Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Review Article Volume 10 Issue 1

On a new constraint equations form for alternative modeling the delta robot dynamics

Aleksandr Ya Krasinskiy

Scientific Department of Rosbiotech Moscow, Moscow Aviation Institute (National Research University), Russia

Correspondence: Aleksandr Ya Krasinskiy, Scientific Department of Rosbiotech Moscow, Moscow Aviation Institute (National Research University), Russia, 125993, Moscow, Russia

Received: January 22, 2024 | Published: February 16, 2024

Citation: Krasinskiy AY. On a new constraint equations form for alternative modeling the delta robot dynamics. Int Rob Auto J. 2024;10(1):11-16. DOI: 10.15406/iratj.2024.10.00277

Download PDF

Abstract

Mathematical modeling of the delta robot dynamics is significantly simplified due to the advanced consideration of the translational nature for the executive link motion. The rigorous derivation of the nonlinear geometric constraints equations is described in detail without the previously necessary consideration of the inverse problem of kinematics. The simplicity of the mathematical model of constraints obtaining is ensured by the introduction of only one angular variable for each kinematics chain instead of the traditionally used three. The proposed the constraint equations form, due to its simplicity, creates the possibility of differentiation over time in an analytical form with further analytical resolution regarding dependent velocities. That's why, in the general case, dependent velocities are excluded from consideration. The previously developed transition from the traditionally used Lagrange equations with constraints multipliers to multiplier-free vector-matrix equations in redundant coordinates reduces the mathematical model dimension on the geometric constraints double number.

Keywords: geometric connections, parallel manipulator, delta robot, redundant coordinates, lagrange multipliers

Introduction

Relevance, scientific significance of the issue with a brief review of the literature 

The Delta robot belongs to manipulators with parallel kinematics, the widespread use of which is due to their better (compared to sequential manipulators) dynamic properties1−4 and increased accuracy and repeatability. The indicated advantages of the this type  manipulators are ensured by the higher rigidity of the mechanism due to the fact that in them the fixed base is connected to the working link by several parallel kinematics chains, with each chain connected only to the working link and to the base.

One of the most widely used classes of parallel manipulators is the Delta robot. This new type of parallel manipulator was invented by Reymond Clavel5,6 in the early 80s. The main advantage of its design is the placement of actuators on a fixed upper platform and the use of parallelograms in three two-link parallel kinematics chains connecting it with a small movable lower one. The high speed of manipulating light objects is achieved precisely due to the fact that heavy drives are located on a stationary base, and all the moving parts of this mechanism are made of lightweight, often composite materials.

Placing the drives on a fixed base has created the opportunity to effectively use the advantageous quality of executive electric drives in Delta robots, since it is easier and more reliable to practically apply complex control algorithms in such drives than in other types of drives. However, a necessary condition for the realization of these potential capabilities is the presence of an adequate mathematical model for the controlled object.

Despite intensive research,5−17 the development of methods for mathematical modeling of the Delta robot dynamics is far from complete. In this publications the resulting models are unnecessarily complex due to these fact that not the most effective methods of analytical mechanics of non-free systems were used.18−23 Moreover, the method of mathematical modeling of geometric constraints used in all published works is, as will be shown, unjustifiably cumbersome.

This paper describes in detail a new approach to modeling the nonlinear geometric constraints of the Delta robot, which greatly simplifies the obtaining of a mathematical model of the system, reducing its dimension and opening up the possibility of using the previously developed24−36 general method for mathematical modeling of the controlled dynamics of non-free systems with geometric constraints. It should be especially noted that the approach proposed in this work allows us to avoid considering the inverse kinematics problem. In this work, using the example of modeling the dynamics of the Delta robot, we show how effective the qualified application of analytical mechanics methods is to the study of complex technical devices.

Delta robot design. Selecting variables sufficient to model its dynamics

In the Delta Robot (Figure 1), a small movable platform is attached to the fixed upper base by means of three two-link kinematics chains. The platforms have the shape of equilateral triangles with sides a and b respectively.

Figure 1 Scheme of the delta robot.

Let us introduce a fixed coordinate system Oxyz, the beginning of which point O is located in the center of the upper base, the z axis is directed vertically upward, and the x axis is along the symmetry axis of the upper base. Let us denote α,β,γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqaciaa=f7aca WFSaGaaGPaVlaaykW7caWFYoGaa8hlaiaaykW7caaMc8Uaa83Sdaaa @423F@ - the angles of deviation of the shoulders AP, BQ, CS from the vertical and O 1 (x,y,z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad+eadaWgaa WcbaGaaGymaaqabaGccaaMc8UaaiikaiaadIhacaGGSaGaaGPaVlaa dMhacaGGSaGaaGPaVlaadQhacaGGPaaaaa@4325@ - the center of the moving platform (Figure 3). The position of the system is determined by the parameters α,β,γ,x,y,z MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqaciaa=f7aca WFSaGaaGPaVlaaykW7caWFYoGaa8hlaiaaykW7caaMc8Uaa83Sdiaa cYcacaaMc8UaamiEaiaacYcacaaMc8UaamyEaiaacYcacaaMc8Uaam OEaaaa@4BEA@ . Let's take α,β,γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaGqaciaa=f7aca WFSaGaaGPaVlaaykW7caWFYoGaa8hlaiaaykW7caaMc8Uaa83Sdaaa @423F@ - as independent coordinates, and let's x,y,z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacYcaca WG5bGaaiilaiaadQhaaaa@3B48@ consider them dependent. It will be shown below that this set of variables is quite sufficient for a complete nonlinear modeling of the system dynamics. It should be especially noted that the approach proposed in this work allows us to avoid considering the inverse kinematics problem.

Figure 2 XZ-view.
Figure 3 YZ-view.
Schemes for traditional determination of angles in a moving platform.9

Traditional description of geometric constraints

All articles on modeling the Delta robot dynamics used a more extensive set of variables to determine the system state. Already starting from the works of Raymond Clavel5,6 and so far in all articles5−17 to determine the coordinates of the ends of the lower links of kinematics chains, three angles were used for each chain.

This leads to an unjustified complication of the study, since the coordinates of the attachment points of the lower links to the moving platform are determined by the standard procedure for multi-link manipulators by recalculating the coordinates of the subsequent node through the coordinate system associated with the previous one.

As a result, firstly, it is necessary to introduce two more additional angles for each chain (Figure 2,3,4,5), and secondly, there is a need to solve the inverse problem of kinematics (for example,6,8,9,10,15−17) to determine these angles included in the geometric constraint equations. Typically, the lower links are made in the form of parallelograms, which ensures translational motion of the lower platform. In almost all articles this circumstance is especially noted, but in none of them is this character of motion used.

Figure 4 Schemes for traditional determination of angles in a moving platform.12

Figure 5 Schemes for traditional determination of angles in a moving platform.13

This method of determining the coordinates of nodes on a moving platform leads to an extremely cumbersome form of equations for geometric connections, especially if the Denavit-Hartenberg procedure is applied,10 despite their initial simple form - constant length of the lower links of kinematics chains (see e.g. formulas (10),(11),(12),15 (68).10 The by this method mathematical description of the behavior of the Delta robot obtained turns out to be so cumbersome and time-consuming to study that even additional assumptions that simplify the parameters initially included in the model (about the distribution of masses of links, see for example10) do not allow an analytical analysis of the dynamics of the modeled object. To a large extent, in addition to the extremely unsuccessful introduction of coordinates for the equations of geometric constraints, this is also due to the fact that in the modeling process it is proposed to find expressions for the Lagrange multipliers, using for this purpose differentiated cumbersome (with two additional angles for each constraint) constraint equations. This leads to the fact that research is limited to computer simulation, while in the analytical mechanics of non-free systems much more efficient forms of multiplier-free equations in redundant coordinates have been developed.24−26,18−21

New geometric constraints equations in the alternative delta robot dynamics modeling

In this work, an alternative nonlinear form of the equations of geometric connections will be obtained, based on the use of the translational nature of the motion of the lower platform. According to Figure 6 it is easy to obtain the coordinates of: the installation points A,B,C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGakY=MjYdH8pE0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=x b9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaacYcaca WGcbGaaiilaiaadoeaaaa@3AA3@ of the actuators in the middle of the sides of the upper base and nodes K, M, N on the lower platform:

Coordinates of the nodes P,Q,S MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadcfacaGGSa GaaGPaVlaaykW7caWGrbGaaiilaiaaykW7caaMc8Uaam4uaaaa@411B@ at the links AP,BQ,CS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadgeacaWGqb GaaiilaiaaykW7caWGcbGaamyuaiaacYcacaaMc8Uaam4qaiaadofa aaa@405A@ ends determined from Figure 7:

Figure 6 Alternative coordinates of nodes K, M, N of the lower platform (up) and the motors installation points.

Figure 7 Schemes for determining the nodes coordinates in lower ends of the upper links.

Since during translational motion the trajectories of all points of the moving platform are identical, the coordinates of the nodes K, M, N fixed on it are determined through the coordinates of its center O 1 (x,y,z) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad+eadaWgaa WcbaGaaGymaaqabaGccaaMc8UaaiikaiaadIhacaGGSaGaaGPaVlaa dMhacaGGSaGaaGPaVlaadQhacaGGPaaaaa@4325@ using fairly simple expressions without considering the inverse problem of kinematics.

P(0; a 2 3 + 1 2 sinα;lcosα) S(0; a 4 l 3 2 sin γ ; a 4 3 + 1 2 sinγ;lcosγ) Q( a 4 + l 3 2 sin β; a 4 3 + 1 2 sinβ;lcosβ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamiuai aacIcacaaIWaGaai4oaiabgkHiTiaaykW7caaMc8+aaSGaaeaacaWG HbaabaGaaGOmamaakaaabaGaaG4maaWcbeaaaaGccqGHRaWkdaWcca qaaiaaigdaaeaacaaIYaaaaiGacohacaGGPbGaaiOBaiaaykW7ieGa caWFXoGaai4oaiabgkHiTiaadYgaciGGJbGaai4BaiaacohacaaMc8 Uaa8xSdiaacMcaaeaacaWGtbGaaiikaiaaicdacaGG7aGaeyOeI0Ia aGPaVlaaykW7daWccaqaaiaadggaaeaacaaI0aGaaGPaVdaacqGHsi sldaahaaWcbeqaaKqzGeGaamiBaOWaaOaaaSqaaOWaaSWaaWqaaKqz GeGaaG4maaadbaqcLbsacaaIYaaaaaadbeaaaaGcdaahaaWcbeqaaK qzGeGaci4CaiaacMgacaGGUbaaaOWaaWbaaSqabeaajugibiaa=n7a aaGaai4oaiaaykW7kmaaliaabaGaamyyaaqaaiaaisdadaGcaaqaai aaiodaaSqabaaaaKqzGeGaaGPaVRGaey4kaSYaaSGaaeaacaaIXaaa baGaaGOmaaaaciGGZbGaaiyAaiaac6gacaWFZoGaai4oaiabgkHiTi aadYgaciGGJbGaai4BaiaacohacaaMc8Uaa83SdiaacMcaaeaacaWG rbGaaiikamaaliaabaGaamyyaaqaaiaaisdacaaMc8oaaiabgUcaRm aaCaaaleqabaqcLbsacaWGSbGcdaGcaaWcbaGcdaWcdaadbaqcLbsa caaIZaaameaajugibiaaikdaaaaameqaaaaakmaaCaaaleqabaqcLb saciGGZbGaaiyAaiaac6gaaaGccaWFYoGaa83oaiaaykW7daWccaqa aiaadggaaeaacaaI0aWaaOaaaeaacaaIZaaaleqaaaaakiabgUcaRm aaliaabaGaaGymaaqaaiaaikdaaaGaci4CaiaacMgacaGGUbGaa8NS diaacUdacqGHsislcaWGSbGaci4yaiaac+gacaGGZbGaaGPaVlaa=j 7acaGGPaaaaaa@A0C7@     K( x;y b 2 3 ;z ); N( x b 4 ;y+ b 4 3 ;z ); M( x+ b 4 ;y+ b 4 3 ;z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaam4sam aabmaabaGaamiEaiaacUdacaWG5bGaeyOeI0YaaSGaaeaacaWGIbaa baGaaGOmamaakaaabaGaaG4maaWcbeaaaaGccaGG7aGaamOEaaGaay jkaiaawMcaaiaacUdaaeaacaWGobWaaeWaaeaacaWG4bGaeyOeI0Ya aSGaaeaacaWGIbaabaGaaGinaiaaykW7aaGaai4oaiaadMhacqGHRa WkdaWccaqaaiaadkgaaeaacaaI0aWaaOaaaeaacaaIZaaaleqaaaaa kiaacUdacaWG6baacaGLOaGaayzkaaGaai4oaaqaaiaad2eadaqada qaaiaadIhacqGHRaWkdaWccaqaaiaadkgaaeaacaaI0aGaaGPaVdaa caGG7aGaamyEaiabgUcaRmaaliaabaGaamOyaaqaaiaaisdadaGcaa qaaiaaiodaaSqabaaaaOGaai4oaiaadQhaaiaawIcacaGLPaaaaaaa @5FD7@

Let us note a fundamental difference in our approach - the coordinates of these points are expressed through the coordinates of the point and only three angles (and not nine [9] angles). Here is no need to consider the inverse kinematics problem. Geometric constraints are expressed by the three Pythagorean theorems.

( X P X K ) 2 + ( Y P Y K ) 2 + ( Z P Z K ) 2 = d 2 ; ( X S X N ) 2 + ( Y S Y N ) 2 + ( Z S Z N ) 2 = d 2 ; ( X Q X M ) 2 + ( Y Q Y M ) 2 + ( Z Q Z M ) 2 = d 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaWaaeWaae aacaWGybWaaSbaaSqaaiaadcfaaeqaaOGaeyOeI0IaamiwamaaBaaa leaadaWgaaadbaGaam4saaqabaaaleqaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGPaVpaabmaabaGaamywamaa BaaaleaacaWGqbaabeaakiabgkHiTiaadMfadaWgaaWcbaGaam4saa qabaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWk caaMc8+aaeWaaeaacaWGAbWaaSbaaSqaaiaadcfaaeqaaOGaeyOeI0 IaamOwamaaBaaaleaacaWGlbaabeaaaOGaayjkaiaawMcaamaaCaaa leqabaGaaGOmaaaakiabg2da9iaadsgadaahaaWcbeqaaiaaikdaaa GccaGG7aaabaWaaeWaaeaacaWGybWaaSbaaSqaaiaadofaaeqaaOGa eyOeI0IaamiwamaaBaaaleaadaWgaaadbaGaamOtaaqabaaaleqaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGPa VpaabmaabaGaamywamaaBaaaleaacaWGtbaabeaakiabgkHiTiaadM fadaWgaaWcbaGaamOtaaqabaaakiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaGccqGHRaWkcaaMc8+aaeWaaeaacaWGAbWaaSbaaSqaai aadofaaeqaaOGaeyOeI0IaamOwamaaBaaaleaacaWGobaabeaaaOGa ayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabg2da9iaadsgada ahaaWcbeqaaiaaikdaaaGccaGG7aaabaWaaeWaaeaacaWGybWaaSba aSqaaiaadgfaaeqaaOGaeyOeI0IaamiwamaaBaaaleaadaWgaaadba GaamytaaqabaaaleqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaI YaaaaOGaey4kaSIaaGPaVpaabmaabaGaamywamaaBaaaleaacaWGrb aabeaakiabgkHiTiaadMfadaWgaaWcbaGaamytaaqabaaakiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaMc8+aaeWaae aacaWGAbWaaSbaaSqaaiaadgfaaeqaaOGaeyOeI0IaamOwamaaBaaa leaacaWGnbaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa aakiabg2da9iaadsgadaahaaWcbeqaaiaaikdaaaGccaGG7aaaaaa@922E@   (1)

After substituting into (1) the expressions for the coordinates of the corresponding points the equations of the three geometric constraints take the simplest form

x 2 + ( ab 2 3 +lsinα+y ) 2 + (lcosα+z) 2 = d 2 ( ab 4 +l 3 2 sinβ-x ) 2 + ( ab 4 3 + lsinβ 2 y+(lcosβ+z) ) 2 = d 2 ( ad 4 +l 3 2 sinγ-x ) 2 + ( ab 4 3 + lsinγ 2 y ) 2 + (lcosγ+z) 2 = d 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamiEam aaCaaaleqabaGaaGOmaaaakiabgUcaRmaabmaabaWaaSaaaeaacaWG HbGaeyOeI0IaamOyaaqaaiaaikdadaGcaaqaaiaaiodaaSqabaaaaO Gaey4kaSIaamiBaiaaykW7ciGGZbGaaiyAaiaac6gaieGacaWFXoGa ey4kaSIaamyEaiaaykW7aiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaGccaaMc8Uaey4kaSIaaiikaiaadYgaciGGJbGaai4Baiaacoha caWFXoGaey4kaSIaamOEaiaacMcadaahaaWcbeqaaiaaikdaaaGccq GH9aqpcaWGKbWaaWbaaSqabeaacaaIYaaaaaGcbaWaaeWaaeaadaWc aaqaaiaadggacqGHsislcaWGIbaabaGaaGinaaaacqGHRaWkcaWGSb WaaSaaaeaadaGcaaqaaiaaiodaaSqabaaakeaacaaIYaaaaiGacoha caGGPbGaaiOBaiaa=j7acaWFTaGaa8hEaaGaayjkaiaawMcaamaaCa aaleqabaGaaGOmaaaakiabgUcaRmaabmaabaWaaSaaaeaacaWGHbGa eyOeI0IaamOyaaqaaiaaisdadaGcaaqaaiaaiodaaSqabaaaaOGaey 4kaSYaaSaaaeaacaWGSbGaaGPaVlGacohacaGGPbGaaiOBaiaaykW7 caWFYoGaaGPaVdqaaiaaikdaaaGaeyOeI0IaamyEaiabgUcaRiaacI cacaWGSbGaci4yaiaac+gacaGGZbGaaGPaVlaa=j7acqGHRaWkcaWG 6bGaaiykaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaakiabg2 da9iaadsgadaahaaWcbeqaaiaaikdaaaaakeaadaqadaqaamaalaaa baGaamyyaiabgkHiTiaadsgaaeaacaaI0aaaaiabgUcaRiaadYgada WcaaqaamaakaaabaGaaG4maaWcbeaaaOqaaiaaikdaaaGaci4Caiaa cMgacaGGUbGaa83Sdiaa=1cacaWF4baacaGLOaGaayzkaaWaaWbaaS qabeaacaaIYaaaaOGaey4kaSYaaeWaaeaadaWcaaqaaiaadggacqGH sislcaWGIbaabaGaaGinamaakaaabaGaaG4maaWcbeaaaaGccqGHRa WkdaWcaaqaaiaadYgacaaMc8Uaci4CaiaacMgacaGGUbGaaGPaVlaa =n7acaaMc8oabaGaaGOmaaaacqGHsislcaWG5baacaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaiikaiaadYgaciGGJbGa ai4BaiaacohacaaMc8Uaa83SdiabgUcaRiaadQhacaGGPaWaaWbaaS qabeaacaaIYaaaaOGaeyypa0JaamizamaaCaaaleqabaGaaGOmaaaa kiaacUdaaaaa@BF53@   (2)

Further simplification of the dynamics model

The simplicity of equations (2) in this case creates the possibility of simplifying a completely analytical study by using equations in redundant coordinates that are free from constraints multipliers.21,24−35 The dimension of the model is reduced in comparison with (86) [10] by a doubled number of constraints due to the exclusion from consideration of the constraints multipliers21,24,26−28,32−35 and the velocities of the dependent coordinates by the differentiated equations (2).

If we differentiate the constraint equations (2) with respect to time and bring similar terms, we obtain in analytical form a system of three equations with three unknowns

( ρ 11 ρ 12 ρ 13 ρ 21 ρ 22 ρ 23 ρ 31 ρ 32 ρ 33 )( x ˙ y ˙ z ˙ )=( σ 1 α ˙ σ 2 β ˙ σ 3 γ ˙ ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabmWaaaqaaGqaciaa=f8adaWgaaWcbaacbaGaa4xmaiaa+fdaaeqa aaGcbaGaa8xWdmaaBaaaleaacaGFXaGaa4NmaaqabaaakeaacaWFbp WaaSbaaSqaaiaa+fdacaGFZaaabeaaaOqaaiaa=f8adaWgaaWcbaGa a4Nmaiaa+fdaaeqaaaGcbaGaa8xWdmaaBaaaleaacaGFYaGaa4Nmaa qabaaakeaacaWFbpWaaSbaaSqaaiaa+jdacaGFZaaabeaaaOqaaiaa =f8adaWgaaWcbaGaa43maiaa+fdaaeqaaaGcbaGaa8xWdmaaBaaale aacaGFZaGaa4NmaaqabaaakeaacaWFbpWaaSbaaSqaaiaa+ndacaGF ZaaabeaaaaaakiaawIcacaGLPaaacaaMc8UaaGPaVpaabmaabaqbae qabmqaaaqaaiqadIhagaGaaaqaaiqadMhagaGaaaqaaiqadQhagaGa aaaaaiaawIcacaGLPaaacqGH9aqpdaqadaqaauaabeqadeaaaeaacq aHdpWCdaWgaaWcbaGaaGymaaqabaGcceWFXoGbaiaaaeaacqaHdpWC daWgaaWcbaGaaGOmaaqabaGcceWFYoGbaiaaaeaacqaHdpWCdaWgaa WcbaGaaG4maaqabaGcceWFZoGbaiaaaaaacaGLOaGaayzkaaGaai4o aaaa@6993@   (3)

ρ 11 =x; ρ 12 = ab 2 3 +lsinα+y; ρ 13 =lcosα+z; ρ 23 =lcosβ+z; ρ 33 =lcosγ+z; ρ 21 =x ab 4 l 3 2 sinβ; ρ 22 =y ab 4 3 l 2 sinβ; ρ 31 =x+ ab 4 +l 3 2 sinγ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbiGaa8 xWdmaaBaaaleaaieaacaGFXaGaa4xmaaqabaGccqGH9aqpcaWG4bGa ai4oaiaaykW7caaMc8Uaa8xWdmaaBaaaleaacaGFXaGaa4Nmaaqaba GccqGH9aqpdaWcaaqaaiaadggacqGHsislcaWGIbaabaGaaGOmamaa kaaabaGaaG4maaWcbeaaaaGccqGHRaWkcaWGSbGaaGPaVlGacohaca GGPbGaaiOBaiaa=f7acqGHRaWkcaWG5bGaai4oaiaaykW7caaMc8Ua a8xWdmaaBaaaleaacaGFXaGaa43maaqabaGccqGH9aqpcaWGSbGaci 4yaiaac+gacaGGZbGaa8xSdiabgUcaRiaadQhacaGG7aGaaGPaVlaa =f8adaWgaaWcbaGaa4Nmaiaa+ndaaeqaaOGaeyypa0JaamiBaiGaco gacaGGVbGaai4CaiaaykW7caWFYoGaey4kaSIaamOEaiaacUdacaaM c8Uaa8xWdmaaBaaaleaacaGFZaGaa43maaqabaGccqGH9aqpcaWGSb Gaci4yaiaac+gacaGGZbGaaGPaVlaa=n7acqGHRaWkcaWG6bGaai4o aaqaaiaa=f8adaWgaaWcbaGaa4Nmaiaa+fdaaeqaaOGaeyypa0Jaam iEaiabgkHiTmaalaaabaGaamyyaiabgkHiTiaadkgaaeaacaaI0aaa aiabgkHiTiaadYgadaWcaaqaamaakaaabaGaaG4maaWcbeaaaOqaai aaikdaaaGaci4CaiaacMgacaGGUbGaa8NSdiaacUdacaaMc8UaaGPa Vlaa=f8adaWgaaWcbaGaa4Nmaiaa+jdaaeqaaOGaeyypa0JaamyEai abgkHiTmaalaaabaGaamyyaiabgkHiTiaadkgaaeaacaaI0aWaaOaa aeaacaaIZaaaleqaaaaakiabgkHiTmaalaaabaGaamiBaiaaykW7ae aacaaIYaaaaiGacohacaGGPbGaaiOBaiaa=j7acaGG7aGaaGPaVlaa ykW7caWFbpWaaSbaaSqaaiaa+ndacaGFXaaabeaakiabg2da9iaadI hacqGHRaWkdaWcaaqaaiaadggacqGHsislcaWGIbaabaGaaGinaaaa cqGHRaWkcaWGSbWaaSaaaeaadaGcaaqaaiaaiodaaSqabaaakeaaca aIYaaaaiGacohacaGGPbGaaiOBaiaa=n7acaGG7aaaaaa@BAA6@

ρ 32 =y ab 4 3 l 2 sinγ; σ 2 =l( zsinβ( ab 2 3 3 2 x y 2 )cosβ ); σ 1 =l( zsinα( ab 2 3 +y )cosα ); σ 3 =l( zsinγ( ab 2 3 + 3 2 x y 2 )cosγ ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbiGaa8 xWdmaaBaaaleaaieaacaGFZaGaa4NmaaqabaGccqGH9aqpcaWG5bGa eyOeI0YaaSaaaeaacaWGHbGaeyOeI0IaamOyaaqaaiaaisdadaGcaa qaaiaaiodaaSqabaaaaOGaeyOeI0YaaSaaaeaacaWGSbGaaGPaVdqa aiaaikdaaaGaci4CaiaacMgacaGGUbGaa83SdiaacUdacaaMc8UaaG PaVlabeo8aZnaaBaaaleaacaaIYaaabeaakiaaykW7cqGH9aqpcaWG SbGaaGPaVpaabmaabaGaamOEaiaaykW7ciGGZbGaaiyAaiaac6gaca WFYoGaeyOeI0YaaeWaaeaadaWcaaqaaiaadggacqGHsislcaWGIbaa baGaaGOmamaakaaabaGaaG4maaWcbeaaaaGccqGHsisldaWcaaqaam aakaaabaGaaG4maaWcbeaaaOqaaiaaikdaaaGaamiEaiabgkHiTmaa laaabaGaamyEaiaaykW7aeaacaaIYaaaaaGaayjkaiaawMcaaiaayk W7ciGGJbGaai4BaiaacohacaWFYoGaaGPaVdGaayjkaiaawMcaaiaa cUdaaeaacqaHdpWCdaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaWGSb GaaGPaVpaabmaabaGaamOEaiaaykW7ciGGZbGaaiyAaiaac6gacaWF XoGaeyOeI0YaaeWaaeaadaWcaaqaaiaadggacqGHsislcaWGIbaaba GaaGOmamaakaaabaGaaG4maaWcbeaaaaGccqGHRaWkcaWG5baacaGL OaGaayzkaaGaaGPaVlGacogacaGGVbGaai4Caiaa=f7acaaMc8oaca GLOaGaayzkaaGaai4oaiaaykW7cqaHdpWCdaWgaaWcbaGaaG4maaqa baGccqGH9aqpcaWGSbGaaGPaVpaabmaabaGaamOEaiaaykW7ciGGZb GaaiyAaiaac6gacaWFZoGaeyOeI0YaaeWaaeaadaWcaaqaaiaadgga cqGHsislcaWGIbaabaGaaGOmamaakaaabaGaaG4maaWcbeaaaaGccq GHRaWkdaWcaaqaamaakaaabaGaaG4maaWcbeaaaOqaaiaaikdaaaGa amiEaiabgkHiTmaalaaabaGaamyEaiaaykW7aeaacaaIYaaaaaGaay jkaiaawMcaaiaaykW7ciGGJbGaai4BaiaacohacaWFZoGaaGPaVdGa ayjkaiaawMcaaiaacUdaaaaa@B956@

From (3), the dependent speeds are easily expressed analytically through the system parameters.

( x ˙ y ˙ z ˙ )=( b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 )( α ˙ β ˙ γ ˙ ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaabmaabaqbae qabmqaaaqaaiqadIhagaGaaaqaaiqadMhagaGaaaqaaiqadQhagaGa aaaaaiaawIcacaGLPaaacqGH9aqpdaqadaqaauaabeqadmaaaeaaie GacaWFIbWaaSbaaSqaaGqaaiaa+fdacaGFXaaabeaaaOqaaiaa=jga daWgaaWcbaGaa4xmaiaa+jdaaeqaaaGcbaGaa8NyamaaBaaaleaaca GFXaGaa43maaqabaaakeaacaWFIbWaaSbaaSqaaiaa+jdacaGFXaaa beaaaOqaaiaa=jgadaWgaaWcbaGaa4Nmaiaa+jdaaeqaaaGcbaGaa8 NyamaaBaaaleaacaGFYaGaa43maaqabaaakeaacaWFIbWaaSbaaSqa aiaa+ndacaGFXaaabeaaaOqaaiaa=jgadaWgaaWcbaGaa43maiaa+j daaeqaaaGcbaGaa8NyamaaBaaaleaacaGFZaGaa43maaqabaaaaaGc caGLOaGaayzkaaGaaGPaVlaaykW7daqadaqaauaabeqadeaaaeaace WFXoGbaiaaaeaaceWFYoGbaiaaaeaaceWFZoGbaiaaaaaacaGLOaGa ayzkaaGaai4oaaaa@5E02@   (4)

k 11 = ρ 21 ρ 23 ρ 13 ρ 11 ; k 12 = ρ 22 ρ 23 ρ 13 ρ 12 ; k 21 = ρ 31 ρ 33 ρ 13 ρ 11 ; h 3 = h 1 ρ 23 ρ 13 ρ 33 ρ 13 k 22 = ρ 32 ρ 33 ρ 13 ρ 12 ; h 1 = k 21 k 11 ; h 2 = k 22 h 1 k 12 ; h 4 = ρ 11 k 11 k 12 ρ 12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaam4Aam aaBaaaleaacaaIXaGaaGymaaqabaGccqGH9aqpieGacaWFbpWaaSba aSqaaGqaaiaa+jdacaGFXaaabeaakiabgkHiTmaalaaabaGaa8xWdm aaBaaaleaacaGFYaGaa43maaqabaaakeaacaWFbpWaaSbaaSqaaiaa +fdacaGFZaaabeaaaaGccaWFbpWaaSbaaSqaaiaa+fdacaGFXaaabe aakiaacUdacaaMc8UaaGPaVlaadUgadaWgaaWcbaGaaGymaiaaikda aeqaaOGaeyypa0Jaa8xWdmaaBaaaleaacaGFYaGaa4NmaaqabaGccq GHsisldaWcaaqaaiaa=f8adaWgaaWcbaGaa4Nmaiaa+ndaaeqaaaGc baGaa8xWdmaaBaaaleaacaGFXaGaa43maaqabaaaaOGaa8xWdmaaBa aaleaacaGFXaGaa4NmaaqabaGccaGG7aGaaGPaVlaaykW7caWFRbWa aSbaaSqaaiaa+jdacaGFXaaabeaakiabg2da9iaa=f8adaWgaaWcba Gaa43maiaa+fdaaeqaaOGaeyOeI0YaaSaaaeaacaWFbpWaaSbaaSqa aiaa+ndacaGFZaaabeaaaOqaaiaa=f8adaWgaaWcbaGaa4xmaiaa+n daaeqaaaaakiaa=f8adaWgaaWcbaGaa4xmaiaa+fdaaeqaaOGaai4o aiaaykW7caaMc8UaamiAamaaBaaaleaacaaIZaaabeaakiabg2da9i aadIgadaWgaaWcbaGaaGymaaqabaGcdaWcaaqaaiaa=f8adaWgaaWc baGaa4Nmaiaa+ndaaeqaaaGcbaGaa8xWdmaaBaaaleaacaGFXaGaa4 3maaqabaaaaOGaeyOeI0YaaSaaaeaacaWFbpWaaSbaaSqaaiaa+nda caGFZaaabeaaaOqaaiaa=f8adaWgaaWcbaGaa4xmaiaa+ndaaeqaaa aaaOqaaiaadUgadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaeyypa0Ja a8xWdmaaBaaaleaacaGFZaGaa4NmaaqabaGccqGHsisldaWcaaqaai aa=f8adaWgaaWcbaGaa43maiaa+ndaaeqaaaGcbaGaa8xWdmaaBaaa leaacaGFXaGaa43maaqabaaaaOGaa8xWdmaaBaaaleaacaGFXaGaa4 NmaaqabaGccaGG7aGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIgadaWgaaWcbaGaaGymaa qabaGccqGH9aqpdaWcaaqaaiaadUgadaWgaaWcbaGaa4Nmaiaa+fda aeqaaaGcbaGaam4AamaaBaaaleaacaaIXaGaaGymaaqabaaaaOGaai 4oaiaaykW7caaMc8UaaGPaVlaadIgadaWgaaWcbaGaaGOmaaqabaGc cqGH9aqpcaWGRbWaaSbaaSqaaiaaikdacaaIYaaabeaakiabgkHiTi aadIgadaWgaaWcbaGaaGymaaqabaGccaWGRbWaaSbaaSqaaiaaigda caaIYaaabeaakiaacUdacaaMc8UaaGPaVlaadIgadaWgaaWcbaGaaG inaaqabaGccqGH9aqpdaWcaaqaaiaa=f8adaWgaaWcbaGaa4xmaiaa +fdaaeqaaaGcbaGaa83AamaaBaaaleaacaGFXaGaa4xmaaqabaaaaO Gaam4AamaaBaaaleaacaaIXaGaaGOmaaqabaGccqGHsislcaWFbpWa aSbaaSqaaiaa+fdacaGFYaaabeaaaaaa@CF6A@

b 11 = σ 1 k 11 ( ρ 23 ρ 13 k 12 ( h 1 ρ 33 ρ 13 ) h 2 ); b 12 = σ 2 k 22 k 11 h 2 ; b 13 = σ 3 k 11 h 2 ; b 21 = h 4 σ 1 h 2 ; b 22 = h 1 σ 2 h 2 b 23 = σ 3 ;; b 31 = σ 1 ρ 13 ( 1+ ρ 11 ρ 23 k 11 ρ 13 + h 3 h 4 h 2 ); b 32 = σ 2 ρ 13 h 2 ( ρ 21 h 1 ρ 11 ρ 22 k 11 ); b 33 = σ 3 h 4 ρ 13 h 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaacbiGaa8 NyamaaBaaaleaaieaacaGFXaGaa4xmaaqabaGccqGH9aqpdaWcaaqa aiabeo8aZnaaBaaaleaacaaIXaaabeaaaOqaaiaadUgadaWgaaWcba GaaGymaiaaigdaaeqaaaaakmaabmaabaGaeyOeI0YaaSaaaeaacaWF bpWaaSbaaSqaaiaa+jdacaGFZaaabeaaaOqaaiaa=f8adaWgaaWcba Gaa4xmaiaa+ndaaeqaaaaakiabgkHiTmaalaaabaGaam4AamaaBaaa leaacaaIXaGaaGOmaaqabaGcdaqadaqaaiaadIgadaWgaaWcbaGaaG ymaaqabaGccqGHsisldaWcaaqaaiaa=f8adaWgaaWcbaGaa43maiaa +ndaaeqaaaGcbaGaa8xWdmaaBaaaleaacaGFXaGaa43maaqabaaaaa GccaGLOaGaayzkaaaabaGaamiAamaaBaaaleaacaaIYaaabeaaaaaa kiaawIcacaGLPaaacaGG7aGaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaa=jgadaWgaaWcbaGaa4xmaiaa+jdaae qaaOGaeyypa0JaaGPaVlaaykW7daWcaaqaaiabeo8aZnaaBaaaleaa caaIYaaabeaakiaadUgadaWgaaWcbaGaaGOmaiaaikdaaeqaaaGcba Gaam4AamaaBaaaleaacaaIXaGaaGymaaqabaGccaWGObWaaSbaaSqa aiaaikdaaeqaaaaakiaacUdacaaMc8UaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8Uaa8NyamaaBaaaleaacaGFXaGaa43maa qabaGccqGH9aqpcaaMc8UaaGPaVpaalaaabaGaeq4Wdm3aaSbaaSqa aiaaiodaaeqaaaGcbaGaam4AamaaBaaaleaacaaIXaGaaGymaaqaba GccaWGObWaaSbaaSqaaiaaikdaaeqaaaaakiaacUdacaaMc8UaaGPa VdqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8Uaa8NyamaaBaaaleaacaGFYaGaa4xm aaqabaGccqGH9aqpcaaMc8UaaGPaVpaalaaabaGaamiAamaaBaaale aacaaI0aaabeaakiabeo8aZnaaBaaaleaacaaIXaaabeaaaOqaaiaa dIgadaWgaaWcbaGaaGOmaaqabaaaaOGaai4oaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caWFIbWaaSbaaSqaaiaa+jdacaGFYaaabeaakiabg2 da9iabgkHiTiaaykW7caaMc8+aaSaaaeaacaWGObWaaSbaaSqaaiaa igdaaeqaaOGaeq4Wdm3aaSbaaSqaaiaaikdaaeqaaaGcbaGaamiAam aaBaaaleaacaaIYaaabeaaaaGccaaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8Uaa8NyamaaBaaaleaacaGFYaGaa43m aaqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaaG4maaqabaGccaGG7a GaaGPaVlaaykW7caGG7aaabaGaa8NyamaaBaaaleaacaGFZaGaa4xm aaqabaGccqGH9aqpdaWcaaqaaiabeo8aZnaaBaaaleaacaaIXaaabe aaaOqaaiaa=f8adaWgaaWcbaGaa4xmaiaa+ndaaeqaaaaakmaabmaa baGaaGymaiabgUcaRmaalaaabaGaa8xWdmaaBaaaleaacaGFXaGaa4 xmaaqabaGccaWFbpWaaSbaaSqaaiaa+jdacaGFZaaabeaaaOqaaiaa dUgadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaa8xWdmaaBaaaleaaca GFXaGaa43maaqabaaaaOGaey4kaSYaaSaaaeaacaWGObWaaSbaaSqa aiaaiodaaeqaaOGaamiAamaaBaaaleaacaaI0aaabeaaaOqaaiaadI gadaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGaai4oaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8Uaa8NyamaaBaaaleaacaGFZa Gaa4NmaaqabaGccqGH9aqpcqGHsislcaaMc8UaaGPaVpaalaaabaGa eq4Wdm3aaSbaaSqaaiaaikdaaeqaaaGcbaGaa8xWdmaaBaaaleaaca GFXaGaa43maaqabaGccaWGObWaaSbaaSqaaiaaikdaaeqaaaaakiaa ykW7daqadaqaaiaa=f8adaWgaaWcbaGaa4Nmaiaa+fdaaeqaaOGaam iAamaaBaaaleaacaaIXaaabeaakiabgkHiTmaalaaabaGaa8xWdmaa BaaaleaacaGFXaGaa4xmaaqabaGccaWFbpWaaSbaaSqaaiaa+jdaca GFYaaabeaaaOqaaiaadUgadaWgaaWcbaGaaGymaiaaigdaaeqaaaaa aOGaayjkaiaawMcaaiaacUdacaaMc8UaaGPaVlaa=jgadaWgaaWcba Gaa43maiaa+ndaaeqaaOGaeyypa0ZaaSaaaeaacqaHdpWCdaWgaaWc baGaaG4maaqabaGccaWGObWaaSbaaSqaaiaaisdaaeqaaaGcbaGaa8 xWdmaaBaaaleaacaGFXaGaa43maaqabaGccaWGObWaaSbaaSqaaiaa ikdaaeqaaaaakiaacUdacaaMc8UaaGPaVdaaaa@B6C6@

Let us introduce the Lagrange function

L(r, r ˙ ,s, s ˙ )=( J+ m l 2 3 )( α ˙ 2 + β ˙ 2 + γ ˙ 2 )+ M 2 ( x ˙ 2 + y ˙ 2 + z ˙ 2 )+Mgz+ mg1 2 ( cosα+cosβ+cosγ ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamitai aacIcacaWGYbGaaiilaiaaykW7ceWGYbGbaiaacaGGSaGaaGPaVlaa dohacaGGSaGaaGPaVlqadohagaGaaiaacMcacqGH9aqpcqGHsislda qadaqaaiaadQeacqGHRaWkdaWcaaqaaiaad2gacaWGSbWaaWbaaSqa beaacaaIYaaaaaGcbaGaaG4maaaaaiaawIcacaGLPaaadaqadaqaaG qaciqa=f7agaGaamaaCaaaleqabaGaaGOmaaaakiabgUcaRiqa=j7a gaGaamaaCaaaleqabaGaaGOmaaaakiabgUcaRiqa=n7agaGaamaaCa aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgUcaRiaaykW7aeaa daWcaaqaaiaad2eaaeaacaaIYaaaaiaaykW7daqadaqaaiqadIhaga GaamaaCaaaleqabaGaaGOmaaaakiabgUcaRiqadMhagaGaamaaCaaa leqabaGaaGOmaaaakiaaykW7cqGHRaWkceWG6bGbaiaadaahaaWcbe qaaiaaikdaaaaakiaawIcacaGLPaaacaaMc8UaaGPaVlaaykW7cqGH RaWkcaaMc8UaamytaiaadEgacaWG6bGaaGPaVlabgUcaRmaalaaaba GaamyBaiaadEgacaaIXaaabaGaaGOmaaaadaqadaqaaiGacogacaGG VbGaai4Caiaa=f7acqGHRaWkciGGJbGaai4BaiaacohacaWFYoGaey 4kaSIaci4yaiaac+gacaGGZbGaa83SdaGaayjkaiaawMcaaiaacUda aaaa@86BC@   (5)

Where m is the mass of the links AP,BQ,CS MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadgeacaWGqb GaaiilaiaaykW7caaMc8UaamOqaiaadgfacaGGSaGaaGPaVlaaykW7 caWGdbGaam4uaaaa@4370@ , which we consider to be homogeneous inextensible rods; M - masses of drives and J the inertia moments of motor rotors, as well as measuring sensors and reductor. We neglect the masses of the levers PK, QM, SN. This approach is quite justified from a practical point of view, since usually in most manipulators such moving parts are made as lightweight as possible and made of lightweight composite materials. Taking these masses into account does not complicate the model,35 using (4), it is possible to implement the transition21,24−35 to equations in redundant coordinates, by excluding dependent velocities from the Lagrange function (5).

L*(r,s, r ˙ )= 1 2 r ˙ '.a*(r,s). r ˙ +Mgz+ mg1 2 ( cosα+cosβ+cosγ ); r=( α β γ );s=( x y z );a*(r,s)=( a 11 * a 12 * a 13 * a 21 * a 22 * a 23 * a 13 * a 23 * a 33 * );B(r,s)= b ij ;i,j= 1,3 ¯ ; a 11 * =J+ m l 2 3 +M( b 11 2 + b 21 2 + b 13 2 ); a 12 * =M( b 11 b 12 + b 21 b 22 + b 31 b 32 ); a 22 * =J+ m l 2 3 +M( b 12 2 + b 22 2 + b 32 2 ); a 23 * =M( b 13 b 12 + b 21 b 22 + b 33 b 32 ); a 33 * =J+ m l 2 3 +M( b 13 2 + b 23 2 + b 33 2 ); a 13 * =M( b 11 b 13 + b 21 b 23 + b 31 b 33 ); MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOabaeqabaGaamitai aacQcacaaMc8UaaiikaiaadkhacaGGSaGaam4CaiaacYcacaaMc8Ua bmOCayaacaGaaiykaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaa GabmOCayaacaGaai4jaiaac6cacaWGHbGaaiOkaiaacIcacaWGYbGa aiilaiaadohacaGGPaGaaiOlaiaaykW7caaMc8UabmOCayaacaGaey 4kaSIaamytaiaadEgacaWG6bGaey4kaSYaaSaaaeaacaWGTbGaam4z aiaaigdaaeaacaaIYaaaamaabmaabaGaci4yaiaac+gacaGGZbacbi Gaa8xSdiabgUcaRiGacogacaGGVbGaai4Caiaa=j7acqGHRaWkciGG JbGaai4BaiaacohacaWFZoaacaGLOaGaayzkaaGaai4oaaqaaiaadk hacqGH9aqpdaqadaqaauaabeqadeaaaeaacaWFXoaabaGaa8NSdaqa aiaa=n7aaaaacaGLOaGaayzkaaGaai4oaiaaykW7caWGZbGaeyypa0 ZaaeWaaeaafaqabeWabaaabaGaa8hEaaqaaiaa=LhaaeaacaWF6baa aaGaayjkaiaawMcaaiaacUdacaaMc8UaamyyaiaacQcacaGGOaGaam OCaiaacYcacaWGZbGaaiykaiabg2da9maabmaabaqbaeqabmWaaaqa aiaadggadaqhaaWcbaGaaGymaiaaigdaaeaacaGGQaaaaaGcbaGaam yyamaaDaaaleaacaaIXaGaaGOmaaqaaiaacQcaaaaakeaacaWGHbWa a0baaSqaaiaaigdacaaIZaaabaGaaiOkaaaaaOqaaiaadggadaqhaa WcbaGaaGOmaiaaigdaaeaacaGGQaaaaaGcbaGaamyyamaaDaaaleaa caaIYaGaaGOmaaqaaiaacQcaaaaakeaacaWGHbWaa0baaSqaaiaaik dacaaIZaaabaGaaiOkaaaaaOqaaiaadggadaqhaaWcbaGaaGymaiaa iodaaeaacaGGQaaaaaGcbaGaamyyamaaDaaaleaacaaIYaGaaG4maa qaaiaacQcaaaaakeaacaWGHbWaa0baaSqaaiaaiodacaaIZaaabaGa aiOkaaaaaaaakiaawIcacaGLPaaacaGG7aGaaGPaVlaaykW7caWGcb GaaiikaiaadkhacaGGSaGaam4CaiaacMcacqGH9aqpdaqbdaqaaiaa dkgadaWgaaWcbaGaamyAaiaadQgaaeqaaaGccaGLjWUaayPcSdGaai 4oaiaadMgacaGGSaGaamOAaiabg2da9maanaaabaGaaGymaiaacYca caaIZaaaaiaacUdaaeaacaWGHbWaa0baaSqaaiaaigdacaaIXaaaba GaaiOkaaaakiabg2da9iaadQeacqGHRaWkdaWcaaqaaiaad2gacaWG SbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaG4maaaacqGHRaWkcaWGnb WaaeWaaeaacaWGIbWaa0baaSqaaiaaigdacaaIXaaabaGaaGOmaaaa kiabgUcaRiaadkgadaqhaaWcbaGaaGOmaiaaigdaaeaacaaIYaaaaO Gaey4kaSIaamOyamaaDaaaleaacaaIXaGaaG4maaqaaiaaikdaaaaa kiaawIcacaGLPaaacaGG7aGaaGPaVlaaykW7caWGHbWaa0baaSqaai aaigdacaaIYaaabaGaaiOkaaaakiabg2da9iaad2eadaqadaqaaiaa dkgadaWgaaWcbaGaaGymaiaaigdaaeqaaOGaamOyamaaBaaaleaaca aIXaGaaGOmaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaikdacaaI XaaabeaakiaadkgadaWgaaWcbaGaaGOmaiaaikdaaeqaaOGaey4kaS IaamOyamaaBaaaleaacaaIZaGaaGymaaqabaGccaWGIbWaaSbaaSqa aiaaiodacaaIYaaabeaaaOGaayjkaiaawMcaaiaacUdaaeaacaWGHb Waa0baaSqaaiaaikdacaaIYaaabaGaaiOkaaaakiabg2da9iaadQea cqGHRaWkdaWcaaqaaiaad2gacaWGSbWaaWbaaSqabeaacaaIYaaaaa GcbaGaaG4maaaacqGHRaWkcaWGnbWaaeWaaeaacaWGIbWaa0baaSqa aiaaigdacaaIYaaabaGaaGOmaaaakiabgUcaRiaadkgadaqhaaWcba GaaGOmaiaaikdaaeaacaaIYaaaaOGaey4kaSIaamOyamaaDaaaleaa caaIZaGaaGOmaaqaaiaaikdaaaaakiaawIcacaGLPaaacaGG7aGaaG PaVlaaykW7caaMc8UaamyyamaaDaaaleaacaaIYaGaaG4maaqaaiaa cQcaaaGccqGH9aqpcaWGnbWaaeWaaeaacaWGIbWaaSbaaSqaaiaaig dacaaIZaaabeaakiaadkgadaWgaaWcbaGaaGymaiaaikdaaeqaaOGa ey4kaSIaamOyamaaBaaaleaacaaIYaGaaGymaaqabaGccaWGIbWaaS baaSqaaiaaikdacaaIYaaabeaakiabgUcaRiaadkgadaWgaaWcbaGa aG4maiaaiodaaeqaaOGaamOyamaaBaaaleaacaaIZaGaaGOmaaqaba aakiaawIcacaGLPaaacaGG7aaabaGaamyyamaaDaaaleaacaaIZaGa aG4maaqaaiaacQcaaaGccqGH9aqpcaWGkbGaey4kaSYaaSaaaeaaca WGTbGaamiBamaaCaaaleqabaGaaGOmaaaaaOqaaiaaiodaaaGaey4k aSIaamytamaabmaabaGaamOyamaaDaaaleaacaaIXaGaaG4maaqaai aaikdaaaGccqGHRaWkcaWGIbWaa0baaSqaaiaaikdacaaIZaaabaGa aGOmaaaakiabgUcaRiaadkgadaqhaaWcbaGaaG4maiaaiodaaeaaca aIYaaaaaGccaGLOaGaayzkaaGaai4oaiaaykW7caaMc8UaaGPaVlaa dggadaqhaaWcbaGaaGymaiaaiodaaeaacaGGQaaaaOGaeyypa0Jaam ytamaabmaabaGaamOyamaaBaaaleaacaaIXaGaaGymaaqabaGccaWG IbWaaSbaaSqaaiaaigdacaaIZaaabeaakiabgUcaRiaadkgadaWgaa WcbaGaaGOmaiaaigdaaeqaaOGaamOyamaaBaaaleaacaaIYaGaaG4m aaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaiodacaaIXaaabeaaki aadkgadaWgaaWcbaGaaG4maiaaiodaaeqaaaGccaGLOaGaayzkaaGa ai4oaaaaaa@59C8@

The dynamics of the simulated system can be described by the equations obtained using a well-known algorithm:32−35

d dt L* r ˙ L* r = Q r +B'(r,s) L* s ; s ˙ =B(r,s) r ˙ ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaaqaaiaadsgacaWG0baaamaalaaabaGaeyOaIyRaamitaiaacQca aeaacqGHciITceWGYbGbaiaaaaGaeyOeI0YaaSaaaeaacqGHciITca WGmbGaaiOkaaqaaiabgkGi2kaadkhaaaGaeyypa0JaamyuamaaBaaa leaacaWGYbaabeaakiabgUcaRiaadkeacaGGNaGaaGPaVlaacIcaca WGYbGaaiilaiaadohacaGGPaWaaSaaaeaacqGHciITcaWGmbGaaiOk aaqaaiabgkGi2kaadohaaaGaai4oaiaaykW7caaMc8UaaGPaVlqado hagaGaaiabg2da9iaadkeacaGGOaGaamOCaiaacYcacaWGZbGaaiyk aiqadkhagaGaaiaacUdaaaa@6399@

Q is the vector of forces, related to independent coordinates.

Conclusion

Success in the study of any non-free system with geometric constraints is largely determined by adequate modeling of the constraints as simple as possible. It is the simplicity of the analytical form of the constraint equations that makes it possible to move to equations in redundant coordinates, which reduce the dimension of the mathematical model. This paper shows how choosing the simplest mathematical model of nonlinear geometric constraints can simplify research. Modeling of constraints must necessarily be nonlinear - Routh23 also pointed out that in the expansion of constraint equations it is necessary to take into account terms up to at least the second order, especially in stability problems. The problem of stability is one of the most important for automatic systems: it is ensuring the stable implementation of the specified behavior of the controlled object that determines the performance of the control system. For systems with geometric constraints, the solution to the question of stability cannot be obtained by considering only the first approximation, which is customary in technical practice.

In the general case, it has been proven24,27 that the stability of any steady motion of such systems is possible only in critical cases,36−39 since the characteristic equation of a first-approximation system always has as many zero roots as there are are constraints imposed on the system, and these roots are preserved under any control law. Therefore, for a valid conclusion about stability, the dynamics nonlinear model in an analytical form is necessary, allowing the structure analysis of nonlinear terms, since in critical cases a valid conclusion about stability can be obtained only from nonlinear terms. The application of the critical cases theory requires bringing the equations to a special form. This procedure requires the Aizerman-Gantmacher substitution40 from non-holonomic mechanics, which requires second-order terms in the constraint equations. For this reason, the modeling of the dynamics of systems with geometric constraints is subject to unusual requirements that are higher than those accepted in technical practice.

Even from such a brief review it follows that rigorous nonlinear modeling of the systems dynamics with geometric constraints is based on the complex application of general abstract theoretical methods of analytical mechanics of non-free systems20−23,35 and nonlinear stability theory.36−39 A rigorous, detailed abstract theoretical presentation of the proposed method with complete proofs of the results has been published in open access journal articles24,25,27−32 and in numerous articles in international conference proceedings.33,39,41−44 Due to their complexity, the rationale for the proposed modeling method cannot be briefly presented at a level that can be understood by a specialist with standard engineering training. However, as indicated in,29 for the practical application of the method, an understanding of the general theoretical results used in it is not required: an easy-to-use algorithm has been published, the use of which ensures the reliable obtaining of results substantiated in the method. This is precisely the main achievement of the conducted research.

The effectiveness of the practical application of the algorithm is demonstrated by solving problems of stabilization of systems with one41 and two42,43 geometric constraints. But the most detailed step-by-step presentation was published in the article,29 which presents four options for a complete solution to the problem of stabilizing a given equilibrium of the world-famous45 stand Ball and Beam (Figure 8). 

Figure 8 Scheme of the ball and beam stand.

In our opinion, specialists in technical practice can easily master the algorithm for the practical application of the method by analyzing all the stages of applying the method using the example of this real technical device. In29 the step-by-step implementation of the algorithm is given in detail. The presentation begins with the procedure for obtaining a complete (including a mathematical model of the drive) nonlinear mathematical model of the device, determining two equilibrium positions. In all the publications, only one of them was studied: the well-known equilibrium position θ=0 (Figure 9).

Figure 9 Known equilibrium position θ=0.

New equilibrium position θ≠0 (Figure 10) was found for the first time in,29 since in all publications before this article this new equilibrium could not be found due to linearization the geometric constraint26 (cf. Routh's remark above).23

Figure 10 New equilibrium position θ≠0.

Next, in the each equilibrium neighborhood, the perturbed motion equations were compiled for various options for choosing the dependent coordinate, the first approximation was allocated, and the substitution40 was studied. A linear controlled subsystem is identified, the asymptotic stability with respect to the variables of which ensures, according to theorem,24,27 asymptotic stability in a complete closed system. For four variants of the formulated stabilization problems, solution using the method of N.N. Krasovskii46 linear-quadratic problems for controlled subsystems found an additional voltage on the armature winding of an executive commutator motor with independent excitation. This voltage serves as a stabilizing control and is a linear function of the phase variables for the corresponding subsystem. For a specific stand GBB 1005, graphs of transient processes in closed systems were obtained. The adequacy of the modeling is verified by the complete coincidence of the graphs for controls as functions of time when substituting the current values of these variables from their transient processes into their expressions in the functions of phase variables.

Acknowledgments

None.

Conflicts of interest

Author declares that there is no conflict of interest.

References

  1. Tsai LW. Robot analysis, the mechanics of serial and parallel manipulators. Wiley: New York; 1999.
  2. Cheng H, Liu GF, YiuYK, et al. Advantages and dynamics of parallel manipulators with redundant actuation. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180); 2001.
  3. Pandilov Z, Dukovski V. Comparison of the characteristics between serial and parallel robots. Acta tehnica corviniensis – Bulletin of Engineering Tome VII. 2014;143−160.
  4. Deabs A, Gomaa FR, Khader K. Parallel robot. Journal of Engineering Science and Technology Review. 2021;14(6):10–27.
  5. Clavel R. Une nouvelle structure de manipulateur parallèle pour la robotique légère. APII. 1989;23(6):501–519.
  6. Clavel R. Conception d'un robot parallele rapide 'a 4degres de liberte. EPFL, Lausanne; 1991. 925 p.
  7. Codourey A. Dynamic modelling and mass matrix evaluation of the DELTA parallel robot for axes decoupling control. In Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Osaka (JP); 1996. 1211−1218 p.
  8. Codourey A. Dynamic modeling of parallel robots for computed-torque control implementation. International Journal of Robotics Research. 1998;17(12):1325−1336.
  9. Staicu S, Carp-Ciocardia D. Dynamic analysis of Clavel’s delta parallel robot. Proceedings of the IEEE International Conference on Robotics and Automation ICRA. 2003;3:4116−4121.
  10. Brinker J, Corves B, Wahle M. Comparative study of inverse dynamics based on Clavel’s Delta robot. 14th IFToMM World Cogress, Taipei; 2015.
  11. Brinker J, Corves B. Lagrangian based dynamic analyses of delta robots with serial-parallel architecture. In: Symposium on Robot Design, Dynamics and Control. Springer; 2016. 133–141 p.
  12. Kuo YL.  Mathematical modeling and analysis of the delta robot with flexible links. Computers and Mathematics with Applications. 2016;71(10):1973−1989.
  13. Brinker J, Funk N, Ingenlath P, et al. Comparative study of serial-parallel delta robots with full orientation capabilities. IEEE Robot Autom Lett. 2017;2(2):920–926.
  14. Takeda Y, Yang R, Zhang C. Kinematic and dynamic dimensional synthesis of extended delta parallel robots, in robotics and mechatronics; Springer International Publishing: Cham, Switzerland; 2019. 131–143 p.
  15. Makwana M, Patolia H. Model-based motion simulation of delta parallel robot. Journal of Physics: Conference Series. 2115 012002; 2021.
  16. Zhang S, Liu X, Yan B, et al. Dynamics modeling of a delta robot with telescopic rod for torque feedforward control. Robotics. 2022;11(2):36.
  17. Kim TH, Kim Y, Kwak T, et al. Metaheuristic identification for an analytic dynamic model of a delta robot with experimental verification. Actuators. 2022;11(12):352.  
  18. Lyapunov AM. Lectures on theoretical mechanics. Kyiv. "Naukova dumka"; 1982.
  19. Lurie AI. Analytical mechanics M. State Publishing House of Phys Math Literature; 1961.
  20. Suslov GK. Theoretical mechanics. Moscow-Leningrad: OGIZ; 1946.
  21.  Shulgin МF. On some differential equations of analytical dynamics and their integration. Proc. of the Lenin Central Asian state University; 1958. 144 p.
  22. Pars LA.  Treatise on analytical dynamics. Heinemann; 1965.
  23. Routh EJ. Dynamics of a system of rigid bodies. Dover; 1960.
  24. Krasinskiy A Ya, Krasinskaya EM. On the stability and stabilization of equilibrium of mechanical systems with redundant coordinates. Science and education MSTU NE Bauman Electron; 2013.
  25. Krasinskiy A Ya, Krasinskaya EM. Modeling the dynamics of the GBB 1005 BALL&BEAM stand as a controlled mechanical system with redundant coordinates. Science and education MSTU NE Bauman Electron; 2014.
  26. Krasinskiy A Ya, Krasinskaya EM. On the admissibility of linearization of the geometric constraints equations in problems of stability and stabilization of equilibria. Theoretical Mechanics. Collection of scientific and methodological articles, Moscow, Publishing House of Moscow State University. 2015;29:54–65.
  27. Krasinskiy A Ya, Krasinskaya EM. On a method for stabilizing with zero roots in a closed system. Autom Remote Control. 2016;77;1386−1398.
  28. Krasinskiy A Ya, Ilyina AN. The mathematical modelling of the dynamics of systems with redundant coordinates in the neighborhood of steady motions. Vestnik YuUrGU Ser Mat Model Progr. 2017;10(2):38−50.
  29. Krasinskiy A Ya, Ilyina AN, Krasinskaya EM. On modeling the dynamics of the “ball and beam” system as a nonlinear mechatronic system with geometric constraints. Vestnik YuUrGU Ser Mat Model Progr. 2017;27(3):414−430.
  30. Krasinskiy A Ya, Krasinskaya EM. Analysis of modern modeling methods in problems of stabilization of motions of mechatronic systems with differential constraints. International Journal of Engineering & Technology. 2018;7(2.23):9−13
  31. Krasinskiy A Ya, Ilyina AN, Krasinskaya EM, et al. Mathematical and computer modeling of manipulators with nonlinear geometric connection. Engineering Journal: Science and Innovation. 2018;4(76).
  32. Krasinskiy A Ya, Ilyina AN, Krasinskaya EM. Stabilization of steady motions for systems with redundant coordinates. Moscow University Mechanics Bulletin. 2019;74(1)14−20.
  33. Krasinskiy A Ya, Krasinskaya EM.Complex application of the methods of analytical mechanics and nonlinear stability theory in stabilization problems of motions of mechatronic systems. Radionov AA, Karandaev AS, Editors. RusAutoCon 2019, LNEE 641. Springer Nature: Switzerland AG; 2020. 357–370 p.
  34. Krasinskiy A Ya. On two methods for nonlinear modeling of the dynamics of parallel manipulators. Journal of Engineering and Technology Development Research. 2022;1(1).
  35. Krasinskiy A Ya. On the methods of analytical mechanics for mathematical modeling of the dynamics of non-free systems and some variants of their application to the dynamics of parallel manipulators. Int Rob Auto J. 2023;9(1):15−19.
  36. Lyapunov AM. General problem of motion stability. Kharkov: Kharkovskoe matem. Society; 1892.
  37. Malkin IG.  Theory of stability of motion. US Atomic Energy Commission; 1952.
  38. Kamenkov GV. Selected works, Nauka. 1972;2
  39. Krasinskiy A Ya. On stability and stabilization with permanently acting perturbations in some critical cases A. Tarasyev et al, edsitors. Stability, control and differential games, lecture notes in control and information sciences. Proceedings, © Springer Nature: Switzerland AG; 2020.
  40. Aiserman MA, Gantmacher FR. Stabilitaet der gleichgewichtslage in einem nichtholonomen system. ZAMM. 1957;37(1):74−75.
  41. Krasinskiy A Ya, Krasinskaya EM. Modeling of dynamics of manipulators with geometrical consraints as a systems with redundant coordinates. 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM); 2016. 1−6 p.
  42. Krasinskiy A Ya, Yuldashev AA. Mathematical and computer modeling of a new type of two-link manipulator. 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA); 2019.
  43. Krasinskiy A Ya, Yuldashev A. On one method of modeling multi-link manipulators with geometric connections, taking into account the parameters of the links. 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA); 2021.
  44. Krasinskiy A Ya, Yuldashev AA. Nonlinear model of delta robot dynamics as a manipulator with geometric constraints. 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA); 2021. 115−118 p.
  45. Yu W. Nonlinear PD regulation for ball and beam system. Int J Electrical Engineering Education. 2009;46(1):59−73.
  46. Krasovskii NN. Problems of stabilization of controlled motions. In Malkin IG,Theory of motion stability: Nauka; 1966. 475−514 p.
Creative Commons Attribution License

©2024 Krasinskiy. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.