Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Opinion Volume 3 Issue 6

Paper new definition of the definite integral of fuzzy valued function linearly generated by structural elements

Tianjun SHU, Zhiwen MO

Sichuan Normal University, China

Correspondence: Tianjun SHU, Sichuan Normal University, China, Tel 13693495783

Received: October 22, 2017 | Published: December 7, 2017

Citation: Tianjun S, Zhiwen M. Paper new definition of the definite integral of fuzzy valued function linearly generated by structural elements. Int Rob Auto J.2017;3(6):365-366. DOI: 10.15406/iratj.2017.03.00072

Download PDF

Opinion

Fuzzy function limit has different forms because of different fuzzy distance. The result of fuzzy distance can be real number or fuzzy number. The fuzzy distance in this paper is a fuzzy number. It is illustrated concretely that a ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadggaga acaaaa@376E@  and b ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadkgaga acaaaa@376F@  are arbitrary two fuzzy numbers, the distance d ˜ ( a ˜ , b ˜ )= λ[ 0,1 ] λ[ sup λμ1 | a ˜ μ b ˜ μ |, sup 0λμ ( | a ˜ μ b ˜ μ || a ˜ μ + b ˜ μ + | ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadsgaga acamaabmaabaGabmyyayaaiaGaaiilaiqadkgagaacaaGaayjkaiaa wMcaaiabg2da9maaxababaGaeSOkIufabaGaeq4UdWMaeyicI48aam WaaeaacaaIWaGaaiilaiaaigdaaiaawUfacaGLDbaaaeqaaiabeU7a SnaadmaabaWaaCbeaeaaciGGZbGaaiyDaiaacchaaeaacqaH7oaBcq GHKjYOcqaH8oqBcqGHKjYOcaaIXaaabeaadaabdaqaaiqadggagaac amaaDaaajuaibaGaeqiVd0gabaGaeyOeI0caaKqbakabgkHiTiqadk gagaacamaaDaaajuaibaGaeqiVd0gabaGaeyOeI0caaaqcfaOaay5b SlaawIa7aiaacYcadaWfqaqaaiGacohacaGG1bGaaiiCaaqaaiaaic dacqGHKjYOcqaH7oaBcqGHKjYOcqaH8oqBaeqaamaabmaabaWaaqWa aeaaceWGHbGbaGaadaqhaaqcfasaaiabeY7aTbqaaiabgkHiTaaaju aGcqGHsislceWGIbGbaGaadaqhaaqcfasaaiabeY7aTbqaaiabgkHi TaaaaKqbakaawEa7caGLiWoacqGHOiI2daabdaqaaiqadggagaacam aaDaaajuaibaGaeqiVd0gabaGaey4kaScaaKqbakabgkHiTiqadkga gaacamaaDaaajuaibaGaeqiVd0gabaGaey4kaScaaaqcfaOaay5bSl aawIa7aaGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@88FC@  the fuzzy distance is required to satisfy the level convergence in defining the fuzzy limit. In other words, for fuzzy sequence { A ˜ n },n=1,2,..., MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaacmaaba GabmyqayaaiaWaaSbaaKqbGeaacaWGUbaajuaGbeaaaiaawUhacaGL 9baacaGGSaGaamOBaiabg2da9iaaigdacaGGSaGaaGOmaiaacYcaca GGUaGaaiOlaiaac6cacaGGSaaaaa@4395@ if there is lim n A ˜ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaxababa GaciiBaiaacMgacaGGTbaabaGaamOBaiabgkziUkabg6HiLcqabaGa bmyqayaaiaWaaSbaaKqbGeaacaWGUbaajuaGbeaaaaa@406D@ , then be related to λ( 0,1 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSj abgIGiopaabeaabaGaaGimaiaacYcadaWacaqaaiaaigdaaiaaw2fa aaGaayjkaaGaaiilaaaa@3E4A@ the cut set of A ˜ n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadgeaga acamaaBaaajuaibaGaamOBaaqcfayabaaaaa@391E@ is A ˜ n λ =[ A ˜ n λ , A ˜ + n λ ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadgeaga acamaaBaaajuaibaGaamOBaKqbaoaaBaaajuaibaGaeq4UdWgajuaG beaaaeqaaiabg2da9maadmaabaGabmyqayaaiaWaaWbaaeqajuaiba GaeyOeI0caaKqbaoaaBaaajuaibaGaamOBaKqbaoaaBaaajuaibaGa eq4UdWgajuaGbeaaaeqaaiaacYcaceWGbbGbaGaadaahaaqabKqbGe aacqGHRaWkaaqcfa4aaSbaaKqbGeaacaWGUbqcfa4aaSbaaKqbGeaa cqaH7oaBaKqbagqaaaqabaaacaGLBbGaayzxaaGaaiilaaaa@4DFE@ further function sets { A n λ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaacmaaba GaamyqamaaDaaajuaibaGaamOBaKqbaoaaBaaajuaibaGaeq4UdWga beaaaeaacqGHsislaaaajuaGcaGL7bGaayzFaaaaaa@3EBF@ and { A n λ + } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaacmaaba GaamyqamaaDaaajuaibaGaamOBaKqbaoaaBaaajuaibaGaeq4UdWga beaaaeaacqGHRaWkaaaajuaGcaGL7bGaayzFaaaaaa@3EB4@ for any really positive ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew7aLb aa@3820@ , there is a positive integer N, when p, q > N, such that | A pλ A qλ |<ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaamyqamaaDaaajuaibaGaamiCaiabeU7aSbqaaiabgkHiTaaajuaG cqGHsislcaWGbbWaa0baaKqbGeaacaWGXbGaeq4UdWgabaGaeyOeI0 caaaqcfaOaay5bSlaawIa7aiabgYda8iabew7aLbaa@47A8@ , and | A pλ + A qλ + |<ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaamyqamaaDaaajuaibaGaamiCaiabeU7aSbqaaiabgUcaRaaajuaG cqGHsislcaWGbbWaa0baaKqbGeaacaWGXbGaeq4UdWgabaGaey4kaS caaaqcfaOaay5bSlaawIa7aiabgYda8iabew7aLbaa@4792@ . The limit existence if and only if lim n+ A ˜ n = A ˜ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaxababa GaciiBaiaacMgacaGGTbaabaGaamOBaiabgkziUkabgUcaRiabg6Hi LcqabaGabmyqayaaiaWaaSbaaKqbGeaacaWGUbaajuaGbeaacqGH9a qpceWGbbGbaGaadaWgaaqcfasaaiaaicdaaKqbagqaaaaa@44C1@ , that is for any really positive number ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew7aLb aa@3820@ , there exist positive integer N, when n > N, such that d ˜ ( A ˜ n , A ˜ 0 )<ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadsgaga acamaabmaabaGabmyqayaaiaWaaSbaaKqbGeaacaWGUbaajuaGbeaa caGGSaGabmyqayaaiaWaaSbaaKqbGeaacaaIWaaajuaGbeaaaiaawI cacaGLPaaacqGH8aapcqaH1oqzaaa@4166@ . As a form of fuzzy number, fuzzy set E is the fuzzy structural element over the field R of real numbers, if its membership function E(x) has following: (1) E(0)=1, and E(1+0)=E(-1-0)=0; (2) If x [ 1, 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhacq GHiiIZdaWabaqaaiabgkHiTiaaigdacaGGSaWaaeGaaeaacaaIWaaa caGLPaaaaiaawUfaaaaa@3DCF@ , then E(x) is increasingly monotonic function being right continuous, and if x( 0,1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhacq GHiiIZdaqadaqaaiaaicdacaGGSaGaaGymaaGaayjkaiaawMcaaaaa @3CA8@ then E(x)is decreasing monotonic function being left continuous; (3) If x( ,1 )( 1,+ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhacq GHiiIZdaqadaqaaiabgkHiTiabg6HiLkaacYcacqGHsislcaaIXaaa caGLOaGaayzkaaGaeyOkIG8aaeWaaeaacaaIXaGaaiilaiabgUcaRi abg6HiLcGaayjkaiaawMcaaaaa@4620@ , then E(x)=0. We can easily understand that structural element E itself is also fuzzy number. If A ˜ =a+rE( aR,r R + ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadgeaga acaiabg2da9iaadggacqGHRaWkcaWGYbGaamyramaabmaabaGaamyy aiabgIGiolaadkfacaGGSaGaamOCaiabgIGiolaadkfadaahaaqcfa sabeaacqGHRaWkaaaajuaGcaGLOaGaayzkaaaaaa@4669@ then e A is a fuzzy number linearly generated by E. Based on extension principle, A ˜ = λ[ 0,1 ] λ A ˜ λ = λ[ 0,1 ] λ[ a+r E λ ,a+r E λ + ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadgeaga acaiabg2da9maaxababaGaeSOkIufabaGaeq4UdWMaeyicI48aamWa aeaacaaIWaGaaiilaiaaigdaaiaawUfacaGLDbaaaeqaaiabeU7aSj qadgeagaacamaaBaaajuaibaGaeq4UdWgajuaGbeaacqGH9aqpdaWf qaqaaiablQIivbqaaiabeU7aSjabgIGiopaadmaabaGaaGimaiaacY cacaaIXaaacaGLBbGaayzxaaaabeaacqaH7oaBdaWadaqaaiaadgga cqGHRaWkcaWGYbGaamyramaaDaaajuaibaGaeq4UdWgabaGaeyOeI0 caaKqbakaacYcacaWGHbGaey4kaSIaamOCaiaadweadaqhaaqcfasa aiabeU7aSbqaaiabgUcaRaaaaKqbakaawUfacaGLDbaaaaa@622D@ , all fuzzy numbers linearly generated by E is denoted as the symbol ε( E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew7aLn aabmaabaGaamyraaGaayjkaiaawMcaaaaa@3A73@ , and write ε( E )={ A ˜ | A ˜ =a+rE,aR,r R + } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew7aLn aabmaabaGaamyraaGaayjkaiaawMcaaiabg2da9maacmaabaGabmyq ayaaiaWaaqqaaeaaceWGbbGbaGaacqGH9aqpcaWGHbGaey4kaSIaam OCaiaadweacaGGSaGaeyiaIiIaamyyaiabgIGiolaadkfacaGGSaGa amOCaiabgIGiolaadkfadaahaaqabKqbGeaacqGHRaWkaaaajuaGca GLhWoaaiaawUhacaGL9baaaaa@4FFA@ . Similarly, the fuzzy valued function linearly generated by E in this paper defined in the real field can be expressed as f ˜ ( x )=h( x )+ω( x )E,xR MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAgaga acamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIgadaqa daqaaiaadIhaaiaawIcacaGLPaaacqGHRaWkcqaHjpWDdaqadaqaai aadIhaaiaawIcacaGLPaaacaWGfbGaaiilaiabgcGiIiaadIhacqGH iiIZcaWGsbaaaa@4949@  and ω( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3ACC@ are bounded function, even ω( x )>0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3n aabmaabaGaamiEaaGaayjkaiaawMcaaiabg6da+maaciaabaGaaGim aaGaayzFaaaaaa@3DAB@ the symbol N ˜ ( E f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqad6eaga acamaabmaabaGaamyramaaBaaajuaibaGaamOzaaqcfayabaaacaGL OaGaayzkaaaaaa@3B76@ to denote all of fuzzy valued function linearly generated by E, and write N ˜ ( E f )={ f ˜ ( x )| f ˜ ( x )=h( x )+ω( x )E,xX,ω( x )>0 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqad6eaga acamaabmaabaGaamyramaaBaaajuaibaGaamOzaaqcfayabaaacaGL OaGaayzkaaGaeyypa0ZaaiWaaeaadaabcaqaaiqadAgagaacamaabm aabaGaamiEaaGaayjkaiaawMcaaaGaayjcSdGabmOzayaaiaWaaeWa aeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaamiAamaabmaabaGaam iEaaGaayjkaiaawMcaaiabgUcaRiabeM8a3naabmaabaGaamiEaaGa ayjkaiaawMcaaiaadweacaGGSaGaeyiaIiIaamiEaiabgIGiolaadI facaGGSaGaeqyYdC3aaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyOp a4JaaGimaaGaay5Eaiaaw2haaaaa@5D5E@ . For writing convenience, there must be A ˜ ε( E ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadgeaga acaiabgIGiolabew7aLnaabmaabaGaamyraaGaayjkaiaawMcaaaaa @3CCC@ , and f ˜ ( x ) N ˜ ( E f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAgaga acamaabmaabaGaamiEaaGaayjkaiaawMcaaiabgIGiolqad6eagaac amaabmaabaGaamyramaaBaaajuaibaGaamOzaaqcfayabaaacaGLOa Gaayzkaaaaaa@407A@ all in this paper.

Let the definition domain of f ˜ ( x ) U 0 ( x 0 ,δ' ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAgaga acamaabmaabaGaamiEaaGaayjkaiaawMcaaiaadwfadaahaaqcfasa beaacaaIWaaaaKqbaoaabmaabaGaamiEamaaBaaajuaibaGaaGimaa qabaGaaiilaiabes7aKjaacEcaaKqbakaawIcacaGLPaaaaaa@4388@ . If define the limit lim x x 0 f ˜ ( x )= A ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaxababa GaciiBaiaacMgacaGGTbaabaGaamiEaiabgkziUkaadIhadaWgaaqc fasaaiaaicdaaKqbagqaaaqabaGabmOzayaaiaWaaeWaaeaacaWG4b aacaGLOaGaayzkaaGaeyypa0Jabmyqayaaiaaaaa@4450@ special attention should be paid to (1) and (2), for the property of fuzzy distance in this paper, it is necessary to strengthen the condition of E(x) to uniform convergence, that is to say with regard to any λ( 0,1 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeU7aSj abgIGiopaabeaabaGaaGimaiaacYcadaWacaqaaiaaigdaaiaaw2fa aaGaayjkaaGaaiilaaaa@3E4A@ the cut set of E(x) is E ( x ) λ =[ E ( x ) λ ,E ( x ) λ + ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada qadaqaaiaadIhaaiaawIcacaGLPaaadaWgaaqcfasaaiabeU7aSbqc fayabaGaeyypa0ZaamWaaeaacaWGfbWaaeWaaeaacaWG4baacaGLOa GaayzkaaWaa0baaKqbGeaacqaH7oaBaeaacqGHsislaaGaaiilaKqb akaadweadaqadaqaaiaadIhaaiaawIcacaGLPaaadaqhaaqcfasaai abeU7aSbqaaiabgUcaRaaaaKqbakaawUfacaGLDbaaaaa@4D95@ , for any positive, ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew7aLb aa@3820@ there is a positive integer N, when m, n > N, such that | E m ( x ) λ , E n ( x ) λ |<ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaamyramaaBaaajuaibaGaamyBaaqcfayabaWaaeWaaeaacaWG4baa caGLOaGaayzkaaWaa0baaKqbGeaacqaH7oaBaeaacqGHsislaaGaai ilaKqbakaadweadaWgaaqcfasaaiaad6gaaKqbagqaamaabmaabaGa amiEaaGaayjkaiaawMcaamaaDaaajuaibaGaeq4UdWgabaGaeyOeI0 caaaqcfaOaay5bSlaawIa7aiabgYda8iabew7aLbaa@4E33@ , | E m ( x ) λ + , E n ( x ) λ + |<ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaemaaba GaamyramaaBaaajuaibaGaamyBaaqcfayabaWaaeWaaeaacaWG4baa caGLOaGaayzkaaWaa0baaKqbGeaacqaH7oaBaeaacqGHRaWkaaGaai ilaKqbakaadweadaWgaaqcfasaaiaad6gaaKqbagqaamaabmaabaGa amiEaaGaayjkaiaawMcaamaaDaaajuaibaGaeq4UdWgabaGaey4kaS caaaqcfaOaay5bSlaawIa7aiabgYda8iabew7aLbaa@4E1D@ . So the existence of lim x x 0 f ˜ ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaxababa GaciiBaiaacMgacaGGTbaabaGaamiEaiabgkziUkaadIhadaWgaaqc fasaaiaaicdaaKqbagqaaaqabaGabmOzayaaiaWaaeWaaeaacaWG4b aacaGLOaGaayzkaaaaaa@4275@ can be expressed as: for any really positive ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew7aLb aa@3820@ there exist positive δ( <δ' ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes7aKn aabmaabaGaeyipaWJaeqiTdqMaai4jaaGaayjkaiaawMcaaaaa@3CFB@ , whenever x',x" U 0 ( x 0 ,δ' ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIhaca GGNaGaaiilaiaadIhacaGGIaGaeyicI4SaamyvamaaCaaajuaibeqa aiaaicdaaaqcfa4aaeWaaeaacaWG4bWaaSbaaKqbGeaacaaIWaaaju aGbeaacaGGSaGaeqiTdqMaai4jaaGaayjkaiaawMcaaaaa@4587@ , such that d( f ˜ ( x' ), f ˜ ( x" ) )<ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsgada qadaqaaiqadAgagaacamaabmaabaGaamiEaiaacEcaaiaawIcacaGL PaaacaGGSaGabmOzayaaiaWaaeWaaeaacaWG4bGaaiOiaaGaayjkai aawMcaaaGaayjkaiaawMcaaiabgYda8iabew7aLbaa@4497@ , even lim x x 0 f ˜ ( x )= A ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaxababa GaciiBaiaacMgacaGGTbaabaGaamiEaiabgkziUkaadIhadaWgaaqc fasaaiaaicdaaKqbagqaaaqabaGabmOzayaaiaWaaeWaaeaacaWG4b aacaGLOaGaayzkaaGaeyypa0Jabmyqayaaiaaaaa@4450@ for any really positive number ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew7aLb aa@3820@ >0, there exists positive δ( <δ' ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabes7aKn aabmaabaGaeyipaWJaeqiTdqMaai4jaaGaayjkaiaawMcaaaaa@3CFB@  such that 0<| x x 0 |<δ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaicdacq GH8aapdaabdaqaaiaadIhacqGHsislcaWG4bWaaSbaaKqbGeaacaaI WaaajuaGbeaaaiaawEa7caGLiWoacqGH8aapcqaH0oazaaa@4280@ , then d( f ˜ ( x ), A ˜ )<ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsgada qadaqaaiqadAgagaacamaabmaabaGaamiEaaGaayjkaiaawMcaaiaa cYcaceWGbbGbaGaaaiaawIcacaGLPaaacqGH8aapcqaH1oqzaaa@409B@ . In this paper, the limit definition of the fuzzy valued function linearly generated by structure elements is widely used, and the different representation between the fuzzy number and the real number is clear. For the definite integral of fuzzy valued function linearly generated by structural elements, the method of definition is to divide the first step of the fuzzy valued function linearly generated by the structural element on the interval of the defined domain, the second step is that for each approximate rectangle obtained by cutting, the approximate rectangular area is calculated, and sum all fuzzy rectangle areas, the third step is to and the fuzzy limit of the summation. Then the new definition is used to study the basic properties of the definite integral of fuzzy valued function linearly generated by structural elements defined on the interval [a, b]. They are Newton Leibniz formula, addition together with multiplication, interval additively, boundedness, local protection and the first mean value theorem for integrals. In order to discuss some the integral condition of the fuzzy valued function linearly generated by structural elements. It is defined that Darboux sum of fuzzy valued function linearly generated by structural elements. Meanwhile, some theorems of fuzzy Darboux sum are discussed. Then the first integrable condition and the second integrable condition of fuzzy valued functions for linearly generated by structural elements on [a, b] are given. Immediately following, the integrable condition of f ˜ ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAgaga acamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@39F9@  is continuous, or bounded function with finite discontinuous points, or monotonic function on [a, b] is kicked something around. Whether it's for the properties of definite integral of   f ˜ ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAgaga acamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@39F9@ defined on [a, b] or the integral condition of e f ˜ ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAgaga acamaabmaabaGaamiEaaGaayjkaiaawMcaaaaa@39F9@  defined on the interval [a, b], because ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabew7aLb aa@3820@  is a real number, the discussion of the fuzzy limit, monotonicity, continuity and discontinuity can be guaranteed and has practical significance. The study of this paper has a rich role in the theory of fuzzy calculus, and can be applied to fuzzy comprehensive evaluation model, hierarchical principle, language quantifiers and so on. Thank you for your attention to this article. If there is something to be discussed, please put forward.

Acknowledgments

My research project was partially or fully sponsored by National Natural Science Foundation of China with grant number 11671284. In case of no financial assistance for the research work, provide the information regarding the sponsor.

Conflict of interest

No conflict of interest.

Creative Commons Attribution License

©2017 Tianjun, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.