCaeaacaWGvbWaaWbaaSqabeaacaWGubaaaOWaaeWaaeaacqGHsisl daWcaaqaaiaadgfadaWgaaWcbaGaeqy1dygabeaaaOqaaiaadggaaa WaaeWaaeaadaWcaaqaaiabekGi2kaadAhaaeaacqaHciITcaWG4baa aiabgUcaRmaalaaabaGaeqOaIy7aaWbaaSqabeaacaaIYaaaaOGaam 4DaaqaaiabekGi2kaadIhacqaHciITcqaHvpGzaaaacaGLOaGaayzk aaGaeyOeI0YaaSaaaeaacaWGobWaaSbaaSqaaiabew9aMbqabaaake aacaWGHbaaamaabmaabaWaaSaaaeaacqaHciITdaahaaWcbeqaaiaa ikdaaaGccaWG2baabaGaeqOaIyRaamiEaiabekGi2kabew9aMbaacq GHsisldaWcaaqaaiabekGi2kaadEhaaeaacqaHciITcaWG4baaaaGa ayjkaiaawMcaaiabgUcaRiaadghadaWgaaWcbaGaamiEaaqabaaaki aawIcacaGLPaaacaWGKbGaamiEaiaadsgacqaHvpGzaSqaaiaaicda aeaacaWGSbaaniabgUIiYdaaleaacaaIWaaabaGaaGOmaiabec8aWb qdcqGHRiI8aOGaeyypa0JaaGimaaaa@7885@ ,

0 2π 0 l V T ( 1 a N ϕ ϕ + N xϕ x + N x 2 v x 2 Q x a ( v x + 2 w xϕ ) )dxdϕ + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaWaa8 qCaeaacaWGwbWaaWbaaSqabeaacaWGubaaaOWaaeWaaeaadaWcaaqa aiaaigdaaeaacaWGHbaaamaalaaabaGaeqOaIyRaamOtamaaBaaale aacqaHvpGzaeqaaaGcbaGaeqOaIyRaeqy1dygaaiabgUcaRmaalaaa baGaeqOaIyRaamOtamaaBaaaleaacaWG4bGaeqy1dygabeaaaOqaai abekGi2kaadIhaaaGaey4kaSIaamOtamaaBaaaleaacaWG4baabeaa kmaalaaabaGaeqOaIy7aaWbaaSqabeaacaaIYaaaaOGaamODaaqaai abekGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0YaaSaa aeaacaWGrbWaaSbaaSqaaiaadIhaaeqaaaGcbaGaamyyaaaadaqada qaamaalaaabaGaeqOaIyRaamODaaqaaiabekGi2kaadIhaaaGaey4k aSYaaSaaaeaacqaHciITdaahaaWcbeqaaiaaikdaaaGccaWG3baaba GaeqOaIyRaamiEaiabekGi2kabew9aMbaaaiaawIcacaGLPaaaaiaa wIcacaGLPaaacaWGKbGaamiEaiaadsgacqaHvpGzaSqaaiaaicdaae aacaWGSbaaniabgUIiYdaaleaacaaIWaaabaGaaGOmaiabec8aWbqd cqGHRiI8aOGaey4kaScaaa@7A2D@

+ 0 2π 0 l V T ( N ϕx a ( 2 v xϕ w x ) Q ϕ a ( 1+ v aϕ + 2 w a ϕ 2 )+ q ϕ )dxdϕ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgUcaRmaape habaWaa8qCaeaacaWGwbWaaWbaaSqabeaacaWGubaaaOWaaeWaaeaa daWcaaqaaiaad6eadaWgaaWcbaGaeqy1dyMaamiEaaqabaaakeaaca WGHbaaamaabmaabaWaaSaaaeaacqaHciITdaahaaWcbeqaaiaaikda aaGccaWG2baabaGaeqOaIyRaamiEaiabekGi2kabew9aMbaacqGHsi sldaWcaaqaaiabekGi2kaadEhaaeaacqaHciITcaWG4baaaaGaayjk aiaawMcaaiabgkHiTmaalaaabaGaamyuamaaBaaaleaacqaHvpGzae qaaaGcbaGaamyyaaaadaqadaqaaiaaigdacqGHRaWkdaWcaaqaaiab ekGi2kaadAhaaeaacaWGHbGaeqOaIyRaeqy1dygaaiabgUcaRmaala aabaGaeqOaIy7aaWbaaSqabeaacaaIYaaaaOGaam4Daaqaaiaadgga cqaHciITcqaHvpGzdaahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaay zkaaGaey4kaSIaamyCamaaBaaaleaacqaHvpGzaeqaaaGccaGLOaGa ayzkaaGaamizaiaadIhacaWGKbGaeqy1dygaleaacaaIWaaabaGaam iBaaqdcqGHRiI8aaWcbaGaaGimaaqaaiaaikdacqaHapaCa0Gaey4k Iipakiabg2da9iaaicdaaaa@7D09@ ,

0 2π 0 l W T ( Q x x + 1 a Q ϕ ϕ + x ( N xϕ ( v a + w aϕ ) )+ x ( N x w x ) )dxdϕ + MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaWaa8 qCaeaacaWGxbWaaWbaaSqabeaacaWGubaaaOWaaeWaaeaadaWcaaqa aiabekGi2kaadgfadaWgaaWcbaGaamiEaaqabaaakeaacqaHciITca WG4baaaiabgUcaRmaalaaabaGaaGymaaqaaiaadggaaaWaaSaaaeaa cqaHciITcaWGrbWaaSbaaSqaaiabew9aMbqabaaakeaacqaHciITcq aHvpGzaaGaey4kaSYaaSaaaeaacqaHciITaeaacqaHciITcaWG4baa amaabmaabaGaamOtamaaBaaaleaacaWG4bGaeqy1dygabeaakmaabm aabaWaaSaaaeaacaWG2baabaGaamyyaaaacqGHRaWkdaWcaaqaaiab ekGi2kaadEhaaeaacaWGHbGaeqOaIyRaeqy1dygaaaGaayjkaiaawM caaaGaayjkaiaawMcaaiabgUcaRmaalaaabaGaeqOaIylabaGaeqOa IyRaamiEaaaadaqadaqaaiaad6eadaWgaaWcbaGaamiEaaqabaGcda WcaaqaaiabekGi2kaadEhaaeaacqaHciITcaWG4baaaaGaayjkaiaa wMcaaaGaayjkaiaawMcaaiaadsgacaWG4bGaamizaiabew9aMbWcba GaaGimaaqaaiaadYgaa0Gaey4kIipaaSqaaiaaicdaaeaacaaIYaGa eqiWdahaniabgUIiYdGccqGHRaWkaaa@7CBA@

+ 0 2π 0 l W T ( N ϕ a + ϕ ( N ϕ a ( v a + w aϕ ) )+ ϕ ( N ϕx a ( w x ) )+ q z )dxdϕ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgUcaRmaape habaWaa8qCaeaacaWGxbWaaWbaaSqabeaacaWGubaaaOWaaeWaaeaa daWcaaqaaiaad6eadaWgaaWcbaGaeqy1dygabeaaaOqaaiaadggaaa Gaey4kaSYaaSaaaeaacqaHciITaeaacqaHciITcqaHvpGzaaWaaeWa aeaadaWcaaqaaiaad6eadaWgaaWcbaGaeqy1dygabeaaaOqaaiaadg gaaaWaaeWaaeaadaWcaaqaaiaadAhaaeaacaWGHbaaaiabgUcaRmaa laaabaGaeqOaIyRaam4DaaqaaiaadggacqaHciITcqaHvpGzaaaaca GLOaGaayzkaaaacaGLOaGaayzkaaGaey4kaSYaaSaaaeaacqaHciIT aeaacqaHciITcqaHvpGzaaWaaeWaaeaadaWcaaqaaiaad6eadaWgaa WcbaGaeqy1dyMaaGPaVlaadIhaaeqaaaGcbaGaamyyaaaadaqadaqa amaalaaabaGaeqOaIyRaam4DaaqaaiabekGi2kaadIhaaaaacaGLOa GaayzkaaaacaGLOaGaayzkaaGaey4kaSIaamyCamaaBaaaleaacaWG 6baabeaaaOGaayjkaiaawMcaaiaadsgacaWG4bGaamizaiabew9aMb WcbaGaaGimaaqaaiaadYgaa0Gaey4kIipaaSqaaiaaicdaaeaacaaI YaGaeqiWdahaniabgUIiYdGccqGH9aqpcaaIWaaaaa@7CCA@ . (11)

As a result of the integration, we obtain a set of three ordinary differential equations of second order

K 11 T u + K 12 T v + K 13 T w + K 12 (1) ( dα dt ) 2 T v + K 13 (1) ( dα dt ) 2 T w + C 11 d T u dt + M 11 d 2 T u d t 2 = F 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUeadaWgaa WcbaGaaGymaiaaigdaaeqaaOGaamivamaaBaaaleaacaWG1baabeaa kiabgUcaRiaadUeadaWgaaWcbaGaaGymaiaaikdaaeqaaOGaamivam aaBaaaleaacaWG2baabeaakiabgUcaRiaadUeadaWgaaWcbaGaaGym aiaaiodaaeqaaOGaamivamaaBaaaleaacaWG3baabeaakiabgUcaRi aadUeadaqhaaWcbaGaaGymaiaaikdaaeaacaGGOaGaaGymaiaacMca aaGcdaqadaqaamaalaaabaGaaeizaiabeg7aHbqaaiaabsgacaWG0b aaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiaadsfadaWg aaWcbaGaamODaaqabaGccqGHRaWkcaWGlbWaa0baaSqaaiaaigdaca aIZaaabaGaaiikaiaaigdacaGGPaaaaOWaaeWaaeaadaWcaaqaaiaa bsgacqaHXoqyaeaacaqGKbGaamiDaaaaaiaawIcacaGLPaaadaahaa WcbeqaaiaaikdaaaGccaWGubWaaSbaaSqaaiaadEhaaeqaaOGaey4k aSIaam4qamaaBaaaleaacaaIXaGaaGymaaqabaGcdaWcaaqaaiaabs gacaWGubWaaSbaaSqaaiaadwhaaeqaaaGcbaGaaeizaiaadshaaaGa ey4kaSIaamytamaaBaaaleaacaaIXaGaaGymaaqabaGcdaWcaaqaai aabsgadaahaaWcbeqaaiaaikdaaaGccaWGubWaaSbaaSqaaiaadwha aeqaaaGcbaGaaeizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaey ypa0JaamOramaaBaaaleaacaaIXaaabeaaaaa@7979@ ,

K 21 T u + K 22 T v + K 23 T w + K 22 (1) ( dα dt ) 2 T v + K 23 (2) d 2 α d t 2 T w + C 23 dα dt d T w dt + + C 22 dT v dt + M 22 d 2 T v d t 2 + M 24 d 2 α d t 2 + F 2c cosα+ F 2s sinα+ F 2 ( α )=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaiqabaGaam4sam aaBaaaleaacaaIYaGaaGymaaqabaGccaWGubWaaSbaaSqaaiaadwha aeqaaOGaey4kaSIaam4samaaBaaaleaacaaIYaGaaGOmaaqabaGcca WGubWaaSbaaSqaaiaadAhaaeqaaOGaey4kaSIaam4samaaBaaaleaa caaIYaGaaG4maaqabaGccaWGubWaaSbaaSqaaiaadEhaaeqaaOGaey 4kaSIaam4samaaDaaaleaacaaIYaGaaGOmaaqaaiaacIcacaaIXaGa aiykaaaakmaabmaabaWaaSaaaeaacaqGKbGaeqySdegabaGaaeizai aadshaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaamiv amaaBaaaleaacaWG2baabeaakiabgUcaRiaadUeadaqhaaWcbaGaaG OmaiaaiodaaeaacaGGOaGaaGOmaiaacMcaaaGcdaWcaaqaaiaabsga daahaaWcbeqaaiaabkdaaaGccqaHXoqyaeaacaqGKbGaamiDamaaCa aaleqabaGaaGOmaaaaaaGccaWGubWaaSbaaSqaaiaadEhaaeqaaOGa ey4kaSIaam4qamaaBaaaleaacaaIYaGaaG4maaqabaGcdaWcaaqaai aabsgacqaHXoqyaeaacaqGKbGaamiDaaaadaWcaaqaaiaabsgacaWG ubWaaSbaaSqaaiaadEhaaeqaaaGcbaGaaeizaiaadshaaaGaey4kaS cabaGaey4kaSIaam4qamaaBaaaleaacaaIYaGaaGOmaaqabaGcdaWc aaqaaiaabsgacaWGubWaaSraaSqaaiaadAhaaeqaaaGcbaGaaeizai aadshaaaGaey4kaSIaamytamaaBaaaleaacaaIYaGaaGOmaaqabaGc daWcaaqaaiaabsgadaahaaWcbeqaaiaabkdaaaGccaWGubWaaSraaS qaaiaadAhaaeqaaaGcbaGaaeizaiaadshadaahaaWcbeqaaiaaikda aaaaaOGaey4kaSIaamytamaaBaaaleaacaaIYaGaaGinaaqabaGcda WcaaqaaiaabsgadaahaaWcbeqaaiaabkdaaaGccqaHXoqyaeaacaqG KbGaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkcaWGgbWaaS baaSqaaiaaikdacaWGJbaabeaakiGacogacaGGVbGaai4Caiabeg7a HjabgUcaRiaadAeadaWgaaWcbaGaaGOmaiaadohaaeqaaOGaci4Cai aacMgacaGGUbGaeqySdeMaey4kaSIaamOramaaBaaaleaacaaIYaaa beaakmaabmaabaGaeqySdegacaGLOaGaayzkaaGaeyypa0JaaGimai aacYcaaaaa@A5BD@

K 31 T u + K 32 T v + K 33 T w + K 32 (1) ( dα dt ) 2 T v + K 33 (1) ( dα dt ) 2 T w + K 32 (2) d 2 α d t 2 T v + + C 32 dα dt d T v dt + C 33 d T w dt + M 33 d 2 T w d t 2 + F 3c cosα+ F 3s sinα+ F 3 ( α )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4sam aaBaaaleaacaaIZaGaaGymaaqabaGccaWGubWaaSbaaSqaaiaadwha aeqaaOGaey4kaSIaam4samaaBaaaleaacaaIZaGaaGOmaaqabaGcca WGubWaaSbaaSqaaiaadAhaaeqaaOGaey4kaSIaam4samaaBaaaleaa caaIZaGaaG4maaqabaGccaWGubWaaSbaaSqaaiaadEhaaeqaaOGaey 4kaSIaam4samaaDaaaleaacaaIZaGaaGOmaaqaaiaacIcacaaIXaGa aiykaaaakmaabmaabaWaaSaaaeaacaqGKbGaeqySdegabaGaaeizai aadshaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaamiv amaaBaaaleaacaWG2baabeaakiabgUcaRiaadUeadaqhaaWcbaGaaG 4maiaaiodaaeaacaGGOaGaaGymaiaacMcaaaGcdaqadaqaamaalaaa baGaaeizaiabeg7aHbqaaiaabsgacaWG0baaaaGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaakiaadsfadaWgaaWcbaGaam4DaaqabaGc cqGHRaWkcaWGlbWaa0baaSqaaiaaiodacaaIYaaabaGaaiikaiaaik dacaGGPaaaaOWaaSaaaeaacaqGKbWaaWbaaSqabeaacaqGYaaaaOGa eqySdegabaGaaeizaiaadshadaahaaWcbeqaaiaaikdaaaaaaOGaam ivamaaBaaaleaacaWG2baabeaakiabgUcaRaqaaiabgUcaRiaadoea daWgaaWcbaGaaG4maiaaikdaaeqaaOWaaSaaaeaacaqGKbGaeqySde gabaGaaeizaiaadshaaaWaaSaaaeaacaqGKbGaamivamaaBaaaleaa caWG2baabeaaaOqaaiaabsgacaWG0baaaiabgUcaRiaadoeadaWgaa WcbaGaaG4maiaaiodaaeqaaOWaaSaaaeaacaqGKbGaamivamaaBaaa leaacaWG3baabeaaaOqaaiaabsgacaWG0baaaiabgUcaRiaad2eada WgaaWcbaGaaG4maiaaiodaaeqaaOWaaSaaaeaacaqGKbWaaWbaaSqa beaacaqGYaaaaOGaamivamaaBaaaleaacaWG3baabeaaaOqaaiaabs gacaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiabgUcaRiaadAeadaWg aaWcbaGaaG4maiaadogaaeqaaOGaci4yaiaac+gacaGGZbGaeqySde Maey4kaSIaamOramaaBaaaleaacaaIZaGaam4CaaqabaGcciGGZbGa aiyAaiaac6gacqaHXoqycqGHRaWkcaWGgbWaaSbaaSqaaiaaiodaae qaaOWaaeWaaeaacqaHXoqyaiaawIcacaGLPaaacqGH9aqpcaaIWaGa aiOlaaaaaa@AA82@ (12)

Introducing matrices of three times higher order, than the matrices in equations (12), these set can be rewritten as one equation

M d 2 T d t 2 +C dT dt +KT+ ( dα dt ) 2 K (1) T+ d 2 α d t 2 K (2) T+ C (1) dα dt dT dt + F c cosα+ F s sinα+F( α )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2eadaWcaa qaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWGubaabaGaamizaiaa dshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaam4qamaalaaaba GaamizaiaadsfaaeaacaWGKbGaamiDaaaacqGHRaWkcaWGlbGaamiv aiabgUcaRmaabmaabaWaaSaaaeaacaWGKbGaeqySdegabaGaamizai aadshaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaam4s amaaCaaaleqabaGaaiikaiaaigdacaGGPaaaaOGaamivaiabgUcaRm aalaaabaGaamizamaaCaaaleqabaGaaGOmaaaakiabeg7aHbqaaiaa dsgacaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiaadUeadaahaaWcbe qaaiaacIcacaaIYaGaaiykaaaakiaadsfacqGHRaWkcaWGdbWaaWba aSqabeaacaGGOaGaaGymaiaacMcaaaGcdaWcaaqaaiaadsgacqaHXo qyaeaacaWGKbGaamiDaaaadaWcaaqaaiaadsgacaWGubaabaGaamiz aiaadshaaaGaey4kaSIaamOramaaBaaaleaacaWGJbaabeaakiGaco gacaGGVbGaai4Caiabeg7aHjabgUcaRiaadAeadaWgaaWcbaGaam4C aaqabaGcciGGZbGaaiyAaiaac6gacqaHXoqycqGHRaWkcaWGgbWaae WaaeaacqaHXoqyaiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@7EC9@ (13)

Where T=[Tu,Tv,Tw].

Adding now equation governing the driving torque of the motor

d M s dt = 1 T s ( C s ( Ω s dα dt ) M s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaad2eadaWgaaWcbaGaam4CaaqabaaakeaacaWGKbGaamiDaaaa cqGH9aqpdaWcaaqaaiaaigdaaeaacaWGubWaaSbaaSqaaiaadohaae qaaaaakmaabmaabaGaam4qamaaBaaaleaacaWGZbaabeaakmaabmaa baGaeuyQdC1aaSbaaSqaaiaadohaaeqaaOGaeyOeI0YaaSaaaeaaca WGKbGaeqySdegabaGaamizaiaadshaaaaacaGLOaGaayzkaaGaeyOe I0IaamytamaaBaaaleaacaWGZbaabeaaaOGaayjkaiaawMcaaaaa@50F5@ (14)

We obtained the set of three equations (10,13,14) from which angle of drum rotation α, components of elastic deflection T (7-9)and driving torque Ms can be found through numerical integration. Similar calculations were performed by the author for a spindle directly driven by three-phase electric motor.14

Acknowledgements

None.

Conflict of interest

Author declares there is no conflict of interest.

References

  1. Donell L H. A new theory for the buckling of thin cylinders under axial compression and bending. Trans ASME. 1934;56:795–806.
  2. Lave AEH. A Treatise on the Mathematical Theory of Elasticity. 4th ed. New York: Dover Publications Inc; 1944.
  3. Flugge W. Powłoki. Obliczenia statyczne. Warszawa: Arkady; 1972.
  4. Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells. McGraw-Hill Book Company; 1959.
  5. Timoshenko S, Gere J. Theory elastic stability. McGraw-Hill Book Company; 1961.
  6. Mangelsdorf CP. The Morley-Koiter equations for thin-walled cylindrical shells : Part 1—General Solution for Symmetrical Shells of Uniform Thickness. J Applied Mechanics. 1973;40(4):961–965.
  7. Arnold RN, Warburton GB. The flexural vibrations of thin cylinders. Proc Inst Mech Engrs. 1953;167(1):62–80.
  8. Forsberg K. Influence of boundary conditions on the modal characteristics of thin cylindrical shells. AIAA J. 1964;2(12):2150–2157.
  9. Warburton GB. Vibration of thin cylindrical shells. J Mechanical Engineering Science. 1965;7(4):399–407.
  10. Srinivasan AV, Lauterbach GF. Travelling waves in rotating cylindrical shells. J Engineering for Industry. 1971; 93(4):1229–1232.
  11. Shyh-Chin Huang, Lin-Hung Chen. Vibration of a spinning cylindrical shell with internal-external ring stiffeners. J Vib Acoust. 1996;118(2):227–236.
  12. Char-Ming Chin, Nayfeh AH. Bifurcation and chaos in externally excited circular cylindrical shells. J Applied Mechanics. 1996;63(3):565–574.
  13. Borowicz J, Zajączkowski J. Strength calculations of rotating drums covered with saw wire. Textile Review. 1977:282–284.
  14. Zajaczkowski J. Stability of a direct drive of a spindle in a spinning machine. Fibres & Textiles Eastern Europe. 2000;83(30):63–65.
Creative Commons Attribution License

©2018 Zajaczkowski. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.