Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 8 Issue 2

The corrected mathematical models for the top motion

Ryspek Usubamatov,1 Sarken Kapayeva2

1Kyrgyz State Technical University after I. Kyrgyzstan
2East Kazakhstan Technical University after D. Kazakhstan

Correspondence: Ryspek Usubamatov, Kyrgyz State Technical University after I. Razzakov, Kyrgyzstan

Received: July 23, 2022 | Published: August 25, 2022

Citation: Usubamatov R, Kapayeva S. The corrected mathematical models for the top motion. Int Rob Auto J. 2022;8(2):70-71 DOI: 10.15406/iratj.2022.08.00247

Download PDF

Abstract

The mathematical models for the top motions in known publications contain the incorrect expression of the centrifugal torque and do not consider the action of the Coriolis torque generated by the center mass. In reality, the two centrifugal torques, two torques of Coriolis forces, and two changes in the angular momentums formulate the dependency of the angular velocities of the top motions about two axes. The corrected expression of the centrifugal torque and the Coriolis torque generated by the center mass changed the mathematical models for the top motion and its self-stabilization. The new analytical approach for the spinning top motions with the action of all external and inertial torques gives an accurate solution and describes its physics. The derived mathematical models for the spinning top motions and solution represent a good example of the educational process of engineering mechanics.

Keywords: physics of gyroscopic effects, inertial torque, top motions

Introduction

The top toy and its modifications are the most ancient simple gyroscope that utilizes today and surprised by its properties. Until recent times the motions of the top did not have a correct mathematical model.1,2 Researchers did not use the fundamental principles of classical mechanics which methods can describe the motions of any objects in.3-7 The sophisticated motions of the gyroscopes and tops were tried to formulate by several generations of researchers.8-15 The top motion was described by the inaccurate expression of the centrifugal inertial torque and does not consider the Coriolis torque.16 This centrifugal torque yielded an inaccurate solution for the motion of the rotating objects about axis of its action, which did not measure because was technically problematic. The gyroscope rotation around another axis with measurement remained without change in the angular velocity. Other researchers confirmed these results and tests. The expression of the centrifugal torque was revised and corrected. The corrected inertial torque changed the axial interrelation of the gyroscope rotations. These new expressions of the inertial torques for horizontal location of the gyroscope are presented in Table 1.17

Type of the torque generated by

Acton

Equation

Centrifugal forces

Resistance

T ct = 4 9 π 2 Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzadGaam4yaiaadshaaSqabaqcLbsacqGH9aqpkmaa laaabaqcLbsacaaI0aaakeaajugibiaaiMdaaaGaeqiWdaNcdaahaa WcbeqcgayaaKqzadGaaGOmaaaajugibiaadQeacqaHjpWDcqaHjpWD lmaaBaaabaqcLbmacaWG4baaleqaaaaa@4BE5@

Coriolis forces

Precession

T cr =(8/9)Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaS WaaSbaaeaajugWaiaadogacaWGYbaaleqaaKqzGeGaeyypa0Jaaiik aiaaiIdacaGGVaGaaGyoaiaacMcacaWGkbGaeqyYdCNaeqyYdCNcda WgaaWcbaqcLbmacaWG4baaleqaaaaa@47B5@

Change in angular momentum

Resistance

T am =Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamivaO WaaSbaaSqaaKqzadGaamyyaiaad2gaaSqabaqcLbsacqGH9aqpcaWG kbGaeqyYdCNaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbeaaaaa@441D@

Dependency of angular velocities of spinning disc rotations about axes    

Precession    

ω y =(8 π 2 +17) ω x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaeqyYdC NcdaWgaaWcbaqcLbmacaWG5baaleqaaKqzGeGaeyypa0Jaaiikaiaa iIdacqaHapaClmaaCaaabeqaaKqzadGaaGOmaaaajugibiabgUcaRi aaigdacaaI3aGaaiykaiabeM8a3PWaaSbaaSqaaKqzadGaamiEaaWc beaaaaa@4A81@

Table 1 Equations of the inertial torques acting on the spinning disc

The new expressions for the top motions on the horizontal surface are derived by the action of the internal and frictional forces and its weight. The spiral motion of the spinning top leg asymptotically drives to the vertical position of its axis. The top preserves vertical spinning until the minimum angular velocity with its following wobbling and side fall. This research work explains the physics of the top motion by the analytical model based on the action of the corrected gyroscopic inertial forces. The resented solution explains in popular form the mechanics of the top motion that are confirmed by practical tests.

Methodology

The spinning top motions is considered when its leg is tilted on the angle γ and rotation in a counter-clockwise direction (Figure 1). The weight of the top, the frictional force of the leg's tip, and inertial torques result in processed motion of the top around its center mass. The top describes a spiral conical surface that drives to its vertical disposition. The action of the frictional force and inertial torques on the top are demonstrated in Figure 1. The analytical approach for the top motion is the same as for the gyroscope with one side support.16 The analytical models for top motions about axes are as the follows:

J x d ω x dt =T+ T ct.my T ctx T crx T amy η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGkb WcdaWgaaqaaKqzadGaamiEaaWcbeaajuaGdaWcaaGcbaqcLbsacaWG KbGaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbeaaaOqaaKqzGeGaam izaiaadshaaaGaeyypa0JaamivaiabgUcaRiaadsfalmaaBaaabaqc LbmacaWGJbGaamiDaiaad6cacaWGTbGaamyEaaWcbeaajugibiabgk HiTiaadsfalmaaBaaabaqcLbmacaWGJbGaamiDaiaadIhaaSqabaqc LbsacqGHsislcaWGubqcfa4aaSbaaSqaaKqzadGaam4yaiaadkhaca WG4baaleqaaKqzGeGaeyOeI0IaamivaSWaaSbaaeaajugWaiaadgga caWGTbGaamyEaaWcbeaajugibiabeE7aObaa@628B@   (1)

J y d ω y dt =( T ct.x + T amx )cosγ T cry + T f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeGaamOsaS WaaSbaaeaajugWaiaadMhaaSqabaqcfa4aaSaaaOqaaKqzGeGaamiz aiabeM8a3TWaaSbaaeaajugWaiaadMhaaSqabaaakeaajugibiaads gacaWG0baaaOGaeyypa0JaaiikaKqzGeGaamivaSWaaSbaaeaajugW aiaadogacaWG0bGaaiOlaiaadIhaaSqabaGccqGHRaWkjugibiaads falmaaBaaabaqcLbmacaWGHbGaamyBaiaadIhaaSqabaGccaGGPaqc LbsaciGGJbGaai4BaiaacohacqaHZoWzkiabgkHiTKqzGeGaamivaS WaaSbaaeaajugWaiaadogacaWGYbGaamyEaaWcbeaakiabgUcaRKqz GeGaamivaSWaaSbaaeaajugWaiaadAgaaSqabaaaaa@6346@   (2)

ω y =[4 π 2 +8+(4 π 2 +9)cosγ] ω x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaWG5baaleqaaKqzGeGaeyypa0Jaai4waiaa isdacqaHapaClmaaCaaabeqaaKqzadGaaGOmaaaajugibiabgUcaRi aaiIdacqGHRaWkcaGGOaGaaGinaiabec8aWLqbaoaaCaaaleqabaqc LbmacaaIYaaaaKqzGeGaey4kaSIaaGyoaiaacMcaciGGJbGaai4Bai aacohacqaHZoWzcaGGDbGaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWc beaaaaa@5708@   (3)

Figure 1 Torques acting on a spinning top.

where all parameters are related to the top J i = ( M R 2 /4 ) +M l 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadQeal8aadaWgaaqaaKqzadWdbiaadMgaaSWdaeqaaKqz GeWdbiabg2da9iaabccajuaGpaWaaeWaaOqaaKqzGeWdbiaad2eaca WGsbWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaajugibiaac+cacaaI 0aaak8aacaGLOaGaayzkaaqcLbsapeGaaeiiaiabgUcaRiaad2eaca WGSbWcpaWaaWbaaeqabaqcLbmapeGaaGOmaaaaaaa@4B22@  is the moment of inertia about axis i[ 3 ]; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadMgajuaGpaWaamWaaOqaaKqzGeWdbiaaiodaaOWdaiaa wUfacaGLDbaajugib8qacaGG7aaaaa@3D00@   M MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad2eaaaa@3778@ is mass; T=Mglcosγ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfacqGH9aqpcaWGnbGaam4zaiaadYgacaWGJbGaam4B aiaadohacqaHZoWzaaa@3FAF@ is the torque of the action of the top weight; g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGNbaaaa@3702@ is the gravity acceleration, l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaaykW7caWGSbaaaa@3922@ is the length of the leg; T f =Mgflcosγ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfajuaGpaWaaSbaaSqaaKqzadWdbiaadAgaaSWdaeqa aKqzGeWdbiabg2da9iaad2eacaWGNbGaamOzaiaadYgacaWGJbGaam 4BaiaadohacqaHZoWzaaa@4445@ is the fictional torque of the tip acting in the counter clockwise direction due to rotation of the top around axis oy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad+gacaWG5baaaa@3898@ , where f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadAgaaaa@3791@  is the coefficient of the sliding friction, lcosγ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYgacaWGJbGaam4BaiaadohacqaHZoWzaaa@3C12@ is the radius of action of the frictional force, the frictional force reduces the velocity of the top ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3baa@3873@ that is not considered; F ct =Mlcosγ ω y 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWGgbWcpaWaaSbaaeaajugWa8qacaWGJbGaamiDaaWcpaqa baqcLbsapeGaeyypa0JaamytaiaadYgacaWGJbGaam4Baiaadohacq aHZoWzcqaHjpWDl8aadaWgaaqaaKqzadWdbiaadMhaaSWdaeqaamaa CaaabeqaaKqzadWdbiaaikdaaaaaaa@4A59@ is the centrifugal force of the mass rotation around axis oy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad+gacaWG5baaaa@3898@  and acting around axis ox MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad+gacaWG4baaaa@3897@ ; ω y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3Lqba+aadaWgaaWcbaqcLbmapeGaamyEaaWcpaqa baaaaa@3B92@  is the precession velocity around axis oy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaad+gacaWG5baaaa@3898@ ; η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeE7aObaa@3852@  is the coefficient of the change in the value of the inertial torques; γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeo7aNbaa@384D@ is the tilt angle and other expressions are as specified in Table 1.

The precession torque T am.y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfal8aadaWgaaqaaKqzadWdbiaadggacaWGTbGaaiOl aiaadMhaaSWdaeqaaaaa@3C9A@  is changed on the coefficient η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeE7aObaa@3852@ because the frictional torque acts16:

η= ( T ct.x + T am.x )cosγ+ T f ( T ct.x + T am.x )cosγ =1+ 9Mgfl (4 π 2 +9)Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH3o aAcqGH9aqpjuaGdaWcaaGcbaqcLbsacaGGOaGaamivaSWaaSbaaeaa jugWaiaadogacaWG0bGaaiOlaiaadIhaaSqabaqcLbsacqGHRaWkca WGubqcfa4aaSbaaSqaaKqzadGaamyyaiaad2gacaGGUaGaamiEaaWc beaajugibiaacMcaciGGJbGaai4BaiaacohacqaHZoWzcqGHRaWkca WGubqcfa4aaSbaaSqaaKqzadGaamOzaaWcbeaaaOqaaKqzGeGaaiik aiaadsfajuaGdaWgaaWcbaqcLbmacaWGJbGaamiDaiaac6cacaWG4b aaleqaaKqzGeGaey4kaSIaamivaKqbaoaaBaaaleaajugWaiaadgga caWGTbGaaiOlaiaadIhaaSqabaqcLbsacaGGPaGaci4yaiaac+gaca GGZbGaeq4SdCgaaiabg2da9iaaigdacqGHRaWkjuaGdaWcaaGcbaqc LbsacaaI5aGaamytaiaadEgacaWGMbGaamiBaiaadccaaOqaaKqzGe GaaiikaiaaisdacqaHapaClmaaCaaabeqaaKqzadGaaGOmaaaajugi biabgUcaRiaaiMdacaGGPaGaamOsaiabeM8a3jabeM8a3TWaaSbaae aajugWaiaadIhaaSqabaaaaaaa@8076@   (4)

where T ct.x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfal8aadaWgaaqaaKqzadWdbiaadogacaWG0bGaaiOl aiaadIhaaSWdaeqaaaaa@3CA2@  and T am.x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfal8aadaWgaaqaaKqzadWdbiaadggacaWGTbGaaiOl aiaadIhaaSWdaeqaaaaa@3C99@  are the precession torques acting around axis  (Table 1).

The solution for Eqs. (1) - (4) with substituting of η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeE7aObaa@3852@ , inertial torques (Table 1), T ct . my MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfal8aadaWgaaqaaKqzadWdbiaadogacaWG0baal8aa beaajugWa8qacaGGUaWcpaWaaSbaaeaajugWa8qacaWGTbGaamyEaa Wcpaqabaaaaa@4066@ , T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfaaaa@377F@  and T f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadsfal8aadaWgaaqaaKqzadWdbiaadAgaaSWdaeqaaaaa @39FD@  into Eq. (1) is the same as represented in publications [16, Chapter 5].

J x d ω x dt =Mglcosγ+M l 2 cos 2 γ ω y 2 ( 4 π 2 +8 9 )Jω ω x Jω ω y [ 1+ 9Mgfl (4 π 2 +9)Jω ω x ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadQealmaaBaaabaqcLbmacaWG4baaleqaaKqbaoaalaaakeaajugi biaadsgacqaHjpWDlmaaBaaabaqcLbmacaWG4baaleqaaaGcbaqcLb sacaWGKbGaamiDaaaacqGH9aqpcaWGnbGaam4zaiaadYgaciGGJbGa ai4BaiaacohacqaHZoWzcqGHRaWkcaWGnbGaamiBaSWaaWbaaeqaba qcLbmacaaIYaaaaKqzGeGaci4yaiaac+gacaGGZbWcdaahaaqabeaa jugWaiaaikdaaaqcLbsacqaHZoWzcqaHjpWDlmaaDaaabaqcLbmaca WG5baaleaajugWaiaaikdaaaqcLbsacqGHsisljuaGdaqadaGcbaqc fa4aaSaaaOqaaKqzGeGaaGinaiabec8aWTWaaWbaaeqabaqcLbmaca aIYaaaaKqzGeGaey4kaSIaaGioaaGcbaqcLbsacaaI5aaaaaGccaGL OaGaayzkaaqcLbsacaWGkbGaeqyYdCNaeqyYdCxcfa4aaSbaaSqaaK qzadGaamiEaaWcbeaajugibiabgkHiTaGcbaqcLbsacaWGkbGaeqyY dCNaeqyYdCxcfa4aaSbaaSqaaKqzadGaamyEaaWcbeaajuaGdaWada GcbaqcLbsacaaIXaGaey4kaSscfa4aaSaaaOqaaKqzGeGaaGyoaiaa d2eacaWGNbGaamOzaiaadYgacaWGGaaakeaajugibiaacIcacaaI0a GaeqiWda3cdaahaaqabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaI 5aGaaiykaiaadQeacqaHjpWDcqaHjpWDlmaaBaaabaqcLbmacaWG4b aaleqaaaaaaOGaay5waiaaw2faaaaaaa@960F@   (5)

Substituting expression ω y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiabeM8a3TWdamaaBaaabaqcLbmapeGaamyEaaWcpaqabaqc LbmacaaMc8UaaGPaVdaa@3F48@  (Eq. (3)) into Eq. (5) yields:

J x d ω x dt =Mgl{ cosγ 9[4 π 2 +8+(4 π 2 +9)cosγ]f 4 π 2 +9 } [ 4 π 2 +8 9 +[4 π 2 +8+(4 π 2 +9)cosγ] ]Jω ω x +M l 2 cosγsinγ [4 π 2 +8+(4 π 2 +9)cosγ] 2 ω x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aadQeajuaGdaWgaaWcbaqcLbmacaWG4baaleqaaKqbaoaalaaakeaa jugibiaadsgacqaHjpWDlmaaBaaabaqcLbmacaWG4baaleqaaaGcba qcLbsacaWGKbGaamiDaaaacqGH9aqpcaWGnbGaam4zaiaadYgajuaG daGadaGcbaqcLbsaciGGJbGaai4BaiaacohacqaHZoWzcqGHsislju aGdaWcaaGcbaqcLbsacaaI5aGaai4waiaaisdacqaHapaClmaaCaaa beqaaKqzadGaaGOmaaaajugibiabgUcaRiaaiIdacqGHRaWkcaGGOa GaaGinaiabec8aWLqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGa ey4kaSIaaGyoaiaacMcaciGGJbGaai4BaiaacohacqaHZoWzcaGGDb GaamOzaaGcbaqcLbsacaaI0aGaeqiWda3cdaahaaqabeaajugWaiaa ikdaaaqcLbsacqGHRaWkcaaI5aaaaaGccaGL7bGaayzFaaqcLbsacq GHsislaOqaaKqbaoaadmaakeaajuaGdaWcaaGcbaqcLbsacaaI0aGa eqiWda3cdaahaaqabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaI4a aakeaajugibiaaiMdaaaGaey4kaSIaai4waiaaisdacqaHapaCjuaG daahaaWcbeqaaKqzadGaaGOmaaaajugibiabgUcaRiaaiIdacqGHRa WkcaGGOaGaaGinaiabec8aWTWaaWbaaeqabaqcLbmacaaIYaaaaKqz GeGaey4kaSIaaGyoaiaacMcaciGGJbGaai4BaiaacohacqaHZoWzca GGDbaakiaawUfacaGLDbaajugibiaadQeacqaHjpWDcqaHjpWDlmaa BaaabaqcLbmacaWG4baaleqaaKqzGeGaey4kaSIaamytaiaadYgalm aaCaaabeqaaKqzadGaaGOmaaaajugibiGacogacaGGVbGaai4Caiab eo7aNjGacohacaGGPbGaaiOBaiabeo7aNjaacUfacaaI0aGaeqiWda xcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaI4aGa ey4kaSIaaiikaiaaisdacqaHapaCjuaGdaahaaWcbeqaaKqzadGaaG OmaaaajugibiabgUcaRiaaiMdacaGGPaGaci4yaiaac+gacaGGZbGa eq4SdCMaaiyxaKqbaoaaCaaaleqabaqcLbmacaaIYaaaaKqzGeGaeq yYdC3cdaqhaaqaaKqzadGaamiEaaWcbaqcLbmacaaIYaaaaaaaaa@CBDF@   (6)

Variables are separated and solution of Eq. (6) gives:

J x d ω x M l 2 cosγsinγ [4 π 2 +8+(4 π 2 +9)cosγ] 2 ω x 2 [ 4 π 2 +8 9 +[4 π 2 +8+(4 π 2 +9)cosγ] ]Jω ω x +{ cosγ 9[4 π 2 +8+(4 π 2 +9)cosγ]f 4 π 2 +9 }Mgl =dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamOsaKqbaoaaBaaaleaajugWaiaadIhaaSqabaqcLbsa caWGKbGaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbeaaaKqzGeabae qakeaajugibiaad2eacaWGSbWcdaahaaqabeaajugWaiaaikdaaaqc LbsaciGGJbGaai4BaiaacohacqaHZoWzciGGZbGaaiyAaiaac6gacq aHZoWzcaGGBbGaaGinaiabec8aWTWaaWbaaeqabaqcLbmacaaIYaaa aKqzGeGaey4kaSIaaGioaiabgUcaRiaacIcacaaI0aGaeqiWdaxcfa 4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaI5aGaaiyk aiGacogacaGGVbGaai4Caiabeo7aNjaac2falmaaCaaabeqaaKqzad GaaGOmaaaajugibiabeM8a3LqbaoaaDaaaleaajugWaiaadIhaaSqa aKqzadGaaGOmaaaajugibiabgkHiTaGcbaqcfa4aamWaaOqaaKqbao aalaaakeaajugibiaaisdacqaHapaClmaaCaaabeqaaKqzadGaaGOm aaaajugibiabgUcaRiaaiIdaaOqaaKqzGeGaaGyoaaaacqGHRaWkca GGBbGaaGinaiabec8aWTWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGa ey4kaSIaaGioaiabgUcaRiaacIcacaaI0aGaeqiWda3cdaahaaqabe aajugWaiaaikdaaaqcLbsacqGHRaWkcaaI5aGaaiykaiGacogacaGG VbGaai4Caiabeo7aNjaac2faaOGaay5waiaaw2faaKqzGeGaamOsai abeM8a3jabeM8a3LqbaoaaBaaaleaajugWaiaadIhaaSqabaqcLbsa cqGHRaWkjuaGdaGadaGcbaqcLbsaciGGJbGaai4BaiaacohacqaHZo WzcqGHsisljuaGdaWcaaGcbaqcLbsacaaI5aGaai4waiaaisdacqaH apaClmaaCaaabeqaaKqzadGaaGOmaaaajugibiabgUcaRiaaiIdacq GHRaWkcaGGOaGaaGinaiabec8aWLqbaoaaCaaaleqajyaGbaqcLbma caaIYaaaaKqzGeGaey4kaSIaaGyoaiaacMcaciGGJbGaai4Baiaaco hacqaHZoWzcaGGDbGaamOzaaGcbaqcLbsacaaI0aGaeqiWda3cdaah aaqabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaI5aaaaaGccaGL7b GaayzFaaqcLbsacaWGnbGaam4zaiaadYgaaaaacqGH9aqpcaWGKbGa amiDaaaa@CCFE@   (7)

where all components are known from expressions above.

Self-stabilization
A tilted top of the high spinning value will come to vertical disposition because the action of the inertial torques prevails over its weight and centrifugal torque of the center mass. The vertical disposition of the spinning top is defined when the values of the inertial torques are equal to or more than counteracting torques that are expressed by the right side of Eq. (6).

Mgl{ cosγ 9[4 π 2 +8+(4 π 2 +9)cosγ]f 4 π 2 +9 }+M l 2 cosγsinγ [4 π 2 +8+(4 π 2 +9)cosγ] 2 ω x 2 = [ 4 π 2 +8 9 +[4 π 2 +8+(4 π 2 +9)cosγ] ]Jω ω x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aad2eacaWGNbGaamiBaKqbaoaacmaakeaajugibiGacogacaGGVbGa ai4Caiabeo7aNjabgkHiTKqbaoaalaaakeaajugibiaaiMdacaGGBb GaaGinaiabec8aWTWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaey4k aSIaaGioaiabgUcaRiaacIcacaaI0aGaeqiWda3cdaahaaqabeaaju gWaiaaikdaaaqcLbsacqGHRaWkcaaI5aGaaiykaiGacogacaGGVbGa ai4Caiabeo7aNjaac2facaWGMbaakeaajugibiaaisdacqaHapaClm aaCaaabeqaaKqzadGaaGOmaaaajugibiabgUcaRiaaiMdaaaaakiaa wUhacaGL9baajugibiabgUcaRiaad2eacaWGSbWcdaahaaqabeaaju gWaiaaikdaaaqcLbsaciGGJbGaai4BaiaacohacqaHZoWzciGGZbGa aiyAaiaac6gacqaHZoWzcaGGBbGaaGinaiabec8aWTWaaWbaaeqaba qcLbmacaaIYaaaaKqzGeGaey4kaSIaaGioaiabgUcaRiaacIcacaaI 0aGaeqiWdaxcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHRa WkcaaI5aGaaiykaiGacogacaGGVbGaai4Caiabeo7aNjaac2fajuaG daahaaWcbeqaaKqzadGaaGOmaaaajugibiabeM8a3LqbaoaaDaaale aajugWaiaadIhaaSqaaKqzadGaaGOmaaaajugibiabg2da9aGcbaqc fa4aamWaaOqaaKqbaoaalaaakeaajugibiaaisdacqaHapaCjuaGda ahaaWcbeqaaKqzadGaaGOmaaaajugibiabgUcaRiaaiIdaaOqaaKqz GeGaaGyoaaaacqGHRaWkcaGGBbGaaGinaiabec8aWTWaaWbaaeqaba qcLbmacaaIYaaaaKqzGeGaey4kaSIaaGioaiabgUcaRiaacIcacaaI 0aGaeqiWda3cdaahaaqabeaajugWaiaaikdaaaqcLbsacqGHRaWkca aI5aGaaiykaiGacogacaGGVbGaai4Caiabeo7aNjaac2faaOGaay5w aiaaw2faaKqzGeGaamOsaiabeM8a3jabeM8a3TWaaSbaaeaajugWai aadIhaaSqabaaaaaa@BDDB@   (8)

The equilibrium of two groups of torques of Eq. (8) is expressed by the top velocity ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDaaa@3853@ , the velocity of precession ω x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaWG4baaleqaaaaa@3AB5@ , the tilt angle γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqzGeaeaaaaaa aaa8qacaWHZoaaaa@38FC@ , and the value of the top’s leg l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaqaaaaa aaaaWdbiaadYgaaaa@3797@ . When the value of the inertial torques is bigger than the torques of the left side of Eq. (8), the top will come faster to vertical disposition. In another case, the top will wobble and fall. Analysis of Eq. (8) shows the spinning top does not have the stability of spinning with a long leg, a small radius of its disc, and a low value of the spinning velocity.

Working example

The working example presents the solution of the tilted top motion with the thin disc whose data (Table 2) is the same as considered in publication with simplified solution (Figure 1).16 The mass of the top leg is neglected and its center mass is disposed on the disc.

Parameter

Data

Angular velocity, ω

1000 rpm

Radius of the disc, R

0,025 m

Length of the leg, l

0,02 m

Radius of the tip

0,001 m

Angle of tilt, γ

75,0o

Mass, M

 

0,02 kg

Coefficient of friction,  f

0,1

Moment of inertia, kgm2

Around axis oz, J = MR2/2

0,625×10-5

Around axes ox and oy of the center  mass, J = MR2/4

0,3125×10-5

Around axes ox and oy, Jx = Jy = MR2/4 + Ml2

1,1125×10-5

Table 2 Technical data of the top

The data of Table 2 is substituted into Eq. (7) and transformation yield:

1,1125× 10 5 d ω x 0,02×0, 02 2 cos 75 o sin 75 o [4 π 2 +8+(4 π 2 +9)cos 75 o ] 2 ω x 2 [ 4 π 2 +8 9 +4 π 2 +8+(4 π 2 +9)cos 75 o ]×0,625× 10 5 ×1000× 2π 60 ω x + { cos 75 o 9×[4 π 2 +8+(4 π 2 +9)cos 75 o ]×0,1 4 π 2 +9 }×0,02×9,81×0,02 =dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaaGymaiaacYcacaaIXaGaaGymaiaaikdacaaI1aGaey41 aqRaaGymaiaaicdajuaGdaahaaWcbeqaaKqzadGaeyOeI0IaaGynaa aajugibiaadsgacqaHjpWDlmaaBaaabaqcLbmacaWG4baaleqaaaqc LbsaeaqabOqaaKqzGeGaaGimaiaacYcacaaIWaGaaGOmaiabgEna0k aaicdacaGGSaGaaGimaiaaikdalmaaCaaabeqaaKqzadGaaGOmaaaa jugibiGacogacaGGVbGaai4CaiaaiEdacaaI1aqcfa4aaWbaaSqabe aajugibiaad+gaaaGaci4CaiaacMgacaGGUbGaaG4naiaaiwdajuaG daahaaWcbeqaaKqzGeGaam4BaaaacaGGBbGaaGinaiabec8aWTWaaW baaeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaaGioaiabgUcaRiaa cIcacaaI0aGaeqiWda3cdaahaaqabeaajugWaiaaikdaaaqcLbsacq GHRaWkcaaI5aGaaiykaiGacogacaGGVbGaai4CaiaaiEdacaaI1aqc fa4aaWbaaSqabeaajugibiaad+gaaaGaaiyxaKqbaoaaCaaaleqaba qcLbmacaaIYaaaaKqzGeGaeqyYdC3cdaqhaaqaaKqzadGaamiEaaWc baqcLbmacaaIYaaaaKqzGeGaeyOeI0cakeaajuaGdaWadaGcbaqcfa 4aaSaaaOqaaKqzGeGaaGinaiabec8aWTWaaWbaaeqabaqcLbmacaaI YaaaaKqzGeGaey4kaSIaaGioaaGcbaqcLbsacaaI5aaaaiabgUcaRi aaisdacqaHapaClmaaCaaabeqaaKqzadGaaGOmaaaajugibiabgUca RiaaiIdacqGHRaWkcaGGOaGaaGinaiabec8aWTWaaWbaaeqabaqcLb macaaIYaaaaKqzGeGaey4kaSIaaGyoaiaacMcaciGGJbGaai4Baiaa cohacaaI3aGaaGynaKqbaoaaCaaaleqabaqcLbsacaWGVbaaaaGcca GLBbGaayzxaaqcLbsacqGHxdaTcaaIWaGaaiilaiaaiAdacaaIYaGa aGynaiabgEna0kaaigdacaaIWaWcdaahaaqabeaajugWaiabgkHiTi aaiwdaaaqcLbsacqGHxdaTcaaIXaGaaGimaiaaicdacaaIWaGaey41 aqBcfa4aaSaaaOqaaKqzGeGaaGOmaiabec8aWbGcbaqcLbsacaaI2a GaaGimaaaacqaHjpWDjuaGdaWgaaWcbaqcLbmacaWG4baaleqaaKqz GeGaey4kaScakeaajuaGdaGadaGcbaqcLbsaciGGJbGaai4Baiaaco hacaaI3aGaaGynaKqbaoaaCaaaleqabaqcLbsacaWGVbaaaiabgkHi TKqbaoaalaaakeaajugibiaaiMdacqGHxdaTcaGGBbGaaGinaiabec 8aWTWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaaGioaiab gUcaRiaacIcacaaI0aGaeqiWdaxcfa4aaWbaaSqabeaajugWaiaaik daaaqcLbsacqGHRaWkcaaI5aGaaiykaiGacogacaGGVbGaai4Caiaa iEdacaaI1aqcfa4aaWbaaSqabeaajugibiaad+gaaaGaaiyxaiabgE na0kaaicdacaGGSaGaaGymaaGcbaqcLbsacaaI0aGaeqiWda3cdaah aaqabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaI5aaaaaGccaGL7b GaayzFaaqcLbsacqGHxdaTcaaIWaGaaiilaiaaicdacaaIYaGaey41 aqRaaGyoaiaacYcacaaI4aGaaGymaiabgEna0kaaicdacaGGSaGaaG imaiaaikdaaaaacqGH9aqpcaWGKbGaamiDaaaa@0D52@   (9)

Solution of Eq. (9) yields:

d ω x ω x 2 5,931004 ω x 0,465879 =647,742dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaamizaiabeM8a3TWaaSbaaeaajugWaiaadIhaaSqabaaa keaajugibiabeM8a3TWaa0baaeaajugWaiaadIhaaSqaaKqzadGaaG OmaaaajugibiabgkHiTiaabwdacaqGSaGaaeyoaiaabodacaqGXaGa aeimaiaabcdacaqG0aGaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbe aajugibiabgkHiTiaabcdacaqGSaGaaeinaiaabAdacaqG1aGaaeio aiaabEdacaqG5aaaaiabg2da9iaabAdacaqG0aGaae4naiaabYcaca qG3aGaaeinaiaabkdacaWGKbGaamiDaaaa@5D6C@   (10)

The denominator of Eq. (10) is the quadratic equation which transformation yields:

( ω x 6,008540)( ω x +0,077536) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaGGOa GaeqyYdC3cdaWgaaqaaKqzadGaamiEaaWcbeaajugibiabgkHiTiaa bAdacaqGSaGaaeimaiaabcdacaqG4aGaaeynaiaabsdacaaIWaGaai ykaiaacIcacqaHjpWDjuaGdaWgaaWcbaqcLbmacaWG4baaleqaaKqz GeGaey4kaSIaaeimaiaabYcacaqGWaGaae4naiaabEdacaqG1aGaae 4maiaabAdacaGGPaaaaa@5073@   (11)

Converting of Eq. (11) into integral forms with definite limits yields: 

1 6,086076 0 ω x ( 1 ω x 6,008540  1 ω x + 0,077536 )d ω x =647,742 0 t dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSaaaO qaaKqzGeGaaGymaaGcbaqcLbsacaqG2aGaaeilaiaabcdacaqG4aGa aeOnaiaabcdacaqG3aGaaeOnaaaajuaGdaWdXbGcbaqcfa4aaeWaaO qaaKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaamyYdSWaaSba aeaajugWaiaadIhaaSqabaqcLbsacqGHsislcaqG2aGaaeilaiaabc dacaqGWaGaaeioaiaabwdacaqG0aGaaGimaiaabccaaaGaeyOeI0sc fa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcLbsacqaHjpWDjuaGdaWgaa WcbaqcLbmacaWG4baaleqaaKqzGeGaae4kaiaabccacaqGWaGaaeil aiaabcdacaqG3aGaae4naiaabwdacaqGZaGaaeOnaaaaaOGaayjkai aawMcaaKqzGeGaamizaiabeM8a3LqbaoaaBaaaleaajugWaiaadIha aSqabaaabaqcLbmacaaIWaaaleaajugWaiabeM8a3TWaaSbaaWqaaK qzadGaamiEaaadbeaaaKqzGeGaey4kIipacqGH9aqpcaqG2aGaaein aiaabEdacaqGSaGaae4naiaabsdacaqGYaqcfa4aa8qCaOqaaKqzGe GaamizaiaadshaaSqaaKqzadGaaGimaaWcbaqcLbmacaWG0baajugi biabgUIiYdaaaa@7F53@   (12)

The left side of Eq. (12) is tabulated and presented the integral   dx x±a =ln| a±x |+C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa8qaaO qaaKqbaoaalaaakeaajugibiaadsgacaWG4baakeaajugibiaadIha cqGHXcqScaWGHbaaaaWcbeqabKqzGeGaey4kIipacqGH9aqpciGGSb GaaiOBaKqbaoaaemaakeaajugibiaadggacqGHXcqScaWG4baakiaa wEa7caGLiWoajugibiabgUcaRiaadoeaaaa@4DDA@ , which

transformation and solution gives:

ln( ω x 6,008540)| 0 ω x ln( ω x +0,077536)| 0 ω x =3942,207t| 0 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGSb GaaiOBaiaacIcacaWGjpWcdaWgaaqaaKqzadGaamiEaaWcbeaajugi biabgkHiTiaabAdacaqGSaGaaeimaiaabcdacaqG4aGaaeynaiaabs dacaaIWaGaaiykaKqbaoaaeeaakeaalmaaDaaabaqcLbmacaaIWaaa leaajugWaiabeM8a3TWaaSbaaWqaaKqzadGaamiEaaadbeaaaaaaki aawEa7aKqzGeGaeyOeI0IaciiBaiaac6gacaGGOaGaeqyYdC3cdaWg aaqaaKqzadGaamiEaaWcbeaajugibiaabUcacaqGWaGaaeilaiaabc dacaqG3aGaae4naiaabwdacaqGZaGaaeOnaiaacMcajuaGdaabbaGc baWcdaqhaaqaaKqzadGaaGimaaWcbaqcLbmacqaHjpWDlmaaBaaame aajugWaiaadIhaaWqabaaaaaGccaGLhWoajugibiabg2da9iaaboda caaI5aGaaGinaiaaikdacaGGSaGaaGOmaiaaicdacaaI3aGaamiDaK qbaoaaeeaakeaalmaaDaaabaqcLbmacaaIWaaaleaajugWaiaadsha aaaakiaawEa7aaaa@76DE@

that yields the following:

ln( ω x 6,008540 6,008540   )ln( ω x +0,077536 0,077536 )=3942,207t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaciGGSb GaaiOBaKqbaoaabmaakeaajuaGdaWcaaGcbaqcLbsacaWGjpWcdaWg aaqaaKqzadGaamiEaaWcbeaajugibiabgkHiTiaabAdacaqGSaGaae imaiaabcdacaqG4aGaaeynaiaabsdacaaIWaaakeaajugibiabgkHi TiaabAdacaqGSaGaaeimaiaabcdacaqG4aGaaeynaiaabsdacaaIWa GaaeiiaiaabccaaaaakiaawIcacaGLPaaajugibiabgkHiTiGacYga caGGUbqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiabeM8a3Lqbao aaBaaaleaajugWaiaadIhaaSqabaqcLbsacaqGRaGaaeimaiaabYca caqGWaGaae4naiaabEdacaqG1aGaae4maiaabAdaaOqaaKqzGeGaae imaiaabYcacaqGWaGaae4naiaabEdacaqG1aGaae4maiaabAdaaaaa kiaawIcacaGLPaaajugibiabg2da9iaabodacaaI5aGaaGinaiaaik dacaGGSaGaaGOmaiaaicdacaaI3aGaamiDaaaa@7048@   (13)

Transformation of Eq. (13) yields:

ω x + 0,077536= -77,493551( ω x 6,008540)   e 3942,207t    MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaWcbaqcLbmacaWG4baaleqaaKqzGeGaae4kaiaabcca caqGWaGaaeilaiaabcdacaqG3aGaae4naiaabwdacaqGZaGaaeOnai aab2dajuaGdaWcaaGcbaqcLbsacaqGTaGaae4naiaabEdacaqGSaGa aeinaiaabMdacaqGZaGaaeynaiaabwdacaqGXaGaaiikaiaadM8alm aaBaaabaqcLbmacaWG4baaleqaaKqzGeGaeyOeI0IaaeOnaiaabYca caqGWaGaaeimaiaabIdacaqG1aGaaeinaiaaicdacaqGPaGaaeiiai aabccaaOqaaKqzGeGaamyzaSWaaWbaaeqabaqcLbmacaqGZaGaaGyo aiaaisdacaaIYaGaaiilaiaaikdacaaIWaGaaG4naiaadshaaaGaae iiaiaabccaaaaaaa@6460@   (14)

The right side of Eq. (14) is neglected because of a small value of a high order. Equations (14) and (3) yield the values of the angular velocities for the top about two axes:

ω x =- 0,077536rad/s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaWcbaqcLbmacaWG4baaleqaaKqzGeGaaeypaiaab2ca caqGGaGaaeimaiaabYcacaqGWaGaae4naiaabEdacaqG1aGaae4mai aabAdacaqGYbGaaeyyaiaabsgacaqGVaGaae4Caaaa@47FD@   (15)

ω y =[4 π 2 +8+(4 π 2 +9)cos 75 o ]× 0,077536=4,654 rad/s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDlmaaBaaabaqcLbmacaWG5baaleqaaKqzGeGaeyypa0Jaai4waiaa isdacqaHapaClmaaCaaabeqaaKqzadGaaGOmaaaajugibiabgUcaRi aaiIdacqGHRaWkcaGGOaGaaGinaiabec8aWTWaaWbaaeqabaqcLbma caaIYaaaaKqzGeGaey4kaSIaaGyoaiaacMcaciGGJbGaai4Baiaaco hacaaI3aGaaGynaKqbaoaaCaaaleqabaqcLbsacaWGVbaaaiaac2fa cqGHxdaTcaqGGaGaaeimaiaabYcacaqGWaGaae4naiaabEdacaqG1a Gaae4maiaabAdacqGH9aqpcaqG0aGaaeilaiaabAdacaqG1aGaaein aKqbaoaaxabakeaaaSqaaaqabaqcfa4aaCbeaOqaaKqzGeGaaeOCai aabggacaqGKbGaae4laiaabohaaSqaaaqabaaaaa@67F9@   (16)

where the sign ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeaeaaaaaaaaa8qacqGHsislaOWdaiaawIcacaGLPaaaaaa@39CD@ for ω x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHjp WDjuaGdaWgaaWcbaqcLbsacaWG4baaleqaaaaa@3AA4@  is the turn of the top in the clockwise direction.

Self-stabilization

The obtained data of Eqs. (15) and (16) and Table 1 are substituted into Eq. (8).

0,02×9,81×0,02{ cos 75 o 9[4 π 2 +8+(4 π 2 +9)cos 75 o ]0,1 4 π 2 +9 }+ 0,02×0, 02 2 cos 75 o sin 75 o [4 π 2 +8+(4 π 2 +9)cos 75 o ] 2 0,077536 2 = [ 4 π 2 +8 9 +[4 π 2 +8+(4 π 2 +9)cos 75 o ] ]×0,625× 10 5 ×1000× 2π 60 ×0,077536 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aaicdacaGGSaGaaGimaiaaikdacqGHxdaTcaaI5aGaaiilaiaaiIda caaIXaGaey41aqRaaGimaiaacYcacaaIWaGaaGOmaKqbaoaacmaake aajugibiGacogacaGGVbGaai4CaiaaiEdacaaI1aWcdaahaaqabeaa jugWaiaad+gaaaqcLbsacqGHsisljuaGdaWcaaGcbaqcLbsacaaI5a Gaai4waiaaisdacqaHapaClmaaCaaabeqaaKqzadGaaGOmaaaajugi biabgUcaRiaaiIdacqGHRaWkcaGGOaGaaGinaiabec8aWTWaaWbaae qabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaaGyoaiaacMcaciGGJbGa ai4BaiaacohacaaI3aGaaGynaSWaaWbaaeqabaqcLbmacaWGVbaaaK qzGeGaaiyxaiaaicdacaGGSaGaaGymaaGcbaqcLbsacaaI0aGaeqiW daxcfa4aaWbaaSqabeaajugWaiaaikdaaaqcLbsacqGHRaWkcaaI5a aaaaGccaGL7bGaayzFaaqcLbsacqGHRaWkaOqaaKqzGeGaaGimaiaa cYcacaaIWaGaaGOmaiabgEna0kaaicdacaGGSaGaaGimaiaaikdalm aaCaaabeqaaKqzadGaaGOmaaaajugibiGacogacaGGVbGaai4Caiaa iEdacaaI1aqcfa4aaWbaaSqabeaajugWaiaad+gaaaqcLbsaciGGZb GaaiyAaiaac6gacaaI3aGaaGynaSWaaWbaaeqabaqcLbmacaWGVbaa aKqzGeGaai4waiaaisdacqaHapaClmaaCaaabeqaaKqzadGaaGOmaa aajugibiabgUcaRiaaiIdacqGHRaWkcaGGOaGaaGinaiabec8aWTWa aWbaaeqabaqcLbmacaaIYaaaaKqzGeGaey4kaSIaaGyoaiaacMcaci GGJbGaai4BaiaacohacaaI3aGaaGynaSWaaWbaaeqabaqcLbmacaWG VbaaaKqzGeGaaiyxaSWaaWbaaeqabaqcLbmacaaIYaaaaKqzGeGaae imaiaabYcacaqGWaGaae4naiaabEdacaqG1aGaae4maiaabAdajuaG daqhaaWcbaaabaqcLbmacaaIYaaaaKqzGeGaeyypa0dakeaajuaGda WadaGcbaqcfa4aaSaaaOqaaKqzGeGaaGinaiabec8aWTWaaWbaaeqa baqcLbmacaaIYaaaaKqzGeGaey4kaSIaaGioaaGcbaqcLbsacaaI5a aaaiabgUcaRiaacUfacaaI0aGaeqiWda3cdaahaaqabeaajugWaiaa ikdaaaqcLbsacqGHRaWkcaaI4aGaey4kaSIaaiikaiaaisdacqaHap aClmaaCaaabeqaaKqzadGaaGOmaaaajugibiabgUcaRiaaiMdacaGG PaGaci4yaiaac+gacaGGZbGaaG4naiaaiwdalmaaCaaabeqaaKqzad Gaam4Baaaajugibiaac2faaOGaay5waiaaw2faaKqzGeGaey41aqRa aGimaiaacYcacaaI2aGaaGOmaiaaiwdacqGHxdaTcaaIXaGaaGimaS WaaWbaaeqabaqcLbmacqGHsislcaaI1aaaaKqzGeGaey41aqRaaGym aiaaicdacaaIWaGaaGimaiabgEna0Mqbaoaalaaakeaajugibiaaik dacqaHapaCaOqaaKqzGeGaaGOnaiaaicdaaaGaey41aqRaaeimaiaa bYcacaqGWaGaae4naiaabEdacaqG1aGaae4maiaabAdaaaaa@FC0F@   (17)

The result of Eq. (17) yields:

-0,003313 < 0,045977 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaqGTa GaaeimaiaabYcacaqGWaGaaeimaiaabodacaqGZaGaaeymaiaaboda caqGGaGaaeipaiaabccacaqGWaGaaeilaiaabcdacaqG0aGaaeynai aabMdacaqG3aGaae4naaaa@448D@   (18)

The value of the inertial torques acting on the top (right component of Eq. (18)) is bigger than the torques generated by the top weight and centrifugal one of its center mass (left component of Eq. (18)). The gyroscopic inertial torques turns the tilted top to vertical that expresses its self-stabilization on the horizontal surface.

Results and discussion

On the spinning top act its weight, frictional force, centrifugal and Coriolis forces of its mass elements and center mass, and the change in the angular momentum. The analytical expression for the tilted top motions on the horizontal surface modified according to the corrected inertial torque that generated by the centrifugal forces of the mass elements of the spinning disc. The motions of the top are interrelated by their angular velocities about axes. The analytical solution of the tilted top motions on the flat surface and a condition for its self-stabilization presented by the corrected components of the acting torques. The physics of the spinning top motion described in previous publication remains the same which a mathematical model was perfected.

Conclusion

The top motions were presented by the analytical solution which components had incorrect expressions of the centrifugal inertial torque and other related dependencies. The recent studies of gyroscopic effects showed the action of the eight inertial torques on spinning objects that are interrelated by the angular velocities about two axes. The corrected mathematical models for the top motion present perfect solution that can be used for popularization and for the course of engineering mechanics. Obtained corrected analytical results of the gyroscopic effects describe the physics of the acting torques on the spinning objects that presented by the mathematical model of the top motions.

Acknowledgments

None.

Conflicts of interest

Author declares that there is no conflict of interest.

References

  1. Perry J. Spinning Tops and Gyroscopic Motions. Literary Licensing: LLC, NV USA; 2012.
  2. Klein  F, Sommerfeld A. The theory of the top. I - IV. New York, NY: Springer. Birkhäuser; 2008.
  3. Beer F. Mechanics for engineers-statics and dynamics. 12th ed. McGraw-Hill Higher Education: New York, USA; 2018.
  4. Hiqmet K. Classical mechanics. 3 ed De Gruyter Textbook: Berlin, Germany; 2021.
  5. Helliwell TM, Sahakian VV. Modern classical mechanics. Cambridge University Press: London; 2021.
  6. Deshmukh PC. Foundations of flassical mechanics. Cambridge University Press: London; 2019.
  7. Cordeiro FJB. The gyroscope. Franklin Classics: London, UK; 2018.
  8. Tanrıverdi V. Dissipative motion of a spinning heavy symmetric top. Eur J Phys. 41 055001; 2020. 12 p.
  9. Cross R. A spinning top for physics experiments. Phys Educ. 54 055028; 2019. 4 p.
  10. Provatidis CG. Teaching the fixed spinning top using four alternative formulations. WSEAS Transactions on Advances in Engineering Education. 2021;18:80–95.
  11. Audin M. Spinning tops: A course on integrable systems. Studies in Advanced Mathematics. Cambridge University Press: London; 1996. 51 p.
  12. Engo K, Marthinsen A. A note on the numerical solution of the heavy top equations. Multibody System Dynamics. 2001;5:387–397.
  13. Provatidis CG. Revisiting the spinning top. International Journal of Materials and Mechanical Engineering. 2012;1(4):71–88.
  14. Sheheitli H, Touma JR. On the dynamics of a spinning top under the influence of rotation: Resonant relative equilibrium states. Commun Nonlinear Sci Numer Simulat. 2018;59:424–436.
  15. Berry MV, Shukla P. Slow manifold and Hannay angle in the spinning top. Eur J Phys. 2011;32:115–127.
  16. Usubamatov R. Theory of gyroscope effects for rotating objects. Springer: Singapore; 2020.
  17. Usubamatov R, Allen D. Corrected inertial torques of gyroscopic effects. Advances in Mathematical Physics. 2022;2022:3479736.
Creative Commons Attribution License

©2022 Usubamatov, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.