Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 4 Issue 6

Special optimization problem of control mode of spacecraft motion

Levskii MV

Research Institute of Space Systems, Russia

Correspondence: Levskii MV, Research Institute of Space Systems, Korolev, Tihonravova street, 27, Russia, Tel (499) 277-37-16

Received: November 30, 2018 | Published: December 18, 2018

Citation: Levskii MV. Special optimization problem of control mode of spacecraft motion. Int Rob Auto J. 2018;4(6):423-432. DOI: 10.15406/iratj.2018.04.00159

Download PDF

Abstract

In this paper, the solving the original specific problem of optimal control is described. Designing optimal algorithm of controlling a spacecraft motion increases efficiency of onboard control system of a spacecraft and originates more economical performance of spacecraft during flight on orbit. Analytic solution of the proposed problem is presented for case when a required time interval of control is known, and rotation energy functional should be minimized. The quaternion method and maximum principle are used. For dynamically symmetric spacecraft, complete solution of spacecraft reorientation problem in closed form is given. If the controlling torque is limited, analytical formulas were written for duration of acceleration and braking. It is shown that chosen criterion of optimality provides a turn of a spacecraft with minimal rotation energy at fixed time. Example and mathematical simulation results for spacecraft motion under optimal control are given.

Keywords: spacecraft attitude, quaternion, optimal control, maximum principle

Introduction

The problem of bringing a spacecraft into target orientation position is solved. The solution method and the formalized description of spacecraft’s rotational motion kinematics are based on the method of quaternions.1 Spatial reorientation is a transferring the fixed axes of spacecraft’s hull from one known attitude into another given angular position in finite time T. Angular orientation of the body-fixed coordinate system is defined relative to the chosen reference basis I. An often encountered case, when reference system is inertial coordinate system, is considered.

Numerous works have been dedicated to studying the controlled rotations of rigid body and optimal control problem for spacecraft reorientation in various statements.1-25 In particular, the solution was constructed for special case when the spacecraft rotates around a finite rotation vector.2 The rotation maneuvers around the principal central axe of spacecraft’s inertia ellipsoid were studied in detail.4 Notice, many publications describe solutions when rigid body rotates around the Euler axis,1-5 although optimization principles and control algorithms differ including use of quaternions,1 fuzzy logic2 and the method of inverse dynamic problem.4,5 At the same time, a turn in the least turn-angle plane is not optimal in many practical cases, no matter how exactly it is executed. Also, time-optimal maneuvers is interesting and topical, therefore they are popular.4, 6-12 Many authors have noted that an analytical solution to the optimal turn problem in a closed form, if it were found, would be of great practical interest, since it allows the finished laws of programmed control and modification of the optimal trajectory of spacecraft motion to be applied onboard the spacecraft.7,8 Certain solutions are known for an axially symmetric spacecraft.12-14 However, an analytical solution to the three-dimensional  turn problem of the spacecraft with arbitrary mass distribution with arbitrary boundary conditions for spacecraft’s angular position has not been found; only certain particular cases are known when the problem of a turn has been solved (e.g.,.1,7,10 Therefore, in the general case, we are forced to rely only on the approximate numerical solution to the problem. In some cases (e.g.,6), authors faced difficulties, related to the in homogeneity of the optimal control function, in an attempt to find numerical solutions to the optimization boundary-value problems for spacecraft’s optimal turn problems (it is typical for time-optimal problems). The numerical solution of optimal turn problem for dynamically symmetric spacecraft is considered in detail,13 where authors solved the maximum-principle boundary-value problem by replacing the variables and reducing it to the boundary-value problem of a turn of a spherically symmetric body. Also, special control regime of spacecraft rotation was studied in the problem of optimal reorientation.14 Attitude control of the spacecrafts with inertial actuators (or gyrodins) has specific features.15–18 For control system of the spacecrafts, controlled by inertial actuators, the patented method19 can be used.

In this paper, index of optimality characterizes energy consumption for spacecraft reorientation. Issues of cost-efficiency also remain relevant for the time being for spacecraft motion control. Its minimization remains a very important problem in practice of spacecraft flight. Finding and studying the optimal attitude control problem for spacecraft reorientation from one spatial position into another (with respect to rotation energy) is topic and subject of this research.

The main results of research work are the following: the carried out research has reached an overall objective since optimal control program of spacecraft reorientation with minimal rotation energy within given time interval was found; it was demonstrated that two-impulse control when spacecraft rotates by inertia between acceleration and braking is optimum; for optimal solution, estimations of the relative growth in the functional of quality due to the limited controlling moment were done.

Angular motion equations and the control problem statement

Angular motion of the spacecraft as rigid body is described by dynamic Euler equations3

J 1 ω ˙ 1 +( J 3 J 2 ) ω 2 ω 3 = M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaBaaajuaibaGaaGymaaqabaqcfaOafqyYdCNbaiaadaWgaaqcfasa aiaaigdaaeqaaKqbakabgUcaRmaabmaabaGaamOsamaaBaaajuaiba GaaG4maaqabaqcfaOaeyOeI0IaamOsamaaBaaajuaibaGaaGOmaaqc fayabaaacaGLOaGaayzkaaGaeqyYdC3aaSbaaKqbGeaacaaIYaaabe aajuaGcqaHjpWDdaWgaaqcfasaaiaaiodaaKqbagqaaiabg2da9iaa d2eadaWgaaqcfasaaiaaigdaaeqaaaaa@4E31@ , J 2 ω ˙ 2 +( J 1 J 3 ) ω 1 ω 3 = M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaBaaajuaibaGaaGOmaaqabaqcfaOafqyYdCNbaiaadaWgaaqcfasa aiaaikdaaeqaaKqbakabgUcaRmaabmaabaGaamOsamaaBaaajuaiba GaaGymaaqabaqcfaOaeyOeI0IaamOsamaaBaaajuaibaGaaG4maaqc fayabaaacaGLOaGaayzkaaGaeqyYdC3aaSbaaKqbGeaacaaIXaaabe aajuaGcqaHjpWDdaWgaaqcfasaaiaaiodaaeqaaKqbakabg2da9iaa d2eadaWgaaqcfasaaiaaikdaaKqbagqaaaaa@4EC0@ , J 3 ω ˙ 3 +( J 2 J 1 ) ω 1 ω 2 = M 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaBaaajuaibaGaaG4maaqcfayabaGafqyYdCNbaiaadaWgaaqcfasa aiaaiodaaKqbagqaaiabgUcaRmaabmaabaGaamOsamaaBaaajuaiba GaaGOmaaqabaqcfaOaeyOeI0IaamOsamaaBaaajuaibaGaaGymaaqa baaajuaGcaGLOaGaayzkaaGaeqyYdC3aaSbaaKqbGeaacaaIXaaabe aajuaGcqaHjpWDdaWgaaqcfasaaiaaikdaaKqbagqaaiabg2da9iaa d2eadaWgaaqcfasaaiaaiodaaeqaaaaa@4E33@ (1)

where Ji  are the spacecraft’s principal central moments of inertia, Mi are projections of the main moment M of the forces onto the principal central axes of the spacecraft’s inertia ellipsoid, ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbaajuaGbeaaaaa@3A1C@ are projections of the spacecraft’s absolute angular velocity vector  onto the axes of the body-fixed basis E formed by the principal central axes of spacecraft’s inertia ellipsoid (i= 1,3 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaae aacaaIXaGaaiilaiaaysW7caaIZaaaaaaa@3A4A@ ). To describe the spacecraft’s spatial motion, the mathematical apparatus of quaternions (Euler–Rodrigues parameters) is used. Motion of the body-fixed basis E relative to the reference basis I will be given by a quaternion Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW eaaa@37F9@ .1The angular positions of the initial and final spacecraft attitude with respect to the reference basis I are given by quaternion’s Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGPbGaaeOBaaqabaaaaa@3A25@ and Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaabeaaaaa@3931@ , respectively. Without loss of generality, it is assumed that basis I is inertial. In this case, the following kinematic equations hold:

2 λ ˙ 0 = λ 1 ω 1 λ 2 ω 2 λ 3 ω 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGOmai qbeU7aSzaacaWaaSbaaKqbGeaacaaIWaaabeaajuaGcqGH9aqpcqGH sislcqaH7oaBdaWgaaqcfasaaiaaigdaaKqbagqaaiabeM8a3naaBa aajuaibaGaaGymaaqabaqcfaOaeyOeI0Iaeq4UdW2aaSbaaKqbGeaa caaIYaaajuaGbeaacqaHjpWDdaWgaaqcfasaaiaaikdaaeqaaKqbak abgkHiTiabeU7aSnaaBaaajuaibaGaaG4maaqabaqcfaOaeqyYdC3a aSbaaKqbGeaacaaIZaaajuaGbeaaaaa@527A@ , 2 λ ˙ 1 = λ 0 ω 1 + λ 2 ω 3 λ 3 ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGOmai qbeU7aSzaacaWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGH9aqpcqaH 7oaBdaWgaaqaaKqzadGaaGimaaqcfayabaGaeqyYdC3aaSbaaKqbGe aacaaIXaaabeaajuaGcqGHRaWkcqaH7oaBdaWgaaqcfasaaiaaikda aeqaaKqbakabeM8a3naaBaaajuaibaGaaG4maaqcfayabaGaeyOeI0 Iaeq4UdW2aaSbaaKqbGeaacaaIZaaabeaajuaGcqaHjpWDdaWgaaqc fasaaiaaikdaaKqbagqaaaaa@5282@ ;(2)

2 λ ˙ 2 = λ 0 ω 2 + λ 3 ω 1 λ 1 ω 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGOmai qbeU7aSzaacaWaaSbaaeaajugWaiaaikdaaKqbagqaaiabg2da9iab eU7aSnaaBaaabaqcLbmacaaIWaaajuaGbeaacqaHjpWDdaWgaaqaaK qzadGaaGOmaaqcfayabaGaey4kaSIaeq4UdW2aaSbaaeaajugWaiaa iodaaKqbagqaaiabeM8a3TWaaSbaaKqbagaajugWaiaaigdaaKqbag qaaiabgkHiTiabeU7aSTWaaSbaaKqbagaajugWaiaaigdaaKqbagqa aiabeM8a3naaBaaabaqcLbmacaaIZaaajuaGbeaaaaa@59B4@ , 2 λ ˙ 3 = λ 0 ω 3 + λ 1 ω 2 λ 2 ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGOmai qbeU7aSzaacaWaaSbaaKqbGeaacaaIZaaajuaGbeaacqGH9aqpcqaH 7oaBdaWgaaqcfasaaiaaicdaaKqbagqaaiabeM8a3naaBaaajuaiba GaaG4maaqabaqcfaOaey4kaSIaeq4UdW2aaSbaaKqbGeaacaaIXaaa juaGbeaacqaHjpWDdaWgaaqcfasaaiaaikdaaeqaaKqbakabgkHiTi abeU7aSnaaBaaajuaibaGaaGOmaaqcfayabaGaeqyYdC3aaSbaaKqb GeaacaaIXaaajuaGbeaaaaa@5182@

Where λ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaWGQbaajuaGbeaaaaa@3A04@ are components of quaternion  (j= 0,3 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaae aacaaIWaGaaiilaiaaysW7caaIZaaaaaaa@3A49@ ).1 For simplicity, the quaternion Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW eaaa@37F9@ specifying the current spacecraft orientation is assumed the normalized quaternion (|| Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW eaaa@37F9@ ||= 1).

In space flight, an important characteristic feature of spacecraft motion control is that the disturbing moments caused by the vehicle’s interaction with external fields and environmental resistance are small. The spacecraft motion control relative to its center of mass is done by changing the moment of forces M (external or internal, if spacecraft orientation control is done with inertial actuators, i.e., powered gyroscopes). The boundary conditions are written as:

Λ(0)= Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaaicdacaGGPaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqG PbGaaeOBaaqcfayabaaaaa@3F41@ (3)

Λ(T)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaadsfacaGGPaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqG MbaajuaGbeaaaaa@3E6C@ (4)

where T is the time of ending the reorientation process, and the quaternion’s Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGPbGaaeOBaaqabaaaaa@3A25@ and Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaajuaGbeaaaaa@39BF@ determining the orientation of spacecraft fixed axes at the initial and final time instants have arbitrary predefined values satisfying the condition || Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGPbGaaeOBaaqabaaaaa@3A25@ ||=|| Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaajuaGbeaaaaa@39BF@ ||=1. For optimization of reorientation control, quadratic criterion of quality is used.25 The coefficients of the functional of quadratic criterion of quality was chosen in that way, at which efficiency of the control is estimated by the integral value

G= 0 T ( J 1 ω 1 2 + J 2 ω 2 2 + J 3 ω 3 2 )dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4rai abg2da9maapehabaGaaiikaiaadQeadaWgaaqcfasaaiaaigdaaeqa aKqbakabeM8a3naaDaaajuaibaGaaGymaaqaaiaaikdaaaqcfaOaey 4kaSIaamOsamaaBaaajuaibaGaaGOmaaqabaqcfaOaeqyYdC3aa0ba aKqbGeaacaaIYaaabaGaaGOmaaaajuaGcqGHRaWkcaWGkbWaaSbaaK qbGeaacaaIZaaabeaajuaGcqaHjpWDdaqhaaqcfasaaiaaiodaaeaa caaIYaaaaKqbakaacMcacaWGKbGaamiDaaqcfasaaiaaicdaaeaaca WGubaajuaGcqGHRiI8aaaa@5596@ (5)

The reorientation optimal control problem is formulated as follows: spacecraft must transfer from position (3) into position (4) according to equations (2) with minimal value of the functional (5). The equations (1) are necessary for determining the moments Mi during optimal rotation, after solving this control problem (2)-(5). The index (5) is the integral of the kinetic rotation energy on the given time interval. The time T when the spacecraft reorientation maneuver should end is fixed. The assumed optimality criterion allows for estimation of an energetically advantageous angular motion trajectory along which the spacecraft will turn from its initial position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGPbGaaeOBaaqabaaaaa@3A25@ into the required final angular position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaajuaGbeaaaaa@39BF@ , and for finding the corresponding control mode. Also, the chosen criterion of optimality provides turn of a spacecraft with minimal rotation energy at fixed time.

Solving the optimal control problem

The proposed problem of optimal control is the classical kinematic rotation problem.1 To find the motion law (t) optimal with respect to criterion (5), it is assumed that the time of ending the reorientation maneuver T is given. The value of the optimality functional (5) does not explicitly depend on the moment M of controlling (expression (5) does not contain Mi). It is considered, angular velocity projections ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbaabeaaaaa@398E@  are control variables, and compute moments Mi by substituting the found optimal functions ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbaabeaaaaa@398E@ (t) into equations (1) (i= 1,3 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaae aacaaIXaGaaiilaiaaysW7caaIZaaaaaaa@3A4A@ ). The form of functional (5) is special case of typical (relatively standard) form of the optimized functional25 (if take into account the fact that the spacecraft angular velocity vector ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ is the control variables). The restriction for phase variables λ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaWGQbaajuaGbeaaaaa@3A04@ is insignificant because it is always satisfied (for any possible spacecraft motion around its center of mass). Variables λ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaWGQbaajuaGbeaaaaa@3A04@ (being the components of quaternion Λ) have a characteristic feature: due to equations (2), the norm ||Λ|| of the quaternion Λ is constant, ||Λ||=const.1 

For solving the posed problem, the Pontryagin’s maximum principle is used.26 Since the minimized functional (5) does not depend on position coordinates λ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaWGQbaajuaGbeaaaaa@3A04@ the universal variables ri proposed earlier can be used (i= 1,3 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaae aacaaIXaGaaiilaiaaysW7caaIZaaaaaaa@3A4A@ ),20 and to introduce the conjugate variables corresponding to the phase variables is not obligatory. The Hamiltonian H of problem (2)-(5) looks like the following:

H= ω 1 r 1 + ω 2 r 2 + ω 3 r 3 J 1 ω 1 2 J 2 ω 2 2 J 3 ω 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamisai abg2da9iabeM8a3naaBaaajuaibaGaaGymaaqabaqcfaOaamOCamaa BaaajuaibaGaaGymaaqabaqcfaOaey4kaSIaeqyYdC3aaSbaaKqbGe aacaaIYaaabeaajuaGcaWGYbWaaSbaaKqbGeaacaaIYaaajuaGbeaa cqGHRaWkcqaHjpWDdaWgaaqcfasaaiaaiodaaKqbagqaaiaadkhada WgaaqcfasaaiaaiodaaKqbagqaaiabgkHiTiaadQeadaWgaaqcfasa aiaaigdaaeqaaKqbakabeM8a3naaDaaajuaibaGaaGymaaqaaiaaik daaaqcfaOaeyOeI0IaamOsamaaBaaajuaibaGaaGOmaaqabaqcfaOa eqyYdC3aa0baaKqbGeaacaaIYaaabaGaaGOmaaaajuaGcqGHsislca WGkbWaaSbaaKqbGeaacaaIZaaabeaajuaGcqaHjpWDdaqhaaqcfasa aiaaiodaaeaacaaIYaaaaaaa@61D7@ (6)

Where the functions ri are20

r 1 =( λ 0 ψ 1 + λ 3 ψ 2 λ 1 ψ 0 λ 2 ψ 3 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCam aaBaaajuaibaGaaGymaaqabaqcfaOaeyypa0JaaiikaiabeU7aSnaa BaaajuaibaGaaGimaaqabaqcfaOaeqiYdK3aaSbaaKqbGeaacaaIXa aabeaajuaGcqGHRaWkcqaH7oaBdaWgaaqcfasaaiaaiodaaeqaaKqb akabeI8a5naaBaaajuaibaGaaGOmaaqcfayabaGaeyOeI0Iaeq4UdW 2aaSbaaKqbGeaacaaIXaaabeaajuaGcqaHipqEdaWgaaqcfasaaiaa icdaaeqaaKqbakabgkHiTiabeU7aSnaaBaaajuaibaGaaGOmaaqaba qcfaOaeqiYdK3aaSbaaKqbGeaacaaIZaaabeaajuaGcaGGPaGaai4l aiaaikdaaaa@5A69@

r 2 =( λ 0 ψ 2 + λ 1 ψ 3 λ 2 ψ 0 λ 3 ψ 1 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCam aaBaaajuaibaGaaGOmaaqcfayabaGaeyypa0JaaiikaiabeU7aSnaa BaaajuaibaGaaGimaaqcfayabaGaeqiYdK3aaSbaaKqbGeaacaaIYa aabeaajuaGcqGHRaWkcqaH7oaBdaWgaaqcfasaaiaaigdaaKqbagqa aiabeI8a5naaBaaajuaibaGaaG4maaqcfayabaGaeyOeI0Iaeq4UdW 2aaSbaaKqbGeaacaaIYaaabeaajuaGcqaHipqEdaWgaaqcfasaaiaa icdaaKqbagqaaiabgkHiTiabeU7aSnaaBaaajuaibaGaaG4maaqaba qcfaOaeqiYdK3aaSbaaKqbGeaacaaIXaaabeaajuaGcaGGPaGaai4l aiaaikdaaaa@5A6A@

r 3 =( λ 0 ψ 3 + λ 2 ψ 1 λ 3 ψ 0 λ 1 ψ 2 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCam aaBaaajuaibaGaaG4maaqabaqcfaOaeyypa0JaaiikaiabeU7aSnaa BaaajuaibaGaaGimaaqcfayabaGaeqiYdK3aaSbaaKqbGeaacaaIZa aabeaajuaGcqGHRaWkcqaH7oaBdaWgaaqcfasaaiaaikdaaKqbagqa aiabeI8a5naaBaaajuaibaGaaGymaaqabaqcfaOaeyOeI0Iaeq4UdW 2aaSbaaKqbGeaacaaIZaaabeaajuaGcqaHipqEdaWgaaqcfasaaiaa icdaaeqaaKqbakabgkHiTiabeU7aSnaaBaaajuaibaGaaGymaaqaba qcfaOaeqiYdK3aaSbaaKqbGeaacaaIYaaabeaajuaGcaGGPaGaai4l aiaaikdaaaa@5A6B@

ψ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiYdK 3aaSbaaKqbGeaacaWGQbaajuaGbeaaaaa@3A1E@ are the conjugate variables corresponding to components of quaternion λ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaWGQbaajuaGbeaaaaa@3A04@ (j= 1,3 ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aa0aaae aacaaIXaGaaiilaiaaysW7caaIZaaaaaaa@3A4A@ ).

The first terms (it contains the universal variables ri ) comprise the kinematical part of the Hamiltonian H which is responsible for the geometric properties of optimal motion. The other terms (it contains the spacecraft’s moments of inertia) corresponds to the chosen optimality criterion. The function H does not take into account the phase constraint ||Λ||=1, since ||Λ(0)||= 1. For the universal variables ri , the following system of equations are true20:

r ˙ 1 = ω 3 r 2 ω 2 r 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOCay aacaWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGH9aqpcqaHjpWDdaWg aaqcfasaaiaaiodaaeqaaKqbakaadkhadaWgaaqcfasaaiaaikdaaK qbagqaaiabgkHiTiabeM8a3naaBaaajuaibaGaaGOmaaqabaqcfaOa amOCamaaBaaajuaibaGaaG4maaqcfayabaaaaa@46FD@ , r ˙ 2 = ω 1 r 3 ω 3 r 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOCay aacaWaaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcqaHjpWDdaWg aaqcfasaaiaaigdaaeqaaKqbakaadkhadaWgaaqcfasaaiaaiodaae qaaKqbakabgkHiTiabeM8a3naaBaaajuaibaGaaG4maaqabaqcfaOa amOCamaaBaaajuaibaGaaGymaaqabaaaaa@466E@ , r ˙ 3 = ω 2 r 1 ω 1 r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmOCay aacaWaaSbaaKqbGeaacaaIZaaajuaGbeaacqGH9aqpcqaHjpWDdaWg aaqcfasaaiaaikdaaeqaaKqbakaadkhadaWgaaqcfasaaiaaigdaae qaaKqbakabgkHiTiabeM8a3naaBaaajuaibaGaaGymaaqabaqcfaOa amOCamaaBaaajuaibaGaaGOmaaqabaaaaa@466D@ (7)

The change in vector r formed by the universal variables ri is given by the solution of the following equation r ˙ =ω×r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabCOCay aacaGaeyypa0JaeyOeI0IaaCyYdiabgEna0kaahkhaaaa@3DE2@

(it is vector form of the equations (7) if variables ri assume projections of vector r on the axes of the body-fixed basis E.20 The symbol×denotes the vector product of two vectors. As it is know, the vector r turns out to be motionless relative to the inertial basis I, and |r|=const¹0.20 Thus, the problem of finding an optimal control reduces to solving the system of equations of spacecraft’s angular motion (2) and equations (7) under the condition that the control itself is chosen by maximizing the Hamiltonian. The system of equations (7) which determines the behavior of vector r relative to fixed axes replaces the conjugate system of equations. The optimal vector function r(t) is related with attitude quaternion Λ(t) by the formula

r= Λ ˜ c E Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCOCai abg2da9iqbfU5amzaaiaGaeSigI8MaaC4yamaaBaaajuaibaGaamyr aaqcfayabaGaeSigI8Maeu4MdWeaaa@4085@ , where c E = Λ in r(0) Λ ˜ in =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWHJbWdamaaBaaajuaibaWdbiaadweaaKqba+aabeaapeGa eyypa0ZdaiabfU5amnaaBaaajuaibaGaaeyAaiaab6gaaeqaaKqbak ablIHiVjaahkhacaGGOaGaaGimaiaacMcacqWIyiYBcuqHBoatgaac amaaBaaajuaibaGaaeyAaiaab6gaaKqbagqaaiabg2da98qacaWGJb Gaam4Baiaad6gacaWGZbGaamiDaaaa@4E4F@

The direction of vector cE depends on the initial and final spacecraft positions. In order, for the spacecraft to have the required orientation at the right end Λ(T)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaadsfacaGGPaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqG Mbaabeaaaaa@3DDE@ , the vector cE (or the value of vector r at the initial moment) by the corresponding solutions of system (2) should be determined. The system of differential equations (7), together with the maximality condition of the Hamiltonian H, is necessary conditions of optimality. Constraint equations are given by the system of equations (2) which describes the spacecraft’s motion relative to its center of mass. The maximum conditions of function H determine sought solution (t). Boundary position conditions Λ(0) and Λ(T) determine solutions Λ(t) and r(t). The boundary problem of the maximum principle is to find the value of the vector r(0) for which the solution of the system of differential equations (2),(7) together with simultaneous maximization, at every current moment of time, of the Hamiltonian H satisfies reorientation conditions (3), (4) (the restriction on phase variables λ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaWGQbaabeaaaaa@3976@ is not taken into account since the equality ||Λ(t)||=1 always holds due to equations (2)).

To find the control function ( ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ t) (the optimal control problem) and the optimal vector r, the conditions of maximum for Hamiltonian H must be formalized. From formula (6) follows, Н is a concave quadratic function of the angular velocity ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ , and hence its maximal value is achieved at the point of the local extremum. Applying the necessary conditions H/ ω i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOaIy Raamisaiaac+cacqGHciITcqaHjpWDdaWgaaqcfasaaiaadMgaaeqa aKqbakabg2da9iaaicdaaaa@4028@ , the equations r i 2 J i ω i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOCam aaBaaajuaibaGaamyAaaqabaqcfaOaeyOeI0IaaGOmaiaadQeadaWg aaqcfasaaiaadMgaaeqaaKqbakabeM8a3naaBaaajuaibaGaamyAaa qabaqcfaOaeyypa0JaaGimaaaa@42E1@ is obtained. The function Н is maximal if the relations

ω i = r i /2 J i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbaabeaajuaGcqGH9aqpcaWGYbWaaSbaaKqb GeaacaWGPbaabeaajuaGcaGGVaGaaGOmaiaadQeadaWgaaqcfasaai aadMgaaeqaaaaa@415F@ (8)

are satisfied. The problem of constructing an optimal control has been reduced to solving the system of equations of spacecraft’s angular motion (2) and equations (7) under the condition that control function is formed from requirement (8). The formulated control problem (2)–(5) is solved completely.

Due to the fact that |r|=const=|r(0)|¹0, for simplicity, to the normalized vector p=r/|r| is used, |p|=1. For the vector p, it holds that, p ˙ =ω×p MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabCiCay aacaGaeyypa0JaeyOeI0IaaCyYdiabgEna0kaahchaaaa@3DDE@ or

p ˙ 1 = ω 3 p 2 ω 2 p 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiCay aacaWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGH9aqpcqaHjpWDdaWg aaqcfasaaiaaiodaaeqaaKqbakaadchadaWgaaqcfasaaiaaikdaaK qbagqaaiabgkHiTiabeM8a3naaBaaajuaibaGaaGOmaaqabaqcfaOa amiCamaaBaaajuaibaGaaG4maaqcfayabaaaaa@46F7@ , p ˙ 2 = ω 1 p 3 ω 3 p 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiCay aacaWaaSbaaKqbGeaacaaIYaaajuaGbeaacqGH9aqpcqaHjpWDdaWg aaqcfasaaiaaigdaaKqbagqaaiaadchadaWgaaqcfasaaiaaiodaaK qbagqaaiabgkHiTiabeM8a3naaBaaajuaibaGaaG4maaqabaqcfaOa amiCamaaBaaajuaibaGaaGymaaqabaaaaa@4668@ , p ˙ 3 = ω 2 p 1 ω 1 p 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmiCay aacaWaaSbaaKqbGeaacaaIZaaabeaajuaGcqGH9aqpcqaHjpWDdaWg aaqcfasaaiaaikdaaKqbagqaaiaadchadaWgaaqcfasaaiaaigdaae qaaKqbakabgkHiTiabeM8a3naaBaaajuaibaGaaGymaaqcfayabaGa amiCamaaBaaajuaibaGaaGOmaaqcfayabaaaaa@46F5@ (9)

In what follows, the components pi of the vector p will be used. Note that ri=|r(0)|pi. The necessary condition of optimality can be written as

J i ω i =b. p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGkbWdamaaBaaajuaibaWdbiaadMgaa8aabeaajuaGcqaH jpWDdaWgaaqcfasaaiaadMgaaeqaaKqba+qacqGH9aqpcaWGIbGaai OlaiaadchapaWaaSbaaKqbGeaapeGaamyAaaWdaeqaaaaa@4213@ (10)

where b>0 is a scalar value.

Left-hand sides of equations (10) are projections of the spacecraft’s angular momentum vector onto the body-fixed basis axes E. Expressions (10) lead to the conclusion that spacecraft rotation during optimal motion is done with a constant direction of angular momentum relative to the inertial coordinate system. The value of b equals the modulus of the spacecraft’s angular momentum L. The triple p1, p2, p3 represents directional cosines of the vector L relative to the body-fixed basis axes E. Equations (10) clearly show that in the geometric representation, the vector p is simply the unit vector of the spacecraft’s angular momentum vector L in the spacecraft’s fixed system of coordinates. Thus, the optimal (in the sense of minimizing the energy integral) spacecraft reorientation is performed along the “trajectory of free motion”. Equations (9), together with equalities (10), form a closed system of equations which determine unique properties of optimal motion. Original solution is determined by close this system of equations (9), (10) by equations (2) with conditions (3), (4) for solution Λ(t).

Here and in what follows, it is assumed that the “trajectory of free motion” is a family (totality or multitude) of angular positions (values of Λ) that a rigid body occupies during its rotation by inertia. In the geometric interpretation, the “trajectory of free motion” is a trace of the representing point Λ(t), where Λ(t) is a solution of the system of differential equations (1), (2) when M1=M2=M3=0 and ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbaajuaGbeaaaaa@3A1C@ ≠0. Moreover, it is known that the end of the angular velocity vector ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ (t) during the free motion of rigid body moves along a centroid. 27,28

Let us find the proportion between the kinetic energy Ek and angular momentum L during optimal slew maneuver. The kinetic energy Ek and the value b are related by expression

E k = b 2 ( p 1 2 / J 1 + p 2 2 / J 2 + p 3 2 / J 3 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaam4AaaqabaqcfaOaeyypa0JaamOyamaaCaaajuai beqaaiaaikdaaaqcfa4aaSGbaeaacaGGOaGaamiCamaaDaaajuaiba GaaGymaaqaaiaaikdaaaaajuaGbaGaamOsamaaBaaajuaibaGaaGym aaqabaaaaKqbakabgUcaRmaalyaabaGaamiCamaaDaaajuaibaGaaG OmaaqaaiaaikdaaaaajuaGbaGaamOsamaaBaaajuaibaGaaGOmaaqc fayabaaaaiabgUcaRmaalyaabaGaamiCamaaDaaajuaibaGaaG4maa qaaiaaikdaaaaajuaGbaGaamOsamaaBaaajuaibaGaaG4maaqcfaya baaaaiaacMcacaGGVaGaaGOmaaaa@5289@

Therefore, the proportion. E k / | L | 2 = ( p 1 2 / J 1 + p 2 2 / J 2 + p 3 2 / J 3 )/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaam4AaaqcfayabaGaai4lamaaemaabaGaaCitaaGa ay5bSlaawIa7amaaCaaajuaibeqaaiaaikdaaaqcfaOaeyypa0ZaaS GbaeaacaGGOaGaamiCamaaDaaajuaibaGaaGymaaqaaiaaikdaaaaa juaGbaGaamOsamaaBaaajuaibaGaaGymaaqcfayabaaaaiabgUcaRm aalyaabaGaamiCamaaDaaajuaibaGaaGOmaaqaaiaaikdaaaaajuaG baGaamOsamaaBaaajuaibaGaaGOmaaqcfayabaaaaiabgUcaRmaaly aabaGaamiCamaaDaaajuaibaGaaG4maaqaaiaaikdaaaaajuaGbaGa amOsamaaBaaajuaibaGaaG4maaqcfayabaaaaiaacMcacaGGVaGaaG Omaaaa@564C@

It is shown that this proportion Ek/|L|2 is constant on the entire motion interval 0≤t≤T. The Hamiltonian H is independent of time in explicit form, i.e. . Therefore, H=const inside the entire interval of control 0≤t≤T.27 From formulas (6), the equality

ω 1 r 1 + ω 2 r 2 + ω 3 r 3 J 1 ω 1 2 J 2 ω 2 2 J 3 ω 3 2 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIXaaabeaajuaGcaWGYbWaaSbaaKqbGeaacaaI XaaabeaajuaGcqGHRaWkcqaHjpWDdaWgaaqcfasaaiaaikdaaKqbag qaaiaadkhadaWgaaqcfasaaiaaikdaaKqbagqaaiabgUcaRiabeM8a 3naaBaaajuaibaGaaG4maaqcfayabaGaamOCamaaBaaajuaibaGaaG 4maaqabaqcfaOaeyOeI0IaamOsamaaBaaajuaibaGaaGymaaqabaqc faOaeqyYdC3aa0baaKqbGeaacaaIXaaabaGaaGOmaaaajuaGcqGHsi slcaWGkbWaaSbaaKqbGeaacaaIYaaabeaajuaGcqaHjpWDdaqhaaqc fasaaiaaikdaaeaacaaIYaaaaKqbakabgkHiTiaadQeadaWgaaqcfa saaiaaiodaaKqbagqaaiabeM8a3naaDaaajuaibaGaaG4maaqaaiaa ikdaaaqcfaOaeyypa0Jaae4yaiaab+gacaqGUbGaae4Caiaabshaaa a@664E@

is obtained. After substitution the values ω i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3aaS baaSqaaiaadMgaaeqaaaaa@38DE@ calculated by equations (8) in this equality, the conditions

r 1 2 / J 1 + r 2 2 / J 2 + r 3 2 / J 3 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacaWGYbWaa0baaKqbGeaacaaIXaaabaGaaGOmaaaaaKqbagaacaWG kbWaaSbaaKqbGeaacaaIXaaabeaaaaqcfaOaey4kaSYaaSGbaeaaca WGYbWaa0baaKqbGeaacaaIYaaabaGaaGOmaaaaaKqbagaacaWGkbWa aSbaaKqbGeaacaaIYaaajuaGbeaaaaGaey4kaSYaaSGbaeaacaWGYb Waa0baaKqbGeaacaaIZaaabaGaaGOmaaaaaKqbagaacaWGkbWaaSba aKqbGeaacaaIZaaajuaGbeaaaaGaeyypa0Jaae4yaiaab+gacaqGUb Gaae4Caiaabshaaaa@4F65@ , and p 1 2 / J 1 + p 2 2 / J 2 + p 3 2 / J 3 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacaWGWbWaa0baaKqbGeaacaaIXaaabaGaaGOmaaaaaKqbagaacaWG kbWaaSbaaKqbGeaacaaIXaaajuaGbeaaaaGaey4kaSYaaSGbaeaaca WGWbWaa0baaKqbGeaacaaIYaaabaGaaGOmaaaaaKqbagaacaWGkbWa aSbaaKqbGeaacaaIYaaabeaaaaqcfaOaey4kaSYaaSGbaeaacaWGWb Waa0baaKqbGeaacaaIZaaabaGaaGOmaaaaaKqbagaacaWGkbWaaSba aKqbGeaacaaIZaaabeaaaaqcfaOaeyypa0Jaae4yaiaab+gacaqGUb Gaae4Caiaabshaaaa@4F5F@

are satisfied because |r| =const. Therefore, E k / | L | 2 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaieaaaaaa aaa8qacaWGfbWdamaaBaaajuaibaWdbiaadUgaa8aabeaajuaGpeGa ai4la8aadaabdaqaa8qacaWHmbaapaGaay5bSlaawIa7amaaCaaaju aibeqaa8qacaaIYaaaaKqbakabg2da9iaadogacaWGVbGaamOBaiaa dohacaWG0baaaa@45C1@ . It is key property of optimal motion for criterion (5).

Thus, the problem of constructing the optimal control (t) has been mainly reduced to finding such a value of vector p(0) that as a result of the spacecraft’s motion, according to equations (2), (9), and (10), the equality (4) will satisfy. It is virtually impossible to find a general solution of this system of equations. The problem is to find boundary conditions on p(0) and p(T) which are related by expression

Λ f p(T) Λ ˜ f = Λ in p(0) Λ ˜ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaajuaGbeaacqWIyiYBcaWHWbGaaiikaiaa dsfacaGGPaGaeSigI8Mafu4MdWKbaGaadaWgaaqcfasaaiaabAgaae qaaKqbakabg2da9iabfU5amnaaBaaajuaibaGaaeyAaiaab6gaaKqb agqaaiablIHiVjaahchacaGGOaGaaGimaiaacMcacqWIyiYBcuqHBo atgaacamaaBaaajuaibaGaaeyAaiaab6gaaeqaaaaa@510D@ (11)

The property |L|=const follows from relations (8) which reflect the Hamiltonian H maximizing property. It is demonstrated above, proportion Ek/|L|2 is constant, so Ek=const during optimal rotation. An exact value of the kinetic energy Ek and modulus of angular momentum are determined by the end time of the reorientation maneuver T (by the condition that as a result of solving the system (2), (9), (10), the boundary condition (4) is satisfied at the right end). The found modulus |L| will correspond to the minimal possible spacecraft’s kinetic rotation energy Ek that provides for reaching the final position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaajuaGbeaaaaa@39BF@ in allotted time T. Note, the vectors ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ and p are related as

ω i = 2 E k p 1 2 / J 1 + p 2 2 / J 2 + p 3 2 / J 3 p i J i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbaabeaajuaGcqGH9aqpdaWcaaqaamaakaaa baGaaGOmaiaadweadaWgaaqcfasaaiaadUgaaeqaaaqcfayabaaaba WaaOaaaeaadaWcgaqaaiaadchadaqhaaqcfasaaiaaigdaaeaacaaI YaaaaaqcfayaaiaadQeadaWgaaqcfasaaiaaigdaaeqaaaaajuaGcq GHRaWkdaWcgaqaaiaadchadaqhaaqcfasaaiaaikdaaeaacaaIYaaa aaqcfayaaiaadQeadaWgaaqcfasaaiaaikdaaeqaaaaajuaGcqGHRa WkdaWcgaqaaiaadchadaqhaaqcfasaaiaaiodaaeaacaaIYaaaaaqc fayaaiaadQeadaWgaaqcfasaaiaaiodaaeqaaaaaaKqbagqaaaaacq GHflY1daWcaaqaaiaadchadaWgaaqcfasaaiaadMgaaeqaaaqcfaya aiaadQeadaWgaaqcfasaaiaadMgaaeqaaaaaaaa@58EA@ (12)

Let us now find the controlling moments necessary to support the spacecraft’s optimal rotation mode in time interval 0<t<T during the reorientation. Let us substitute the functions ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbaajuaGbeaaaaa@3A1C@ (t) computed by expressions (8) into dynamic equations (1) with taking into account the fact |r| =const. As result, all component of moment M are Mi=0. In the solution optimal with respect to criterion (5), the spacecraft’s reorientation is done with zero controlling moment M=0. This follows from the analysis of equations (8) that show a relation between the angular momentum L and the vector r of universal variables. The fact that L=r/2 and |L|=const, keeping in mind the immobility of vector r in the inertial basis I, implies that the spacecraft’s angular momentum vector is constant relative to inertial coordinate system during the reorientation. The kinetic energy Ek is constant also.Thus, it is proven the following conclusion: spacecraft’s reorientation occurs with the minimal value of the kinetic energy integral if and only if the spacecraft during this reorientation rotates as a free motion (the main moment of forces is zero), i.e., when the spacecraft’s rotation (as a rigid body) is an Euler–Poinsot motion.28 If allow a step like change of the angular velocity vector ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ , then the proposed optimal control problem (the kinematic reorientation problem) can be considered solved: Equations (2), (9), and (12) completely define the necessary motion ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ (t).

The task of the onboard control system for realization of optimal control is to inform the spacecraft of the initial motion conditions, namely the calculated angular velocity at time moment t=0 and reducing the kinetic energy to zero at time moment t=T, when Λ(t)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaadshacaGGPaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqG MbaajuaGbeaaaaa@3E8C@ (after the spacecraft reaches its final position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaabeaaaaa@3931@ ). From the moment of reaching the necessary initial angular velocity and until the reorientation is finished, when the spacecraft will be in the neighborhood of the required position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaabeaaaaa@3931@ , there is no torque M acting on the spacecraft’s body; the spacecraft performs uncontrolled rotation (M=0), i.e. free motion. Creating the initial angular velocity and damping the final rotation happens in an impulse (as fast as the spacecraft’s actuators will allow). Between the impulsive imparting of angular momentum and the impulsive suppressing of angular momentum

J 1 2 ω 1 2 + J 2 2 ω 2 2 + J 3 2 ω 3 2 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaDaaajuaibaGaaGymaaqaaiaaikdaaaqcfaOaeqyYdC3aa0baaKqb GeaacaaIXaaabaGaaGOmaaaajuaGcqGHRaWkcaWGkbWaa0baaKqbGe aacaaIYaaabaGaaGOmaaaajuaGcqaHjpWDdaqhaaqcfasaaiaaikda aeaacaaIYaaaaKqbakabgUcaRiaadQeadaqhaaqcfasaaiaaiodaae aacaaIYaaaaKqbakabeM8a3naaDaaajuaibaGaaG4maaqaaiaaikda aaqcfaOaeyypa0Jaae4yaiaab+gacaqGUbGaae4Caiaabshaaaa@53DC@ , J 1 ω 1 2 + J 2 ω 2 2 + J 3 ω 3 2 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaBaaajuaibaGaaGymaaqabaqcfaOaeqyYdC3aa0baaKqbGeaacaaI XaaabaGaaGOmaaaajuaGcqGHRaWkcaWGkbWaaSbaaKqbGeaacaaIYa aabeaajuaGcqaHjpWDdaqhaaqcfasaaiaaikdaaeaacaaIYaaaaKqb akabgUcaRiaadQeadaWgaaqcfasaaiaaiodaaKqbagqaaiabeM8a3n aaDaaajuaibaGaaG4maaqaaiaaikdaaaqcfaOaeyypa0Jaae4yaiaa b+gacaqGUbGaae4Caiaabshaaaa@51A5@ (13)

Topicality of the considered problem is due to the fact that by minimizing integral (5) the energy spent to perform spacecraft reorientation from position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaGOajuaGcq qHBoatdaWgaaqcfasaaiaabMgacaqGUbaabeaaaaa@3AB2@ into position in Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaabeaaaaa@3931@ time T is minimized. The energy E obeys the following relation:

T max 0tT E 0 T ( J 1 ω 1 2 + J 2 ω 2 2 + J 3 ω 3 2 )dt /2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamivam aaxababaGaciyBaiaacggacaGG4baajuaibaGaaGimaiabgsMiJkaa dshacqGHKjYOcaWGubaajuaGbeaacaWGfbGaeyyzIm7aa8qCaeaaca GGOaGaamOsamaaBaaajuaibaGaaGymaaqcfayabaGaeqyYdC3aa0ba aKqbGeaacaaIXaaabaGaaGOmaaaajuaGcqGHRaWkcaWGkbWaaSbaaK qbGeaacaaIYaaabeaajuaGcqaHjpWDdaqhaaqcfasaaiaaikdaaeaa caaIYaaaaKqbakabgUcaRiaadQeadaWgaaqcfasaaiaaiodaaKqbag qaaiabeM8a3naaDaaajuaibaGaaG4maaqaaiaaikdaaaqcfaOaaiyk aiaadsgacaWG0baajuaibaGaaGimaaqaaiaadsfaaKqbakabgUIiYd Gaai4laiaaikdaaaa@6250@

Consequently, minimum of quantity max 0tT E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaciGGTbGaaiyyaiaacIhaaKqbGeaacaaIWaGaeyizImQaamiDaiab gsMiJkaadsfaaKqbagqaaiaadweaaaa@4102@ is

max 0tT E= 0 T ( J 1 ω 1 2 + J 2 ω 2 2 + J 3 ω 3 2 )dt /2T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaciGGTbGaaiyyaiaacIhaaKqbGeaacaaIWaGaeyizImQaamiDaiab gsMiJkaadsfaaKqbagqaaiaadweacqGH9aqpdaWdXbqaaiaacIcaca WGkbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqaHjpWDdaqhaaqcfasa aiaaigdaaeaacaaIYaaaaKqbakabgUcaRiaadQeadaWgaaqcfasaai aaikdaaKqbagqaaiabeM8a3naaDaaajuaibaGaaGOmaaqaaiaaikda aaqcfaOaey4kaSIaamOsamaaBaaajuaibaGaaG4maaqabaqcfaOaeq yYdC3aa0baaKqbGeaacaaIZaaabaGaaGOmaaaajuaGcaGGPaGaamiz aiaadshaaKqbGeaacaaIWaaabaGaamivaaqcfaOaey4kIipacaGGVa GaaGOmaiaadsfaaaa@6190@

The minimal value of energy, required for spacecraft rotation satisfying given boundary conditions (3), (4), is reached in the only one case when J 1 ω 1 2 + J 2 ω 2 2 + J 3 ω 3 2 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaBaaajuaibaGaaGymaaqabaqcfaOaeqyYdC3aa0baaKqbGeaacaaI XaaabaGaaGOmaaaajuaGcqGHRaWkcaWGkbWaaSbaaKqbGeaacaaIYa aabeaajuaGcqaHjpWDdaqhaaqcfasaaiaaikdaaeaacaaIYaaaaKqb akabgUcaRiaadQeadaWgaaqcfasaaiaaiodaaeqaaKqbakabeM8a3n aaDaaajuaibaGaaG4maaqaaiaaikdaaaqcfaOaeyypa0Jaae4yaiaa b+gacaqGUbGaae4Caiaabshaaaa@51A5@ and the integral (5) is minimum. Both last conditions satisfy for motion under the equations (7), (8) which are the necessary conditions of optimality (see (13) also). As a result, when the functional (5) is minimized, we actually arrive at the minimum rotary energy max 0tT E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeae aaciGGTbGaaiyyaiaacIhaaKqbGeaacaaIWaGaeyizImQaamiDaiab gsMiJkaadsfaaKqbagqaaiaadweaaaa@4102@ and, as corollary; the minimum energy of the control forces is achieved. The spacecraft rotation regime according to conditions (7), (8) (or (9), (12)) gives the absolute minimum of the controlling forces’ work since in time interval 0<t<T the spacecraft rotates without control (with moment M=0).

Finding the optimal motion of a spacecraft in the particular cases

Constructing the optimal reorientation regime with minimal value of integral (5) is non-trivial task. In the optimal reorientation problem (in constructing the optimal programmed motion ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ (t)), it is crucial to find the initial vector p(0) and the corresponding angular velocity ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ (0+) (the angular velocity (0+) is calculated by formulas (12)). The vector p(0) depends on reorientation parameters Λ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqG0baabeaaaaa@393F@ and the spacecraft characteristics J1, J2, J3. For arbitrary values J1¹J2¹J3 , it is hard to find the solution of the considered problem of spacecraft’s three-dimensional reorientation for arbitrary values Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGPbGaaeOBaaqcfayabaaaaa@3AB3@ and Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaabeaaaaa@3931@ . The difficulty is to find boundary vectors p(0) and p(T) which are related by (11). Analytical solution of the system of equations (2), (9), and (12) exists for dynamically spherical and dynamically symmetric bodies only. For a spherically symmetric spacecraft (when J1=J2=J3), the solution p(t), ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ (t) have elementary form: p(t)=const and ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ (t)=const, or in detail

p i = ν i / ν 1 + ν 2 + ν 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0ZaaSGbaeaacqaH9oGB daWgaaqcfasaaiaadMgaaeqaaaqcfayaamaakaaabaGaeqyVd42aaS baaKqbGeaacaaIXaaabeaajuaGcqGHRaWkcqaH9oGBdaWgaaqcfasa aiaaikdaaKqbagqaaiabgUcaRiabe27aUnaaBaaajuaibaGaaG4maa qcfayabaaabeaaaaaaaa@49AA@ , and ω i = 2 ν i arccos ν 0 T ν 1 + ν 2 + ν 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbaabeaajuaGcqGH9aqpdaWcaaqaaiaaikda cqaH9oGBdaWgaaqcfasaaiaadMgaaeqaaKqbakGacggacaGGYbGaai 4yaiaacogacaGGVbGaai4CamaaBaaabaaabeaacqaH9oGBdaWgaaqc fasaaiaaicdaaKqbagqaaaqaaiaadsfadaGcaaqaaiabe27aUnaaBa aajuaibaGaaGymaaqabaqcfaOaey4kaSIaeqyVd42aaSbaaKqbGeaa caaIYaaajuaGbeaacqGHRaWkcqaH9oGBdaWgaaqcfasaaiaaiodaae qaaaqcfayabaaaaaaa@5516@

Where ν 0 , ν 1 , ν 2 , ν 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyVd4 2aaSbaaKqbGeaacaaIWaaajuaGbeaacaGGSaGaeqyVd42aaSbaaKqb GeaacaaIXaaajuaGbeaacaGGSaGaeqyVd42aaSbaaKqbGeaacaaIYa aabeaajuaGcaGGSaGaeqyVd42aaSbaaKqbGeaacaaIZaaajuaGbeaa aaa@45D6@ are components of the reorientation quaternion. Λ t = Λ ˜ in Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqG0baabeaajuaGcqGH9aqpcuqHBoatgaacamaa BaaajuaibaGaaeyAaiaab6gaaKqbagqaaiablIHiVjabfU5amnaaBa aajuaibaGaaeOzaaqabaaaaa@42F8@

For a dynamically symmetric spacecraft (for example, when J2=J3), the optimal control problem can be solved completely also. For this distribution of spacecraft’s mass, the following differential equations:

J 2 ω ˙ 2 =( J 3 J 1 ) ω 1 ω 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaBaaajuaibaGaaGOmaaqabaqcfaOafqyYdCNbaiaadaWgaaqcfasa aiaaikdaaeqaaKqbakabg2da9maabmaabaGaamOsamaaBaaajuaiba GaaG4maaqcfayabaGaeyOeI0IaamOsamaaBaaajuaibaGaaGymaaqc fayabaaacaGLOaGaayzkaaGaeqyYdC3aaSbaaKqbGeaacaaIXaaabe aajuaGcqaHjpWDdaWgaaqcfasaaiaaiodaaeqaaaaa@4AE5@ , J 3 ω ˙ 3 =( J 1 J 2 ) ω 1 ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaBaaajuaibaGaaG4maaqcfayabaGafqyYdCNbaiaadaWgaaqcfasa aiaaiodaaeqaaKqbakabg2da9maabmaabaGaamOsamaaBaaajuaiba GaaGymaaqabaqcfaOaeyOeI0IaamOsamaaBaaajuaibaGaaGOmaaqa baaajuaGcaGLOaGaayzkaaGaeqyYdC3aaSbaaKqbGeaacaaIXaaabe aajuaGcqaHjpWDdaWgaaqcfasaaiaaikdaaKqbagqaaaaa@4B73@

are satisfied under condition ω 1 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIXaaabeaajuaGcqGH9aqpcaqGJbGaae4Baiaa b6gacaqGZbGaaeiDaaaa@3FA5@ .

Last system of differential equations describes the oscillator (with the parameter ω 1 =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIXaaabeaajuaGcqGH9aqpcaqGJbGaae4Baiaa b6gacaqGZbGaaeiDaaaa@3FA5@ ), for which ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIYaaajuaGbeaaaaa@39EA@ and ω 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIZaaajuaGbeaaaaa@39EB@ are harmonic functions of time. Therefore, р1=const=р10 and harmonic oscillations of the functions р2 and р3 are observed. In this special case, the optimal motion is the simultaneous rotation of the spacecraft as a rigid body around its axial axis OX and around spacecraft’s angular momentum L which is constant in the inertial space and which constitutes a certain constant angle ϑ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqy0dO eaaa@382C@ with the spacecraft’s axial axis. Angular velocities with respect to OX and p axes have a constant ratio (as is shown above, vectors L and p are parallel). The solution of system (2), (9), (12), necessary for solving the control problem, is regular precession. For the regular precession case

Λ f = Λ in е p o β/2 e e 1 α/2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaajuaGbeaacqGH9aqpcqqHBoatdaWgaaqc fasaaiaabMgacaqGUbaabeaajuaGcqWIyiYBcaWG1qWaaWbaaKqbGe qabaGaaCiCaKqbaoaaBaaajuaibaGaae4BaaqabaGaeqOSdiMaai4l aiaaikdaaaqcfaOaeSigI8MaamyzamaaCaaabeqcfasaaiaahwgaju aGdaWgaaqcfasaaiaabgdaaeqaaiabeg7aHjaac+cacaaIYaaaaaaa @4FA3@

where p0=p(0); e1 is the unit vector of the spacecraft’s axial axis; is the spacecraft’s rotation angle around its axial axis; β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3798@ is the spacecraft’s rotation angles around the vector p, e is quaternion exponent.1 It is assumed that |α|≤Π, 0≤βΠ.

For a dynamically symmetric spacecraft with moments of inertia J 1 J 2 = J 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamOsam aaBaaajuaibaGaaGymaaqabaqcfaOaeyiyIKRaamOsamaaBaaajuai baGaaGOmaaqabaqcfaOaeyypa0JaamOsamaaBaaajqwba+Faaiaaio daaKqbagqaaaaa@424C@ , the solution p(t) is written as follows:

p 1 = p 10 =const=cosϑ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaaGymaaqabaqcfaOaeyypa0JaamiCamaaBaaajuai baGaaGymaiaaicdaaeqaaKqbakabg2da9iaabogacaqGVbGaaeOBai aabohacaqG0bGaeyypa0Jaci4yaiaac+gacaGGZbqcfaIaeqy0dOea aa@48C9@ , p 2 = p 20 cosκ+ p 30 sinκ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaaGOmaaqcfayabaGaeyypa0JaamiCamaaBaaajuai baGaaGOmaiaaicdaaeqaaKqbakGacogacaGGVbGaai4CaiabeQ7aRj abgUcaRiaadchadaWgaaqcfasaaiaaiodacaaIWaaabeaajuaGciGG ZbGaaiyAaiaac6gacqaH6oWAaaa@4A9A@ , p 3 = p 20 sinκ+ p 30 cosκ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaaG4maaqabaqcfaOaeyypa0JaeyOeI0IaamiCamaa BaaajuaibaGaaGOmaiaaicdaaeqaaKqbakGacohacaGGPbGaaiOBai abeQ7aRjabgUcaRiaadchadaWgaaqcfasaaiaaiodacaaIWaaajuaG beaaciGGJbGaai4BaiaacohacqaH6oWAaaa@4B88@ (14)

where

κ= J 3 J 1 J 2 0 t ω 1 (t)dt . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqOUdS Maeyypa0ZaaSaaaeaacaWGkbWaaSbaaKqbGeaacaaIZaaabeaajuaG cqGHsislcaWGkbWaaSbaaKqbGeaacaaIXaaabeaaaKqbagaacaWGkb WaaSbaaKqbGeaacaaIYaaabeaaaaqcfa4aa8qCaeaacqaHjpWDdaWg aaqcfasaaiaaigdaaeqaaKqbakaacIcacaWG0bGaaiykaiaadsgaca WG0baajuaibaGaaGimaaqaaiaadshaaKqbakabgUIiYdGaaiOlaaaa @4E7C@

In this case, dependences (14), together with equalities (12), form a solution of the system of equations (2), (9) under condition (10). At the same time, the vector p also generates a cone around the axial axis OX in the body-fixed coordinate system. The specific value of р0 is determined exclusively by the requirement that, according to equations (2),(9), (12), boundary conditions (3) and (4) be satisfied. In this type of control, the spacecraft’s angular momentum preserves a constant direction in the inertial reference basis I, while the axially symmetric body moves along a “conic trajectory”. To move the spacecraft from position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGPbGaaeOBaaqabaaaaa@3A25@ into position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaajuaGbeaaaaa@39BF@ , it rotates simultaneously around the vector cE, which is constant relative to the inertial basis I, by the angle β, and around its own longitudinal axis by the angle α. Using the mathematical formalism of quaternions to describe rotations of rigid body about the center of mass, relations reflecting a dependence between the values p0, α,β and are written. The dependence of parameters p0,α, and β on the boundary angular positions Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGPbGaaeOBaaqabaaaaa@3A25@ and Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaajuaGbeaaaaa@39BF@ is given by the following system of equations:

cos β 2 cos α 2 p 10 sin β 2 sin α 2 = ν 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaci4yai aac+gacaGGZbWaaSaaaeaacqaHYoGyaeaacaaIYaaaaiGacogacaGG VbGaai4CamaalaaabaGaeqySdegabaGaaGOmaaaacqGHsislcaWGWb WaaSbaaKqbGeaacaaIXaGaaGimaaqabaqcfaOaci4CaiaacMgacaGG UbWaaSaaaeaacqaHYoGyaeaacaaIYaaaaiGacohacaGGPbGaaiOBam aalaaabaGaeqySdegabaGaaGOmaaaacqGH9aqpcqaH9oGBdaWgaaqc fasaaiaaicdaaKqbagqaaaaa@5413@ , p 20 sin β 2 cos α 2 + p 30 sin β 2 sin α 2 = ν 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiCam aaBaaajuaibaGaaGOmaiaaicdaaeqaaKqbakGacohacaGGPbGaaiOB amaalaaabaGaeqOSdigabaGaaGOmaaaaciGGJbGaai4Baiaacohada Wcaaqaaiabeg7aHbqaaiaaikdaaaGaey4kaSIaamiCamaaBaaajuai baGaaG4maiaaicdaaeqaaKqbakGacohacaGGPbGaaiOBamaalaaaba GaeqOSdigabaGaaGOmaaaaciGGZbGaaiyAaiaac6gadaWcaaqaaiab eg7aHbqaaiaaikdaaaGaeyypa0JaeqyVd42aaSbaaKqbGeaacaaIYa aajuaGbeaaaaa@5759@ , cos β 2 sin α 2 + p 10 sin β 2 cos α 2 = ν 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaci4yai aac+gacaGGZbWaaSaaaeaacqaHYoGyaeaacaaIYaaaaiGacohacaGG PbGaaiOBamaalaaabaGaeqySdegabaGaaGOmaaaacqGHRaWkcaWGWb WaaSbaaKqbGeaacaaIXaGaaGimaaqabaqcfaOaci4CaiaacMgacaGG UbWaaSaaaeaacqaHYoGyaeaacaaIYaaaaiGacogacaGGVbGaai4Cam aalaaabaGaeqySdegabaGaaGOmaaaacqGH9aqpcqaH9oGBdaWgaaqc fasaaiaaigdaaeqaaaaa@537B@ , р 20 sin β 2 cos α 2 + p 30 sin β 2 cos α 2 = ν 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeyOeI0 IaamiqemaaBaaajuaibaGaaGOmaiaaicdaaeqaaKqbakGacohacaGG PbGaaiOBamaalaaabaGaeqOSdigabaGaaGOmaaaaciGGJbGaai4Bai aacohadaWcaaqaaiabeg7aHbqaaiaaikdaaaGaey4kaSIaamiCamaa BaaajuaibaGaaG4maiaaicdaaeqaaKqbakGacohacaGGPbGaaiOBam aalaaabaGaeqOSdigabaGaaGOmaaaaciGGJbGaai4BaiaacohadaWc aaqaaiabeg7aHbqaaiaaikdaaaGaeyypa0JaeqyVd42aaSbaaKqbGe aacaaIZaaajuaGbeaaaaa@5816@ , α= J 2 J 1 J 1 p 10 β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqySde Maeyypa0ZaaSaaaeaacaWGkbWaaSbaaKqbGeaacaaIYaaabeaajuaG cqGHsislcaWGkbWaaSbaaKqbGeaacaaIXaaabeaaaKqbagaacaWGkb WaaSbaaKqbGeaacaaIXaaabeaaaaqcfaOaamiCamaaBaaajuaibaGa aGymaiaaicdaaeqaaKqbakabek7aIbaa@4644@

For a given reorientation time T, angular rotation speeds around the OX and p axes are equal to α ˙ =α/T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqySde MbaiaacqGH9aqpcqaHXoqycaGGVaGaamivaaaa@3C5D@ ,and β ˙ =β/T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafqOSdi MbaiaacqGH9aqpcqaHYoGycaGGVaGaamivaaaa@3C61@ . The magnitude of angular momentum during optimal rotation is |L|=J2β/T. The programmed values of controlling functions ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbaabeaaaaa@398E@ (projections of the angular velocity vector ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ ) have the following form:

ω 1 = α ˙ + β ˙ p 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIXaaabeaajuaGcqGH9aqpcuaHXoqygaGaaiab gUcaRiqbek7aIzaacaGaamiCamaaBaaajuaibaGaaGymaiaaicdaaK qbagqaaaaa@426A@ , ω 2 = β ˙ 1 p 10 2 sin( α ˙ t+ σ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIYaaabeaajuaGcqGH9aqpcuaHYoGygaGaamaa kaaabaGaaGymaiabgkHiTiaadchadaqhaaqcfasaaiaaigdacaaIWa aabaGaaGOmaaaaaKqbagqaaiGacohacaGGPbGaaiOBaiaacIcacuaH XoqygaGaaiaadshacqGHRaWkcqaHdpWCdaWgaaqcfasaaiaaicdaae qaaKqbakaacMcaaaa@4D64@ , ω 3 = β ˙ 1 p 10 2 cos( α ˙ t+ σ 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIZaaabeaajuaGcqGH9aqpcuaHYoGygaGaamaa kaaabaGaaGymaiabgkHiTiaadchadaqhaaqcfasaaiaaigdacaaIWa aabaGaaGOmaaaaaKqbagqaaiGacogacaGGVbGaai4CaiaacIcacuaH XoqygaGaaiaadshacqGHRaWkcqaHdpWCdaWgaaqcfasaaiaaicdaae qaaKqbakaacMcaaaa@4D60@

where σ 0 = arctg ( p 20 / p 30 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4Wdm 3aaSbaaKqbGeaacaaIWaaabeaajuaGcqGH9aqpcaqGHbGaaeOCaiaa bogacaqG0bGaae4zamaaBaaabaaabeaacaGGOaGaamiCamaaBaaaju aibaGaaGOmaiaaicdaaKqbagqaaiaac+cacaWGWbWaaSbaaKqbGeaa caaIZaGaaGimaaqcfayabaGaaiykaaaa@4842@ .

Notice, optimal values p0, α, and β corresponding to solution of last system of five transcendent equations and which correspond to free motion from position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGPbGaaeOBaaqabaaaaa@3A25@ into position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaajuaGbeaaaaa@39BF@ can be determined with using the device.29 For a non-symmetric spacecraft (when J1=J2=J3), the system (2), (9),(12) can be solved by numerical methods only (e.g., using the method of successive approximations or iterations methods with consecutive approach to true solution). To find the vector p0, it is necessary the solving the boundary problem Λ(0)= Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaaicdacaGGPaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqG PbGaaeOBaaqcfayabaaaaa@3F41@ , Λ(T)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaadsfacaGGPaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqG Mbaabeaaaaa@3DDE@ , taking into account the equations (1), (2) imposed upon the motion, in which Mi=0. As a result, the value of the angular velocity vector at the initial time moment ω cal MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYdm aaBaaajuaibaGaae4yaiaabggacaqGSbaajuaGbeaaaaa@3B6F@ , for which the spacecraft is moved with its free rotation with respect to the center of mass (M=0) from the state Λ(0)= Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaaicdacaGGPaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqG PbGaaeOBaaqcfayabaaaaa@3F41@ , ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ (0)= ω cal MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYdm aaBaaajuaibaGaae4yaiaabggacaqGSbaajuaGbeaaaaa@3B6F@ to the state Λ(T)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaadsfacaGGPaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqG Mbaabeaaaaa@3DDE@ , will be found ( ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ (T) is arbitrary here). In particular, the method of solving the boundary problem and determining the vector p0 was described in detail in article.11 The value of vector p0 relates to ω cal MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYdm aaBaaajuaibaGaae4yaiaabggacaqGSbaajuaGbeaaaaa@3B6F@ as

р i0 = J i ω ical ( J 1 ω 1cal ) 2 + ( J 2 ω 2cal ) 2 + ( J 3 ω 3cal ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiqem aaBaaajuaibaGaamyAaiaaysW7caaIWaaabeaajuaGcqGH9aqpdaWc aaqaaiaadQeadaWgaaqcfasaaiaadMgaaeqaaKqbakabeM8a3naaBa aajuaibaGaamyAaiaaysW7caqGJbGaaeyyaiaabYgaaeqaaaqcfaya amaakaaabaWaaeWaaeaacaWGkbWaaSbaaKqbGeaacaaIXaaajuaGbe aacqaHjpWDdaWgaaqaaKqbGiaaigdacaqGJbGaaeyyaiaabYgaaKqb agqaaaGaayjkaiaawMcaamaaCaaajuaibeqaaiaaikdaaaqcfaOaey 4kaSYaaeWaaeaacaWGkbWaaSbaaKqbGeaacaaIYaaajuaGbeaacqaH jpWDdaWgaaqcfasaaiaaikdacaqGJbGaaeyyaiaabYgaaeqaaaqcfa OaayjkaiaawMcaamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaSYa aeWaaeaacaWGkbWaaSbaaKqbGeaacaaIZaaajuaGbeaacqaHjpWDda WgaaqcfasaaiaaiodacaqGJbGaaeyyaiaabYgaaKqbagqaaaGaayjk aiaawMcaamaaCaaabeqcfasaaiaaikdaaaaajuaGbeaaaaaaaa@6BBF@

The known algorithms presented in patent23 and system24 can be used for finding calculated values ω cal MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYdm aaBaaajuaibaGaae4yaiaabggacaqGSbaajuaGbeaaaaa@3B6F@ and p0 also. These algorithms11,23,24 are reliable and provide asymptotic approaching for sought value p0. Other calculation schemes30-32 can be useful only in some specific cases.

Designing the optimal program of spacecraft reorientation under restrictions on the controlling moment

In many practical tasks, reorientation is made in situation when initial state satisfies condition ω(0)=0 and final angular velocity must be absent ω (T)=0 (these cases occur very frequently, especially if attitude control is done relative to inertial coordinate system). It is obvi ous, in instants of time t=0 and t=T, angular velocity calculated according to the formula (12), corresponding to nominal program of optimal rotation maneuver, is not equal to zero. Therefore, segments of acceleration and braking at the beginning and the ending of slew maneuver are inevitable. For the optimal motion, spacecraft reorientation from one angular position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGPbGaaeOBaaqabaaaaa@3A25@ to another position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaajuaGbeaaaaa@39BF@ is done by impulsive imparting the necessary angular velocity (the nominal value of the angular momentum vector) to the spacecraft, rotation of the spacecraft with constant kinetic energy and modulus of angular momentum, and short-term (impulse) reduction of the rotation energy to zero. Very important characteristic for reorientation maneuver is integral

S= 0 Т | L(t) |dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai abg2da9maapehabaWaaqWaaeaacaWHmbGaaiikaiaadshacaGGPaaa caGLhWUaayjcSdGaamizaiaadshaaKqbGeaacaaIWaaabaGaamOiea qcfaOaey4kIipaaaa@44FF@ (15)

The value of characteristic S is determined only by the rotation conditions Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGPbGaaeOBaaqabaaaaa@3A25@ , Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaG0ajuaGcq qHBoatdaWgaaqcfasaaiaabAgaaKqbagqaaaaa@3A0D@ , and the spacecraft’s principal central moments of inertia J1, J2, J3. If time of reaching the calculated angular velocity which is equal

ω i nom = 2 E k J i C p i0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbGaaeiiaiaab6gacaqGVbGaaeyBaaqcfaya baGaeyypa0ZaaSaaaeaadaGcaaqaaiaaikdacaWGfbWaaSbaaKqbGe aacaWGRbaajuaGbeaaaeqaaaqaaiaadQeadaWgaaqcfasaaiaadMga aKqbagqaaiaadoeaaaGaamiCamaaBaaajuaibaGaamyAaiaaicdaae qaaaaa@4859@

and duration of suppressing the angular velocity to zero are infinitesimal, then modulus of angular momentum during uncontrolled motion (between acceleration and braking) is |L|=S/T, where integral (15) is calculated as

S= t pr J 1 2 ω 1cal 2 + J 2 2 ω 2cal 2 + J 3 2 ω 3cal 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai abg2da9iaadshadaWgaaqcfasaaiaabchacaqGYbaajuaGbeaadaGc aaqaaiaadQeadaqhaaqcfasaaiaaigdaaeaacaaIYaaaaKqbakabeM 8a3naaDaaajuaibaGaaGymaiaabogacaqGHbGaaeiBaaqaaiaabkda aaqcfaOaey4kaSIaamOsamaaDaaajuaibaGaaGOmaaqaaiaaikdaaa qcfaOaeqyYdC3aa0baaKqbGeaacaaIYaGaae4yaiaabggacaqGSbaa baGaaeOmaaaajuaGcqGHRaWkcaWGkbWaa0baaKqbGeaacaaIZaaaba GaaGOmaaaajuaGcqaHjpWDdaqhaaqcfasaaiaaiodacaqGJbGaaeyy aiaabYgaaeaacaqGYaaaaaqcfayabaaaaa@5BE2@

Where tpr is the predicted time of achieving the condition Λ( t pr )= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaadshadaWgaaqcfasaaiaabchacaqGYbaabeaajuaGcaGG PaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqGMbaabeaaaaa@40C3@ during free rotation from the position Λ(0)= Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaaicdacaGGPaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqG PbGaaeOBaaqabaaaaa@3EB3@ with initial angular velocity ω(0)= ω cal MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYdm aaBaaajuaibaGaae4yaiaabggacaqGSbaajuaGbeaaaaa@3B6F@ (according to the equations (2), (1) in which all values Mi=0). Note, the value S and vector p0, which satisfy optimal motion, are computed together. Denote

C= p 10 2 / J 1 + p 20 2 / J 2 + p 30 2 / J 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4qai abg2da9maakaaabaWaaSGbaeaacaWGWbWaa0baaKqbGeaacaaIXaGa aGimaaqaaiaaikdaaaaajuaGbaGaamOsamaaBaaajuaibaGaaGymaa qabaaaaKqbakabgUcaRmaalyaabaGaamiCamaaDaaajuaibaGaaGOm aiaaicdaaeaacaaIYaaaaaqcfayaaiaadQeadaWgaaqcfasaaiaaik daaeqaaaaajuaGcqGHRaWkdaWcgaqaaiaadchadaqhaaqcfasaaiaa iodacaaIWaaabaGaaGOmaaaaaKqbagaacaWGkbWaaSbaaKqbGeaaca aIZaaabeaaaaaajuaGbeaaaaa@4DAF@

For a spherically symmetric spacecraft and for a dynamically symmetric spacecraft, key characteristics and constants of control law are determined straightforwardly, without integration of motion equations (1), (2). For a spherically symmetric spacecraft, the integral S is calculated as

S=2 J 1 arccos ν 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai abg2da9iaaikdacaWGkbWaaSbaaKqbGeaacaaIXaaabeaajuaGciGG HbGaaiOCaiaacogacaGGJbGaai4BaiaacohacqaH9oGBdaWgaaqcfa saaiaabcdaaKqbagqaaaaa@4462@

Accordingly, optimal modulus of angular momentum during uncontrolled rotation is

L opt =2 J 1 arccos ν 0 /T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitam aaBaaajuaibaGaae4BaiaabchacaqG0baajuaGbeaacqGH9aqpcaaI YaGaamOsamaaBaaajuaibaGaaGymaaqabaqcfaOaciyyaiaackhaca GGJbGaai4yaiaac+gacaGGZbGaeqyVd42aaSbaaKqbGeaacaqGWaaa beaajuaGcaGGVaGaamivaaaa@49A0@

and kinetic energy is

E k =2 J 1 arccos 2 ν 0 / T 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaam4AaaqabaqcfaOaeyypa0JaaGOmaiaadQeadaWg aaqcfasaaiaaigdaaeqaaKqbakGacggacaGGYbGaai4yaiaacogaca GGVbGaai4CamaaCaaajuaibeqaaiaaikdaaaqcfaOaeqyVd42aaSba aKqbGeaacaqGWaaabeaajuaGcaGGVaGaamivamaaCaaabeqcfasaai aaikdaaaaaaa@4A53@

For an axially symmetric spacecraft (when J2=J3), the integral S is equal

S= J 2 β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4uai abg2da9iaadQeadaWgaaqcfauaaiaaikdaaeqaaKqbakabek7aIbaa @3C8B@

Optimal modulus of angular momentum during uncontrolled rotation is

L opt = J 2 β/T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitam aaBaaajuaibaGaae4BaiaabchacaqG0baabeaajuaGcqGH9aqpcaWG kbWaaSbaaKqbGeaacaaIYaaabeaajuaGcqaHYoGycaGGVaGaamivaa aa@41A9@

and kinetic energy is

E k = J 2 2 β 2 ( cos 2 ϑ/ J 1 + sin 2 ϑ/ J 2 )/(2 T 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaam4AaaqcfayabaGaeyypa0JaamOsamaaDaaajuai baGaaGOmaaqaaiaaikdaaaqcfaOaeqOSdi2aaWbaaKqbGeqabaGaaG OmaaaajuaGcaGGOaGaci4yaiaac+gacaGGZbWaaWbaaKqbGeqabaGa aGOmaaaajuaGcqaHrpGscaGGVaGaamOsamaaBaaajuaibaGaaGymaa qcfayabaGaey4kaSIaci4CaiaacMgacaGGUbWaaWbaaeqajuaibaGa aGOmaaaajuaGcqaHrpGscaGGVaGaamOsamaaBaaajuaibaGaaGOmaa qabaqcfaOaaiykaiaac+cacaGGOaGaaGOmaiaadsfadaahaaqabKqb GeaacaaIYaaaaKqbakaacMcaaaa@5A5B@

If the moment M is limited, some non-zero time is required for imparting the required angular momentum to the spacecraft and for suppressing the existing angular momentum to zero. A restriction on the magnitude of feasible controlling moment leads to the appearance of restricted intervals when spacecraft increases and decreases its angular velocity. These intervals lead to an increase in the angular momentum necessary on the stage of free rotation in order to comply with the given time T. The kinetic energy Ek increases (according to the constant proportion Ek/|L|2). The integral (5) increases also (as compared to the impulse, step-like control). Therefore, minimization of times of acceleration and deceleration is necessary. On the acceleration stage, the control problem is to transfer the spacecraft from the state ω(0)=0 to the state ω= ω cal MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYdm aaBaaajuaibaGaae4yaiaabggacaqGSbaajuaGbeaaaaa@3B6F@ in minimal time. On the deceleration stage, the control problem is to transfer the spacecraft from the state ω≠0 to the state ω(T)=0 in minimal time (in order that instant of beginning of braking is maximal not far from given time T).

In many cases of attitude control, the field of available moment M is described by the inequality

M 1 2 / J 1 + M 2 2 / J 2 + M 3 2 / J 3 u 0 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacaWGnbWaa0baaKqbGeaacaaIXaaabaGaaGOmaaaaaKqbagaacaWG kbWaaSbaaKqbGeaacaaIXaaabeaaaaqcfaOaey4kaSYaaSGbaeaaca WGnbWaa0baaKqbGeaacaaIYaaabaGaaGOmaaaaaKqbagaacaWGkbWa aSbaaKqbGeaacaaIYaaabeaaaaqcfaOaey4kaSYaaSGbaeaacaWGnb Waa0baaKqbGeaacaaIZaaabaGaaGOmaaaaaKqbagaacaWGkbWaaSba aKqbGeaacaaIZaaajuaGbeaaaaGaeyizImQaamyDamaaDaaajuaiba GaaGimaaqaaiaaikdaaaaaaa@4DAF@ (16)

where u0>0 is some positive value specifying power of actuators of spacecraft attitude system.

In future, for finding the optimal rotation from position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGPbGaaeOBaaqabaaaaa@3A25@ into position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaabeaaaaa@3931@ , let us assume that the moment M satisfy the condition (16). Laws of optimal control for fastest acceleration and braking are known when restriction on the controlling moment M has the form (16).21 For spin-up at minimal time, optimal moment M is calculated by the formula

M i = u 0 J i ω i / J 1 ω 1 2 + J 2 ω 2 2 + J 3 ω 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytam aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0ZaaSGbaeaacaWG1bWa aSbaaKqbGeaacaaIWaaajuaGbeaacaWGkbWaaSbaaKqbGeaacaWGPb aabeaajuaGcqaHjpWDdaWgaaqcfasaaiaadMgaaeqaaaqcfayaamaa kaaabaGaamOsamaaBaaajuaibaGaaGymaaqabaqcfaOaeqyYdC3aa0 baaKqbGeaacaaIXaaabaGaaGOmaaaajuaGcqGHRaWkcaWGkbWaaSba aKqbGeaacaaIYaaabeaajuaGcqaHjpWDdaqhaaqcfasaaiaaikdaae aacaaIYaaaaKqbakabgUcaRiaadQeadaWgaaqcfasaaiaaiodaaKqb agqaaiabeM8a3naaDaaajuaibaGaaG4maaqaaiaaikdaaaaajuaGbe aaaaaaaa@5875@ (17)

Optimal moment M and angular momentum L are parallel during acceleration at minimal time. Differentiation of left and right parts of equalities (17) gives the following differential equations (angular accelerations are taken from dynamic equations (1)):

M ˙ 1 = ω 3 M 2 ω 2 M 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmytay aacaWaaSbaaKqbGeaacaaIXaaabeaajuaGcqGH9aqpcqaHjpWDdaWg aaqcfasaaiaaiodaaKqbagqaaiaad2eadaWgaaqcfasaaiaaikdaae qaaKqbakabgkHiTiabeM8a3naaBaaajuaibaGaaGOmaaqabaqcfaOa amytamaaBaaajuaibaGaaG4maaqabaaaaa@4600@ , M ˙ 2 = ω 1 M 3 ω 3 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmytay aacaWaaSbaaKqbGeaacaaIYaaabeaajuaGcqGH9aqpcqaHjpWDdaWg aaqcfasaaiaaigdaaeqaaKqbakaad2eadaWgaaqcfasaaiaaiodaaK qbagqaaiabgkHiTiabeM8a3naaBaaajuaibaGaaG4maaqcfayabaGa amytamaaBaaajuaibaGaaGymaaqabaaaaa@45FF@ , M ˙ 3 = ω 2 M 1 ω 1 M 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabmytay aacaWaaSbaaKqbGeaacaaIZaaabeaajuaGcqGH9aqpcqaHjpWDdaWg aaqcfasaaiaaikdaaKqbagqaaiaad2eadaWgaaqcfasaaiaaigdaae qaaKqbakabgkHiTiabeM8a3naaBaaajuaibaGaaGymaaqabaqcfaOa amytamaaBaaajuaibaGaaGOmaaqabaaaaa@45FE@ (18)

Rewrite last equations in vector form

М ˙ =ω×M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOabCihey aacaGaeyypa0JaeyOeI0IaaCyYdiabgEna0kaah2eaaaa@3D6B@

The obtained differential equation, for the controlling moment M, means its immobility relative to inertial coordinate system. As consequence, |M|=const during acceleration stage. For fastest braking, optimal moment M is

M i = u 0 J i ω i / J 1 ω 1 2 + J 2 ω 2 2 + J 3 ω 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytam aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0ZaaSGbaeaacqGHsisl caWG1bWaaSbaaKqbGeaacaaIWaaajuaGbeaacaWGkbWaaSbaaKqbGe aacaWGPbaabeaajuaGcqaHjpWDdaWgaaqcfasaaiaadMgaaeqaaaqc fayaamaakaaabaGaamOsamaaBaaajuaibaGaaGymaaqabaqcfaOaeq yYdC3aa0baaKqbGeaacaaIXaaabaGaaGOmaaaajuaGcqGHRaWkcaWG kbWaaSbaaKqbGeaacaaIYaaajuaGbeaacqaHjpWDdaqhaaqcfasaai aaikdaaeaacaaIYaaaaKqbakabgUcaRiaadQeadaWgaaqcfasaaiaa iodaaKqbagqaaiabeM8a3naaDaaajuaibaGaaG4maaqaaiaaikdaaa aajuaGbeaaaaaaaa@5962@ (19)

After differentiation of equalities (19) we obtain differential equations (18) from which the property |M|=const appears for the entire braking stage. Thus, equality |M|=const is satisfied for optimal rotation during acceleration and braking phases. It is very important property of optimal motion and optimal control. Both at imparting the calculated angular momentum, and at damping of rotation, the moment M has constant magnitude (direction of vector M is not changed relative to inertial basis I); i.e. within acceleration and braking segments, optimal moment M is the fixed vector relative to inertial coordinate system.

For zero boundary conditions ω(0)=ω(Т )=0, slew maneuver includes two phases during which magnitude of the moment М is maximal possible: acceleration and braking, and phase of uncontrolled motion at which equations (13) are satisfied. A detailed analysis of the main reorientation stages: speedup, braking, and uncontrolled spacecraft rotation with constant kinetic energy and angular momentum (relative to inertial coordinate system), shows that all three stages have a common property, namely that spacecraft rotates along the “trajectory of free motion”. It is characteristic for the “trajectory of free motion” that the spacecraft’s angular momentum remains constant in inertial coordinate system. Taking into account that during the entire reorientation (on the entire time interval [0, T]) the torque M is parallel to the angular momentum vector L (i.e., either points in the same direction as L, or in the opposite direction, or equals zero), can conclude that M×L=0, and, therefore, there are no reasons for a rotation of the angular momentum L in inertial coordinate system.

For spacecraft reorientation with limited control, key property of optimal motion remains valid, the proportion Ek/|L|2 between the kinetic energy Ek and angular momentum L is constant on the entire interval of time 0≤t≤T, independently of duration of acceleration and braking (independently of presence or absence of acceleration and braking stages). Angular momentum L and rotation energy Ek are continuous functions of time. Therefore, the proportion ρ=Ek/|L|2 is continuous function. For acceleration (or braking), the equalities (17) (or (19)) and |M|=const are satisfied. Therefore, the proportion is constant within acceleration and braking. Between acceleration and braking, the equations (13) are satisfied; as result, ρ=const during free rotation. Hence, the proportion ρ=Ek/|L|2=const within time interval [0, T] because of a continuity of function ρ. As consequence, modulus of moment M is identical for acceleration and braking, and it is equal to same magnitude

m 0 = u 0 / 2ρ = u 0 /C MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaSGbae aacaWGTbWaaSbaaKqbGeaacaaIWaaajuaGbeaacqGH9aqpcaWG1bWa aSbaaKqbGeaacaaIWaaabeaaaKqbagaadaGcaaqaaiaaikdacqaHbp GCaeqaaaaacqGH9aqpqaaaaaaaaaWdbiaadwhapaWaaSbaaKqbGeaa peGaaGimaaWdaeqaaKqba+qacaGGVaGaam4qaaaa@44B6@

since

|M|= u 0 |L|/ 2 E k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiiFai aah2eacaGG8bGaeyypa0ZaaSGbaeaacaWG1bWaaSbaaKqbGeaacaaI WaaajuaGbeaacaGG8bGaaCitaiaacYhaaeaadaGcaaqaaiaaikdaca WGfbWaaSbaaKqbGeaacaWGRbaajuaGbeaaaeqaaaaaaaa@433F@

Angular momentum L does not change the direction relative to inertial coordinate system during acceleration, braking and at rotation between acceleration and braking (when spacecraft rotates by inertia), so, a direction of angular momentum in inertial coordinate system invariably on the entire interval of time [0, T]. Hence, in the presence of restriction (16), the equations (9) and (10) are satisfied at the entire interval of rotation from t=0 to t=Т. At acceleration and braking |М|=const=m0, where m0>0 is maximal admissible magnitude of the moment М in direction of angular momentum L. Since on entire interval of control Ji ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbaabeaaaaa@398E@ //|L|=pi , the value m0 is identical during both phases of acceleration and braking, and it is equal u0 /C, where C is the earlier introduced constant which is unambiguously specified by the vector p0 and moments of inertia J1, J, J3. The condition |M|≤m0 is satisfied within the entire interval of control, where m0=u0/C. Optimal moment M is parallel to motionless line relative to inertial coordinate system. Direction of this motionless line is determined by direction of the vector p (since the directions of angular momentum L and the vector p coincide). Hence, M=m(t)p. The scalar function m(t) is specified as m(t)=(M1L1+M2L2+M3L3)/|L| or m(t)=M1p1+M2p2+M3p3. Control function m(t) is three-positional relay. The function m(t) can be written as: m(t)=m0 if |L|<Lopt and t<T/2; m(t)=-m0 if tTτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamiDai abgwMiZkaadsfacqGHsislcqaHepaDaaa@3CCE@ m(t)=0 if τt<Tτ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq NaeyizImQaamiDaiabgYda8iaadsfacqGHsislcqaHepaDaaa@3F86@ . Here, Lopt is the modulus of angular momentum during free rotation; is duration of acceleration (braking) L opt = m 0 τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitam aaBaaajuaibaGaae4BaiaabchacaqG0baajuaGbeaacqGH9aqpcaWG TbWaaSbaaKqbGeaacaaIWaaajuaGbeaacqaHepaDaaa@4062@ . Note the spacecraft’s angular momentum satisfies the inequality |LLopt for any time t.

For optimal control, spacecraft acceleration continues until its angular momentum equals the target level

L tag = L opt Λ ˜ Λ in p(0) Λ ˜ in Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCitam aaBaaajuaibaGaaeiDaiaabggacaqGNbaajuaGbeaacqGH9aqpcaWG mbWaaSbaaKqbGeaacaqGVbGaaeiCaiaabshaaeqaaKqbakablIHiVj qbfU5amzaaiaGaeSigI8Maeu4MdW0aaSbaaKqbGeaacaqGPbGaaeOB aaqabaqcfaOaeSigI8MaaCiCaiaacIcacaaIWaGaaiykaiablIHiVj qbfU5amzaaiaWaaSbaaKqbGeaacaqGPbGaaeOBaaqabaqcfaOaeSig I8Maeu4MdWeaaa@551F@

The beginning of braking will be determined from the fact that as angular velocity ω reduces to zero, the angular momentum value |L (t)| changes linearly. During braking, the modulus of the controlling moment is constant, and the time moment from which braking will be started is specified by the following condition:

4arcsin K δ 2 2 + δ 3 2 ( J 2 ω 2 ) 2 + ( J 3 ω 3 ) 2 = K 2 ω 2 2 + ω 3 2 m 0 ( J 2 ω 2 ) 2 + ( J 3 ω 3 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaGinai aabggacaqGYbGaae4yaiaabohacaqGPbGaaeOBamaalaaabaGaam4s amaakaaabaGaeqiTdq2aa0baaKqbGeaacaaIYaaabaGaaGOmaaaaju aGcqGHRaWkcqaH0oazdaqhaaqcfasaaiaaiodaaeaacaaIYaaaaaqc fayabaaabaWaaOaaaeaacaGGOaGaamOsamaaBaaajuaibaGaaGOmaa qabaqcfaOaeqyYdC3aaSbaaKqbGeaacaaIYaaabeaajuaGcaGGPaWa aWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkcaGGOaGaamOsamaaBa aajuaibaGaaG4maaqabaqcfaOaeqyYdC3aaSbaaKqbGeaacaaIZaaa juaGbeaacaGGPaWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagqaaaaacq GH9aqpdaWcaaqaaiaadUeadaahaaqabKqbGeaacaaIYaaaaKqbaoaa kaaabaGaeqyYdC3aa0baaKqbGeaacaaIYaaabaGaaGOmaaaajuaGcq GHRaWkcqaHjpWDdaqhaaqcfasaaiaaiodaaeaacaaIYaaaaaqcfaya baaabaGaamyBamaaBaaajuaibaGaaGimaaqabaqcfa4aaOaaaeaaca GGOaGaamOsamaaBaaajuaibaGaaGOmaaqabaqcfaOaeqyYdC3aaSba aKqbGeaacaaIYaaajuaGbeaacaGGPaWaaWbaaeqajuaibaGaaGOmaa aajuaGcqGHRaWkcaGGOaGaamOsamaaBaaajuaibaGaaG4maaqabaqc faOaeqyYdC3aaSbaaKqbGeaacaaIZaaajuaGbeaacaGGPaWaaWbaae qajuaibaGaaGOmaaaaaKqbagqaaaaaaaa@7ACB@

Where m0 is the maximal controlling moment magnitude that can be provided by the actuators of spacecraft’s attitude control system; δ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiTdq 2aaSbaaKqbGeaacaWGQbaabeaaaaa@3967@ are the components of the discrepancy quaternion Λ ˜ (t) Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOafu4MdW KbaGaacaGGOaGaamiDaiaacMcacqWIyiYBcqqHBoatdaWgaaqcfasa aiaabAgaaeqaaaaa@3E41@ ; К =|L(t)| is the current magnitude of the spacecraft’s angular momentum. The said condition for finding the start moment of braking phase allows the onboard control system to form the angular velocity reduction signal based on the information on current spacecraft orientation and measurements of its angular velocity. Use of this condition increases the precision of transferring the spacecraft into final position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaabeaaaaa@3931@ .

The case when the region of feasible controlling moments is given by inequality (16) was considered. The problem of optimal control of spacecraft orientation, when restriction has the form |M|≤m0, is solved analogously. If control is limited by condition |M|m0, then, in order to gain (suppress) the angular momentum L as fast as possible, it is necessary (and sufficient) that the moment M is parallel to the angular momentum L; speed of change of the angular momentum modulus (as a measure of motion intensity) does not depend on angular velocity. ω Optimal value of the moments Mi is

M i =± m 0 J i ω i /|L| MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamytam aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0JaeyySaeRaamyBamaa BaaajuaibaGaaGimaaqcfayabaGaamOsamaaBaaajuaibaGaamyAaa qcfayabaGaeqyYdC3aaSbaaKqbGeaacaWGPbaabeaajuaGcaGGVaGa aiiFaiaahYeacaGG8baaaa@4858@

(sign + corresponds to an acceleration, sign - corresponds to a braking).

Optimal moment M is collinear to the vector p which is unit vector of angular momentum L. Dependence of the controlling moment M on the vector p and all relations obtained for control function m(t) are true for optimal rotation under restriction |M|m0. The system of equations (9), (10) is satisfied also.

Thus, we have arrived to the following conclusion: spacecraft reorientation with a minimal energy integral is performed along the “trajectory of free motion”, on which the direction of the spacecraft’s angular moment remains constant in inertial coordinate system on the entire time interval from t=0 to t=T. For cases when τ<<T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq NaeyipaWJaeyipaWJaamivaaaa@3B2A@ the construction “acceleration of rotation, uncontrolled rotation, damping of rotation” is optimum for optimal control problem (2)-(5) if ω(0)=ω(T)=0 in slew maneuver. The assumed criterion of optimality provides spacecraft motion with minimal kinetic energy of rotation during reorientation maneuver. If at time moments t=0 and t=T the angular velocity ω changes abruptly, steplike, then the energy integral G and the reorientation time T would be inversely proportional to each other, and the level of kinetic energy Ek of the spacecraft rotation would relate to the reorientation time T as T2Ek=const=C2S2.

Let us estimate the relative growth in functional G due to the nonzero time it takes to gain and suppress the angular momentum. As is know, value of the integral (15) does not depend on the character of variation of the angular momentum modulus if angular motion satisfies the system of equations (9), (10).22 For spacecraft motion along the “trajectory of free motion”, it holds that

(T(Δ t ac +Δ t br )/2) L opt =S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaiikai aadsfacqGHsislcaGGOaGaeuiLdqKaamiDamaaBaaajuaibaGaaeyy aiaabogaaeqaaKqbakabgUcaRiabfs5aejaadshadaWgaaqcfasaai aabkgacaqGYbaajuaGbeaacaGGPaGaai4laiaaikdacaGGPaGaamit amaaBaaajuaibaGaae4BaiaabchacaqG0baabeaajuaGcqGH9aqpca WGtbaaaa@4DD1@

because the modulus of angular momentum changes according to the linear law during optimal acceleration and braking, where Lopt is the magnitude of angular momentum between acceleration and braking (i.e. when condition |L|=const is satisfied); Δ t ac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq KaamiDamaaBaaajuaibaGaaeyyaiaabogaaKqbagqaaaaa@3B8A@ and Δ t br MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq KaamiDamaaBaaajuaibaGaaeOyaiaabkhaaKqbagqaaaaa@3B9A@ are the durations of gaining and suppressing the angular momentum, respectively. Therefore,

L opt =S/(T(Δ t ac +Δ t br )/2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamitam aaBaaajuaibaGaam4BaiaadchacaWG0baajuaGbeaacqGH9aqpcaWG tbGaai4laiaacIcacaGGubGaeyOeI0Iaaiikaiabfs5aejaacshada WgaaqcfasaaiaadggacaWGJbaabeaajuaGcqGHRaWkcqqHuoarcaGG 0bWaaSbaaKqbGeaacaWGIbGaamOCaaqabaqcfaOaaiykaiaac+caca aIYaGaaiykaaaa@4E8F@ , and E k = C 2 S 2 /(2 (T(Δ t ac +Δ t br )/2) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaamyram aaBaaajuaibaGaam4AaaqabaqcfaOaeyypa0Jaam4qamaaCaaabeqc fasaaiaaikdaaaqcfaOaam4uamaaCaaajuaibeqaaiaaikdaaaqcfa Oaai4laiaacIcacaaIYaGaaiikaiaadsfacqGHsislcaGGOaGaeuiL dqKaamiDamaaBaaajuaibaGaaeyyaiaabogaaKqbagqaaiabgUcaRi abfs5aejaadshadaWgaaqcfasaaiaabkgacaqGYbaabeaajuaGcaGG PaGaai4laiaaikdacaGGPaWaaWbaaKqbGeqabaGaaGOmaaaajuaGca GGPaaaaa@543C@

The value of functional (5) equals

G= G opt T(T2(Δ t ac +Δ t br )/3) (T(Δ t ac +Δ t br )/2) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaam4rai abg2da9iaadEeadaWgaaqcfasaaiaab+gacaqGWbGaaeiDaaqabaqc faOaamivaiaacIcacaWGubGaeyOeI0IaaGOmaiaacIcacqqHuoarca WG0bWaaSbaaKqbGeaacaqGHbGaae4yaaqabaqcfaOaey4kaSIaeuiL dqKaamiDamaaBaaajuaibaGaaeOyaiaabkhaaeqaaKqbakaacMcaca GGVaGaaG4maiaacMcacaGGOaGaamivaiabgkHiTiaacIcacqqHuoar caWG0bWaaSbaaKqbGeaacaqGHbGaae4yaaqabaqcfaOaey4kaSIaeu iLdqKaamiDamaaBaaajuaibaGaaeOyaiaabkhaaeqaaKqbakaacMca caGGVaGaaGOmaiaacMcadaahaaqcfasabeaacqGHsislcaaIYaaaaa aa@6234@

Where Gopt is the value of the energy integral (5) for impulse control (when Δ t ac MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq KaamiDamaaBaaajuaibaGaaeyyaiaabogaaKqbagqaaaaa@3B8A@ , Δ t br 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq KaamiDamaaBaaajuaibaGaaeOyaiaabkhaaKqbagqaaabaaaaaaaaa peGaeyOKH4QaaGimaaaa@3E61@ ). The value Gopt is

Gopt=С2S2/Т

Absolute increase in integral (5) is ΔG=G G opt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq Kaam4raiabg2da9iaadEeacqGHsislcaWGhbWaaSbaaKqbGeaacaqG VbGaaeiCaiaabshaaKqbagqaaaaa@3FFA@ . Obviously, G is minimal when Δ t ac +Δ t br MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq KaamiDamaaBaaajuaibaGaaeyyaiaabogaaKqbagqaaiabgUcaRiab fs5aejaadshadaWgaaqcfasaaiaabkgacaqGYbaajuaGbeaaaaa@4182@ =0; and minimal value of functional G is Gmin=Gopt. If Δ t ac +Δ t br MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq KaamiDamaaBaaajuaibaGaaeyyaiaabogaaeqaaKqbakabgUcaRiab fs5aejaadshadaWgaaqcfasaaiaabkgacaqGYbaabeaaaaa@40F4@ >0, then a relative increase in the value of G will be ΔG/ G opt =T(T2(Δ t ac +Δ t br )/3) (T(Δ t ac +Δ t br )/2) 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq Kaam4raiaac+cacaWGhbWaaSbaaKqbGeaacaqGVbGaaeiCaiaabsha aKqbagqaaiabg2da9iaadsfacaGGOaGaamivaiabgkHiTiaaikdaca GGOaGaeuiLdqKaamiDamaaBaaajuaibaGaaeyyaiaabogaaKqbagqa aiabgUcaRiabfs5aejaadshadaWgaaqcfasaaiaabkgacaqGYbaabe aajuaGcaGGPaGaai4laiaaiodacaGGPaGaaiikaiaadsfacqGHsisl caGGOaGaeuiLdqKaamiDamaaBaaajuaibaGaaeyyaiaabogaaeqaaK qbakabgUcaRiabfs5aejaadshadaWgaaqcfasaaiaabkgacaqGYbaa beaajuaGcaGGPaGaai4laiaaikdacaGGPaWaaWbaaKqbGeqabaGaey OeI0IaaGOmaaaajuaGcqGHsislcaaIXaaaaa@6683@

The time-optimal reaching of the necessary angular momentum is done if the controlling moment and the spacecraft’s angular momentum have the same direction. The fastest reduction of the angular velocity is done if the controlling moment M is directed opposite to the spacecraft’s angular momentum. In our case, at the acceleration and deceleration stages, the magnitude of moment M is constant, time characteristics of the optimal motion program can be determined with sufficient precision. Since magnitude of the moment М is identical during acceleration and braking |M|=m0=u0/C (the constant C is introduced earlier), speedup time and braking time are identical, and nominal value Lopt= m 0 τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBamaaBa aaleaacaaIWaaabeaakiabes8a0baa@399E@ , where τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqhaaa@37BC@ is the time which is necessary to gain (suppressing) the angular momentum

τ= T 2 ( 1 1 4S m 0 Т 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq Naeyypa0ZaaSaaaeaacaWGubaabaGaaGOmaaaadaqadaqaaiaaigda cqGHsisldaGcaaqaaiaaigdacqGHsisldaWcaaqaaiaaisdacaaMe8 Uaam4uaaqaaiaad2gadaWgaaqcfasaaiaaicdaaeqaaKqbakaaysW7 caWGIqWaaWbaaKqbGeqabaGaaGOmaaaaaaaajuaGbeaacaaMe8oaca GLOaGaayzkaaaaaa@4AF8@

The relative “loss” will equal

ΔG/ G opt =T(T4τ/3) (Tτ) 2 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq Kaam4raiaac+cacaWGhbWaaSbaaKqbGeaacaqGVbGaaeiCaiaabsha aKqbagqaaiabg2da9iaadsfacaGGOaGaamivaiabgkHiTiaaisdacq aHepaDcaGGVaGaaG4maiaacMcacaGGOaGaamivaiabgkHiTiabes8a 0jaacMcadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTiaaigdaaa a@4F05@

The less τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq haaa@3849@ , the less the “loss” ΔG/ G opt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq Kaam4raiaac+cacaWGhbWaaSbaaKqbGeaacaqGVbGaaeiCaiaabsha aKqbagqaaaaa@3DEE@ will be. It becomes quite clear if to write

ΔG/ G opt = 2τ 3(Tτ) 1 3 ( τ Tτ ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq Kaam4raiaac+cacaWGhbWaaSbaaKqbGeaacaqGVbGaaeiCaiaabsha aeqaaKqbakabg2da9maalaaabaGaaGOmaiabes8a0bqaaiaaiodaca GGOaGaamivaiabgkHiTiabes8a0jaacMcaaaGaeyOeI0YaaSaaaeaa caaIXaaabaGaaG4maaaadaqadaqaamaalaaabaGaeqiXdqhabaGaam ivaiabgkHiTiabes8a0baaaiaawIcacaGLPaaadaahaaqabKqbGeaa caaIYaaaaaaa@5190@

The time changes from zero to T/2. The function ΔG/ G opt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq Kaam4raiaac+cacaWGhbWaaSbaaKqbGeaacaqGVbGaaeiCaiaabsha aKqbagqaaaaa@3DEE@ increases everywhere in the range 0< τ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqiXdq haaa@3849@ T/2. The minimal value corresponds to the case τ0, and the critical point (maximum) is the hypothetical case τ=T/2 as limit. The excess ΔG/ G opt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeuiLdq Kaam4raiaac+cacaWGhbWaaSbaaKqbGeaacaqGVbGaaeiCaiaabsha aKqbagqaaaaa@3DEE@ will amount to a third of Gopt.

Numerical example and results of mathematical simulation

Let us give a numerical solution of optimal control problem for spacecraft reorientation with minimal value of the integral (5). As an example, let us consider spacecraft reorientation for 180 degree from initial position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGPbGaaeOBaaqabaaaaa@3A25@ that corresponds to the attitude when body axes coincide with the axes of reference basis I into the target position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaabeaaaaa@3931@ . Let us assume that initial and final angular velocities are zero, ω(0)= ω(T)=0. Values of the elements of quaternion Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaabeaaaaa@3931@ that characterizes the target spacecraft attitude are as follows:

λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIWaaabeaaaaa@3941@ =0 , λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIXaaabeaaaaa@3942@ =0.707107 , λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIYaaabeaaaaa@3943@ =0.59  , λ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIZaaabeaaaaa@3944@ =0.39

Let us find the optimal control program for the spacecraft rotation velocity ω(t) for transferring the spacecraft from the state Λ(0)= Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaaicdacaGGPaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqG PbGaaeOBaaqcfayabaaaaa@3F41@ , ω(0)=0 to the state Λ(T)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaadsfacaGGPaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqG Mbaabeaaaaa@3DDE@ , ω(T)=0. The constant u0 which characterizes power of actuators is u0=0.2 N kg–1/2. The spacecraft’s mass-inertial characteristics are as follows:

J1=77543.7 kg m2, J2=228466.1 kg m2, J3=175682.5 kg m2

Let us present a numerical solution of the spacecraft reorientation optimal control problem. Let the reorientation time be equal T=240 s. As a result of solving the kinematic reorientation problem of transitioning the spacecraft from position Λ(0)= Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaaicdacaGGPaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqG PbGaaeOBaaqcfayabaaaaa@3F41@ into position Λ(T)= Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW KaaiikaiaadsfacaGGPaGaeyypa0Jaeu4MdW0aaSbaaKqbGeaacaqG Mbaabeaaaaa@3DDE@ (the optimal reorientation problem in the impulse setting), the calculated value of vector p0={0.485149; 0.126100; 0.865292} and integral S=401564.5 N ms2 will be obtained According to these calculated values, the initial angular velocity equals ω cal MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYdm aaBaaajuaibaGaae4yaiaabggacaqGSbaajuaGbeaaaaa@3B6F@ ={0.599785 ◦/s; 0.052913 ◦/s; 0.472173◦/s}. Iterations method guaranteeing successive approach to true value p011 was used (in most cases, this method provides asymptotic approaching). The maximal value of the controlling moment is m0=91.3 N m. The durations of speedup and braking is the same and equal to =20 s, while the angular momentum magnitude at the stage of rotation by inertia equals Lopt=1825.3 N m s.

Results of the mathematical modeling of the reorientation process under optimal control are given on Figure 1–4. Figure 1 shows the character of changing the angular velocities in the spacecraft-related system of coordinates ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIXaaabeaaaaa@395B@ (t), ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIYaaabeaaaaa@395C@ (t), ω 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIZaaabeaaaaa@395D@ (t) with respect to time. At the stage between spacecraft speedup and braking, the spacecraft rotates with constant energy equal to Ek=12.27 joules. The value of the energy integral, which characterizes the cost-efficiency of the rotation trajectory { Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW eaaa@37F9@ (t), ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaaCyYda aa@37D9@ (t)} after spacecraft’s angular motion from position Λ in MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGPbGaaeOBaaqabaaaaa@3A25@ into position Λ f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW 0aaSbaaKqbGeaacaqGMbaabeaaaaa@3931@ (the value of functional (5)) has been equal to G=5236 J s. Figure 2 shows the graphs of changes in the components of quaternion Λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeu4MdW eaaa@37F9@ (t) that defines current spacecraft orientation in the process of the rotation maneuver: λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIWaaabeaaaaa@3941@ (t), λ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIXaaabeaaaaa@3942@ (t), λ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIYaaabeaaaaa@3943@ (t), λ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaaIZaaabeaaaaa@3944@ (t). Figure 3 shows the dynamics of components p1(t), p2(t), p3(t) of unit vector p in time. It is characteristic that that change of projection p1  is very small in comparison with projections p2 and p3 (the angular velocity component ω 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIXaaajuaGbeaaaaa@39E9@ also changes a lot less on the nominal rotation interval than angular velocity components ω 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIYaaajuaGbeaaaaa@39EA@ and ω 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaaIZaaabeaaaaa@395D@ ). This confirms the fact that the OX axis is longitudinal axis. Unlike variables ω i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeqyYdC 3aaSbaaKqbGeaacaWGPbaabeaaaaa@398E@ , variables pi and λ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfaOaeq4UdW 2aaSbaaKqbGeaacaWGQbaajuaGbeaaaaa@3A04@ are smooth functions of time. Finally, Figure 4 shows the behavior of scalar function m(t). As it is well visible, change of function m(t) has relay character.

Figure 1 Changing the angular velocities during optimal reorientation maneuver.

Figure 2 Changing the components of orientation quaternion Λ(t)during optimal reorientation.

Figure 3 Changing the components of unit vector p in time under optimal control.

Figure 4 Changing the scalar function m(t) for optimal control.

Results and discussion

Control algorithm of angular motion is very significant element of control system of spacecraft attitude, booster units and orbital stations. Designing optimal algorithm of controlling a spacecraft motion increases efficiency of onboard control system of a spacecraft and originates more economical performance of spacecraft during flight on orbit. In this paper, the optimal control problem for spacecraft’s spatial reorientation in given time is considered and solved. The optimization has been performed for case when rotation energy integral should be minimized. Finding the optimal mode of spacecraft reorientation with a minimal value of energy “expenditure” is quite topical. An analytic solution of the proposed problem is presented. Formal equations and computational expressions for constructing optimal reorientation program were obtained.

To solve the formulated problem, the optimality conditions in the form of the maximum principle are applied, and use of quaternions significantly simplifies computational procedures and reduces the computational costs of the control algorithm, which makes it suitable for onboard implementation. Mathematical expressions, which provide for obtaining final equations and relations describing the variation of control functions and behavior of a spacecraft during optimal slew maneuver, is based on universal variables which were introduced and investigated earlier.20 First the main characteristic properties of optimal motion and the type of trajectory optimal with respect to the chosen criterion were determined. The kinematic reorientation problem has been solved completely. Necessary optimality conditions and determined the optimal control structure were found; formalized relations to determine the spacecraft’s optimal motion is obtained. After that, the spacecraft reorientation control problem with regard to the constraints on the controlling moment is studied. For a specific form of these constraints, the problem of optimal reorientation was solved.

It was demonstrated that optimal solution is two-impulse control. If controlling torque is limited, analytical formulas were written for duration acceleration and braking. It is shown that along the entire reorientation interval, direction of spacecraft’s angular momentum is constant in the inertial coordinate system, and the spacecraft rotates along the “trajectory of free motion”. A procedure for implementing the control mode is described. It is estimated how the duration of gaining and suppression of angular momentum influences energy costs. Expressions for computing temporal characteristics of the reorientation maneuver and the condition for finding the deceleration start moment based on factual kinematic motion parameters judging by terminal control principles are presented, which leads to high orientation precision. Example and results of mathematical modeling for spacecraft motion under optimal control are given.

Thus, key results are the following: the carried out research has reached an overall objective since optimal control program of spacecraft reorientation with minimal rotation energy within given time interval was found; it was demonstrated that two-impulse control when spacecraft rotates by inertia between acceleration and braking is optimum; for optimal solution, estimations of the relative growth in the functional of quality due to the limited controlling moment were done. Other characteristic properties of the obtained optimal motion are determined also. All conclusions are absolutely true since well-known mathematical methods were used, and all mathematical formulas are based on the checked theories. For a dynamic symmetric spacecraft, a complete solution of the reorientation problem in closed form is presented; optimal values of control law parameters can be found by the device.29 The obtained results demonstrate that the designed control method of spacecraft's three-dimensional reorientation is feasible in practice.

Conclusion

In this research, new control method of spacecraft attitude is obtained; the used criterion of optimality is new and specific. The designed method of spacecraft’s motion control was described in detail. The solved problem is very topical. Significance and importance of the executed investigations consist in the fact that chosen criterion of optimality minimizes kinetic energy of rotation within the given interval of time. The obtained method is differs from all other known decisions. Main difference consists in new form of minimized functional which allows to turn spacecraft with minimal rotation energy if maneuver time is given. This useful quality is advantage of presented control mode because it significantly saves the controlling resources and increases the possibilities of spacecraft control.

Acknowledgements

No financial exists.

Conflicts of interest

No conflicts of interest exist.

References

  1. Branets VN, Shmyglevskii IP. Use of quaternions in the problems of orientation of solid bodies. 1973.
  2. Alekseev KB, Malyavin AA, Shadyan AV. Extensive control of spacecraft orientation based on fuzzy logic. Flight 1. 2009;47–53.
  3. Raushenbakh BV, Tokar’ EN. Spacecraft orientation control.1974;600.
  4. Ermoshina OV, Krishchenko AP. Synthesis of programmed controls of spacecraft orientation by the method of inverse problem of dynamics. Journal of Computer and Systems Sciences International. 2000;39(2):313–320.
  5. Velishchanskii MA, Krishchenko AP, Tkachev SB. Synthesis of spacecraft reorientation algorithms using the concept of the inverse dynamic problem. Journal of Computer and System Sciences International. 2003;42(5):811–818.
  6. Li F, Bainum PM. Numerical approach for solving rigid spacecraft minimum time attitude maneuvers. Journal of Guidance, Control, and Dynamics. 1990;13(1):38–45.
  7. Scrivener S, Thompson R. Survey of time-optimal attitude maneuvers. Journal of Guidance, Control, and Dynamics. 1994; 17(2):225–233.
  8. Liu S, Singh T. Fuel/time optimal control of spacecraft maneuvers. Journal of Guidance. 1996;20(2):394–397.
  9. Byers R, Vadali S. Quasi-closed-form solution to the time-optimal rigid spacecraft reorientation problem. Journal of Guidance, Control, and Dynamics. 1993;16(3):453–461.
  10. Junkins JL, Turner JD. Optimal spacecraft rotational maneuvers. Elsevier. 1986;534.
  11. Levskii MV. Pontryagin’s maximum principle in optimal control problems of orientation of a spacecraft. Journal of Computer and System Sciences International. 2008;47(6):974–986.
  12. Shen H, Tsiotras P. Time-optimal control of axi-symmetric rigid spacecraft with two controls. Journal of Guidance, Control, and Dynamics. 1999;22(5):682–694.
  13. Molodenkov AV, Sapunkov YaG. A solution of the optimal turn problem of an axially symmetric spacecraft with bounded and pulse control under arbitrary boundary conditions. Journal of Computer and System Sciences International. 2007;46(2):310–323.
  14. Molodenkov AV, Sapunkov YaG. Special control regime in the problem of optimal turn of an axially symmetric spacecraft. Journal of Computer and System Sciences International. 2007;49(6):891–899.
  15. Kovtun VS, Mitrikas VV, Platonov VN, et al. Mathematical support for conducting experiment with attitude control of space astrophysical module Gamma. Technical Cybernetics. 1990;3:144–157.
  16. Platonov VN, Kovtun VS. Method for spacecraft control using reactive actuators during execution of a programmed turn. 1997.
  17. Levskii MV. Features of attitude control of a spacecraft, equipped with inertial actuators. Mechatronics, Automation, Control. 2015;16(3):188–195.
  18. Levskii MV. Special aspects in attitude control of a spacecraft, equipped with inertial actuators. Journal of Computer Science Applications and Information Technology. 2017;2(4):1–9.
  19. Levskii MV. Method of Controlling a Spacecraft Turn. 1997;271.
  20. Levskii MV. The use of universal variables in problems of optimal control concerning spacecrafts orientation. Mechatronics, Automation, Control. 2014;1:53–59.
  21. Levskii MV. On optimal spacecraft damping. Journal of Computer and System Sciences International. 2011;50(1):144–157.
  22. Levskii MV. Optimal spacecraft terminal attitude control synthesis by the quaternion method. Mechanics of Solids. 2009;44(2):169–183.
  23. Levskii MV. Method of spacecraft turns control and the system for its realization. Inventions Applications and Patents.1998.
  24. Levskii MV. Control system of spatial turn of a spacecraft. Inventions Statements and Patents. 1994;49–50.
  25. Krasovskii AA. Handbook on the Automatic Control Theory. 1987;712.
  26. Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, et al. The mathematical theory of optimal processes. Gordon and Breach: USA; 1987. p. 360.
  27. Young LG. Lectures on the calculus of variations and optimal control theory. WB Saunders Company: USA;1969.
  28. Markeev AP. Theoretical mechanics. 414 p.
  29. Levskii MV. Device for regular rigid body precession parameters formation. Inventions Applications and Patents. 2000.
  30. Lastman G. A shooting method for solving two-point boundary-value problems arising from non-singular bang-bang optimal control problems. International Journal of Control. 1978;27(4):513–524.
  31. Bertolazzi E, Biral F, Da Lio M. Symbolic-numeric efficient solution of optimal control problems for multibody systems. Journal of Computational and Applied Mathematics. 2006;185(2):404–421.
  32. Kumar S, Kanwar V, Singh S. Modified efficient families of two and three-step predictor-corrector iterative methods for solving nonlinear equations. Journal of Applied Mathematics. 2010;1(3):153–158.
Creative Commons Attribution License

©2018 Levskii. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.