Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 5 Issue 5

Optimal decisions and expected values in two player zero sum games with diagonal game matrixes-explicit functions, general proofs and effects of parameter estimation errors

Peter Lohmander

Optimal Solutions in cooperation with Linnaeus University, Sweden

Correspondence: Peter Lohmander, Optimal Solutions in cooperation with Linnaeus University, Umea,Sweden

Received: October 17, 2019 | Published: October 31, 2019

Citation: Lohmander P. Optimal decisions and expected values in two player zero sum games with diagonal game matrixes-explicit functions, general proofs and effects of parameter estimation errors. Int Rob Auto J . 2019;5(5):186-198. DOI: 10.15406/iratj.2019.05.00193

Download PDF

Abstract

In this paper, the two player zero sum games with diagonal game matrixes, TPZSGD, are analyzed. Many important applications of this particular class of games are found in military decision problems, in customs and immigration strategies and police work. Explicit functions are derived that give the optimal frequences of different decisions and the expected results of relevance to the different decision makers. Arbitrary numbers of decision alternatives are covered. It is proved that the derived optimal decision frequency formulas correspond to the unique optimization results of the two players. It is proved that the optimal solutions, for both players, always lead to a unique completely mixed strategy Nash equilibrium. For each player, the optimal frequency of a particular decision is strictly greater than 0 and strictly less than 1. With comparative statics analyses, the directions of the changes of optimal decision frequences and expected game values as functions of changes in different parameter values, are determined. The signs of the optimal changes of the decision frequences, of the different players, are also determined as functions of risk in different parameter values. Furthermore, the directions of changes of the expected optimal value of the game, are determined as functions of risk in the different parameter values. Finally, some of the derived formulas are used to confirm earlier game theory results presented in the literature. It is demonstrated that the new functions can be applied to solve common military problems.

Keyword: optimal decisions, completely mixed strategy Nash equilibrium, zero sum game theory, stochastic games

Introduction

What is the optimal strategy of a decision maker, BLUE, such as an individual or organization, when at least one more decision maker, RED, can influence the outcomes? This is a typical question in game theory.

Game theory is a field of research that contains large numbers of studies with different assumptions concerning the number of players, the kinds of decisions that can be taken by the different participants and the degree of information available to the different decision makers at different points in time.

Luce and Raffa1 give a general description of most of the game theory literature. Some of the highly important and original publications in the field are Nash,2 von Neumann,3 and Dresher4. Chiang5 covers two person zero sum games and most other methods and theories of general mathematical economics. Isaacs6 develops dynamic games with and without stochastic events in continuous and discrete time. In Braun7 we find a section where differential equations are used to model and describe the development of games of conflict with several examples of real applications.

Lohmander8 contains a new approach to dynamic games of conflict with two players. It includes a stochastic dynamic programming, SDP, model with a linear programming, LP, or quadratic programming, QP, model as a sub routine. The LP or QP can be used to solve static game problems, such as two person zero sum games, TPZSGs, for each state and stage in the SDP model. The outcomes of the repeated games move the positions in state space (change the states to new states) with different transitions probabilities, in the following periods, within the SDP model. The SDP model solves the complete dynamic and stochastic game over a time horizon with several periods.

During the history of game theory, the TPZSGs have always gained considerable theoretical and practical interest. A detailed treatment is given by Luce and Raffa.1 Several kinds of TPZSGs with large numbers of military applications are well described by Washburn.9 This can serve as a good introduction to the analysis in this paper. A Nash equilibrium is the normal outcome of LP solutions to TPZSGs. It is however important to be aware that the Nash equilibrium can not always be expected to be the result in real world games. If the strategies of the players are gradually adjusted based on the observations of the decision frequences of the other players, mixed strategy probability orbits (constrained cycles) may develop. Convergence to the Nash equilibrium can not always be expected. Lohmander10 has developed a dynamic model and described these possibilities. Herings et al11 focuses on stationary equilibria in stochastic games. They are interested in model structure, selection and computation. Babu et al12 give a good historical introduction to the literature on stochastic games. They also develop some new results in the area of equilibrium strategies of dynamic games based on mixed strategy assumptions within static games.

In this paper, a particular class of TPZSGs will be analyzed, namely two player zero sum games with diagonal game matrixes were all diagonal elements are strictly positive. Let us denote them TPZSGDs. This may seem to be a highly particular, constrained and irrelevant class of games. However, this is not true. A large number of obvious and economically very important real world applications of this class of games exist, in particular in military applications, in customs problems and in police work. Lohmander13 defines, describes and solves four different types of military TPZSGD decision problems with this methodology. These problems include:

  1. The selection of roads for transport when enemy forces may prepare attacks along different roads with different expected outcomes,
  2. The selection of roads where attacks on enemy transports should be prepared,
  3. The positioning of guard squads and
  4. The positioning of intelligence, reconaissance and sabotage groups.

Game theory literature usually focuses on very general classes of games, without giving special attention to the TPZSG, and the even more specific TPZSGD, classes.

In this paper, explicit functions of the optimal decision frequences and the expected results of relevance to the different players are derived for situations with arbitrary numbers of decision alternatives.

In the earlier game theory literature, when general classes of games are analyzed, it has usually not been possible to derive explicit functions. Earlier studies are mostly focused on general principles, proofs of the existence of solutions and numerical algorithms to calculate solutions in particular numerically specified situations.

One of the general results derived and proved in this paper is that, for every game in the TPZSGD class, the optimal strategy, for both players, always leads to a unique and completely mixed strategy Nash equilibrium. This means that, for each player, the optimal frequency of every possible decision, is strictly greater than 0 and strictly less than 1.

This result is critical to analytical TPZSGD game theory. It makes it possible to instantly determine the equation system that should be used to calculate the optimal decision frequences. Hence, the optimal decision frequences become possible to analyze with general analytical methods. Explicit functions can be derived for arbitrary numbers of decision options and for all possible elements in the game matrix. In other words, we do not have to handle every particular case with numerical methods.

In the existing literature on game theory, such a proof is not easily found. This problem is usually avoided by intuitive arguments and reasonable assumptions. The book by Washburn9 is one such example. A similar case is found in Babu et al.12 They avoid to show that the Nash equilibrium, which they analyze, really is completely mixed. Babu et al12 simply assume the existence of a particular probability vector. In this paper, the existence of such a probability vector will be proved for a diagonal game matrix where all diagonal elements are strictly positive. It will also be proved that all elements of the probability vector are strictly positive and strictly less than one. Furthermore, explicit functions will be derived for and the value of the game.

Thanks to the derived functions, it is also possible to perform explicit sensitivity analyses and to determine the directions of changes of optimal decision frequences and expected results if the direction of change of a particular parameter is known.

In this study, it has been possible to derive explicit results in an area that is highly relevant in real applications: How are the optimal decision frequences of the different players changed if the level of risk of some parameter(s) change(s)? Related results have earlier been derived in stochastic dynamic ”one player” problems by Lohmander.14 First, relevant functions of decisions and expected game values are determined. The first and second derivatives are determined and signed. Then, the Jensen inequality is used to determine the directions of change of the optimal decision frequences and expected game values under the influence of increasing risk in the different parameter values.

Analysis

A TPZSGD will now be analyzed in the most general way. BLUE is the maximizer, who selects the row, i. RED is the minimizer, who selects the column, j. The decision of BLUE is not known by RED before RED takes a decision and the decision of RED is not known by BLUE before BLUE takes the decision. The game matrix, A(i,j), is diagonal. All diagonal elements cij=A(i,j) are strictly positive and represent the reward that BLUE obtains from RED in case i=j. "('The reward that BLUE obtains is equal to the loss that RED gets")". In case i≠j, the reward is zero. Equations (2.1) and (2.2) define these conditions. 

c ij | ij =0,i=1,....,n, j=1,2,..., n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGJbqcfa4aaSbaaKGbagaajugibiaadMgacaWGQbaajyaGbeaajuaG daabbaqcgayaaKqbaoaaBaaajyaGbaqcLbsacaWGPbGaeyiyIKRaam OAaaqcgayabaqcLbsacqGH9aqpcaaIWaGaaiilaiaadMgacqGH9aqp caaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaac6cacaGGSaGaamOBai aacYcaqaaaaaaaaaWdbiaacckacaWGQbGaeyypa0JaaGymaiaacYca caaIYaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaGGGcGaamOBaa qcga4daiaawEa7aaaa@5E28@ (2.1)

c ij | i=j = g i >0,i=1,...,n,j=1,2,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaq GaaOqaaKqzGeGaam4yaKqbaoaaBaaaleaajugibiaadMgacaWGQbaa leqaaaGccaGLiWoajuaGdaWgaaWcbaqcLbsacaWGPbGaeyypa0Jaam OAaaWcbeaajugibiabg2da9iaadEgajuaGdaWgaaWcbaqcLbsacaWG PbaaleqaaKqzGeGaeyOpa4JaaGimaiaaysW7caGGSaGaaGjbVlaadM gacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWG UbGaaiilaiaadQgacqGH9aqpcaaIXaGaaiilaiaaikdacaGGSaGaai Olaiaac6cacaGGUaGaaiilaiaad6gaaaa@5F05@ (2.2)

A concrete example is the following: RED should move an army convoy from one city to another. One road, among the existing n available roads, should be selected. BLUE wants to destroy as many RED trucks as possible. RED sends the convoy via road j and BLUE moves the equipment and troops to road i and prepares an attack there. If i=j, BLUE attacks RED and destroys the number of RED trucks found in a diagonal element of the game matrix where i=j. . If BLUE and RED select different roads, no attack takes place and no trucks are destroyed. A(i,j)=0forij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbb GaaiikaiaadMgacaGGSaGaamOAaiaacMcacqGH9aqpcaaIWaGaaGPa VlaadAgacaWGVbGaamOCaiaaykW7caWGPbGaeyiyIKRaamOAaaaa@49BA@ .

Different roads usually have different properties with respect to slope, curvature, protection, options to hide close to the road and so on. As a consequence, the values of the diagonal elements of the game matrix, A(i,j)>0fori=j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbb GaaiikaiaadMgacaGGSaGaamOAaiaacMcacqGH+aGpcaaIWaGaaGPa VlaadAgacaWGVbGaamOCaiaaykW7caWGPbGaeyypa0JaamOAaaaa@48FB@ , are usually not the same for different values of i.

The maximization problem of BLUE

The maximization problem of BLUE is defined here. The expected reward, X0, is the objective function, which is found in (2.1.1). The number of possible decisions is n and the probability of a particular decision, i, is Xi. The total probability can not exceed 1, which is shown in (2.1.2.).gi is defined in (2.2). Since RED can select any decision , j,x0 is constrained via (2.1.3). Furthermore, no probability can be negative, which is seen in (2.1.4).

max x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaci GGTbGaaiyyaiaacIhacaWG4bqcfa4aaSbaaSqaaKqzGeGaaGimaaWc beaaaaa@3F31@ (2.1.1)

s.t.

i=1 n x i 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaa bCaOqaaKqzGeGaamiEaKqbaoaaBaaaleaajugibiaadMgaaSqabaqc LbsacqGHKjYOcaaIXaaaleaajugibiaadMgacqGH9aqpcaaIXaaale aajugibiaad6gaaiabggHiLdaaaa@4728@ (2.1.2)

x 0 g i x i ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiabgsMiJkaa dEgajuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqzGeGaamiEaKqbao aaBaaaleaajugibiaadMgaaSqabaqcLbsacaaMe8UaaiilaiaaysW7 caWGPbGaeyypa0JaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGSa GaamOBaaaa@510E@ (2.1.3)

x i 0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiabgwMiZkaa icdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGymaiaacYcaca GGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@4A82@ (2.1.4)

Let λ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeU7aSLqbaoaaBaaaleaajugibiaadMgaaSqabaaaaa@3C30@ denote dual variables. The following Lagrange function is defined:

L= x 0 + λ 0 ( 1 i=1 n x i )+ i=1 n λ i ( g i x i x 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGmbGaeyypa0JaamiEaKqbaoaaBaaaleaajugibiaaicdaaSqabaqc LbsacqGHRaWkcqaH7oaBjuaGdaWgaaWcbaqcLbsacaaIWaaaleqaaK qbaoaabmaakeaajugibiaaigdacqGHsisljuaGdaaeWbGcbaqcLbsa caWG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaaaeaajugibiaadM gacqGH9aqpcaaIXaaaleaajugibiaad6gaaiabggHiLdaakiaawIca caGLPaaajugibiabgUcaRKqbaoaaqahakeaajugibiabeU7aSLqbao aaBaaaleaajugibiaadMgaaSqabaqcfa4aaeWaaOqaaKqzGeGaam4z aKqbaoaaBaaaleaajugibiaadMgaaSqabaqcLbsacaWG4bqcfa4aaS baaSqaaKqzGeGaamyAaaWcbeaajugibiabgkHiTiaadIhajuaGdaWg aaWcbaqcLbsacaaIWaaaleqaaaGccaGLOaGaayzkaaaaleaajugibi aadMgacqGH9aqpcaaIXaaaleaajugibiaad6gaaiabggHiLdaaaa@6EEF@ (2.1.5)

The following derivatives will be needed in the proceeding analysis:

dL d λ 0 =1 i=1 n x i 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaS aaaOqaaKqzGeGaamizaiaadYeaaOqaaKqzGeGaamizaiabeU7aSLqb aoaaBaaaleaajugibiaaicdaaSqabaaaaKqzGeGaeyypa0JaaGymai abgkHiTKqbaoaaqahakeaajugibiaadIhajuaGdaWgaaWcbaqcLbsa caWGPbaaleqaaaqaaKqzGeGaamyAaiabg2da9iaaigdaaSqaaKqzGe GaamOBaaGaeyyeIuoacqGHLjYScaaIWaaaaa@5210@ (2.1.6)

dL d λ i = g i x i x 0 0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaS aaaOqaaKqzGeGaamizaiaadYeaaOqaaKqzGeGaamizaiabeU7aSLqb aoaaBaaaleaajugibiaadMgaaSqabaaaaKqzGeGaeyypa0Jaam4zaK qbaoaaBaaaleaajugibiaadMgaaSqabaqcLbsacaWG4bqcfa4aaSba aSqaaKqzGeGaamyAaaWcbeaajugibiabgkHiTiaadIhajuaGdaWgaa WcbaqcLbsacaaIWaaaleqaaKqzGeGaeyyzImRaaGimaiaaysW7caGG SaGaaGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUaGaai OlaiaacYcacaWGUbaaaa@5C35@ (2.1.7)

dL d x 0 =1 i=1 n λ i 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaS aaaOqaaKqzGeGaamizaiaadYeaaOqaaKqzGeGaamizaiaadIhajuaG daWgaaWcbaqcLbsacaaIWaaaleqaaaaajugibiabg2da9iaaigdacq GHsisljuaGdaaeWbGcbaqcLbsacqaH7oaBjuaGdaWgaaWcbaqcLbsa caWGPbaaleqaaKqzGeGaeyizImQaaGimaaWcbaqcLbsacaWGPbGaey ypa0JaaGymaaWcbaqcLbsacaWGUbaacqGHris5aaaa@5299@ (2.1.8)

dL d x i = λ i g i λ 0 0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaS aaaOqaaKqzGeGaamizaiaadYeaaOqaaKqzGeGaamizaiaadIhajuaG daWgaaWcbaqcLbsacaWGPbaaleqaaaaajugibiabg2da9iabeU7aSL qbaoaaBaaaleaajugibiaadMgaaSqabaqcLbsacaWGNbqcfa4aaSba aSqaaKqzGeGaamyAaaWcbeaajugibiabgkHiTiabeU7aSLqbaoaaBa aaleaajugibiaaicdaaSqabaqcLbsacqGHKjYOcaaIWaGaaGjbVlaa cYcacaaMe8UaamyAaiabg2da9iaaigdacaGGSaGaaiOlaiaac6caca GGUaGaaiilaiaad6gaaaa@5CDB@ (2.1.9) 

Karush Kuhn Tucker conditions in general problems

In general problems, we may have different numbers of decision variables and constraints. Furthermore, the elements c ij | ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaq GaaOqaaKqzGeGaam4yaKqbaoaaBaaaleaajugibiaadMgacaWGQbaa leqaaaGccaGLiWoajuaGdaWgaaWcbaqcLbsacaWGPbGaeyiyIKRaam OAaaWcbeaaaaa@449B@ are not necessarily zero (Table 1).

λ i 0i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW 2aaSbaaSqaaiaadMgaaeqaaOGaeyyzImRaaGimaiaaysW7cqGHaiIi caWGPbaaaa@4166@

dL d λ i 0i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamitaaqaaiaadsgacqaH7oaBdaWgaaWcbaGaamyAaaqa baaaaOGaeyyzImRaaGimaiaaysW7cqGHaiIicaWGPbaaaa@4419@

λ i dL d λ i =0i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW 2aaSbaaSqaaiaadMgaaeqaaOWaaSaaaeaacaWGKbGaamitaaqaaiaa dsgacqaH7oaBdaWgaaWcbaGaamyAaaqabaaaaOGaeyypa0JaaGimai aaysW7cqGHaiIicaWGPbaaaa@4631@

x j 0j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGQbaabeaakiabgwMiZkaaicdacaaMe8UaeyiaIiIa amOAaaaa@40B1@

dL d x j 0j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamitaaqaaiaadsgacaWG4bWaaSbaaSqaaiaadQgaaeqa aaaakiabgsMiJkaaicdacaaMe8UaeyiaIiIaamOAaaaa@4353@

x j dL d x j =0j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGQbaabeaakmaalaaabaGaamizaiaadYeaaeaacaWG KbGaamiEamaaBaaaleaacaWGQbaabeaaaaGccqGH9aqpcaaIWaGaaG jbVlabgcGiIiaadQgaaaa@44C6@

Table 1 Karush Kuhn Tucker conditions in general maximization problems

Particular conditions in problems that satisfy (2.1) and (2.2)

Note that in these problems, i=j in all relevant constraints.

λ i 0i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqzGeGaeyyzImRa aGimaiaaysW7cqGHaiIicaWGPbaaaa@43A2@ (2.1.10)

dL d λ i 0i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaS aaaOqaaKqzGeGaamizaiaadYeaaOqaaKqzGeGaamizaiabeU7aSLqb aoaaBaaaleaajugibiaadMgaaSqabaaaaKqzGeGaeyyzImRaaGimai aaysW7cqGHaiIicaWGPbaaaa@4786@ (2.1.11)

λ i dL d λ i =0i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqbaoaalaaakeaa jugibiaadsgacaWGmbaakeaajugibiaadsgacqaH7oaBjuaGdaWgaa WcbaqcLbsacaWGPbaaleqaaaaajugibiabg2da9iaaicdacaaMe8Ua eyiaIiIaamyAaaaa@4B4B@ (2.1.12)

x i 0i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiabgwMiZkaa icdacaaMe8UaeyiaIiIaamyAaaaa@42EB@ (2.1.13)

dL d x i 0i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaS aaaOqaaKqzGeGaamizaiaadYeaaOqaaKqzGeGaamizaiaadIhajuaG daWgaaWcbaqcLbsacaWGPbaaleqaaaaajugibiabgsMiJkaaicdaca aMe8UaeyiaIiIaamyAaaaa@46BE@ (2.1.14)

x i dL d x i =0i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajuaGdaWcaaGcbaqc LbsacaWGKbGaamitaaGcbaqcLbsacaWGKbGaamiEaKqbaoaaBaaale aajugibiaadMgaaSqabaaaaKqzGeGaeyypa0JaaGimaiaaysW7cqGH aiIicaWGPbaaaa@49DD@ (2.1.15)

Proof 1: Proof that x 0 * >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaaGimaaWcbeaajuaGdaahaaWcbeqa aKqzGeGaaiOkaaaacqGH+aGpcaaIWaaaaa@4017@ :

 (2.1.2) and (2.1.4) make it feasible to let x i >0,i=1,...n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiabg6da+iaa icdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGymaiaacYcaca GGUaGaaiOlaiaac6cacaWGUbaaaa@4914@ .

(2.2) says that g i >0,i=1,2,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zam aaBaaaleaacaWGPbaabeaakiabg6da+iaaicdacaaMe8Uaaiilaiaa ysW7caWGPbGaeyypa0JaaGymaiaacYcacaaIYaGaaiilaiaac6caca GGUaGaaiOlaiaacYcacaWGUbaaaa@48E3@ .

When g i x i >0,i=1,...n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zam aaBaaaleaacaWGPbaabeaakiaadIhadaWgaaWcbaGaamyAaaqabaGc cqGH+aGpcaaIWaGaaiilaiaaysW7caWGPbGaeyypa0JaaGymaiaacY cacaGGUaGaaiOlaiaac6cacaWGUbaaaa@475B@ , (2.1.3) makes it feasible to let . x 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiabg6da+iaa icdaaaa@3EAE@

(2.1.1) states that we want to maximize x0. Let stars indicate optimal values.

Hence, when optimal decisions are taken, x 0 = x 0 * >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiabg2da9iaa dIhajuaGdaWgaaWcbaqcLbsacaaIWaaaleqaaKqbaoaaCaaaleqaba qcLbsacaGGQaaaaiabg6da+iaaicdaaaa@44B7@ .

Proof 2: Proof that x i * >0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajuaGdaahaaWcbeqa aKqzGeGaaiOkaaaacqGH+aGpcaaIWaGaaGjbVlaacYcacaaMe8Uaam yAaiabg2da9iaaigdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaa d6gaaaa@4B2D@ :

(2.1.7) says that dL d λ i = g i x i x 0 0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamitaaqaaiaadsgacqaH7oaBdaWgaaWcbaGaamyAaaqa baaaaOGaeyypa0Jaam4zamaaBaaaleaacaWGPbaabeaakiaadIhada WgaaWcbaGaamyAaaqabaGccqGHsislcaWG4bWaaSbaaSqaaiaaicda aeqaaOGaeyyzImRaaGimaiaaysW7caGGSaGaaGjbVlaadMgacqGH9a qpcaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGUbaaaa@53C1@

Proof 1 states that x 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakiabg6da+iaaicdaaaa@3C72@ . (2.2) says that g i >0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WGNbqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiabg6da+iaa icdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGymaiaacYcaca GGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@49B3@ .

x i x 0 g i >0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiabgwMiZMqb aoaalaaakeaajugibiaadIhajuaGdaWgaaWcbaqcLbsacaaIWaaale qaaaGcbaqcLbsacaWGNbqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaa aaqcLbsacqGH+aGpcaaIWaGaaGjbVlaacYcacaaMe8UaamyAaiabg2 da9iaaigdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaad6gaaaa@5422@ .

Hence, x i = x i * >0,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiabg2da9iaa dIhajuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqbaoaaCaaaleqaba qcLbsacaGGQaaaaiabg6da+iaaicdacaaMe8UaaiilaiaaysW7caWG PbGaeyypa0JaaGimaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaam OBaaaa@5000@ .

Proof 3: Proof that λ i * ,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqbaoaaCaaaleqa baqcLbsacaGGQaaaaiaacYcacaaMe8UaamyAaiabg2da9iaaicdaca GGSaGaaiOlaiaac6cacaGGUaGaaiilaiaad6gaaaa@4894@ can be determined from a linear equation system.

( x i >0,i=0,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaOqaaKqzGeGaamiEaKqbaoaaBaaaleaajugibiaadMgaaSqabaqc LbsacqGH+aGpcaaIWaGaaGjbVlaacYcacaaMe8UaamyAaiabg2da9i aaicdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaad6gaaOGaayjk aiaawMcaaKqzGeGaey4jIKnaaa@4E2B@ (2.1.15) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq GHshI3aaa@3BAF@ { dL d x 0 =0; dL d x i =0,i=1,...,n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aai WaaOqaaKqbaoaalaaakeaajugibiaadsgacaWGmbaakeaajugibiaa dsgacaWG4bqcfa4aaSbaaSqaaKqzGeGaaGimaaWcbeaaaaqcLbsacq GH9aqpcaaIWaGaaGjbVlaacUdacaaMf8Ecfa4aaSaaaOqaaKqzGeGa amizaiaadYeaaOqaaKqzGeGaamizaiaadIhajuaGdaWgaaWcbaqcLb sacaWGPbaaleqaaaaajugibiabg2da9iaaicdacaaMe8Uaaiilaiaa ysW7caWGPbGaeyypa0JaaGymaiaacYcacaGGUaGaaiOlaiaac6caca GGSaGaamOBaaGccaGL7bGaayzFaaaaaa@5E20@ ={ (2.1.16)  (2.1.17) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq GH9aqpjuaGdaGadaqcgayaaKqzGeGaaiikaiaaikdacaGGUaGaaGym aiaac6cacaaIXaGaaGOnaiaacMcaqaaaaaaaaaWdbiaacckapaGaey 4jIK9dbiaacckacaGGOaGaaGOmaiaac6cacaaIXaGaaiOlaiaaigda caaI3aGaaiykaaqcga4daiaawUhacaGL9baaaaa@4E67@ .

dL d x 0 =1 i=1 n λ i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaS aaaOqaaKqzGeGaamizaiaadYeaaOqaaKqzGeGaamizaiaadIhajuaG daWgaaWcbaqcLbsacaaIWaaaleqaaaaajugibiabg2da9iaaigdacq GHsisljuaGdaaeWbGcbaqcLbsacqaH7oaBjuaGdaWgaaWcbaqcLbsa caWGPbaaleqaaKqzGeGaeyypa0JaaGimaaWcbaqcLbsacaWGPbGaey ypa0JaaGymaaWcbaqcLbsacaWGUbaacqGHris5aaaa@51EA@ (2.1.16)

dL d x i = λ i g i λ 0 =0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaS aaaOqaaKqzGeGaamizaiaadYeaaOqaaKqzGeGaamizaiaadIhajuaG daWgaaWcbaqcLbsacaWGPbaaleqaaaaajugibiabg2da9iabeU7aSL qbaoaaBaaaleaajugibiaadMgaaSqabaqcLbsacaWGNbqcfa4aaSba aSqaaKqzGeGaamyAaaWcbeaajugibiabgkHiTiabeU7aSLqbaoaaBa aaleaajugibiaaicdaaSqabaqcLbsacqGH9aqpcaaIWaGaaGjbVlaa cYcacaaMe8UaamyAaiabg2da9iaaigdacaGGSaGaaiOlaiaac6caca GGUaGaaiilaiaad6gaaaa@5C2C@ (2.1.17) 

Proof 4: Proof that λ i * >0,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW 2aaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOGaeyOp a4JaaGimaiaaysW7caGGSaGaaGjbVlaadMgacqGH9aqpcaaIWaGaai ilaiaac6cacaGGUaGaaiOlaiaacYcacaWGUbaaaa@4923@ .

(2.1.16) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq GHshI3aaa@3BAF@ i| i>0, λ i >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4aIq YaaqGaaeaacaWGPbaacaGLiWoadaWgaaWcbaGaamyAaiabg6da+iaa icdacaGGSaGaeq4UdW2aaSbaaWqaaiaadMgaaeqaaSGaeyOpa4JaaG imaaqabaaaaa@4444@ .

Hence, at least for one strictly positive value i, λ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaaaa@3D48@ is strictly greater than zero.

( i| i>0, λ i >0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaOqaaKqzGeGaey4aIqscfa4aaqGaaOqaaKqzGeGaamyAaaGccaGL iWoajuaGdaWgaaWcbaqcLbsacaWGPbGaeyOpa4JaaGimaiaacYcacq aH7oaBjuaGdaWgaaadbaqcLbsacaWGPbaameqaaKqzGeGaeyOpa4Ja aGimaaWcbeaaaOGaayjkaiaawMcaaaaa@4B04@ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abgEIizdaa@39E8@ ( g i >0,i=1,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaOqaaKqzGeGaam4zaKqbaoaaBaaaleaajugibiaadMgaaSqabaqc LbsacqGH+aGpcaaIWaGaaGjbVlaacYcacaaMe8UaamyAaiabg2da9i aaigdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaad6gaaOGaayjk aiaawMcaaaaa@4BDE@ (2.1.17) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq GHshI3aaa@3BAF@ λ 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW 2aaSbaaSqaaiaaicdaaeqaaOGaeyOpa4JaaGimaaaa@3D29@ .

λ 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW 2aaSbaaSqaaiaaicdaaeqaaOGaeyOpa4JaaGimaaaa@3D29@ (2.1.18)

(2.1.17) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPqpw0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHNi s2aaa@3B6C@ ( g i >0,i=1,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaeyOpa4JaaGimaiaaysW7 caGGSaGaaGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUa GaaiOlaiaacYcacaWGUbaacaGLOaGaayzkaaaaaa@4900@ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abgEIizdaa@39E8@ (2.1.18) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq GHshI3aaa@3BAF@ ( λ i >0,i=1,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaOqaaKqzGeGaeq4UdWwcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaa jugibiabg6da+iaaicdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0 JaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaGccaGL OaGaayzkaaaaaa@4CA6@

λ i >0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqzGeGaeyOpa4Ja aGimaiaaysW7caGGSaGaaGjbVlaaysW7caWGPbGaeyypa0JaaGymai aacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@4C08@ (2.1.19)

(2.1.18) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abgEIizdaa@39E8@ (2.1.19) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq GHshI3aaa@3BAF@ ( λ i >0,i=0,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaOqaaKqzGeGaeq4UdWwcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaa jugibiabg6da+iaaicdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0 JaaGimaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaGccaGL OaGaayzkaaaaaa@4CA5@

λ i * >0,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqbaoaaCaaaleqa baqcLbsacaGGQaaaaiabg6da+iaaicdacaaMe8UaaiilaiaaysW7ca WGPbGaeyypa0JaaGimaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGa amOBaaaa@4BE3@ (2.1.20)

Proof 5: Proof that x i * ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajuaGdaahaaWcbeqa aKqzGeGaaiOkaaaacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaG ymaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@496B@ , can be determined from a linear equation system.

( λ i >0,i=0,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aae WaaOqaaKqzGeGaeq4UdWwcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaa jugibiabg6da+iaaicdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0 JaaGimaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaGccaGL OaGaayzkaaqcLbsacqGHNis2aaa@4EE2@ (2.1.12) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq GHshI3aaa@3BAF@ { dL d λ 0 =0; dL d λ i =0,i=1,...,n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aai WaaOqaaKqbaoaalaaakeaajugibiaadsgacaWGmbaakeaajugibiaa dsgacqaH7oaBjuaGdaWgaaWcbaqcLbsacaaIWaaaleqaaaaajugibi abg2da9iaaicdacaaMe8Uaai4oaiaaywW7juaGdaWcaaGcbaqcLbsa caWGKbGaamitaaGcbaqcLbsacaWGKbGaeq4UdWwcfa4aaSbaaSqaaK qzGeGaamyAaaWcbeaaaaqcLbsacqGH9aqpcaaIWaGaaGjbVlaacYca caaMe8UaamyAaiabg2da9iaaigdacaGGSaGaaiOlaiaac6cacaGGUa Gaaiilaiaad6gaaOGaay5Eaiaaw2haaaaa@5F8E@ ={ (2.1.21)  (2.1.22) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq GH9aqpjuaGdaGadaqcgayaaKqzGeGaaiikaiaaikdacaGGUaGaaGym aiaac6cacaaIYaGaaGymaiaacMcaqaaaaaaaaaWdbiaacckapaGaey 4jIK9dbiaacckacaGGOaGaaGOmaiaac6cacaaIXaGaaiOlaiaaikda caaIYaGaaiykaaqcga4daiaawUhacaGL9baaaaa@4E5F@ .

dL d λ 0 =1 i=1 n x i =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaS aaaOqaaKqzGeGaamizaiaadYeaaOqaaKqzGeGaamizaiabeU7aSLqb aoaaBaaaleaajugibiaaicdaaSqabaaaaKqzGeGaeyypa0JaaGymai abgkHiTKqbaoaaqahakeaajugibiaadIhajuaGdaWgaaWcbaqcLbsa caWGPbaaleqaaaqaaKqzGeGaamyAaiabg2da9iaaigdaaSqaaKqzGe GaamOBaaGaeyyeIuoacqGH9aqpcaaIWaaaaa@5150@ (2.1.21)

dL d λ i = g i x i x 0 =0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaS aaaOqaaKqzGeGaamizaiaadYeaaOqaaKqzGeGaamizaiabeU7aSLqb aoaaBaaaleaajugibiaadMgaaSqabaaaaKqzGeGaeyypa0Jaam4zaK qbaoaaBaaaleaajugibiaadMgaaSqabaqcLbsacaWG4bqcfa4aaSba aSqaaKqzGeGaamyAaaWcbeaajugibiabgkHiTiaadIhajuaGdaWgaa WcbaqcLbsacaaIWaaaleqaaKqzGeGaeyypa0JaaGimaiaaysW7caGG SaGaaGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUaGaai OlaiaacYcacaWGUbaaaa@5B75@ (2.1.22)

Determination of explicit equations that give all values: x i * ,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajuaGdaahaaWcbeqa aKqzGeGaaiOkaaaacaaMe8UaaiilaiaaysW7caaMe8UaamyAaiabg2 da9iaaicdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaad6gaaaa@4AF7@ :

(2.1.22) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq GHshI3aaa@3BAF@ (2.1.23).

x i = x 0 g i ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajugibiabg2da9Kqb aoaalaaakeaajugibiaadIhajuaGdaWgaaWcbaqcLbsacaaIWaaale qaaaGcbaqcLbsacaWGNbqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaa aaqcLbsacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGymaiaacY cacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@51A0@ (2.1.23)

(2.1.21) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq GHshI3aaa@3BAF@ (2.1.24).

i=1 n x i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aacaWG4bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaI XaaabaGaamOBaaqdcqGHris5aOGaeyypa0JaaGymaaaa@427E@ (2.1.24)

i=1 n x 0 g i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaa bCaOqaaKqbaoaalaaakeaajugibiaadIhajuaGdaWgaaWcbaqcLbsa caaIWaaaleqaaaGcbaqcLbsacaWGNbqcfa4aaSbaaSqaaKqzGeGaam yAaaWcbeaaaaaabaqcLbsacaWGPbGaeyypa0JaaGymaaWcbaqcLbsa caWGUbaacqGHris5aiabg2da9iaaigdaaaa@4A1A@ (2.1.25)

i=1 n 1 g i = 1 x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaa bCaOqaaKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaam4zaKqb aoaaBaaaleaajugibiaadMgaaSqabaaaaaqaaKqzGeGaamyAaiabg2 da9iaaigdaaSqaaKqzGeGaamOBaaGaeyyeIuoacqGH9aqpjuaGdaWc aaGcbaqcLbsacaaIXaaakeaajugibiaadIhajuaGdaWgaaWcbaqcLb sacaaIWaaaleqaaaaaaaa@4CA5@ (2.1.26)

x 0 = 1 i=1 n 1 g i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaaGimaaWcbeaajugibiabg2da9Kqb aoaalaaakeaajugibiaaigdaaOqaaKqbaoaaqahakeaajuaGdaWcaa GcbaqcLbsacaaIXaaakeaajugibiaadEgajuaGdaWgaaWcbaqcLbsa caWGPbaaleqaaaaaaeaajugibiaadMgacqGH9aqpcaaIXaaaleaaju gibiaad6gaaiabggHiLdaaaaaa@4D34@ (2.1.27)

x 0 * = ( i=1 n g i 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9maabmaabaWaaabCaeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaW baaSqabeaacqGHsislcaaIXaaaaaqaaiaadMgacqGH9aqpcaaIXaaa baGaamOBaaqdcqGHris5aaGccaGLOaGaayzkaaWaaWbaaSqabeaacq GHsislcaaIXaaaaaaa@49C1@ (2.1.28)

x i * = g i 1 ( q=1 n g q 1 ) 1 ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajuaGdaahaaWcbeqa aKqzGeGaaiOkaaaacqGH9aqpcaWGNbqcfa4aaSbaaSqaaKqzGeGaam yAaaWcbeaajuaGdaahaaWcbeqaaKqzGeGaeyOeI0IaaGymaaaajuaG daqadaGcbaqcfa4aaabCaOqaaKqzGeGaam4zaKqbaoaaBaaaleaaju gibiaadghaaSqabaqcfa4aaWbaaSqabeaajugibiabgkHiTiaaigda aaaaleaajugibiaadghacqGH9aqpcaaIXaaaleaajugibiaad6gaai abggHiLdaakiaawIcacaGLPaaajuaGdaahaaWcbeqaaKqzGeGaeyOe I0IaaGymaaaacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGymai aacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@6405@ (2.1.29)

Determination of explicit equations that give all values: λ i * ,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqbaoaaCaaaleqa baqcLbsacaGGQaaaaiaaysW7caGGSaGaaGjbVlaaysW7caWGPbGaey ypa0JaaGimaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa @4BAE@ :

(2.1.17) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq GHshI3aaa@3BAF@ (2.1.30).

λ i = λ 0 g i ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqzGeGaeyypa0tc fa4aaSaaaOqaaKqzGeGaeq4UdWwcfa4aaSbaaSqaaKqzGeGaaGimaa WcbeaaaOqaaKqzGeGaam4zaKqbaoaaBaaaleaajugibiaadMgaaSqa baaaaKqzGeGaaGjbVlaacYcacaaMe8UaamyAaiabg2da9iaaigdaca GGSaGaaiOlaiaac6cacaGGUaGaaiilaiaad6gaaaa@530E@ (2.1.30)

(2.1.16) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq GHshI3aaa@3BAF@ (2.1.31)

i=1 n λ i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aacqaH7oaBdaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaa igdaaeaacaWGUbaaniabggHiLdGccqGH9aqpcaaIXaaaaa@4335@ (2.1.31)

i=1 n λ 0 g i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaa bCaOqaaKqbaoaalaaakeaajugibiabeU7aSLqbaoaaBaaaleaajugi biaaicdaaSqabaaakeaajugibiaadEgajuaGdaWgaaWcbaqcLbsaca WGPbaaleqaaaaaaeaajugibiaadMgacqGH9aqpcaaIXaaaleaajugi biaad6gaaiabggHiLdGaeyypa0JaaGymaaaa@4AD1@ (2.1.32)

i=1 n 1 g i = 1 λ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaa bCaOqaaKqbaoaalaaakeaajugibiaaigdaaOqaaKqzGeGaam4zaKqb aoaaBaaaleaajugibiaadMgaaSqabaaaaaqaaKqzGeGaamyAaiabg2 da9iaaigdaaSqaaKqzGeGaamOBaaGaeyyeIuoacqGH9aqpjuaGdaWc aaGcbaqcLbsacaaIXaaakeaajugibiabeU7aSLqbaoaaBaaaleaaju gibiaaicdaaSqabaaaaaaa@4D5C@ (2.1.33)

λ 0 = 1 i=1 n 1 g i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH7oaBjuaGdaWgaaWcbaqcLbsacaaIWaaaleqaaKqzGeGaeyypa0tc fa4aaSaaaOqaaKqzGeGaaGymaaGcbaqcfa4aaabCaOqaaKqbaoaala aakeaajugibiaaigdaaOqaaKqzGeGaam4zaKqbaoaaBaaaleaajugi biaadMgaaSqabaaaaaqaaKqzGeGaamyAaiabg2da9iaaigdaaSqaaK qzGeGaamOBaaGaeyyeIuoaaaaaaa@4DEB@ (2.1.34)

λ 0 * = ( i=1 n g i 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH7oaBjuaGdaWgaaWcbaqcLbsacaaIWaaaleqaaKqbaoaaCaaaleqa baqcLbsacaGGQaaaaiabg2da9KqbaoaabmaakeaajuaGdaaeWbGcba qcLbsacaWGNbqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajuaGdaah aaWcbeqaaKqzGeGaeyOeI0IaaGymaaaaaSqaaKqzGeGaamyAaiabg2 da9iaaigdaaSqaaKqzGeGaamOBaaGaeyyeIuoaaOGaayjkaiaawMca aKqbaoaaCaaaleqabaqcLbsacqGHsislcaaIXaaaaaaa@5376@ (2.1.35)

λ i * = g i 1 ( q=1 n g q 1 ) 1 ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacq aH7oaBjuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqbaoaaCaaaleqa baqcLbsacaGGQaaaaiabg2da9iaadEgajuaGdaWgaaWcbaqcLbsaca WGPbaaleqaaKqbaoaaCaaaleqabaqcLbsacqGHsislcaaIXaaaaKqb aoaabmaakeaajuaGdaaeWbGcbaqcLbsacaWGNbqcfa4aaSbaaSqaaK qzGeGaamyCaaWcbeaajuaGdaahaaWcbeqaaKqzGeGaeyOeI0IaaGym aaaaaSqaaKqzGeGaamyCaiabg2da9iaaigdaaSqaaKqzGeGaamOBaa GaeyyeIuoaaOGaayjkaiaawMcaaKqbaoaaCaaaleqabaqcLbsacqGH sislcaaIXaaaaiaaysW7caGGSaGaaGjbVlaadMgacqGH9aqpcaaIXa Gaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGUbaaaa@64BC@ (2.1.36) 

Observations:

x 0 * = λ 0 * = ( i=1 n g i 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaaGimaaWcbeaajuaGdaahaaWcbeqa aKqzGeGaaiOkaaaacqGH9aqpcqaH7oaBjuaGdaWgaaWcbaqcLbsaca aIWaaaleqaaKqbaoaaCaaaleqabaqcLbsacaGGQaaaaiabg2da9Kqb aoaabmaakeaajuaGdaaeWbGcbaqcLbsacaWGNbqcfa4aaSbaaSqaaK qzGeGaamyAaaWcbeaajuaGdaahaaWcbeqaaKqzGeGaeyOeI0IaaGym aaaaaSqaaKqzGeGaamyAaiabg2da9iaaigdaaSqaaKqzGeGaamOBaa GaeyyeIuoaaOGaayjkaiaawMcaaKqbaoaaCaaaleqabaqcLbsacqGH sislcaaIXaaaaaaa@597F@ (2.1.37)

x i * = λ i * = g i 1 ( q=1 n g q 1 ) 1 ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG4bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaajuaGdaahaaWcbeqa aKqzGeGaaiOkaaaacqGH9aqpcqaH7oaBjuaGdaWgaaWcbaqcLbsaca WGPbaaleqaaKqbaoaaCaaaleqabaqcLbsacaGGQaaaaiabg2da9iaa dEgajuaGdaWgaaWcbaqcLbsacaWGPbaaleqaaKqbaoaaCaaaleqaba qcLbsacqGHsislcaaIXaaaaKqbaoaabmaakeaajuaGdaaeWbGcbaqc LbsacaWGNbqcfa4aaSbaaSqaaKqzGeGaamyCaaWcbeaajuaGdaahaa WcbeqaaKqzGeGaeyOeI0IaaGymaaaaaSqaaKqzGeGaamyCaiabg2da 9iaaigdaaSqaaKqzGeGaamOBaaGaeyyeIuoaaOGaayjkaiaawMcaaK qbaoaaCaaaleqabaqcLbsacqGHsislcaaIXaaaaiaaysW7caGGSaGa aGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUaGaaiOlai aacYcacaWGUbaaaa@6AF9@ (2.1.38) 

The minimization problem of RED

We are interested in the solution to min y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaci GGTbGaaiyAaiaac6gacaWG5bqcfa4aaSbaaSqaaKqzGeGaaGimaaWc beaaaaa@3F30@ . The objective function is formulated as max( y 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaci GGTbGaaiyyaiaacIhajuaGdaqadaGcbaqcLbsacqGHsislcaWG5bqc fa4aaSbaaSqaaKqzGeGaaGimaaWcbeaaaOGaayjkaiaawMcaaaaa@42D9@ . The frequences of the different decisions, i are y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaca WG5bqcfa4aaSbaaSqaaKqzGeGaamyAaaWcbeaaaaa@3C92@ .

max( y 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsaci GGTbGaaiyyaiaacIhacaaMe8Ecfa4aaeWaaOqaaKqzGeGaeyOeI0Ia amyEaKqbaoaaBaaaleaajugibiaaicdaaSqabaaakiaawIcacaGLPa aaaaa@4466@ (2.2.1)

s.t.

i=1 n y i 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyyzImRaaGymaaWcbaGa amyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@434A@ (2.2.2)

y 0 g i y i ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaaIWaaabeaakiabgwMiZkaadEgadaWgaaWcbaGaamyA aaqabaGccaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVlaacYcaca aMe8UaamyAaiabg2da9iaaigdacaGGSaGaaiOlaiaac6cacaGGUaGa aiilaiaad6gaaaa@4B8B@ (2.2.3)

y i 0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakiabgwMiZkaaicdacaaMe8Uaaiilaiaa ysW7caWGPbGaeyypa0JaaGymaiaacYcacaGGUaGaaiOlaiaac6caca GGSaGaamOBaaaa@4847@ (2.2.4)

Proof that y 0 * >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg6da +iaaicdaaaa@3D58@

(2.2.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPq=BgrFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 naaa@3B42@ (2.2.5).

i| 1in, y i >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4aIq YaaqGaaeaacaWGPbaacaGLiWoadaWgaaWcbaGaaGymaiabgsMiJkaa dMgacqGHKjYOcaWGUbGaaiilaiaaysW7caWG5bWaaSbaaWqaaiaadM gaaeqaaSGaeyOpa4JaaGimaaqabaaaaa@4871@ (2.2.5)

g i >0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zam aaBaaaleaacaWGPbaabeaakiabg6da+iaaicdacaaMe8Uaaiilaiaa ysW7caWGPbGaeyypa0JaaGymaiaacYcacaGGUaGaaiOlaiaac6caca GGSaGaamOBaaaa@4777@ (2.2.6)

(2.2.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4jIK naaa@3A71@ (2.2.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4jIK naaa@3A71@ (2.2.6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPq=BgrFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 naaa@3B42@ (2.2.7).

y 0 * y 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabgwMi ZkaadMhadaWgaaWcbaGaaGimaaqabaGccqGH+aGpcaaIWaaaaa@410C@ (2.2.7)

Let μ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaajugibi abeY7aTLqbaoaaBaaaleaajugibiaadMgaaSqabaaaaa@3C32@ denote dual variables. The following Lagrange function is defined for RED:

L 2 = y 0 + μ 0 ( i=1 n y i 1 )+ i=1 n μ i ( y 0 g i y i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitam aaBaaaleaacaaIYaaabeaakiabg2da9iabgkHiTiaadMhadaWgaaWc baGaaGimaaqabaGccqGHRaWkcqaH8oqBdaWgaaWcbaGaaGimaaqaba GcdaqadaqaamaaqahabaGaamyEamaaBaaaleaacaWGPbaabeaakiab gkHiTiaaigdaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcq GHris5aaGccaGLOaGaayzkaaGaey4kaSYaaabCaeaacqaH8oqBdaWg aaWcbaGaamyAaaqabaGcdaqadaqaaiaadMhadaWgaaWcbaGaaGimaa qabaGccqGHsislcaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaamyEamaa BaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaWcbaGaamyAaiabg2 da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@5F66@ (2.2.8)

These derivatives will be needed in the analysis:

d L 2 d μ 0 = i=1 n y i 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamitamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacqaH 8oqBdaWgaaWcbaGaaGimaaqabaaaaOGaeyypa0ZaaabCaeaacaWG5b WaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaIXaaabaGa amOBaaqdcqGHris5aOGaeyOeI0IaaGymaiaaysW7cqGHLjYScaaIWa aaaa@4DC4@ (2.2.9)

d L 2 d μ i = y 0 g i y i 0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamitamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacqaH 8oqBdaWgaaWcbaGaamyAaaqabaaaaOGaeyypa0JaamyEamaaBaaale aacaaIWaaabeaakiabgkHiTiaadEgadaWgaaWcbaGaamyAaaqabaGc caWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVlabgwMiZkaaicdaca aMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGymaiaacYcacaGGUaGa aiOlaiaac6cacaGGSaGaamOBaaaa@5644@ (2.2.10)

d L 2 d y 0 =1+ i=1 n μ i 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamitamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG 5bWaaSbaaSqaaiaaicdaaeqaaaaakiabg2da9iabgkHiTiaaigdacq GHRaWkdaaeWbqaaiabeY7aTnaaBaaaleaacaWGPbaabeaaaeaacaWG PbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoakiaaysW7cqGHKj YOcaaIWaaaaa@4E95@ (2.2.11)

d L 2 d y i = μ 0 μ i g i 0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamitamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG 5bWaaSbaaSqaaiaadMgaaeqaaaaakiabg2da9iabeY7aTnaaBaaale aacaaIWaaabeaakiabgkHiTiabeY7aTnaaBaaaleaacaWGPbaabeaa kiaadEgadaWgaaWcbaGaamyAaaqabaGccqGHKjYOcaaIWaGaaGjbVl aacYcacaaMe8UaamyAaiabg2da9iaaigdacaGGSaGaaiOlaiaac6ca caGGUaGaaiilaiaad6gaaaa@555E@ (2.2.12)

Proof that y i * >0,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg6da +iaaicdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGimaiaacY cacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@486D@

According to (2.2.1), we want to maximize y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0 IaamyEamaaBaaaleaacaaIWaaabeaaaaa@3B94@ , which implies that we minimize y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaaIWaaabeaaaaa@3AA7@ .

(2.2.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPq=BgrFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 naaa@3B42@ i=1 n y i 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyyzImRaaGymaaWcbaGa amyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@434A@

(2.2.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPq=BgrFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 naaa@3B42@ y i 0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakiabgwMiZkaaicdacaaMe8Uaaiilaiaa ysW7caWGPbGaeyypa0JaaGymaiaacYcacaGGUaGaaiOlaiaac6caca GGSaGaamOBaaaa@4847@

Let us start from an infeasible point, origo, and move to a feasible point in the way that keeps y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaaIWaaabeaaaaa@3AA7@ as low as possible. Initially, let ( y 1 ,..., y n )=(0,...,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaac6cacaGGUaGa aiOlaiaacYcacaWG5bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaay zkaaGaeyypa0JaaiikaiaaicdacaGGSaGaaiOlaiaac6cacaGGUaGa aiilaiaaicdacaGGPaaaaa@4921@ . According to (2.2.2), this point is not feasible.

(2.2.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPq=BgrFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 naaa@3B42@ min y 0 | y i =0,i=1,...,n =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciyBai aacMgacaGGUbWaaqGaaeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaaGc caGLiWoadaWgaaWcbaGaamyEamaaBaaameaacaWGPbaabeaaliabg2 da9iaaicdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGymaiaa cYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaqabaGccqGH9aqpca aIWaaaaa@4FD5@ .

Now, we have to move away from the infeasible point ( y 1 ,..., y n )=(0,...,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaac6cacaGGUaGa aiOlaiaacYcacaWG5bWaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaay zkaaGaeyypa0JaaiikaiaaicdacaGGSaGaaiOlaiaac6cacaGGUaGa aiilaiaaicdacaGGPaaaaa@4921@ . We have to reach a point that satisfies i=1 n y i 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyyzImRaaGymaaWcbaGa amyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaaa@434A@ without increasing y0 more than necessary. To find a point that satisfies (2.2.2), we have to increase the value of at least one of the y i | i{ 1,...,n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaae aacaWG5bWaaSbaaSqaaiaadMgaaeqaaaGccaGLiWoadaWgaaWcbaGa amyAaiabgIGiopaacmaabaGaaGymaiaacYcacaGGUaGaaiOlaiaac6 cacaGGSaGaamOBaaGaay5Eaiaaw2haaaqabaaaaa@466E@ . Select one arbitrary index k| 1kn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaqGaae aacaWGRbaacaGLiWoadaWgaaWcbaGaaGymaiabgsMiJkaadUgacqGH KjYOcaWGUbaabeaaaaa@417D@ . To simplify the exposition, we let k=1. According to (2.2.3): If we increase y1 by dy1, increases by g1dy1, as long as d y i =0,i=2,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizai aadMhadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaaIWaGaaGjbVlaa cYcacaaMe8UaamyAaiabg2da9iaaikdacaGGSaGaaiOlaiaac6caca GGUaGaaiilaiaad6gaaaa@4871@ . Hence, d y 0 = g 1 d y 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizai aadMhadaWgaaWcbaGaaGimaaqabaGccqGH9aqpcaWGNbWaaSbaaSqa aiaaigdaaeqaaOGaamizaiaadMhadaWgaaWcbaGaaGymaaqabaaaaa@414B@ . Let z=d y 0 = g 1 d y 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEai aaysW7cqGH9aqpcaaMb8UaaGjbVlaadsgacaWG5bWaaSbaaSqaaiaa icdaaeqaaOGaeyypa0Jaam4zamaaBaaaleaacaaIXaaabeaakiaads gacaWG5bWaaSbaaSqaaiaaigdaaeqaaaaa@47F4@ .

However, when d y 1 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizai aadMhadaWgaaWcbaGaaGymaaqabaGccqGH+aGpcaaIWaaaaa@3D5D@ , we may also partly increase y i ,i=2,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakiaaysW7caGGSaGaaGjbVlaadMgacqGH 9aqpcaaIYaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGUbaaaa@45C8@ without increasing d y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizai aadMhadaWgaaWcbaGaaGimaaqabaaaaa@3B90@ above z. This follows from (2.2.3) and (2.2.10). Since we want to satisfy , we want to increase as much as possible, without increasing dyemabove . Hence, we select:

g i d y i =z= g 1 d y 1 ,i=2,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zam aaBaaaleaacaWGPbaabeaakiaadsgacaWG5bWaaSbaaSqaaiaadMga aeqaaOGaeyypa0JaamOEaiaaysW7cqGH9aqpcaaMb8UaaGjbVlaadE gadaWgaaWcbaGaaGymaaqabaGccaWGKbGaamyEamaaBaaaleaacaaI XaaabeaakiaaysW7caGGSaGaaGjbVlaadMgacqGH9aqpcaaIYaGaai ilaiaac6cacaGGUaGaaiOlaiaacYcacaWGUbaaaa@5525@ (2.2.13)

d y i = g 1 g i d y 1 ,i=2,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizai aadMhadaWgaaWcbaGaamyAaaqabaGccqGH9aqpdaWcaaqaaiaadEga daWgaaWcbaGaaGymaaqabaaakeaacaWGNbWaaSbaaSqaaiaadMgaae qaaaaakiaadsgacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaGjbVlaa cYcacaaMe8UaamyAaiabg2da9iaaikdacaGGSaGaaiOlaiaac6caca GGUaGaaiilaiaad6gaaaa@4E8C@ (2.2.14)

( d y 1 >0 )( g i >0,i=1,...,n )d y i >0,i=2,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWGKbGaamyEamaaBaaaleaacaaIXaaabeaakiabg6da+iaaicda aiaawIcacaGLPaaacqGHNis2daqadaqaaiaadEgadaWgaaWcbaGaam yAaaqabaGccqGH+aGpcaaIWaGaaGjbVlaacYcacaaMe8UaamyAaiab g2da9iaaigdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaad6gaai aawIcacaGLPaaacqGHshI3caWGKbGaamyEamaaBaaaleaacaWGPbaa beaakiabg6da+iaaicdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0 JaaGOmaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@62DE@ (2.2.15)

Since we started in origo, we have

y i =d y i +0>0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakiabg2da9iaadsgacaWG5bWaaSbaaSqa aiaadMgaaeqaaOGaey4kaSIaaGimaiabg6da+iaaicdacaaMe8Uaai ilaiaaysW7caWGPbGaeyypa0JaaGymaiaacYcacaGGUaGaaiOlaiaa c6cacaGGSaGaamOBaaaa@4D36@ (2.2.16)

We already know that y 0 * y 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabgwMi ZkaadMhadaWgaaWcbaGaaGimaaqabaGccqGH+aGpcaaIWaaaaa@410C@ . Hence,.

y i * >0,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg6da +iaaicdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGimaiaacY cacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@486D@ (2.2.17)

Observation: The following direct method can be used to solve the optimization problem of RED.

First, remember that y 0 * =d y 0 * +0=z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iaadsgacaWG5bWaaSbaaSqaaiaaicdaaeqaaOWaaWbaaSqabeaaca GGQaaaaOGaey4kaSIaaGimaiabg2da9iaadQhaaaa@43F9@ . We may directly determine the optimal values of y i * >0,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg6da +iaaicdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGimaiaacY cacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@486D@ without using the Lagrange function and KKT conditions, in this way:

i=1 n y i =( ( d y 1 +0 )+( d y 2 +0 )...+( d y n +0 ) ) =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaadaqa daqaaiaadsgacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaaG imaaGaayjkaiaawMcaaiabgUcaRmaabmaabaGaamizaiaadMhadaWg aaWcbaGaaGOmaaqabaGccqGHRaWkcaaIWaaacaGLOaGaayzkaaGaai Olaiaac6cacaGGUaGaey4kaSYaaeWaaeaacaWGKbGaamyEamaaBaaa leaacaWGUbaabeaakiabgUcaRiaaicdaaiaawIcacaGLPaaaaiaawI cacaGLPaaaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGH ris5aOGaeyypa0JaaGymaaaa@5B2D@ (2.2.18)

i=1 n y i =( y 1 + y 2 +...+ y n ) =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaacaWG 5bWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaamyEamaaBaaaleaaca aIYaaabeaakiabgUcaRiaac6cacaGGUaGaaiOlaiabgUcaRiaadMha daWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaaaSqaaiaadMgacq GH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOGaeyypa0JaaGymaaaa @4FE5@ (2.2.19)

i=1 n y i =( z g 1 +( g 1 g 2 z g 1 )+...+( g 1 g n z g 1 ) ) =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaadaWc aaqaaiaadQhaaeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaaaakiabgU caRmaabmaabaWaaSaaaeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaaGc baGaam4zamaaBaaaleaacaaIYaaabeaaaaGcdaWcaaqaaiaadQhaae aacaWGNbWaaSbaaSqaaiaaigdaaeqaaaaaaOGaayjkaiaawMcaaiab gUcaRiaac6cacaGGUaGaaiOlaiabgUcaRmaabmaabaWaaSaaaeaaca WGNbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaam4zamaaBaaaleaacaWG UbaabeaaaaGcdaWcaaqaaiaadQhaaeaacaWGNbWaaSbaaSqaaiaaig daaeqaaaaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaWcbaGaamyA aiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdGccqGH9aqpcaaIXa aaaa@5D82@ (2.2.20)

i=1 n y i =( z g 1 + z g 2 +...+ z g n ) =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaadaWc aaqaaiaadQhaaeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaaaakiabgU caRmaalaaabaGaamOEaaqaaiaadEgadaWgaaWcbaGaaGOmaaqabaaa aOGaey4kaSIaaiOlaiaac6cacaGGUaGaey4kaSYaaSaaaeaacaWG6b aabaGaam4zamaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaa aSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOGaey ypa0JaaGymaaaa@52DC@ (2.2.21)

i=1 n y i =( 1 g 1 + 1 g 2 +...+ 1 g n ) = 1 z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaeWaaeaadaWc aaqaaiaaigdaaeaacaWGNbWaaSbaaSqaaiaaigdaaeqaaaaakiabgU caRmaalaaabaGaaGymaaqaaiaadEgadaWgaaWcbaGaaGOmaaqabaaa aOGaey4kaSIaaiOlaiaac6cacaGGUaGaey4kaSYaaSaaaeaacaaIXa aabaGaam4zamaaBaaaleaacaWGUbaabeaaaaaakiaawIcacaGLPaaa aSqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aOGaey ypa0ZaaSaaaeaacaaIXaaabaGaamOEaaaaaaa@531F@ (2.2.22)

i=1 n g i 1 = 1 z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aacaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacqGHsisl caaIXaaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHri s5aOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamOEaaaaaaa@455B@ (2.2.23)

y 0 * =z= ( i=1 n g i 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iaadQhacqGH9aqpdaqadaqaamaaqahabaGaam4zamaaBaaaleaaca WGPbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaaaaaeaacaWGPbGa eyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGaayjkaiaawMcaam aaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@4BC7@ (2.2.24)

y i * = g i 1 y 0 * = g i 1 ( q=1 n g q 1 ) 1 ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iaadEgadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiabgkHiTi aaigdaaaGccaWG5bWaaSbaaSqaaiaaicdaaeqaaOWaaWbaaSqabeaa caGGQaaaaOGaeyypa0Jaam4zamaaBaaaleaacaWGPbaabeaakmaaCa aaleqabaGaeyOeI0IaaGymaaaakmaabmaabaWaaabCaeaacaWGNbWa aSbaaSqaaiaadghaaeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaaaa qaaiaadghacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaGccaGL OaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGjbVlaacY cacaaMe8UaamyAaiabg2da9iaaigdacaGGSaGaaiOlaiaac6cacaGG UaGaaiilaiaad6gaaaa@60A9@ (2.2.25)

Proof that μ i * ,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0 2aaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOGaaGjb VlaacYcacaaMe8UaamyAaiabg2da9iaaicdacaGGSaGaaiOlaiaac6 cacaGGUaGaaiilaiaad6gaaaa@4763@ can be solved via a linear equation system and that μ i * >0,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0 2aaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOGaeyOp a4JaaGimaiaaysW7caGGSaGaaGjbVlaadMgacqGH9aqpcaaIWaGaai ilaiaac6cacaGGUaGaaiOlaiaacYcacaWGUbaaaa@4925@ .

Since y i * >0,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg6da +iaaicdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGimaiaacY cacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@486D@ , we may determine that μ i * >0,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0 2aaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOGaeyOp a4JaaGimaiaaysW7caGGSaGaaGjbVlaadMgacqGH9aqpcaaIWaGaai ilaiaac6cacaGGUaGaaiOlaiaacYcacaWGUbaaaa@4925@ via a linear equation system.

( y i d L 2 d y i =0,i=0,...,n )( y i >0,i=0,...,n )( d L 2 d y i =0,i=0,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWG5bWaaSbaaSqaaiaadMgaaeqaaOWaaSaaaeaacaWGKbGaamit amaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG5bWaaSbaaSqaai aadMgaaeqaaaaakiabg2da9iaaicdacaaMe8UaaiilaiaaysW7caWG PbGaeyypa0JaaGimaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaam OBaaGaayjkaiaawMcaaiabgEIizpaabmaabaGaamyEamaaBaaaleaa caWGPbaabeaakiabg6da+iaaicdacaaMe8UaaiilaiaaysW7caWGPb Gaeyypa0JaaGimaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOB aaGaayjkaiaawMcaaiabgkDiEpaabmaabaWaaSaaaeaacaWGKbGaam itamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG5bWaaSbaaSqa aiaadMgaaeqaaaaakiabg2da9iaaicdacaaMe8UaaiilaiaaysW7ca WGPbGaeyypa0JaaGimaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGa amOBaaGaayjkaiaawMcaaaaa@7720@

d L 2 d y 0 =1+ q=1 n μ q =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamitamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG 5bWaaSbaaSqaaiaaicdaaeqaaaaakiabg2da9iabgkHiTiaaigdacq GHRaWkdaaeWbqaaiabeY7aTnaaBaaaleaacaWGXbaabeaakiabg2da 9iaaicdaaSqaaiaadghacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHri s5aaaa@4C74@ (2.2.26)

d L 2 d y i = μ 0 μ i g i =0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamitamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacaWG 5bWaaSbaaSqaaiaadMgaaeqaaaaakiabg2da9iabeY7aTnaaBaaale aacaaIWaaabeaakiabgkHiTiabeY7aTnaaBaaaleaacaWGPbaabeaa kiaadEgadaWgaaWcbaGaamyAaaqabaGccqGH9aqpcaaIWaGaaGjbVl aacYcacaaMe8UaamyAaiabg2da9iaaigdacaGGSaGaaiOlaiaac6ca caGGUaGaaiilaiaad6gaaaa@54AF@ (2.2.27)

(2.2.26) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 naaa@3B20@ i| 1in, μ i >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4aIq YaaqGaaeaacaWGPbaacaGLiWoadaWgaaWcbaGaaGymaiabgsMiJkaa dMgacqGHKjYOcaWGUbGaaiilaiaaysW7cqaH8oqBdaWgaaadbaGaam yAaaqabaWccqGH+aGpcaaIWaaabeaaaaa@4929@ (2.2.28)

( g i >0,i=1,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaeyOpa4JaaGimaiaaysW7 caGGSaGaaGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUa GaaiOlaiaacYcacaWGUbaacaGLOaGaayzkaaGaey4jIKnaaa@4AAE@ (2.2.27) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4jIK naaa@3A71@ (2.2.28) μ 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 TaeqiVd02aaSbaaSqaaiaaicdaaeqaaOGaeyOpa4JaaGimaaaa@3F88@ (2.2.29)

( g i >0,i=1,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaeyOpa4JaaGimaiaaysW7 caGGSaGaaGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUa GaaiOlaiaacYcacaWGUbaacaGLOaGaayzkaaGaey4jIKnaaa@4AAE@ (2.2.27) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4jIK naaa@3A71@ (2.2.29) ( μ i >0,i=1,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 9aaeWaaeaacqaH8oqBdaWgaaWcbaGaamyAaaqabaGccqGH+aGpcaaI WaGaaGjbVlaacYcacaaMe8UaamyAaiabg2da9iaaigdacaGGSaGaai Olaiaac6cacaGGUaGaaiilaiaad6gaaiaawIcacaGLPaaaaaa@4C27@ (2.2.30)

(2.2.29) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4jIK naaa@3A71@ (2.2.30) ( μ i >0,i=0,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 9aaeWaaeaacqaH8oqBdaWgaaWcbaGaamyAaaqabaGccqGH+aGpcaaI WaGaaGjbVlaacYcacaaMe8UaamyAaiabg2da9iaaicdacaGGSaGaai Olaiaac6cacaGGUaGaaiilaiaad6gaaiaawIcacaGLPaaaaaa@4C26@ (2.2.31)

Proof that y i * ,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiaaysW7 caGGSaGaaGjbVlaadMgacqGH9aqpcaaIWaGaaiilaiaac6cacaGGUa GaaiOlaiaacYcacaWGUbaaaa@46AB@ can be solved via a linear equation system and that y i * >0,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg6da +iaaicdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGimaiaacY cacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@486D@ .

Since μ i * >0,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0 2aaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOGaeyOp a4JaaGimaiaaysW7caGGSaGaaGjbVlaadMgacqGH9aqpcaaIWaGaai ilaiaac6cacaGGUaGaaiOlaiaacYcacaWGUbaaaa@4925@ , we may determine that y i * >0,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg6da +iaaicdacaaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGimaiaacY cacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@486D@ via a linear equation system.

( μ i d L 2 d μ i =0,i=0,...,n )( μ i >0,i=0,...,n )( d L 2 d μ i =0,i=0,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacqaH8oqBdaWgaaWcbaGaamyAaaqabaGcdaWcaaqaaiaadsgacaWG mbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaamizaiabeY7aTnaaBaaale aacaWGPbaabeaaaaGccqGH9aqpcaaIWaGaaGjbVlaacYcacaaMe8Ua amyAaiabg2da9iaaicdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilai aad6gaaiaawIcacaGLPaaacqGHNis2daqadaqaaiabeY7aTnaaBaaa leaacaWGPbaabeaakiabg6da+iaaicdacaaMe8UaaiilaiaaysW7ca WGPbGaeyypa0JaaGimaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGa amOBaaGaayjkaiaawMcaaiabgkDiEpaabmaabaWaaSaaaeaacaWGKb GaamitamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacqaH8oqBdaWg aaWcbaGaamyAaaqabaaaaOGaeyypa0JaaGimaiaaysW7caGGSaGaaG jbVlaadMgacqGH9aqpcaaIWaGaaiilaiaac6cacaGGUaGaaiOlaiaa cYcacaWGUbaacaGLOaGaayzkaaaaaa@7A00@

d L 2 d μ 0 = q=1 n y q 1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamitamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacqaH 8oqBdaWgaaWcbaGaaGimaaqabaaaaOGaeyypa0ZaaabCaeaacaWG5b WaaSbaaSqaaiaadghaaeqaaOGaeyOeI0IaaGymaiabg2da9iaaicda aSqaaiaadghacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaaa@4B92@ (2.2.32)

d L 2 d μ i = y 0 g i y i =0,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamitamaaBaaaleaacaaIYaaabeaaaOqaaiaadsgacqaH 8oqBdaWgaaWcbaGaamyAaaqabaaaaOGaeyypa0JaamyEamaaBaaale aacaaIWaaabeaakiabgkHiTiaadEgadaWgaaWcbaGaamyAaaqabaGc caWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyypa0JaaGimaiaaysW7ca GGSaGaaGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUaGa aiOlaiaacYcacaWGUbaaaa@53F7@ (2.2.33)

(2.2.32) i| 1in, y i >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 Taey4aIqYaaqGaaeaacaWGPbaacaGLiWoadaWgaaWcbaGaaGymaiab gsMiJkaadMgacqGHKjYOcaWGUbGaaiilaiaaysW7caWG5bWaaSbaaW qaaiaadMgaaeqaaSGaeyOpa4JaaGimaaqabaaaaa@4ACE@ (2.2.34)

( g i >0,i=1,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaeyOpa4JaaGimaiaaysW7 caGGSaGaaGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUa GaaiOlaiaacYcacaWGUbaacaGLOaGaayzkaaGaey4jIKnaaa@4AAE@ (2.2.33) y 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 TaamyEamaaBaaaleaacaaIWaaabeaakiabg6da+iaaicdaaaa@3ED0@ (2.2.35)

( g i >0,i=1,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaeyOpa4JaaGimaiaaysW7 caGGSaGaaGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUa GaaiOlaiaacYcacaWGUbaacaGLOaGaayzkaaGaey4jIKnaaa@4AAE@ (2.2.35) ( y i >0,i=1,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 9aaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyOpa4JaaGim aiaaysW7caGGSaGaaGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiaac6 cacaGGUaGaaiOlaiaacYcacaWGUbaacaGLOaGaayzkaaaaaa@4B6F@ (2.2.36)

(2.2.35) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4jIK naaa@3A71@ (2.2.36) ( y i >0,i=0,...,n ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 9aaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyOpa4JaaGim aiaaysW7caGGSaGaaGjbVlaadMgacqGH9aqpcaaIWaGaaiilaiaac6 cacaGGUaGaaiOlaiaacYcacaWGUbaacaGLOaGaayzkaaaaaa@4B6E@ (2.2.37)

Determination of explicit equations that give all values: y i * ,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiaaysW7 caGGSaGaaGjbVlaaysW7caWGPbGaeyypa0JaaGimaiaacYcacaGGUa GaaiOlaiaac6cacaGGSaGaamOBaaaa@4838@ :

(2.2.33) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 naaa@3B20@ (2.2.38).

y i = y 0 g i ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakiabg2da9maalaaabaGaamyEamaaBaaa leaacaaIWaaabeaaaOqaaiaadEgadaWgaaWcbaGaamyAaaqabaaaaO GaaGjbVlaacYcacaaMe8UaamyAaiabg2da9iaaigdacaGGSaGaaiOl aiaac6cacaGGUaGaaiilaiaad6gaaaa@4ADB@ (2.2.38)

(2.2.32) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 naaa@3B20@ (2.2.39).

i=1 n y i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aacaWG5bWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaaI XaaabaGaamOBaaqdcqGHris5aOGaeyypa0JaaGymaaaa@427F@ (2.2.39)

i=1 n y 0 g i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aadaWcaaqaaiaadMhadaWgaaWcbaGaaGimaaqabaaakeaacaWGNbWa aSbaaSqaaiaadMgaaeqaaaaaaeaacaWGPbGaeyypa0JaaGymaaqaai aad6gaa0GaeyyeIuoakiabg2da9iaaigdaaaa@446B@ (2.2.40)

i=1 n 1 g i = 1 y 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aadaWcaaqaaiaaigdaaeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaaaa aeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoakiabg2 da9maalaaabaGaaGymaaqaaiaadMhadaWgaaWcbaGaaGimaaqabaaa aaaa@452C@ (2.2.41)

y 0 = 1 i=1 n 1 g i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaaIWaaabeaakiabg2da9maalaaabaGaaGymaaqaamaa qahabaWaaSaaaeaacaaIXaaabaGaam4zamaaBaaaleaacaWGPbaabe aaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaa aaaa@452C@ (2.2.42)

y 0 * = ( i=1 n g i 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9maabmaabaWaaabCaeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaW baaSqabeaacqGHsislcaaIXaaaaaqaaiaadMgacqGH9aqpcaaIXaaa baGaamOBaaqdcqGHris5aaGccaGLOaGaayzkaaWaaWbaaSqabeaacq GHsislcaaIXaaaaaaa@49C2@ (2.2.43)

y i * = g i 1 ( q=1 n g q 1 ) 1 ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iaadEgadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiabgkHiTi aaigdaaaGcdaqadaqaamaaqahabaGaam4zamaaBaaaleaacaWGXbaa beaakmaaCaaaleqabaGaeyOeI0IaaGymaaaaaeaacaWGXbGaeyypa0 JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGaayjkaiaawMcaamaaCaaa leqabaGaeyOeI0IaaGymaaaakiaaysW7caGGSaGaaGjbVlaadMgacq GH9aqpcaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGUbaa aa@58E1@ (2.2.44)

Determination of explicit equations that give all values: μ i * ,i=0,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0 2aaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOGaaGjb VlaacYcacaaMe8UaaGjbVlaadMgacqGH9aqpcaaIWaGaaiilaiaac6 cacaGGUaGaaiOlaiaacYcacaWGUbaaaa@48F0@ :

(2.2.27) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 naaa@3B20@ (2.2.45).

μ i = μ 0 g i ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0 2aaSbaaSqaaiaadMgaaeqaaOGaeyypa0ZaaSaaaeaacqaH8oqBdaWg aaWcbaGaaGimaaqabaaakeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaa aakiaaysW7caGGSaGaaGjbVlaadMgacqGH9aqpcaaIXaGaaiilaiaa c6cacaGGUaGaaiOlaiaacYcacaWGUbaaaa@4C4B@ (2.2.45)

(2.2.26) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4 naaa@3B20@ (2.2.46)

i=1 n μ i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aacqaH8oqBdaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaa igdaaeaacaWGUbaaniabggHiLdGccqGH9aqpcaaIXaaaaa@4337@ (2.2.46)

i=1 n μ 0 g i =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aadaWcaaqaaiabeY7aTnaaBaaaleaacaaIWaaabeaaaOqaaiaadEga daWgaaWcbaGaamyAaaqabaaaaaqaaiaadMgacqGH9aqpcaaIXaaaba GaamOBaaqdcqGHris5aOGaeyypa0JaaGymaaaa@4523@ (2.2.47)

i=1 n 1 g i = 1 μ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCae aadaWcaaqaaiaaigdaaeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaaaa aeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoakiabg2 da9maalaaabaGaaGymaaqaaiabeY7aTnaaBaaaleaacaaIWaaabeaa aaaaaa@45E4@ (2.2.48)

μ 0 = 1 i=1 n 1 g i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0 2aaSbaaSqaaiaaicdaaeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaWa aabCaeaadaWcaaqaaiaaigdaaeaacaWGNbWaaSbaaSqaaiaadMgaae qaaaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoa aaaaaa@45E4@ (2.2.49)

μ 0 * = ( i=1 n g i 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0 2aaSbaaSqaaiaaicdaaeqaaOWaaWbaaSqabeaacaGGQaaaaOGaeyyp a0ZaaeWaaeaadaaeWbqaaiaadEgadaWgaaWcbaGaamyAaaqabaGcda ahaaWcbeqaaiabgkHiTiaaigdaaaaabaGaamyAaiabg2da9iaaigda aeaacaWGUbaaniabggHiLdaakiaawIcacaGLPaaadaahaaWcbeqaai abgkHiTiaaigdaaaaaaa@4A7A@ (2.2.50)

μ i * = g i 1 ( q=1 n g q 1 ) 1 ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0 2aaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOGaeyyp a0Jaam4zamaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaeyOeI0 IaaGymaaaakmaabmaabaWaaabCaeaacaWGNbWaaSbaaSqaaiaadgha aeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaaaaqaaiaadghacqGH9a qpcaaIXaaabaGaamOBaaqdcqGHris5aaGccaGLOaGaayzkaaWaaWba aSqabeaacqGHsislcaaIXaaaaOGaaGjbVlaacYcacaaMe8UaamyAai abg2da9iaaigdacaGGSaGaaiOlaiaac6cacaGGUaGaaiilaiaad6ga aaa@5999@ (2.2.51)

Observations: 

y 0 * = μ 0 * = ( i=1 n g i 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iabeY7aTnaaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaa aakiabg2da9maabmaabaWaaabCaeaacaWGNbWaaSbaaSqaaiaadMga aeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaaaaqaaiaadMgacqGH9a qpcaaIXaaabaGaamOBaaqdcqGHris5aaGccaGLOaGaayzkaaWaaWba aSqabeaacqGHsislcaaIXaaaaaaa@4E53@ (2.2.52)

y i * = μ i * = g i 1 ( q=1 n g q 1 ) 1 ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iabeY7aTnaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaa aakiabg2da9iaadEgadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqa aiabgkHiTiaaigdaaaGcdaqadaqaamaaqahabaGaam4zamaaBaaale aacaWGXbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaaaaaeaacaWG XbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGaayjkaiaawM caamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaysW7caGGSaGaaGjb VlaadMgacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacY cacaWGUbaaaa@5DA6@ (2.2.53)

Generalized Observations:

x 0 * = λ 0 * = y 0 * = μ 0 * = ( i=1 n g i 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iabeU7aSnaaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaa aakiabg2da9iaadMhadaWgaaWcbaGaaGimaaqabaGcdaahaaWcbeqa aiaacQcaaaGccqGH9aqpcqaH8oqBdaWgaaWcbaGaaGimaaqabaGcda ahaaWcbeqaaiaacQcaaaGccqGH9aqpdaqadaqaamaaqahabaGaam4z amaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaa aaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@56BA@ (2.2.54)

x i * = λ i * = y i * = μ i * = g i 1 ( q=1 n g q 1 ) 1 ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iabeU7aSnaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaa aakiabg2da9iaadMhadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqa aiaacQcaaaGccqGH9aqpcqaH8oqBdaWgaaWcbaGaamyAaaqabaGcda ahaaWcbeqaaiaacQcaaaGccqGH9aqpcaWGNbWaaSbaaSqaaiaadMga aeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaadaaeWb qaaiaadEgadaWgaaWcbaGaamyCaaqabaGcdaahaaWcbeqaaiabgkHi TiaaigdaaaaabaGaamyCaiabg2da9iaaigdaaeaacaWGUbaaniabgg HiLdaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGc caaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGymaiaacYcacaGGUa GaaiOlaiaac6cacaGGSaGaamOBaaaa@6675@ (2.2.55)

Sensitivity analyses

First, the sensitivity analyses will concern these variables: x 0 * = λ 0 * = y 0 * = μ 0 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iabeU7aSnaaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaa aakiabg2da9iaadMhadaWgaaWcbaGaaGimaaqabaGcdaahaaWcbeqa aiaacQcaaaGccqGH9aqpcqaH8oqBdaWgaaWcbaGaaGimaaqabaGcda ahaaWcbeqaaiaacQcaaaaaaa@4884@ . How do these variables change under the influence of changing elements in the game matrix?

Observation: x 0 * = λ 0 * = y 0 * = μ 0 * = ( i=1 n g i 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iabeU7aSnaaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaa aakiabg2da9iaadMhadaWgaaWcbaGaaGimaaqabaGcdaahaaWcbeqa aiaacQcaaaGccqGH9aqpcqaH8oqBdaWgaaWcbaGaaGimaaqabaGcda ahaaWcbeqaaiaacQcaaaGccqGH9aqpdaqadaqaamaaqahabaGaam4z amaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaa aaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@56BA@

Proof that d x 0 * d g i >0 d 2 x 0 * d g i 2 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamiEamaaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGa aiOkaaaaaOqaaiaadsgacaWGNbWaaSbaaSqaaiaadMgaaeqaaaaaki abg6da+iaaicdacaaMe8Uaey4jIKTaaGjbVpaalaaabaGaamizamaa CaaaleqabaGaaGOmaaaakiaadIhadaWgaaWcbaGaaGimaaqabaGcda ahaaWcbeqaaiaacQcaaaaakeaacaWGKbGaam4zamaaBaaaleaacaWG PbaabeaakmaaCaaaleqabaGaaGOmaaaaaaGccqGH8aapcaaIWaaaaa@5079@ .

x 0 * = ( i=1 n g i 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9maabmaabaWaaabCaeaacaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaW baaSqabeaacqGHsislcaaIXaaaaaqaaiaadMgacqGH9aqpcaaIXaaa baGaamOBaaqdcqGHris5aaGccaGLOaGaayzkaaWaaWbaaSqabeaacq GHsislcaaIXaaaaaaa@49C1@ (2.3.1)

d x 0 * d g i =(1) ( i=1 n g i 1 ) 2 ( g i 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamiEamaaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGa aiOkaaaaaOqaaiaadsgacaWGNbWaaSbaaSqaaiaadMgaaeqaaaaaki abg2da9iaacIcacqGHsislcaaIXaGaaiykamaabmaabaWaaabCaeaa caWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacqGHsislca aIXaaaaaqaaiaadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5 aaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsislcaaIYaaaaOWaae WaaeaacqGHsislcaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqa beaacqGHsislcaaIYaaaaaGccaGLOaGaayzkaaaaaa@5725@ (2.3.2)

d x 0 * d g i = g i 2 ( i=1 n g i 1 ) 2 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamiEamaaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGa aiOkaaaaaOqaaiaadsgacaWGNbWaaSbaaSqaaiaadMgaaeqaaaaaki abg2da9iaadEgadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiab gkHiTiaaikdaaaGcdaqadaqaamaaqahabaGaam4zamaaBaaaleaaca WGPbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaaaaaeaacaWGPbGa eyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGaayjkaiaawMcaam aaCaaaleqabaGaeyOeI0IaaGOmaaaakiabg6da+iaaicdaaaa@5370@ (2.3.3)

d 2 x 0 * d g i 2 =2 g i 3 ( i=1 n g i 1 ) 2 + g i 2 (2) ( i=1 n g i 1 ) 3 ( 1 ) g i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaaI WaaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgacaWGNbWaaS baaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da 9iabgkHiTiaaikdacaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaS qabeaacqGHsislcaaIZaaaaOWaaeWaaeaadaaeWbqaaiaadEgadaWg aaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiabgkHiTiaaigdaaaaaba GaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaakiaawIca caGLPaaadaahaaWcbeqaaiabgkHiTiaaikdaaaGccqGHRaWkcaWGNb WaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacqGHsislcaaIYaaa aOGaaiikaiabgkHiTiaaikdacaGGPaWaaeWaaeaadaaeWbqaaiaadE gadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiabgkHiTiaaigda aaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaaki aawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaiodaaaGcdaqadaqa aiabgkHiTiaaigdaaiaawIcacaGLPaaacaWGNbWaaSbaaSqaaiaadM gaaeqaaOWaaWbaaSqabeaacqGHsislcaaIYaaaaaaa@715B@ (2.3.4)

d 2 x 0 * d g i 2 =2 g i 3 ( i=1 n g i 1 ) 2 ( 1 g i 1 ( i=1 n g i 1 ) 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaaI WaaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgacaWGNbWaaS baaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da 9iabgkHiTiaaikdacaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaS qabeaacqGHsislcaaIZaaaaOWaaeWaaeaadaaeWbqaaiaadEgadaWg aaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiabgkHiTiaaigdaaaaaba GaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaakiaawIca caGLPaaadaahaaWcbeqaaiabgkHiTiaaikdaaaGcdaqadaqaaiaaig dacqGHsislcaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaa cqGHsislcaaIXaaaaOWaaeWaaeaadaaeWbqaaiaadEgadaWgaaWcba GaamyAaaqabaGcdaahaaWcbeqaaiabgkHiTiaaigdaaaaabaGaamyA aiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaakiaawIcacaGLPa aadaahaaWcbeqaaiabgkHiTiaaigdaaaaakiaawIcacaGLPaaaaaa@698E@ (2.3.5)

d 2 x 0 * d g i 2 =2 g i 1 ( x i * ) 2 ( 1 x i * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaaI WaaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgacaWGNbWaaS baaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da 9iabgkHiTiaaikdacaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaS qabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaa dMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaOWaaeWaaeaacaaIXaGaeyOeI0IaamiEamaa BaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaaaOGaayjkai aawMcaaaaa@53C4@ (2.3.6)

( 0< x i * <1 )( g i >0 ) d 2 x 0 * d g i 2 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaaIWaGaeyipaWJaamiEamaaBaaaleaacaWGPbaabeaakmaaCaaa leqabaGaaiOkaaaakiabgYda8iaaigdaaiaawIcacaGLPaaacqGHNi s2daqadaqaaiaadEgadaWgaaWcbaGaamyAaaqabaGccqGH+aGpcaaI WaaacaGLOaGaayzkaaGaeyO0H49aaSaaaeaacaWGKbWaaWbaaSqabe aacaaIYaaaaOGaamiEamaaBaaaleaacaaIWaaabeaakmaaCaaaleqa baGaaiOkaaaaaOqaaiaadsgacaWGNbWaaSbaaSqaaiaadMgaaeqaaO WaaWbaaSqabeaacaaIYaaaaaaakiabgYda8iaaicdaaaa@549D@ (2.3.7)

Observation: x 0 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8B@ is a strictly increasing and strictly concave function of each gi. From the Jensen inequality, it follows that increasing risk in gi will reduce the expected value of x 0 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8B@ . Compare Figure 1.

Figure 1 In this graph, the horizontal axes represents E(g1), the expected value of g1. Here, g1 is a stochastic variable. There are two possible outcomes, namely E( g 1 )1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgkHiTiaa igdaaaa@3E6B@ and E( g 1 )+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiaa igdaaaa@3E60@ , with probabilities ½ and ½ respectively. The vertical axes shows x 0 * ( E( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakmaabmaa baGaamyraiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411E@ , the optimal objective function value as a function of the expected value of g1, and E( x 0 * ( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyram aabmaabaGaamiEamaaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGa aiOkaaaakiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411E@ , the expected value of the optimal objective function value of x 0 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8B@ as a function of the value of g1. The graph also includes a linear approximation of x 0 * ( E( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakmaabmaa baGaamyraiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411E@ based on the values of x 0 * (E( g 1 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiaacIca caWGfbGaaiikaiaadEgadaWgaaWcbaGaaGymaaqabaGccaGGPaGaai ykaaaa@40EE@ for E( g 1 )=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaa igdaaaa@3E84@ and for E( g 1 )=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaa iodaaaa@3E86@ . This linear approximation is equal to E( x 0 * ( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyram aabmaabaGaamiEamaaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGa aiOkaaaakiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411E@ for E( g 1 )=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaa ikdaaaa@3E85@ . According to the Jensen inequality, E( x 0 * ( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyram aabmaabaGaamiEamaaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGa aiOkaaaakiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411E@ < x 0 * ( E( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakmaabmaa baGaamyraiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411E@ , when x 0 * (E( g 1 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiaacIca caWGfbGaaiikaiaadEgadaWgaaWcbaGaaGymaaqabaGccaGGPaGaai ykaaaa@40EE@ is a strictly concave function and g1 is a stochastic variable. This graph illustrates that the Jensen inequality is correct. The graph also illustrates the general conclusion that the expected optimal objective function value E( x 0 * ( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyram aabmaabaGaamiEamaaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGa aiOkaaaakiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411E@ is a strictly decreasing function of the level of risk in g1.

Second, the sensitivity analyses will concern these variables: x i * = λ i * = y i * = μ i * ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iabeU7aSnaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaa aakiabg2da9iaadMhadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqa aiaacQcaaaGccqGH9aqpcqaH8oqBdaWgaaWcbaGaamyAaaqabaGcda ahaaWcbeqaaiaacQcaaaGccaaMe8UaaiilaiaaysW7caWGPbGaeyyp a0JaaGymaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaamOBaaaa@5440@ . How do these variables change under the influence of changing elements in the game matrix?

Observation: x i * = λ i * = y i * = μ i * = g i 1 ( q=1 n g q 1 ) 1 ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iabeU7aSnaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaa aakiabg2da9iaadMhadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqa aiaacQcaaaGccqGH9aqpcqaH8oqBdaWgaaWcbaGaamyAaaqabaGcda ahaaWcbeqaaiaacQcaaaGccqGH9aqpcaWGNbWaaSbaaSqaaiaadMga aeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaadaaeWb qaaiaadEgadaWgaaWcbaGaamyCaaqabaGcdaahaaWcbeqaaiabgkHi TiaaigdaaaaabaGaamyCaiabg2da9iaaigdaaeaacaWGUbaaniabgg HiLdaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGc caaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGymaiaacYcacaGGUa GaaiOlaiaac6cacaGGSaGaamOBaaaa@6675@

Proof that d x i * d g i <0 d 2 x i * d g i 2 >0,i{ 1,...,n } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamiEamaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGa aiOkaaaaaOqaaiaadsgacaWGNbWaaSbaaSqaaiaadMgaaeqaaaaaki abgYda8iaaicdacaaMe8Uaey4jIKTaaGjbVpaalaaabaGaamizamaa CaaaleqabaGaaGOmaaaakiaadIhadaWgaaWcbaGaamyAaaqabaGcda ahaaWcbeqaaiaacQcaaaaakeaacaWGKbGaam4zamaaBaaaleaacaWG PbaabeaakmaaCaaaleqabaGaaGOmaaaaaaGccqGH+aGpcaaIWaGaaG jbVlaacYcacaaMe8UaamyAaiabgIGiopaacmaabaGaaGymaiaacYca caGGUaGaaiOlaiaac6cacaGGSaGaamOBaaGaay5Eaiaaw2haaaaa@5E72@ .

x i * = g i 1 ( q=1 n g q 1 ) 1 ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iaadEgadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiabgkHiTi aaigdaaaGcdaqadaqaamaaqahabaGaam4zamaaBaaaleaacaWGXbaa beaakmaaCaaaleqabaGaeyOeI0IaaGymaaaaaeaacaWGXbGaeyypa0 JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGaayjkaiaawMcaamaaCaaa leqabaGaeyOeI0IaaGymaaaakiaaysW7caGGSaGaaGjbVlaadMgacq GH9aqpcaaIXaGaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWGUbaa aa@58E0@ (2.3.8)

d x i * d g i = g i 2 ( q=1 n g q 1 ) 1 + g i 1 (1) ( q=1 n g q 1 ) 2 ( g q 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamiEamaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGa aiOkaaaaaOqaaiaadsgacaWGNbWaaSbaaSqaaiaadMgaaeqaaaaaki abg2da9iabgkHiTiaadEgadaWgaaWcbaGaamyAaaqabaGcdaahaaWc beqaaiabgkHiTiaaikdaaaGcdaqadaqaamaaqahabaGaam4zamaaBa aaleaacaWGXbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaaaaaeaa caWGXbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGaayjkai aawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiabgUcaRiaadEga daWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiabgkHiTiaaigdaaa GccaGGOaGaeyOeI0IaaGymaiaacMcadaqadaqaamaaqahabaGaam4z amaaBaaaleaacaWGXbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaa aaaeaacaWGXbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGOmaaaakmaabmaaba GaeyOeI0Iaam4zamaaBaaaleaacaWGXbaabeaakmaaCaaaleqabaGa eyOeI0IaaGOmaaaaaOGaayjkaiaawMcaaaaa@6E5F@ (2.3.9)

d x i * d g i = g i 2 ( q=1 n g q 1 ) 1 ( 1+ g i 1 ( q=1 n g q 1 ) 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamiEamaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGa aiOkaaaaaOqaaiaadsgacaWGNbWaaSbaaSqaaiaadMgaaeqaaaaaki abg2da9iaadEgadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiab gkHiTiaaikdaaaGcdaqadaqaamaaqahabaGaam4zamaaBaaaleaaca WGXbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaaaaaeaacaWGXbGa eyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGaayjkaiaawMcaam aaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaeyOeI0IaaGym aiabgUcaRiaadEgadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaai abgkHiTiaaigdaaaGcdaqadaqaamaaqahabaGaam4zamaaBaaaleaa caWGXbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaaaaaeaacaWGXb Gaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGaayjkaiaawMca amaaCaaaleqabaGaeyOeI0IaaGymaaaaaOGaayjkaiaawMcaaaaa@6733@ (2.3.10)

d x i * d g i = g i 1 x i * ( 1+ x i * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamiEamaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGa aiOkaaaaaOqaaiaadsgacaWGNbWaaSbaaSqaaiaadMgaaeqaaaaaki abg2da9iaadEgadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiab gkHiTiaaigdaaaGccaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaS qabeaacaGGQaaaaOWaaeWaaeaacqGHsislcaaIXaGaey4kaSIaamiE amaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaaaOGaay jkaiaawMcaaaaa@4ECF@ (2.3.11)

( g i >0 )( 0< x i * <1 ) d x i * d g i <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaeyOpa4JaaGimaaGaayjk aiaawMcaaiabgEIizpaabmaabaGaaGimaiabgYda8iaadIhadaWgaa WcbaGaamyAaaqabaGcdaahaaWcbeqaaiaacQcaaaGccqGH8aapcaaI XaaacaGLOaGaayzkaaGaeyO0H49aaSaaaeaacaWGKbGaamiEamaaBa aaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsga caWGNbWaaSbaaSqaaiaadMgaaeqaaaaakiabgYda8iaaicdaaaa@52EB@ (2.3.12)

d 2 x i * d g i 2 = g i 2 x i * ( x i * 1 )+ g i 1 ( g i 1 x i * ( x i * 1 ) )( x i * 1 )+ g i 1 x i * g i 1 x i * ( x i * 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaWG PbaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgacaWGNbWaaS baaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da 9iaaysW7cqGHsislcaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaS qabeaacqGHsislcaaIYaaaaOGaamiEamaaBaaaleaacaWGPbaabeaa kmaaCaaaleqabaGaaiOkaaaakmaabmaabaGaamiEamaaBaaaleaaca WGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabgkHiTiaaigdaaiaa wIcacaGLPaaacaaMe8Uaey4kaSIaaGjbVlaadEgadaWgaaWcbaGaam yAaaqabaGcdaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqadaqaaiaa dEgadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiabgkHiTiaaig daaaGccaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGG QaaaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaS qabeaacaGGQaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaGaayjk aiaawMcaamaabmaabaGaamiEamaaBaaaleaacaWGPbaabeaakmaaCa aaleqabaGaaiOkaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaacaaM e8Uaey4kaSIaaGjbVlaadEgadaWgaaWcbaGaamyAaaqabaGcdaahaa WcbeqaaiabgkHiTiaaigdaaaGccaWG4bWaaSbaaSqaaiaadMgaaeqa aOWaaWbaaSqabeaacaGGQaaaaOGaam4zamaaBaaaleaacaWGPbaabe aakmaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadIhadaWgaaWcbaGa amyAaaqabaGcdaahaaWcbeqaaiaacQcaaaGcdaqadaqaaiaadIhada WgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiaacQcaaaGccqGHsisl caaIXaaacaGLOaGaayzkaaaaaa@8742@ (2.3.13)

d 2 x i * d g i 2 = g i 2 ( x i * ( x i * 1 )( x i * ( x i * 1 ) )( x i * 1 ) x i * x i * ( x i * 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaWG PbaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgacaWGNbWaaS baaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da 9iaaysW7cqGHsislcaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaS qabeaacqGHsislcaaIYaaaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaa dMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOWaaeWaaeaacaWG4bWaaS baaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOGaeyOeI0Ia aGymaaGaayjkaiaawMcaaiaaysW7cqGHsislcaaMe8+aaeWaaeaaca WG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOWa aeWaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaaca GGQaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaGaayjkaiaawMca amaabmaabaGaamiEamaaBaaaleaacaWGPbaabeaakmaaCaaaleqaba GaaiOkaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaacaaMe8UaeyOe I0IaaGjbVlaadIhadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaai aacQcaaaGccaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaa caGGQaaaaOWaaeWaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaW baaSqabeaacaGGQaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaGa ayjkaiaawMcaaaaa@7925@ (2.3.14)

d 2 x i * d g i 2 = g i 2 ( ( x i * ) 2 x i * x i * ( ( x i * ) 2 2 x i * +1 ) ( x i * ) 2 ( x i * 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaWG PbaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgacaWGNbWaaS baaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da 9iaaysW7cqGHsislcaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaS qabeaacqGHsislcaaIYaaaaOWaaeWaaeaadaqadaqaaiaadIhadaWg aaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiaacQcaaaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaSbaaSqa aiaadMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOGaeyOeI0IaamiEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakmaabmaa baWaaeWaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabe aacaGGQaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGa eyOeI0IaaGOmaiaadIhadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbe qaaiaacQcaaaGccqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeyOeI0Ya aeWaaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaaca GGQaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOWaaeWa aeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGQa aaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa @71FF@ (2.3.15)

d 2 x i * d g i 2 = g i 2 ( ( x i * ) 2 x i * ( x i * ) 3 +2 ( x i * ) 2 x i * ( x i * ) 3 + ( x i * ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaWG PbaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgacaWGNbWaaS baaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da 9iaaysW7cqGHsislcaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaS qabeaacqGHsislcaaIYaaaaOWaaeWaaeaadaqadaqaaiaadIhadaWg aaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiaacQcaaaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWG4bWaaSbaaSqa aiaadMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOGaeyOeI0YaaeWaae aacaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGQaaa aaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaaG OmamaabmaabaGaamiEamaaBaaaleaacaWGPbaabeaakmaaCaaaleqa baGaaiOkaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaki abgkHiTiaadIhadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiaa cQcaaaGccqGHsisldaqadaqaaiaadIhadaWgaaWcbaGaamyAaaqaba GcdaahaaWcbeqaaiaacQcaaaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaiodaaaGccqGHRaWkdaqadaqaaiaadIhadaWgaaWcbaGaamyAaa qabaGcdaahaaWcbeqaaiaacQcaaaaakiaawIcacaGLPaaadaahaaWc beqaaiaaikdaaaaakiaawIcacaGLPaaaaaa@7266@ (2.3.16)

d 2 x i * d g i 2 = g i 2 ( 2 ( x i * ) 3 +4 ( x i * ) 2 2 x i * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaWG PbaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgacaWGNbWaaS baaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da 9iaaysW7cqGHsislcaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaS qabeaacqGHsislcaaIYaaaaOWaaeWaaeaacqGHsislcaaIYaWaaeWa aeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGQa aaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIa aGinamaabmaabaGaamiEamaaBaaaleaacaWGPbaabeaakmaaCaaale qabaGaaiOkaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaa kiabgkHiTiaaikdacaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaS qabeaacaGGQaaaaaGccaGLOaGaayzkaaaaaa@5D97@ (2.3.17)

d 2 x i * d g i 2 =2 g i 2 x i * ( ( x i * ) 2 2 x i * +1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaWG PbaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgacaWGNbWaaS baaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da 9iaaysW7caaIYaGaam4zamaaBaaaleaacaWGPbaabeaakmaaCaaale qabaGaeyOeI0IaaGOmaaaakiaadIhadaWgaaWcbaGaamyAaaqabaGc daahaaWcbeqaaiaacQcaaaGcdaqadaqaamaabmaabaGaamiEamaaBa aaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaaaOGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaikdacaWG4bWaaS baaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaGGQaaaaOGaey4kaSIa aGymaaGaayjkaiaawMcaaaaa@593D@ (2.3.18)

d 2 x i * d g i 2 =2 g i 2 x i * ( x i * 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaWG PbaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgacaWGNbWaaS baaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da 9iaaysW7caaIYaGaam4zamaaBaaaleaacaWGPbaabeaakmaaCaaale qabaGaeyOeI0IaaGOmaaaakiaadIhadaWgaaWcbaGaamyAaaqabaGc daahaaWcbeqaaiaacQcaaaGcdaqadaqaaiaadIhadaWgaaWcbaGaam yAaaqabaGcdaahaaWcbeqaaiaacQcaaaGccqGHsislcaaIXaaacaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@5306@ (2.3.19)

( g i 0 )( 0< x i * <1 ) d 2 x i * d g i 2 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWGNbWaaSbaaSqaaiaadMgaaeqaaOGaeyiyIKRaaGimaaGaayjk aiaawMcaaiabgEIizpaabmaabaGaaGimaiabgYda8iaadIhadaWgaa WcbaGaamyAaaqabaGcdaahaaWcbeqaaiaacQcaaaGccqGH8aapcaaI XaaacaGLOaGaayzkaaGaeyO0H49aaSaaaeaacaWGKbWaaWbaaSqabe aacaaIYaaaaOGaamiEamaaBaaaleaacaWGPbaabeaakmaaCaaaleqa baGaaiOkaaaaaOqaaiaadsgacaWGNbWaaSbaaSqaaiaadMgaaeqaaO WaaWbaaSqabeaacaaIYaaaaaaakiabg6da+iaaicdaaaa@5594@ (2.3.20)

Observation: x i * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3BBF@ is a strictly decreasing and strictly convex function of gi. From the Jensen inequality, it follows that increasing risk in gi will increase the expected value of x i * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3BBF@ . Compare Figure 2.

Figure 2 In this graph, the horizontal axes represents E( g 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaaa@3CC3@ , the expected value of g1. Here, g1 is a stochastic variable. There are two possible outcomes, namely E( g 1 )1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgkHiTiaa igdaaaa@3E6B@ and E( g 1 )+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiaa igdaaaa@3E60@ , with probabilities ½ and ½ respectively. The vertical axes shows the optimal decision frequency x 1 * ( E( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaakmaabmaa baGaamyraiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411F@ as a function of the expected value of g1, and E( x 1 * ( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyram aabmaabaGaamiEamaaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGa aiOkaaaakiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411F@ , the expected value of the optimal frequency x 1 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0x c9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8fr Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4b WaaSbaaSqaaiaaigdaaeqaaOWaaWbaaSqabeaacaGGQaaaaaaa@3A74@ as a function of the value of . The graph also includes a linear approximation of x 1 * ( E( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaakmaabmaa baGaamyraiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411F@ based on the values of x 1 * ( E( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaakmaabmaa baGaamyraiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411F@ for E( g 1 )=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaa igdaaaa@3E84@ and for E( g 1 )=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaa iodaaaa@3E86@ . This linear approximation is equal to E( x 1 * ( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyram aabmaabaGaamiEamaaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGa aiOkaaaakiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411F@ for E( g 1 )=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaa ikdaaaa@3E85@ . According to the Jensen inequality, E( x 1 * ( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyram aabmaabaGaamiEamaaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGa aiOkaaaakiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411F@ > x 1 * ( E( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaakmaabmaa baGaamyraiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411F@ , when x 1 * (E( g 1 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaakiaacIca caWGfbGaaiikaiaadEgadaWgaaWcbaGaaGymaaqabaGccaGGPaGaai ykaaaa@40EF@ is a strictly convex function and g1 is a stochastic variable. This graph illustrates that the Jensen inequality is correct. The graph also illustrates the general conclusion that the expected optimal decision frequency E( x 1 * ( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyram aabmaabaGaamiEamaaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGa aiOkaaaakiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@411F@ is a strictly increasing function of the level of risk in g1.

Proof that d x k * d g i >0 d 2 x k * d g i 2 <0,i{ 1,...,n },k{ 1,...,n },ik MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamiEamaaBaaaleaacaWGRbaabeaakmaaCaaaleqabaGa aiOkaaaaaOqaaiaadsgacaWGNbWaaSbaaSqaaiaadMgaaeqaaaaaki abg6da+iaaicdacaaMe8Uaey4jIKTaaGjbVpaalaaabaGaamizamaa CaaaleqabaGaaGOmaaaakiaadIhadaWgaaWcbaGaam4AaaqabaGcda ahaaWcbeqaaiaacQcaaaaakeaacaWGKbGaam4zamaaBaaaleaacaWG PbaabeaakmaaCaaaleqabaGaaGOmaaaaaaGccqGH8aapcaaIWaGaaG jbVlaacYcacaaMe8UaamyAaiabgIGiopaacmaabaGaaGymaiaacYca caGGUaGaaiOlaiaac6cacaGGSaGaamOBaaGaay5Eaiaaw2haaiaacY cacaWGRbGaeyicI48aaiWaaeaacaaIXaGaaiilaiaac6cacaGGUaGa aiOlaiaacYcacaWGUbaacaGL7bGaayzFaaGaaiilaiaadMgacqGHGj sUcaWGRbaaaa@6D44@ .

x k * = g k 1 ( i=1 n g i 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGRbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iaadEgadaWgaaWcbaGaam4AaaqabaGcdaahaaWcbeqaaiabgkHiTi aaigdaaaGcdaqadaqaamaaqahabaGaam4zamaaBaaaleaacaWGPbaa beaakmaaCaaaleqabaGaeyOeI0IaaGymaaaaaeaacaWGPbGaeyypa0 JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGaayjkaiaawMcaamaaCaaa leqabaGaeyOeI0IaaGymaaaaaaa@4DE8@ (2.3.21)

d x k * d g i|ik = g k 1 ( 1 ) ( i=1 n g i 1 ) 2 ( g i 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamiEamaaBaaaleaacaWGRbaabeaakmaaCaaaleqabaGa aiOkaaaaaOqaaiaadsgacaWGNbWaaSbaaSqaamaaeiaabaGaamyAaa GaayjcSdGaamyAaiabgcMi5kaadUgaaeqaaaaakiabg2da9iaadEga daWgaaWcbaGaam4AaaqabaGcdaahaaWcbeqaaiabgkHiTiaaigdaaa GcdaqadaqaaiabgkHiTiaaigdaaiaawIcacaGLPaaadaqadaqaamaa qahabaGaam4zamaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaey OeI0IaaGymaaaaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0Ga eyyeIuoaaOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGOmaa aakmaabmaabaGaeyOeI0Iaam4zamaaBaaaleaacaWGPbaabeaakmaa CaaaleqabaGaeyOeI0IaaGOmaaaaaOGaayjkaiaawMcaaaaa@60B7@ (2.3.22)

d x k * d g i|ik = g k 1 g i 2 ( i=1 n g i 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbGaamiEamaaBaaaleaacaWGRbaabeaakmaaCaaaleqabaGa aiOkaaaaaOqaaiaadsgacaWGNbWaaSbaaSqaamaaeiaabaGaamyAaa GaayjcSdGaamyAaiabgcMi5kaadUgaaeqaaaaakiabg2da9iaadEga daWgaaWcbaGaam4AaaqabaGcdaahaaWcbeqaaiabgkHiTiaaigdaaa GccaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacqGHsisl caaIYaaaaOWaaeWaaeaadaaeWbqaaiaadEgadaWgaaWcbaGaamyAaa qabaGcdaahaaWcbeqaaiabgkHiTiaaigdaaaaabaGaamyAaiabg2da 9iaaigdaaeaacaWGUbaaniabggHiLdaakiaawIcacaGLPaaadaahaa WcbeqaaiabgkHiTiaaikdaaaaaaa@5B06@ (2.3.23)

( g m >0,m=1...,n) ) d x k * d g i|ik >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWGNbWaaSbaaSqaaiaad2gaaeqaaOGaeyOpa4JaaGimaiaaysW7 caGGSaGaaGjbVlaad2gacqGH9aqpcaaIXaGaaiOlaiaac6cacaGGUa Gaaiilaiaad6gacaGGPaaacaGLOaGaayzkaaGaeyO0H49aaSaaaeaa caWGKbGaamiEamaaBaaaleaacaWGRbaabeaakmaaCaaaleqabaGaai OkaaaaaOqaaiaadsgacaWGNbWaaSbaaSqaamaaeiaabaGaamyAaaGa ayjcSdGaamyAaiabgcMi5kaadUgaaeqaaaaakiabg6da+iaaicdaaa a@5959@ (2.3.24)

d 2 x k * d g i|ik 2 = g k 1 ( 2 g i 3 ( i=1 n g i 1 ) 2 + g i 2 (2) ( i=1 n g i 1 ) 3 ( g i 2 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaWG RbaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgacaWGNbWaaS baaSqaamaaeiaabaGaamyAaaGaayjcSdGaamyAaiabgcMi5kaadUga aeqaaOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iaadEgadaWgaa WcbaGaam4AaaqabaGcdaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaqa daqaaiabgkHiTiaaikdacaWGNbWaaSbaaSqaaiaadMgaaeqaaOWaaW baaSqabeaacqGHsislcaaIZaaaaOWaaeWaaeaadaaeWbqaaiaadEga daWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiabgkHiTiaaigdaaa aabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLdaakiaa wIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaikdaaaGccqGHRaWkca WGNbWaaSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacqGHsislcaaI YaaaaOGaaiikaiabgkHiTiaaikdacaGGPaWaaeWaaeaadaaeWbqaai aadEgadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiabgkHiTiaa igdaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaaniabggHiLd aakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaiodaaaGcdaqa daqaaiabgkHiTiaadEgadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbe qaaiabgkHiTiaaikdaaaaakiaawIcacaGLPaaaaiaawIcacaGLPaaa aaa@7B95@ (2.3.25)

d 2 x k * d g i|ik 2 =2 g k 1 g i 3 ( i=1 n g i 1 ) 2 ( ( g i 1 ) ( i=1 n g i 1 ) 1 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaWG RbaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgacaWGNbWaaS baaSqaamaaeiaabaGaamyAaaGaayjcSdGaamyAaiabgcMi5kaadUga aeqaaOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iaaikdacaWGNb WaaSbaaSqaaiaadUgaaeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaa aOGaam4zamaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaeyOeI0 IaaG4maaaakmaabmaabaWaaabCaeaacaWGNbWaaSbaaSqaaiaadMga aeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaaaaqaaiaadMgacqGH9a qpcaaIXaaabaGaamOBaaqdcqGHris5aaGccaGLOaGaayzkaaWaaWba aSqabeaacqGHsislcaaIYaaaaOWaaeWaaeaadaqadaqaaiaadEgada WgaaWcbaGaamyAaaqabaGcdaahaaWcbeqaaiabgkHiTiaaigdaaaaa kiaawIcacaGLPaaadaqadaqaamaaqahabaGaam4zamaaBaaaleaaca WGPbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaaaaaeaacaWGPbGa eyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGaayjkaiaawMcaam aaCaaaleqabaGaeyOeI0IaaGymaaaakiabgkHiTiaaigdaaiaawIca caGLPaaaaaa@738C@ (2.3.26)

d 2 x k * d g i|ik 2 =2 g k 1 g i 1 ( x i * ) 2 ( x i * 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaae aacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamiEamaaBaaaleaacaWG RbaabeaakmaaCaaaleqabaGaaiOkaaaaaOqaaiaadsgacaWGNbWaaS baaSqaamaaeiaabaGaamyAaaGaayjcSdGaamyAaiabgcMi5kaadUga aeqaaOWaaWbaaSqabeaacaaIYaaaaaaakiabg2da9iaaikdacaWGNb WaaSbaaSqaaiaadUgaaeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaa aOGaam4zamaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaeyOeI0 IaaGymaaaakmaabmaabaGaamiEamaaBaaaleaacaWGPbaabeaakmaa CaaaleqabaGaaiOkaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaG OmaaaakmaabmaabaGaamiEamaaBaaaleaacaWGPbaabeaakmaaCaaa leqabaGaaiOkaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaaaaa@5C39@ (2.3.27)

( g m >0,m=1,...,n )( 0< x i * <1 ) d 2 x k * d g i|ik 2 <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWGNbWaaSbaaSqaaiaad2gaaeqaaOGaeyOpa4JaaGimaiaaysW7 caGGSaGaaGjbVlaad2gacqGH9aqpcaaIXaGaaiilaiaac6cacaGGUa GaaiOlaiaacYcacaWGUbaacaGLOaGaayzkaaGaey4jIK9aaeWaaeaa caaIWaGaeyipaWJaamiEamaaBaaaleaacaWGPbaabeaakmaaCaaale qabaGaaiOkaaaakiabgYda8iaaigdaaiaawIcacaGLPaaacqGHshI3 daWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG4bWaaSbaaS qaaiaadUgaaeqaaOWaaWbaaSqabeaacaGGQaaaaaGcbaGaamizaiaa dEgadaWgaaWcbaWaaqGaaeaacaWGPbaacaGLiWoacaWGPbGaeyiyIK Raam4AaaqabaGcdaahaaWcbeqaaiaaikdaaaaaaOGaeyipaWJaaGim aaaa@64F8@ (2.3.28)

Observation: x k * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGRbaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3BC1@ is a strictly increasing and strictly concave function of gi. From the Jensen inequality, it follows that increasing risk in gi will decrease the expected value of x k * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGRbaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3BC1@ . Compare Figure 3.

Figure 3 In this graph, the horizontal axes represents E( g 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaaa@3CC3@ , the expected value of g1. Here, g1 is a stochastic variable. There are two possible outcomes, namely E( g 1 )1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgkHiTiaa igdaaaa@3E6B@ and E( g 1 )+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgUcaRiaa igdaaaa@3E60@ , with probabilities ½ and ½ respectively. The vertical axes shows the optimal decision frequency x 2 * ( E( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaiOkaaaakmaabmaa baGaamyraiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@4120@ as a function of the expected value of g1, and E( x 2 * ( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyram aabmaabaGaamiEamaaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGa aiOkaaaakiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@4120@ , the expected value of the optimal frequency x 2 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8D@ as a function of the value of g1. The graph also includes a linear approximation of x 2 * ( E( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaiOkaaaakmaabmaa baGaamyraiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@4120@ based on the values of x 2 * (E( g 1 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaiOkaaaakiaacIca caWGfbGaaiikaiaadEgadaWgaaWcbaGaaGymaaqabaGccaGGPaGaai ykaaaa@40F0@ for E( g 1 )=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaa igdaaaa@3E84@ and for E( g 1 )=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaa iodaaaa@3E86@ . This linear approximation is equal to E( x 2 * ( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyram aabmaabaGaamiEamaaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGa aiOkaaaakiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@4120@ for E( g 1 )=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyrai aacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9iaa ikdaaaa@3E85@ . According to the Jensen inequality, E( x 2 * ( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyram aabmaabaGaamiEamaaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGa aiOkaaaakiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@4120@ < x 2 * ( E( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaiOkaaaakmaabmaa baGaamyraiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@4120@ , when x 2 * (E( g 1 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaiOkaaaakiaacIca caWGfbGaaiikaiaadEgadaWgaaWcbaGaaGymaaqabaGccaGGPaGaai ykaaaa@40F0@ is a strictly concave function and g1 is a stochastic variable. This graph illustrates that the Jensen inequality is correct. The graph also illustrates the general conclusion that the expected optimal decision frequency E( x 2 * ( g 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyram aabmaabaGaamiEamaaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGa aiOkaaaakiaacIcacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiykaa GaayjkaiaawMcaaaaa@4120@ is a strictly decreasing function of the level of risk in g1.

Numerical illustration

The general definition of the following illustrating game is given in the preceeding section. Let n=2. A very detailed background and interpretation of this particular game, without the new functions and proofs, is given in Lohmander (2019).14

A=[ g 1 0 0 g 2 ]=[ 2 0 0 3 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqai abg2da9maadmaabaqbaeqabiGaaaqaaiaadEgadaWgaaWcbaGaaGym aaqabaaakeaacaaIWaaabaGaaGimaaqaaiaadEgadaWgaaWcbaGaaG OmaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeGa caaabaGaaGOmaaqaaiaaicdaaeaacaaIWaaabaGaaG4maaaaaiaawU facaGLDbaaaaa@47B5@ (3.1)

From (2.2.54) we know that:

x 0 * = λ 0 * = y 0 * = μ 0 * = ( i=1 n g i 1 ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iabeU7aSnaaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaa aakiabg2da9iaadMhadaWgaaWcbaGaaGimaaqabaGcdaahaaWcbeqa aiaacQcaaaGccqGH9aqpcqaH8oqBdaWgaaWcbaGaaGimaaqabaGcda ahaaWcbeqaaiaacQcaaaGccqGH9aqpdaqadaqaamaaqahabaGaam4z amaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaeyOeI0IaaGymaa aaaeaacaWGPbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaOGa ayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaaaaa@56BA@ (3.2)

x 0 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8B@ , the expected reward of BLUE, is equal to y 0 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8C@ , the expected loss of RED, in case both optimize the respective strategies. Using the numerical values of the elements in A, we get:

x 0 * = 1 1 2 + 1 3 = 6 5 =1.2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9maalaaabaGaaGymaaqaamaalaaabaGaaGymaaqaaiaaikdaaaGaey 4kaSYaaSaaaeaacaaIXaaabaGaaG4maaaaaaGaeyypa0ZaaSaaaeaa caaI2aaabaGaaGynaaaacqGH9aqpcaaIXaGaaiOlaiaaikdaaaa@471B@ (3.3)

Hence, the expected value of the game is 1.2. This value is also shown in Figure 4. and Figure 5. The expected value of the game is a decreasing function of the level of risk of , which is described in connection to, and illustrated in, Figure 1.

Figure 4 The objective function value x 0 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8B@ as a function of the two parameters ( g 1 , g 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWGNbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadEgadaWgaaWc baGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@3EB7@ . x 0 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8B@ is a strictly increasing function of both parameters. 

Figure 5 The optimal objective function value x 0 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8B@ as a function of the parameter g1 for alternative values of g2. x 0 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8B@ is a strictly increasing and strictly concave function of g1. Furthermore, x 0 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8B@ is an increasing function of g2.

From (2.2.55) we know that:

x i * = λ i * = y i * = μ i * = g i 1 ( q=1 n g q 1 ) 1 ,i=1,...,n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iabeU7aSnaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaiOkaa aakiabg2da9iaadMhadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqa aiaacQcaaaGccqGH9aqpcqaH8oqBdaWgaaWcbaGaamyAaaqabaGcda ahaaWcbeqaaiaacQcaaaGccqGH9aqpcaWGNbWaaSbaaSqaaiaadMga aeqaaOWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaadaaeWb qaaiaadEgadaWgaaWcbaGaamyCaaqabaGcdaahaaWcbeqaaiabgkHi TiaaigdaaaaabaGaamyCaiabg2da9iaaigdaaeaacaWGUbaaniabgg HiLdaakiaawIcacaGLPaaadaahaaWcbeqaaiabgkHiTiaaigdaaaGc caaMe8UaaiilaiaaysW7caWGPbGaeyypa0JaaGymaiaacYcacaGGUa GaaiOlaiaac6cacaGGSaGaamOBaaaa@6675@ (3.4)

For BLUE and RED, the optimal probabilities to select different roads are equal. For BLUE, the optimal probability to select road 1 is x 1 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8C@ . Via the elements in, we get:

x 1 * = y 1 * =( 1 2 ) x 0 * =0.6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iaadMhadaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaaiaacQcaaa GccqGH9aqpdaqadaqaamaalaaabaGaaGymaaqaaiaaikdaaaaacaGL OaGaayzkaaGaamiEamaaBaaaleaacaaIWaaabeaakmaaCaaaleqaba GaaiOkaaaakiabg2da9iaaicdacaGGUaGaaGOnaaaa@498A@ (3.5)

x 2 * = y 2 * =( 1 3 ) x 0 * =0.4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaiOkaaaakiabg2da 9iaadMhadaWgaaWcbaGaaGOmaaqabaGcdaahaaWcbeqaaiaacQcaaa GccqGH9aqpdaqadaqaamaalaaabaGaaGymaaqaaiaaiodaaaaacaGL OaGaayzkaaGaamiEamaaBaaaleaacaaIWaaabeaakmaaCaaaleqaba GaaiOkaaaakiabg2da9iaaicdacaGGUaGaaGinaaaa@498B@ (3.6)

x 1 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8C@ is shown in Figures 6 & 7. In Figure 8, the optimal value is illustrated. The expected value of x 1 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8C@ is an increasing function of the level of risk in g1, which is shown in Figure 2. For BLUE, the optimal probability to select road 2, is x 2 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8D@ . In Figure 9, we find this value is 0.4. Figure 3 illustrates that the expected value of x 2 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8D@ is a decreasing function of the level of risk in g1.

Figure 6 The optimal decision frequency x 1 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8C@ , as a function of the two parameters (g1,g2). x 1 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8C@ is a strictly decreasing and strictly convex function of g1. x 1 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8C@ is a strictly increasing and strictly concave function of.g2

Figure 7 The optimal decision frequency x 1 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8C@ , as a function of the two parameters (g1,g2). x 1 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8C@ is a strictly decreasing and strictly convex function of g1. x 1 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8C@ is a strictly increasing and strictly concave function of g2. Compare Figure 4., which shows the function from another angle.

Figure 8 The optimal decision frequency x 1 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8C@ as a function of the parameter g1 for alternative values of g2. x 1 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8C@ is a strictly decreasing and strictly convex function of g1. Furthermore, x 1 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIXaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8C@ is an increasing function of g2.

Figure 9 The optimal decision frequency x 2 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8D@ as a function of the parameter g1 for alternative values of g2. x 2 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8D@ is a strictly increasing and strictly concave function of g1. Furthermore, x 2 * MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEam aaBaaaleaacaaIYaaabeaakmaaCaaaleqabaGaaiOkaaaaaaa@3B8D@ is an decreasing function of g2.

The particular results ( x 0 * , x 1 * , x 2 * ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB PrgifHhDYfgasaacPi=BMqFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq =Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0x fr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaae aacaWG4bWaaSbaaSqaaiaaicdaaeqaaOWaaWbaaSqabeaacaGGQaaa aOGaaiilaiaadIhadaWgaaWcbaGaaGymaaqabaGcdaahaaWcbeqaai aacQcaaaGccaGGSaGaamiEamaaBaaaleaacaaIYaaabeaakmaaCaaa leqabaGaaiOkaaaaaOGaayjkaiaawMcaaaaa@4425@ discussed in this in this section were also obtained by Lohmander (2019)14 via the traditional game theory approach of linear programming.

Conclusion

In this paper, the two player zero sum games with diagonal game matrixes, TPZSGD, are analyzed. Many important applications of this particular class of games are found in military decision problems, in customs and immigration strategies and police work. Explicit functions are derived that give the optimal frequences of different decisions and the expected results of relevance to the different decision makers. Arbitrary numbers of decision alternatives are covered. It is proved that the derived optimal decision frequency formulas correspond to the unique optimization results of the two players. It is proved that the optimal solutions, for both players, always lead to a unique completely mixed strategy Nash equilibrium. For each player, the optimal frequency of a particular decision is strictly greater than 0 and strictly less than 1. With comparative statics analyses, the directions of the changes of optimal decision frequences and expected game values as functions of changes in different parameter values, are determined. Some of the derived formulas are used to confirm earlier game theory results presented in the literature. It is demonstrated that the new functions can be applied to solve a typical military decision problem and that the new functions make it possible to draw clear conclusions concerning issues that were not earlier possible to get via linear programming solutions. With the new approach developed here, it is possible to determine the directions of change of the expected value of the objective function and of the optimal frequences of the different decision alternatives, under the influence of increasing risk in the game matrix elements. Such game matrix elements are in real applications never known with certainty. Hence, this new approach leads to more relevant results than those that can be obtained with earlier methods.

Funding

None.

Acknowledgments

None.

Conflicts of interest

The author declares that there was no conflicts of interest.

References

  1. Luce RD, Raiffa H. Games and decisions: Introduction and Critical Survey. USA: Dover; 1957.
  2. Nash JF. Equilibrium points in n–person games. Proceedings of the National Academy of Sciences of the United States of America. 1950;36(1):48–49.
  3. von Neumann J. A numerical method to determine optimum strategy. Naval Research Logistics Quarterly. 1954;1(2):109–115.
  4. Dresher M. Games of strategy, theory and application. USA: RAND Coorporation; 1961.
  5. Chiang AC. Fundamental methods of mathematical economics. 2nd ed.  Japan: Mc–Graw–Hill; 1974.
  6. Isaacs R. Differential games; a mathematical theory with applications to warfare and pursuit, control and optimization. New York: Wiley; 1965.
  7. Lohmander P. Applications and Mathematical Modeling in Operations Research. In: Cao BY, editor. Fuzzy Information and Engineering and Decision. Switzerland: Springer International Publishing AG; 2018. p. 46–53.
  8. Washburn AR. Two–person zero–sum games. 3rd ed. Operation Research. 2003. p. 136.
  9. Lohmander P. The constrained probability orbit of mixed strategy games with marginal adjustment. General theory and timber market application. SAMS. 1997;29:27–55.
  10. Lohmander P. The constrained probability orbit of mixed strategy games with marginal adjustment. General theory and timber market application. Swedish University of Agriculture. 1991;134:27–55.
  11. Herings PJJ, Peeters RJAP. Stationary equilibria in stochastic games: Structure, selection and computation. Journal of Economic Theory. 2004;118:32–60.
  12. Babu S, Krishnamurthy N, Parthasarathy T. Stationarity, completely mixed and symmetric optimal and equilibrium strategies in stochastic games. International Journal of Game Theory. 2017;46(3):761–782.
  13. Lohmander P. Continous extraction under risk. Journal of mathematical modelling and simulation in systems analysis. 1988;5(2):131–151.
  14. Lohmander P. Systems Analysis Modeling Simulation. Journal of mathematical modelling and simulation in systems analysis. 1988;5(2):131–151.
Creative Commons Attribution License

©2019 Lohmander. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.