Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 6 Issue 1

Dynamics and control of the CO2 level via a differential equation and alternative global emission strategies

Peter Lohmander,1 Olaiya AO,1 Oyafajo AT,1 Atayese MO,1 Bodunde JG2

1Optimal Solutions in cooperation with Linnaeus University, Sweden
1Department of Crop Physiology and Crop Production, Federal University of Agriculture, Nigeria
2Department of Horticulture, Federal University of Agriculture, Nigeria

Correspondence: Peter Lohmander, Optimal Solutions in cooperation with Linnaeus University, Sweden, Tel +46738288294

Received: December 30, 2019 | Published: January 31, 2020

Citation: Lohmander P. Dynamics and control of the CO2 level via a differential equation and alternative global emission strategies. Int Rob Auto J .2020;6(1):7?15. DOI: 10.15406/iratj.2020.06.00197

Download PDF

Abstract

The analysis in this paper shows that the fundamental theory of the CO2 level in the atmosphere, under the influence of changing CO2 emissions, can be modeled as a first order linear differential equation with a forcing function, describing industrial emissions.

Observations of the CO2 level at the Mauna Loa CO2 observatory and official statistics of global CO2 emissions, from Edgar, the Joint Research Centre at the European Commission, are used to estimate all parameters of the forced CO2 differential equation.

The estimated differential equation has a logical theoretical foundation and convincing statistical properties. It is used to reproduce the time path of the CO2 data from Mauna Loa, from year 1990 to 2018, with very small errors. Furthermore, the differential equation shows that the global CO2 level, without emissions, has a stable equilibrium at 280 ppm. This value has earlier been reported by IPCC as the pre-industrial CO2 level.

The differential function is applied to derive four dynamic cases of the global CO2 level, from the year 2020 until 2100, conditional on four different strategies concerning the development of global CO2 emissions:

  1. Emissions continue to increase according to the trend during 1990–2018
  2. Emissions stay for ever at the 2020 level
  3. Emissions are reduced with a linear trend to become zero year 2100
  4. Emissions are reduced with a linear trend to become zero year 2050

In case i., the CO2 level year 2100 will be 688 ppm. In cases ii. and iii., the CO2 levels in 2100 will be 517 ppm and 389 respectively. In case iv., the CO2 level in 2050 is 408 ppm and then rapidly falls.

Introduction

The global warming and CO2 dynamics issue, for very good reasons, attracts considerable global interest. The climate of our planet is of key importance to all life. The author recommends the reader to study Ramade1 in detail for a deep understanding of many of the connected issues and theories.

The first ambition is to understand the fundamental mechanisms of the dynamics of the CO2 level of the atmosphere under the influence of global emissions.

We will investigate if it is possible to develop a theoretical mathematical model of the dynamics of CO2. Such a model should be consistent with fundamental scientific principles. Furthermore, it should be possible to use the model to reproduce historical time series of empirical data. If such a model can be developed, it should be possible to use it also for predictions. Then, the most important application is to investigate how the global CO2 level can be dynamically changed via different emissions strategies.

Statistics of the CO2 level in the atmosphere and the global CO2 emissions

The CO2 level of the atmosphere has been recorded since 1958, at the Mauna Loa observatory. See Tans and Keeling2. The statistical tables are well documented and freely available via the internet. In Figure 1 the annual mean values of  CO2 are shown. The web link connected to the reference provides access to all observations via a text file with instructions. In several cases, transformations between different physical units are necessary. O'Hara3 includes the relevant conversion factors.

Figure 1 CO2 in the atmosphere, annual mean values, Mauna Loa, (ppm). Source: Tans and Keeling.2

In Figure 2 we find observations of global CO2 emissions from fossil fuels combustion and processes. These data come from European Commission.4 The observations from 1990, 2000, 2010 and 2018 have been used in the analysis of this paper. There are two reasons for this: First, emission data were only collected with ten year intervals during the early years. Second, sufficiently long time intervals are needed if we want to be able to estimate the changes of CO2 in the atmosphere with sufficiently high precision. 

Figure 2 Obs=Observations of global CO2 emissions from fossil fuels combustion and processes. Source: European Commission.4 Approx=Linear approximation via the least squares method, by the author of this paper. Compare equation (47).  Approx =21.672+0.57366(Year1990) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabg2da9iaayg W7caaMc8UaaGOmaiaaigdacaGGUaGaaGOnaiaaiEdacaaIYaGaey4k aSIaaGPaVlaaicdacaGGUaGaaGynaiaaiEdacaaIZaGaaGOnaiaaiA dacaaMc8UaaiikaiaadMfacaWGLbGaamyyaiaadkhacqGHsislcaaI XaGaaGyoaiaaiMdacaaIWaGaaiykaaaa@5196@ . R0.984 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadkfacqGHij YUcaaIWaGaaiOlaiaaiMdacaaI4aGaaGinaaaa@3D45@ .

In the estimations of a differential equation, the following three periods will be used: 1990–2000, 2000–2010 and 2010–2018. More details about these periods are found in Table 1.

i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgaaaa@37FC@
(period)

t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshaaaa@3807@
(year)

ψ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI8a5naaBa aaleaacaWG0baabeaaaaa@3A01@
(ppm)

Δ x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgs5aejaayk W7caWG4bWaaSbaaSqaaiaadMgaaeqaaaaa@3C17@
(ppm)

Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgs5aejaayk W7caWG0baaaa@3AF9@
(years)

x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamyAaaqabaaaaa@3925@
(ppm)

x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamyAaaqabaaaaa@3925@
(Gt Co2 )

x i Δx Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEamaaBaaaleaacaWGPbaabeaaaeqabaGaeyOiGClaaOGaeyisIS7a aSaaaeaacqGHuoarcaaMc8UaamiEaaqaaiabgs5aejaaykW7caWG0b aaaaaa@448D@
(ppm per year)

x i Δx Δt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEamaaBaaaleaacaWGPbaabeaaaeqabaGaeyOiGClaaOGaeyisIS7a aSaaaeaacqGHuoarcaaMc8UaamiEaaqaaiabgs5aejaaykW7caWG0b aaaaaa@448D@
(Gt Co2 per year)

 

1990

354.39

 

 

 

 

 

 

1

 

 

15.16

10

361.97

2824.9

1.516

11.831

 

2000

369.55

 

 

 

 

 

 

2

 

 

20.35

10

379.725

2963.5

2.035

15.882

 

2010

389.90

 

 

 

 

 

 

3

 

 

18.62

8

399.21

3115.6

2.3275

18.165

 

2018

408.52

 

 

 

 

 

 

Table 1 Atmospheric CO2 data
Definitions in table 1: ψ t =C o 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI8a5naaBa aaleaacaWG0baabeaakiabg2da9iaadoeacaWGVbWaaSbaaSqaaiaa ikdaaeqaaaaa@3DB5@ in atmosphere, annual mean value of observations, Mauna Loa
x i =C o 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcaWGdbGaam4BamaaBaaaleaacaaI Yaaabeaaaaa@3CD9@ in atmosphere, calculated mean value
Gt denotes Giga tonnes and ppm denotes parts per million

The emission forced differential equation of the global CO2 level

The general theory of differential equations can be studied in Braun.5

Let us first consider the following differential equation. We will soon discover that it has to be adjusted in order to become relevant to the CO2 problem.

x = dx dt = a 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caakiabg2da9maalaaabaGaamizaiaadIha aeaacaWGKbGaamiDaaaacqGH9aqpcaWGHbWaaSbaaSqaaiaaicdaae qaaaaa@4193@                                       (1)

x=x(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaaMb8UaaGjbVlaadIhacaGGOaGaamiDaiaacMcaaaa@3F77@ is the CO2 level in the atmosphere as a function of time. x = dx dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caakiabg2da9maalaaabaGaamizaiaadIha aeaacaWGKbGaamiDaaaaaaa@3EC1@ is the change per time unit, or the time derivative, of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ . There are constant ”natural” emissions, from the oceans, volcanoes and other parts of the natural environment, greater than zero. a 0 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGimaaqabaGccqGH+aGpcaaIWaaaaa@3AA6@ . Hence, x = dx dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caakiabg2da9maalaaabaGaamizaiaadIha aeaacaWGKbGaamiDaaaaaaa@3EC1@ would be strictly positive and x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ would increase over time, without bound, if nothing would stop that.

However, earlier CO2 research has already shown that the CO2 level has been stable during very long periods of time. Compare Ramade1 and Solomon et al.6

Let us assume that the oceans (and, to some degree, other parts of the natural environment) absorb a part of the CO2 in the atmosphere. Let us also assume that the absorbtion is proportional to the CO2 level in the atmosphere, x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ . This is a very reasonable assumption since the probability that a CO2 molecule touches the surface of the sea is proportional to the CO2 level in the atmosphere. Let the absorbtion be a x x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgkHiTiaadg gadaWgaaWcbaGaamiEaaqabaGccaWG4baaaa@3B11@ . Then, we have this differential equation of global CO2:

x = dx dt = a 0 + a x x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caakiabg2da9maalaaabaGaamizaiaadIha aeaacaWGKbGaamiDaaaacqGH9aqpcaWGHbWaaSbaaSqaaiaaicdaae qaaOGaey4kaSIaamyyamaaBaaaleaacaWG4baabeaakiaadIhaaaa@4595@                               (2)

Is there an equilibrium?

x = dx dt = a 0 + a x x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caakiabg2da9maalaaabaGaamizaiaadIha aeaacaWGKbGaamiDaaaacqGH9aqpcaWGHbWaaSbaaSqaaiaaicdaae qaaOGaey4kaSIaamyyamaaBaaaleaacaWG4baabeaakiaadIhacqGH 9aqpcaaIWaaaaa@4755@                          (3)

Yes, there is one and only one equilbrium.

( x =0 )x= x eq = a 0 a x >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaC biaeaacaWG4baaleqabaGaeyOiGClaaOGaeyypa0JaaGimaaGaayjk aiaawMcaaiabgkDiElaadIhacqGH9aqpcaWG4bWaaSbaaSqaaiaadw gacaWGXbaabeaakiabg2da9maalaaabaGaeyOeI0IaamyyamaaBaaa leaacaaIWaaabeaaaOqaaiaadggadaWgaaWcbaGaamiEaaqabaaaaO GaeyOpa4JaaGimaaaa@4C53@                     (4)

Is this equilibrium stable? Yes, if something disturbes x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ so that x< x eq MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH8a apcaWG4bWaaSbaaSqaaiaadwgacaWGXbaabeaaaaa@3C18@ , then x >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caakiabg6da+iaaicdaaaa@3BA5@ , which means that x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ increases until x= x eq MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaWG4bWaaSbaaSqaaiaadwgacaWGXbaabeaaaaa@3C1A@ . If x> x eq MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH+a GpcaWG4bWaaSbaaSqaaiaadwgacaWGXbaabeaaaaa@3C1C@ , then x <0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caakiabgYda8iaaicdaaaa@3BA1@ , and x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F3@ decreases until x= x eq MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaWG4bWaaSbaaSqaaiaadwgacaWGXbaabeaaaaa@3C1A@ .

According to earlier research, the pre-industrial equilibrium level of CO2 was 280 ppm (parts per million). Compare the IPCC report by Solomon et al.6 In this paper, we will find that the derived model confirms this finding. In other words, we will confirm that.

x eq = a 0 a x 280 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamyzaiaadghaaeqaaOGaeyypa0ZaaSaaaeaacqGHsislcaWG HbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamyyamaaBaaaleaacaWG4b aabeaaaaGccqGHijYUcaaIYaGaaGioaiaaicdaaaa@43FC@                                                           (5)

In order to determine the parameters of a function, it is necessary to have some variation in the data. In particular, when we want to determine the values of the parameters of the differential equation of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ , we can not do this if x= x eq MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacqGH9a qpcaWG4bWaaSbaaSqaaiaadwgacaWGXbaabeaaaaa@3C1A@ all the time. In this respect, it is useful to observe that the industrial emissions of CO2 during the latest decades have created earlier not available variation in x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ . Let us regard global emissions of CO2, after the industrial revolution, φ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA8aQjaacI cacaWG0bGaaiykaaaa@3B1D@ , as a function of t. The emissions are added to the CO2 in the atmosphere.

x = a 0 + a x x+φ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caakiabg2da9iaadggadaWgaaWcbaGaaGim aaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaadIhaaeqaaOGaamiEai abgUcaRiabeA8aQjaacIcacaWG0bGaaiykaaaa@45A8@                          (6)

Now, since we have access to empirical data for ( x ,φ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaWaaC biaeaacaWG4baaleqabaGaeyOiGClaaOGaaiilaiabeA8aQbGaayjk aiaawMcaaaaa@3DD9@ in different time periods, we can estimate the parameters ( a 0 , a x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyamaaBaaaleaacaaIWaaabeaakiaacYcacaWGHbWaaSbaaSqaaiaa dIhaaeqaaaGccaGLOaGaayzkaaaaaa@3D36@ via the ordinary least squares method (regression analysis) in the following way:

y(t)= x φ(t)= a 0 + a x x(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacaGGOa GaamiDaiaacMcacqGH9aqpdaWfGaqaaiaadIhaaSqabeaacqGHIaYT aaGccqGHsislcqaHgpGAcaGGOaGaamiDaiaacMcacqGH9aqpcaWGHb WaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaWG 4baabeaakiaadIhacaGGOaGaamiDaiaacMcaaaa@4C5B@                          (7)

Table 1 includes the transformations of the available atmospheric CO2 raw data to a time seriers of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caaaaa@39D9@ that will be used in the analysis. In a similar way, in Table 2 the global emission data is developed to time series data for φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA8aQbaa@38CB@ .

i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgaaaa@37FC@
(period)

t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshaaaa@3807@
(year)

γ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaWG0baabeaaaaa@39DA@
(Gt CO2)

φ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA8aQnaaBa aaleaacaWGPbaabeaaaaa@39E5@
(Gt Co2 per year)  

ϕ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMnaaBa aaleaacaWGPbaabeaaaaa@39F0@
(Gt CO2 per year)  

ϕ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMnaaBa aaleaacaWGPbaabeaaaaa@39F0@
(ppm per year)  

 

1990

22.637

 

 

 

1

 

 

24.119

12.288

1.5745

 

2000

25.601

 

 

 

2

 

 

29.7185

13.8365

1.7729

 

2010

33.836

 

 

 

3

 

 

35.8615

17.6965

2.2675

 

2018

37.887

 

 

 

Table 2 Atmospheric CO2 data transformations
Definitions in table 2:   γ t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeo7aNnaaBa aaleaacaWG0baabeaaaaa@39DA@ = Global total CO2 emission, observation
φ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA8aQnaaBa aaleaacaWGPbaabeaaaaa@39E5@ = Global total Co2 emission, calculated mean value ϕ i = φ i x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMnaaBa aaleaacaWGPbaabeaakiabg2da9iabeA8aQnaaBaaaleaacaWGPbaa beaakiabgkHiTmaaxacabaGaamiEamaaBaaaleaacaWGPbaabeaaae qabaGaeyOiGClaaaaa@42A8@

In different statistical sources and equations, the CO2 of the atmosphere is given in different units. Following the principles by O'Hara3, the following transformation rules have been applied: 1 ppm (CO2) can be transformed to 2.13*3.664=7.80432 Gt CO2. 1 ppm by volume of atmosphere CO2=2.13 Gt C. 1 g C=0.083 mole CO2=3.664 g CO2.

Now, the data series developed in Table 1 and Table 2 are used to produce the regression data set found in Table 3.

i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgaaaa@37FC@

x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamyAaaqabaaaaa@3925@
(ppm)

y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa WcbaGaamyAaaqabaaaaa@3926@
(Gt CO2 per year)

1

361.97

-12.288

2

379.725

-13.8365

3

399.21

-17.6965

Table 3 Regression data
Definitions in table 3: y i = ϕ i =( φ i x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhadaWgaa WcbaGaamyAaaqabaGccqGH9aqpcqGHsislcqaHvpGzdaWgaaWcbaGa amyAaaqabaGccqGH9aqpcqGHsisldaqadaqaaiabeA8aQnaaBaaale aacaWGPbaabeaakiabgkHiTmaaxacabaGaamiEamaaBaaaleaacaWG PbaabeaaaeqabaGaeyOiGClaaaGccaGLOaGaayzkaaaaaa@493D@

Below, a very high level of detail in the calculations has been selected. The motivation is the following: The CO2 dynamics and global warming issue is critical to the present global political debate. It is necessary that the reader can investigate and repeat all derivations without problems.

We want to determine the parameters ( a 0 , a x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yyamaaBaaaleaacaaIWaaabeaakiaacYcacaWGHbWaaSbaaSqaaiaa dIhaaeqaaaGccaGLOaGaayzkaaaaaa@3D36@ in this function:

y= a 0 + a x x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMhacqGH9a qpcaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamyyamaaBaaa leaacaWG4baabeaakiaadIhaaaa@3EE0@                                                                (8)

We minimize the sum of squares of the residuals:

min a 0 , a x Z= i=1 N ( y i a 0 a x x i ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxababaGaci yBaiaacMgacaGGUbaaleaacaWGHbWaaSbaaWqaaiaaicdaaeqaaSGa aiilaiaadggadaWgaaadbaGaamiEaaqabaaaleqaaOGaamOwaiabg2 da9iaaygW7daaeWbqaamaabmaabaGaamyEamaaBaaaleaacaWGPbaa beaakiabgkHiTiaadggadaWgaaWcbaGaaGimaaqabaGccqGHsislca WGHbWaaSbaaSqaaiaadIhaaeqaaOGaamiEamaaBaaaleaacaWGPbaa beaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeaacaWGPb Gaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaaa@546C@                                            (9)

These are the first order optimum conditions:

{ dZ d a 0 = i=1 N ( 2( y i a 0 a x x i )(1) ) =0 dZ d a x = i=1 N ( 2( y i a 0 a x x i )( x i ) ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiqaaaqaamaalaaabaGaamizaiaadQfaaeaacaWGKbGaamyyamaa BaaaleaacaaIWaaabeaaaaGccqGH9aqpcaaMb8UaaGjbVpaaqahaba WaaeWaaeaacaaIYaWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqa aOGaeyOeI0IaamyyamaaBaaaleaacaaIWaaabeaakiabgkHiTiaadg gadaWgaaWcbaGaamiEaaqabaGccaWG4bWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaGaaiikaiabgkHiTiaaigdacaGGPaaacaGLOa GaayzkaaaaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0Gaeyye Iuoakiabg2da9iaaicdaaeaadaWcaaqaaiaadsgacaWGAbaabaGaam izaiaadggadaWgaaWcbaGaamiEaaqabaaaaOGaeyypa0JaaGzaVlaa ysW7daaeWbqaamaabmaabaGaaGOmamaabmaabaGaamyEamaaBaaale aacaWGPbaabeaakiabgkHiTiaadggadaWgaaWcbaGaaGimaaqabaGc cqGHsislcaWGHbWaaSbaaSqaaiaadIhaaeqaaOGaamiEamaaBaaale aacaWGPbaabeaaaOGaayjkaiaawMcaaiaacIcacqGHsislcaWG4bWa aSbaaSqaaiaadMgaaeqaaOGaaiykaaGaayjkaiaawMcaaaWcbaGaam yAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGccqGH9aqpcaaI WaaaaaGaay5Eaaaaaa@7C18@                             (10)

They are further developed:

{ dZ d a 0 =2 i=1 N ( ( a 0 + a x x i y i ) ) =0 dZ d a x =2 i=1 N ( ( a 0 x i + a x x i 2 x i y i ) ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiqaaaqaamaalaaabaGaamizaiaadQfaaeaacaWGKbGaamyyamaa BaaaleaacaaIWaaabeaaaaGccqGH9aqpcaaMb8UaaGjbVlaaikdada aeWbqaamaabmaabaWaaeWaaeaacaWGHbWaaSbaaSqaaiaaicdaaeqa aOGaey4kaSIaamyyamaaBaaaleaacaWG4baabeaakiaadIhadaWgaa WcbaGaamyAaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaaleaacaWGPbGaeyypa0 JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabg2da9iaaicdaaeaadaWc aaqaaiaadsgacaWGAbaabaGaamizaiaadggadaWgaaWcbaGaamiEaa qabaaaaOGaeyypa0JaaGzaVlaaysW7caaIYaWaaabCaeaadaqadaqa amaabmaabaGaamyyamaaBaaaleaacaaIWaaabeaakiaadIhadaWgaa WcbaGaamyAaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaadIhaaeqa aOGaamiEamaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaGOmaa aakiabgkHiTiaadIhadaWgaaWcbaGaamyAaaqabaGccaWG5bWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaale aacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiabg2da 9iaaicdaaaaacaGL7baaaaa@79CF@                                (11)

We also want to investigate if the derived solution gives a unique minimum:

d 2 Z d a 0 2 =2 1=2N >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izamaaCaaaleqabaGaaGOmaaaakiaadQfaaeaacaWGKbGaamyyamaa BaaaleaacaaIWaaabeaakmaaCaaaleqabaGaaGOmaaaaaaGccqGH9a qpcaaIYaWaaabqaeaacaaIXaGaeyypa0JaaGOmaiaad6eaaSqabeqa niabggHiLdGccqGH+aGpcaaIWaaaaa@467D@                                                       (12)

d 2 Z d a x 2 =2 x 2 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izamaaCaaaleqabaGaaGOmaaaakiaadQfaaeaacaWGKbGaamyyamaa BaaaleaacaWG4baabeaakmaaCaaaleqabaGaaGOmaaaaaaGccqGH9a qpcaaIYaWaaabqaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaqabeqa niabggHiLdGccqGH+aGpcaaIWaaaaa@454B@                                                               (13)

Φ=| d 2 Z d a 0 2 d 2 Z d a 0 d a x d 2 Z d a x d a 0 d 2 Z d a x 2 |=| 2 1 2 x 2 x 2 x 2 | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agjabg2 da9maaemaabaqbaeqabiGaaaqaamaalaaabaGaamizamaaCaaaleqa baGaaGOmaaaakiaadQfaaeaacaWGKbGaamyyamaaBaaaleaacaaIWa aabeaakmaaCaaaleqabaGaaGOmaaaaaaaakeaadaWcaaqaaiaadsga daahaaWcbeqaaiaaikdaaaGccaWGAbaabaGaamizaiaadggadaWgaa WcbaGaaGimaaqabaGccaWGKbGaamyyamaaBaaaleaacaWG4baabeaa aaaakeaadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWGAb aabaGaamizaiaadggadaWgaaWcbaGaamiEaaqabaGccaWGKbGaamyy amaaBaaaleaacaaIWaaabeaaaaaakeaadaWcaaqaaiaadsgadaahaa WcbeqaaiaaikdaaaGccaWGAbaabaGaamizaiaadggadaWgaaWcbaGa amiEaaqabaGcdaahaaWcbeqaaiaaikdaaaaaaaaaaOGaay5bSlaawI a7aiabg2da9maaemaabaqbaeqabiGaaaqaaiaaikdadaaeabqaaiaa igdaaSqabeqaniabggHiLdaakeaacaaIYaWaaabqaeaacaWG4baale qabeqdcqGHris5aaGcbaGaaGOmamaaqaeabaGaamiEaaWcbeqab0Ga eyyeIuoaaOqaaiaaikdadaaeabqaaiaadIhadaahaaWcbeqaaiaaik daaaaabeqab0GaeyyeIuoaaaaakiaawEa7caGLiWoaaaa@6F45@                              (14)

Φ=4| N x x x 2 |=4( N x 2 ( x ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agjabg2 da9iaaisdadaabdaqaauaabeqaciaaaeaacaWGobaabaWaaabqaeaa caWG4baaleqabeqdcqGHris5aaGcbaWaaabqaeaacaWG4baaleqabe qdcqGHris5aaGcbaWaaabqaeaacaWG4bWaaWbaaSqabeaacaaIYaaa aaqabeqaniabggHiLdaaaaGccaGLhWUaayjcSdGaeyypa0JaaGinam aabmaabaGaamOtamaaqaeabaGaamiEamaaCaaaleqabaGaaGOmaaaa aeqabeqdcqGHris5aOGaeyOeI0YaaeWaaeaadaaeabqaaiaadIhaaS qabeqaniabggHiLdaakiaawIcacaGLPaaadaahaaWcbeqaaiaaikda aaaakiaawIcacaGLPaaaaaa@571D@                          (15)

Φ=4 N 2 ( x 2 N ( x N ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agjabg2 da9iaaisdacaWGobWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaadaWc aaqaamaaqaeabaGaamiEamaaCaaaleqabaGaaGOmaaaaaeqabeqdcq GHris5aaGcbaGaamOtaaaacqGHsisldaqadaqaamaalaaabaWaaabq aeaacaWG4baaleqabeqdcqGHris5aaGcbaGaamOtaaaaaiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaaaaa@49DE@                                              (16)

Φ=4 N 2 ( E[ x 2 ]E [ x ] 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agjabg2 da9iaaisdacaWGobWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWG fbWaamWaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaaGccaGLBbGaay zxaaGaeyOeI0IaamyramaadmaabaGaamiEaaGaay5waiaaw2faamaa CaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaaa@47E0@                                                 (17)

( N>2Var(x)>0 )Φ>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam Otaiabg6da+iaaikdacqGHNis2caWGwbGaamyyaiaadkhacaGGOaGa amiEaiaacMcacqGH+aGpcaaIWaaacaGLOaGaayzkaaGaeyO0H4Taeu OPdyKaeyOpa4JaaGimaaaa@4945@                                           (18)

Hence, the second order conditions of a unique minimum are satisfied. The first order conditions give a unique minimum. The first order optimum conditions imply:

{ ( N ) a 0 +( x i ) a x =( y i ) ( x i ) a 0 +( x i 2 ) a x =( x i y i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiqaaaqaaiaaygW7caaMe8+aaeWaaeaacaWGobaacaGLOaGaayzk aaGaamyyamaaBaaaleaacaaIWaaabeaakiabgUcaRmaabmaabaWaaa bqaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaaqabeqaniabggHiLdaa kiaawIcacaGLPaaacaWGHbWaaSbaaSqaaiaadIhaaeqaaOGaeyypa0 ZaaeWaaeaadaaeabqaaiaadMhadaWgaaWcbaGaamyAaaqabaaabeqa b0GaeyyeIuoaaOGaayjkaiaawMcaaaqaamaabmaabaWaaabqaeaaca WG4bWaaSbaaSqaaiaadMgaaeqaaaqabeqaniabggHiLdaakiaawIca caGLPaaacaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSYaaeWaae aadaaeabqaaiaadIhadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbeqa aiaaikdaaaaabeqab0GaeyyeIuoaaOGaayjkaiaawMcaaiaadggada WgaaWcbaGaamiEaaqabaGccqGH9aqpdaqadaqaamaaqaeabaGaamiE amaaBaaaleaacaWGPbaabeaakiaadMhadaWgaaWcbaGaamyAaaqaba aabeqab0GaeyyeIuoaaOGaayjkaiaawMcaaaaaaiaawUhaaaaa@68EB@                                (19)

The parameters can be determined from this simultaneous equation system (Table 4):

N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eaaaa@37E1@

3

x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqaeabaGaam iEamaaBaaaleaacaWGPbaabeaaaeqabeqdcqGHris5aaaa@3B2E@

1140.905

x i 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqaeabaGaam iEamaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaGOmaaaaaeqa beqdcqGHris5aaaa@3C21@

434581.9806

x i y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqaeabaGaam iEamaaBaaaleaacaWGPbaabeaakiaadMhadaWgaaWcbaGaamyAaaqa baaabeqab0GaeyyeIuoaaaa@3D50@

-16766.57209

y i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqaeabaGaam yEamaaBaaaleaacaWGPbaabeaaaeqabeqdcqGHris5aaaa@3B2F@

-43.821

Table 4 Parameter values

[ N x i x i x i 2 ][ a 0 a x ]=[ y i x i y i ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqbae qabiGaaaqaaiaad6eaaeaadaaeabqaaiaadIhadaWgaaWcbaGaamyA aaqabaaabeqab0GaeyyeIuoaaOqaamaaqaeabaGaamiEamaaBaaale aacaWGPbaabeaaaeqabeqdcqGHris5aaGcbaWaaabqaeaacaWG4bWa aSbaaSqaaiaadMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaqabeqani abggHiLdaaaaGccaGLBbGaayzxaaWaamWaaeaafaqabeGabaaabaGa amyyamaaBaaaleaacaaIWaaabeaaaOqaaiaadggadaWgaaWcbaGaam iEaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeGa baaabaWaaabqaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaaqabeqani abggHiLdaakeaadaaeabqaaiaadIhadaWgaaWcbaGaamyAaaqabaGc caWG5bWaaSbaaSqaaiaadMgaaeqaaaqabeqaniabggHiLdaaaaGcca GLBbGaayzxaaaaaa@5ABE@                                       (20)

The point ( a 0 , a x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadg gadaWgaaWcbaGaaGimaaqabaGccaGGSaGaamyyamaaBaaaleaacaWG 4baabeaakiaacMcaaaa@3BEE@ is determined via Cramers rule:

a 0 = | y i x i x i y i x i 2 | | N x i x i x i 2 | 85248.955 2081.723 40.951 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaamaaemaabaqbaeqabiGa aaqaamaaqaeabaGaamyEamaaBaaaleaacaWGPbaabeaaaeqabeqdcq GHris5aaGcbaWaaabqaeaacaWG4bWaaSbaaSqaaiaadMgaaeqaaaqa beqaniabggHiLdaakeaadaaeabqaaiaadIhadaWgaaWcbaGaamyAaa qabaGccaWG5bWaaSbaaSqaaiaadMgaaeqaaaqabeqaniabggHiLdaa keaadaaeabqaaiaadIhadaWgaaWcbaGaamyAaaqabaGcdaahaaWcbe qaaiaaikdaaaaabeqab0GaeyyeIuoaaaaakiaawEa7caGLiWoaaeaa daabdaqaauaabeqaciaaaeaacaWGobaabaWaaabqaeaacaWG4bWaaS baaSqaaiaadMgaaeqaaaqabeqaniabggHiLdaakeaadaaeabqaaiaa dIhadaWgaaWcbaGaamyAaaqabaaabeqab0GaeyyeIuoaaOqaamaaqa eabaGaamiEamaaBaaaleaacaWGPbaabeaakmaaCaaaleqabaGaaGOm aaaaaeqabeqdcqGHris5aaaaaOGaay5bSlaawIa7aaaacqGHijYUda WcaaqaaiaaiIdacaaI1aGaaGOmaiaaisdacaaI4aGaaiOlaiaaiMda caaI1aGaaGynaaqaaiaaikdacaaIWaGaaGioaiaaigdacaGGUaGaaG 4naiaaikdacaaIZaaaaiabgIKi7kaaisdacaaIWaGaaiOlaiaaiMda caaI1aGaaGymaaaa@76C8@                           (21)

a x = | N y i x i x i y i | | N x i x i x i 2 | 304.118 2081.723 0.14609 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadggadaWgaa WcbaGaamiEaaqabaGccqGH9aqpdaWcaaqaamaaemaabaqbaeqabiGa aaqaaiaad6eaaeaadaaeabqaaiaadMhadaWgaaWcbaGaamyAaaqaba aabeqab0GaeyyeIuoaaOqaamaaqaeabaGaamiEamaaBaaaleaacaWG PbaabeaaaeqabeqdcqGHris5aaGcbaWaaabqaeaacaWG4bWaaSbaaS qaaiaadMgaaeqaaOGaamyEamaaBaaaleaacaWGPbaabeaaaeqabeqd cqGHris5aaaaaOGaay5bSlaawIa7aaqaamaaemaabaqbaeqabiGaaa qaaiaad6eaaeaadaaeabqaaiaadIhadaWgaaWcbaGaamyAaaqabaaa beqab0GaeyyeIuoaaOqaamaaqaeabaGaamiEamaaBaaaleaacaWGPb aabeaaaeqabeqdcqGHris5aaGcbaWaaabqaeaacaWG4bWaaSbaaSqa aiaadMgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaqabeqaniabggHiLd aaaaGccaGLhWUaayjcSdaaaiabgIKi7oaalaaabaGaeyOeI0IaaG4m aiaaicdacaaI0aGaaiOlaiaaigdacaaIXaGaaGioaaqaaiaaikdaca aIWaGaaGioaiaaigdacaGGUaGaaG4naiaaikdacaaIZaaaaiabgIKi 7kabgkHiTiaaicdacaGGUaGaaGymaiaaisdacaaI2aGaaGimaiaaiM daaaa@73C5@                              (22)

If we express x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caaaaa@39D9@ in the unit Gt CO2/year, and x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ in the unit ppm, we have this equation:

x =40.9510.14609x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caakiabg2da9iaaisdacaaIWaGaaiOlaiaa iMdacaaI1aGaaGymaiabgkHiTiaaicdacaGGUaGaaGymaiaaisdaca aI2aGaaGimaiaaiMdacaWG4baaaa@465C@                                                            (23)

What is the equilibrium value of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ , via the derived function, in case there are no emissions?

x = dx dt = a 0 + a x x eq =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caakiabg2da9maalaaabaGaamizaiaadIha aeaacaWGKbGaamiDaaaacqGH9aqpcaWGHbWaaSbaaSqaaiaaicdaae qaaOGaey4kaSIaamyyamaaBaaaleaacaWG4baabeaakiaadIhadaWg aaWcbaGaamyzaiaadghaaeqaaOGaeyypa0JaaGimaaaa@496B@                                                            (24)

x eq = a 0 a x 280.31(ppm) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamyzaiaadghaaeqaaOGaeyypa0ZaaSaaaeaacqGHsislcaWG HbWaaSbaaSqaaiaaicdaaeqaaaGcbaGaamyyamaaBaaaleaacaWG4b aabeaaaaGccqGHijYUcaaIYaGaaGioaiaaicdacaGGUaGaaG4maiaa igdacaaMc8UaaGzbVlaacIcacaWGWbGaamiCaiaad2gacaGGPaaaaa@4D74@                                                    (25)

Note that this value confirms the ealier empirical finding by Solomon et al.6 If we express x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caaaaa@39D9@ in the unit Gt CO2/year, and x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ in the unit Gt CO2, we get the following differential equation (Figure 3). Note that the coefficient of x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhaaaa@380B@ has been divided by 2.13*3.664, namely by 7.80432  :

Figure 3 Determination of the global CO2 differential equation via the empirical observations of CO2 from Mouna Loa and the empirical observations of global CO2 emissions. The estimated equilibrium value of CO2 is 280 ppm, in case the global emissions of CO2 are zero. This confirms the earlier findings. Compare Solomon et al.6 The estimated function is: 40.951 – 0.14609 * CO2 (ppm). The multiple correlation coefficient R=0.977. Since the number of observations is limited, more detailed regression statistics will not be given here.

x =40.9510.0187191x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caakiabg2da9iaaisdacaaIWaGaaiOlaiaa iMdacaaI1aGaaGymaiabgkHiTiaaicdacaGGUaGaaGimaiaaigdaca aI4aGaaG4naiaaigdacaaI5aGaaGymaiaadIhaaaa@47D7@                                                   (26)

x eq = 40.951 0.0187191 2187.66(Gt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamyzaiaadghaaeqaaOGaeyypa0ZaaSaaaeaacqGHsislcaaI 0aGaaGimaiaac6cacaaI5aGaaGynaiaaigdaaeaacqGHsislcaaIWa GaaiOlaiaaicdacaaIXaGaaGioaiaaiEdacaaIXaGaaGyoaiaaigda aaGaeyisISRaaGOmaiaaigdacaaI4aGaaG4naiaac6cacaaI2aGaaG OnaiaaykW7caaMf8UaaiikaiaadEeacaWG0bGaaiykaaaa@5529@                                    (27)

Determination of the differential equation of CO2 in the atmosphere under the influence of changing CO2 emissions

Now, the complete differential equation will be determined, giving the dynamic development of the CO2 level in the amosphere as a function of the development of the global emissions.

This is the differential equation in general form:

x = a 0 + a x x+φ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caakiabg2da9iaadggadaWgaaWcbaGaaGim aaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaadIhaaeqaaOGaamiEai abgUcaRiabeA8aQjaacIcacaWG0bGaaiykaaaa@45A8@                                                (28)

We will consider the special case of emissions that grow with a linear trend, since that is supported by the available empirical data. (Note that the forcing function could be generalized to almost any form, if considered relevant.)

φ(t)= m 0 + m 1 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA8aQjaacI cacaWG0bGaaiykaiabg2da9iaad2gadaWgaaWcbaGaaGimaaqabaGc cqGHRaWkcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamiDaaaa@41C3@                                                    (29)

The differential equation becomes:

x a x x= a 0 + m 0 + m 1 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEaaWcbeqaaiabgkci3caakiabgkHiTiaadggadaWgaaWcbaGaamiE aaqabaGccaWG4bGaeyypa0JaamyyamaaBaaaleaacaaIWaaabeaaki abgUcaRiaad2gadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGTbWa aSbaaSqaaiaaigdaaeqaaOGaamiDaaaa@4744@                                           (30)

Solution of the homogenous equation:

x h a x x h =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEamaaBaaaleaacaWGObaabeaaaeqabaGaeyOiGClaaOGaeyOeI0Ia amyyamaaBaaaleaacaWG4baabeaakiaadIhadaWgaaWcbaGaamiAaa qabaGccqGH9aqpcaaIWaaaaa@41D7@                                                           (31)

x h =A e st MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamiAaaqabaGccqGH9aqpcaWGbbGaamyzamaaCaaaleqabaGa am4Caiaadshaaaaaaa@3E02@                                                                (32)

x h =sA e st MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEamaaBaaaleaacaWGObaabeaaaeqabaGaeyOiGClaaOGaeyypa0Ja am4CaiaadgeacaWGLbWaaWbaaSqabeaacaWGZbGaamiDaaaaaaa@40BD@                                                                (33)

(s a x ) x h =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGZb GaeyOeI0IaamyyamaaBaaaleaacaWG4baabeaakiaacMcacaWG4bWa aSbaaSqaaiaadIgaaeqaaOGaeyypa0JaaGimaaaa@4045@                                                           (34)

( x h 0 )s= a x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam iEamaaBaaaleaacaWGObaabeaakiabgcMi5kaaicdaaiaawIcacaGL PaaacqGHshI3caWGZbGaeyypa0JaamyyamaaBaaaleaacaWG4baabe aaaaa@43A2@                                                      (35)

x h (t)=A e a x t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamiAaaqabaGccaGGOaGaamiDaiaacMcacqGH9aqpcaWGbbGa amyzamaaCaaaleqabaGaamyyamaaBaaameaacaWG4baabeaaliaads haaaaaaa@4177@                                                             (36)

Determination of the particular solution:

x p = k 0 + k 1 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamiCaaqabaGccqGH9aqpcaWGRbWaaSbaaSqaaiaaicdaaeqa aOGaey4kaSIaam4AamaaBaaaleaacaaIXaaabeaakiaadshaaaa@3FD8@                                                            (37)

x p a x x p = a 0 + m 0 + m 1 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaxacabaGaam iEamaaBaaaleaacaWGWbaabeaaaeqabaGaeyOiGClaaOGaeyOeI0Ia amyyamaaBaaaleaacaWG4baabeaakiaadIhadaWgaaWcbaGaamiCaa qabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIa amyBamaaBaaaleaacaaIWaaabeaakiabgUcaRiaad2gadaWgaaWcba GaaGymaaqabaGccaWG0baaaa@4985@                                         (38)

k 1 a x ( k 0 + k 1 t )= a 0 + m 0 + m 1 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaGymaaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaadIhaaeqa aOWaaeWaaeaacaWGRbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaam 4AamaaBaaaleaacaaIXaaabeaakiaadshaaiaawIcacaGLPaaacqGH 9aqpcaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaamyBamaaBa aaleaacaaIWaaabeaakiabgUcaRiaad2gadaWgaaWcbaGaaGymaaqa baGccaWG0baaaa@4C78@                                 (39)

{ k 1 a x k 0 = a 0 + m 0 a x k 1 = m 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaceaabaqbae qabiqaaaqaaiaaysW7caaMe8Uaam4AamaaBaaaleaacaaIXaaabeaa kiabgkHiTiaadggadaWgaaWcbaGaamiEaaqabaGccaWGRbWaaSbaaS qaaiaaicdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaIWaaabeaa kiabgUcaRiaad2gadaWgaaWcbaGaaGimaaqabaaakeaacqGHsislca WGHbWaaSbaaSqaaiaadIhaaeqaaOGaam4AamaaBaaaleaacaaIXaaa beaakiabg2da9iaad2gadaWgaaWcbaGaaGymaaqabaaaaaGccaGL7b aaaaa@4F86@                                                (40)

( a x k 1 = m 1 ) k 1 = m 1 a x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaey OeI0IaamyyamaaBaaaleaacaWG4baabeaakiaadUgadaWgaaWcbaGa aGymaaqabaGccqGH9aqpcaWGTbWaaSbaaSqaaiaaigdaaeqaaaGcca GLOaGaayzkaaGaeyO0H4Taam4AamaaBaaaleaacaaIXaaabeaakiab g2da9maalaaabaGaeyOeI0IaamyBamaaBaaaleaacaaIXaaabeaaaO qaaiaadggadaWgaaWcbaGaamiEaaqabaaaaaaa@4A9A@                                               (41)

( k 1 a x k 0 = a 0 + m 0 )( k 1 = m 1 a x )( m 1 a x a x k 0 = a 0 + m 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam 4AamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadggadaWgaaWcbaGa amiEaaqabaGccaWGRbWaaSbaaSqaaiaaicdaaeqaaOGaeyypa0Jaam yyamaaBaaaleaacaaIWaaabeaakiabgUcaRiaad2gadaWgaaWcbaGa aGimaaqabaaakiaawIcacaGLPaaacqGHNis2daqadaqaaiaadUgada WgaaWcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiabgkHiTiaad2ga daWgaaWcbaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaadIhaae qaaaaaaOGaayjkaiaawMcaaiabgkDiEpaabmaabaWaaSaaaeaacqGH sislcaWGTbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaamyyamaaBaaale aacaWG4baabeaaaaGccqGHsislcaWGHbWaaSbaaSqaaiaadIhaaeqa aOGaam4AamaaBaaaleaacaaIWaaabeaakiabg2da9iaadggadaWgaa WcbaGaaGimaaqabaGccqGHRaWkcaWGTbWaaSbaaSqaaiaaicdaaeqa aaGccaGLOaGaayzkaaaaaa@637A@                 (42)

k 0 = ( a 0 + m 0 + m 1 a x ) a x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiabgkHiTmaabmaabaGa amyyamaaBaaaleaacaaIWaaabeaakiabgUcaRiaad2gadaWgaaWcba GaaGimaaqabaGccqGHRaWkdaWcaaqaaiaad2gadaWgaaWcbaGaaGym aaqabaaakeaacaWGHbWaaSbaaSqaaiaadIhaaeqaaaaaaOGaayjkai aawMcaaaqaaiaadggadaWgaaWcbaGaamiEaaqabaaaaaaa@4811@                                                                       (43)

Determination of φ(t)= m 0 + m 1 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA8aQjaacI cacaWG0bGaaiykaiabg2da9iaad2gadaWgaaWcbaGaaGimaaqabaGc cqGHRaWkcaWGTbWaaSbaaSqaaiaaigdaaeqaaOGaamiDaaaa@41C3@

Now, in order to use the derived function for predictions, we estimate the parameters ( m 0 , m 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaam yBamaaBaaaleaacaaIWaaabeaakiaacYcacaWGTbWaaSbaaSqaaiaa igdaaeqaaaGccaGLOaGaayzkaaaaaa@3D0C@ . We follow the same procedure as in the earlier section of this paper (Table 5 & 6).

j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQgaaaa@37FD@

Year

t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshaaaa@3807@

φ(t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA8aQjaacI cacaWG0bGaaiykaaaa@3B1D@
(Gt CO2 per year)

1

1990

0

22.637

2

2000

10

25.601

3

2010

20

33.836

4

2018

28

37.887

Table 5 Regression data
Definitions in table 5: t=Year1990 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshaqaaaaa aaaaWdbiabg2da9iaadMfacaWGLbGaamyyaiaadkhacaGGtaIaaGym aiaaiMdacaaI5aGaaGimaaaa@4084@

N MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eaaaa@37E1@

4

t j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqaeabaGaam iDamaaBaaaleaacaWGQbaabeaaaeqabeqdcqGHris5aaaa@3B2B@

58

t j 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqaeabaGaam iDamaaBaaaleaacaWGQbaabeaakmaaCaaaleqabaGaaGOmaaaaaeqa beqdcqGHris5aaaa@3C1E@

1284

t j φ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqaeabaGaam iDamaaBaaaleaacaWGQbaabeaakiabeA8aQnaaBaaaleaacaWGQbaa beaaaeqabeqdcqGHris5aaaa@3E0D@

1993.566

φ j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaqaeabaGaeq OXdO2aaSbaaSqaaiaadQgaaeqaaaqabeqaniabggHiLdaaaa@3BEF@

119.961

Table 6 Parameter values

The parameters can be determined from this simultaneous equation system:

[ N t j t j t j 2 ][ m 0 m 1 ]=[ φ j t j φ j ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaadmaabaqbae qabiGaaaqaaiaad6eaaeaadaaeabqaaiaadshadaWgaaWcbaGaamOA aaqabaaabeqab0GaeyyeIuoaaOqaamaaqaeabaGaamiDamaaBaaale aacaWGQbaabeaaaeqabeqdcqGHris5aaGcbaWaaabqaeaacaWG0bWa aSbaaSqaaiaadQgaaeqaaOWaaWbaaSqabeaacaaIYaaaaaqabeqani abggHiLdaaaaGccaGLBbGaayzxaaWaamWaaeaafaqabeGabaaabaGa amyBamaaBaaaleaacaaIWaaabeaaaOqaaiaad2gadaWgaaWcbaGaaG ymaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeGa baaabaWaaabqaeaacqaHgpGAdaWgaaWcbaGaamOAaaqabaaabeqab0 GaeyyeIuoaaOqaamaaqaeabaGaamiDamaaBaaaleaacaWGQbaabeaa kiabeA8aQnaaBaaaleaacaWGQbaabeaaaeqabeqdcqGHris5aaaaaO Gaay5waiaaw2faaaaa@5C08@                                            (44)

The point ( m 0 , m 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcacaWGTb WaaSbaaSqaaiaaicdaaeqaaOGaaiilaiaad2gadaWgaaWcbaGaaGym aaqabaGccaGGPaaaaa@3CDC@ is determined via Cramers rule:

m 0 = | φ j t j t j φ j t j 2 | | N t j t j t j 2 | 38403.096 1772 21.672 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaamaaemaabaqbaeqabiGa aaqaamaaqaeabaGaeqOXdO2aaSbaaSqaaiaadQgaaeqaaaqabeqani abggHiLdaakeaadaaeabqaaiaadshadaWgaaWcbaGaamOAaaqabaaa beqab0GaeyyeIuoaaOqaamaaqaeabaGaamiDamaaBaaaleaacaWGQb aabeaakiabeA8aQnaaBaaaleaacaWGQbaabeaaaeqabeqdcqGHris5 aaGcbaWaaabqaeaacaWG0bWaaSbaaSqaaiaadQgaaeqaaOWaaWbaaS qabeaacaaIYaaaaaqabeqaniabggHiLdaaaaGccaGLhWUaayjcSdaa baWaaqWaaeaafaqabeGacaaabaGaamOtaaqaamaaqaeabaGaamiDam aaBaaaleaacaWGQbaabeaaaeqabeqdcqGHris5aaGcbaWaaabqaeaa caWG0bWaaSbaaSqaaiaadQgaaeqaaaqabeqaniabggHiLdaakeaada aeabqaaiaadshadaWgaaWcbaGaamOAaaqabaGcdaahaaWcbeqaaiaa ikdaaaaabeqab0GaeyyeIuoaaaaakiaawEa7caGLiWoaaaGaeyisIS 7aaSaaaeaacaaIZaGaaGioaiaaisdacaaIWaGaaG4maiaac6cacaaI WaGaaGyoaiaaiAdaaeaacaaIXaGaaG4naiaaiEdacaaIYaaaaiabgI Ki7kaaikdacaaIXaGaaiOlaiaaiAdacaaI3aGaaGOmaaaa@754E@                               (45)

m 1 = | N φ j t j t j φ j | | N t j t j t j 2 | 1016.526 1772 0.57366 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad2gadaWgaa WcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaamaaemaabaqbaeqabiGa aaqaaiaad6eaaeaadaaeabqaaiabeA8aQnaaBaaaleaacaWGQbaabe aaaeqabeqdcqGHris5aaGcbaWaaabqaeaacaWG0bWaaSbaaSqaaiaa dQgaaeqaaaqabeqaniabggHiLdaakeaadaaeabqaaiaadshadaWgaa WcbaGaamOAaaqabaGccqaHgpGAdaWgaaWcbaGaamOAaaqabaaabeqa b0GaeyyeIuoaaaaakiaawEa7caGLiWoaaeaadaabdaqaauaabeqaci aaaeaacaWGobaabaWaaabqaeaacaWG0bWaaSbaaSqaaiaadQgaaeqa aaqabeqaniabggHiLdaakeaadaaeabqaaiaadshadaWgaaWcbaGaam OAaaqabaaabeqab0GaeyyeIuoaaOqaamaaqaeabaGaamiDamaaBaaa leaacaWGQbaabeaakmaaCaaaleqabaGaaGOmaaaaaeqabeqdcqGHri s5aaaaaOGaay5bSlaawIa7aaaacqGHijYUdaWcaaqaaiaaigdacaaI WaGaaGymaiaaiAdacaGGUaGaaGynaiaaikdacaaI2aaabaGaaGymai aaiEdacaaI3aGaaGOmaaaacqGHijYUcaaIWaGaaiOlaiaaiwdacaaI 3aGaaG4maiaaiAdacaaI2aaaaa@7105@                                    (46)

(The multiple correlation coefficient: R=0.984 )

φ(t)=21.672+0.57366t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA8aQjaacI cacaWG0bGaaiykaiabg2da9iaaikdacaaIXaGaaiOlaiaaiAdacaaI 3aGaaGOmaiabgUcaRiaaicdacaGGUaGaaGynaiaaiEdacaaIZaGaaG OnaiaaiAdacaaMc8UaaGPaVlaadshaaaa@4AA3@                                                               (47)

k 1 = m 1 a x = 0.57366 0.0187191 30.646 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaGymaaqabaGccqGH9aqpdaWcaaqaaiabgkHiTiaad2gadaWg aaWcbaGaaGymaaqabaaakeaacaWGHbWaaSbaaSqaaiaadIhaaeqaaa aakiabg2da9maalaaabaGaeyOeI0IaaGimaiaac6cacaaI1aGaaG4n aiaaiodacaaI2aGaaGOnaaqaaiabgkHiTiaaicdacaGGUaGaaGimai aaigdacaaI4aGaaG4naiaaigdacaaI5aGaaGymaaaacqGHijYUcaaI ZaGaaGimaiaac6cacaaI2aGaaGinaiaaiAdaaaa@53BC@                                                    (48)

k 0 = ( a 0 + m 0 + m 1 a x ) a x = ( 40.951+21.67230.646 ) 0.0187191 1708.27 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadUgadaWgaa WcbaGaaGimaaqabaGccqGH9aqpdaWcaaqaaiabgkHiTmaabmaabaGa amyyamaaBaaaleaacaaIWaaabeaakiabgUcaRiaad2gadaWgaaWcba GaaGimaaqabaGccqGHRaWkdaWcaaqaaiaad2gadaWgaaWcbaGaaGym aaqabaaakeaacaWGHbWaaSbaaSqaaiaadIhaaeqaaaaaaOGaayjkai aawMcaaaqaaiaadggadaWgaaWcbaGaamiEaaqabaaaaOGaeyypa0Za aSaaaeaacqGHsisldaqadaqaaiaaisdacaaIWaGaaiOlaiaaiMdaca aI1aGaaGymaiabgUcaRiaaikdacaaIXaGaaiOlaiaaiAdacaaI3aGa aGOmaiabgkHiTiaaiodacaaIWaGaaiOlaiaaiAdacaaI0aGaaGOnaa GaayjkaiaawMcaaaqaaiabgkHiTiaaicdacaGGUaGaaGimaiaaigda caaI4aGaaG4naiaaigdacaaI5aGaaGymaaaacqGHijYUcaaIXaGaaG 4naiaaicdacaaI4aGaaiOlaiaaikdacaaI3aaaaa@690C@                 (49)

x(t)=A e 0.0187191t +1708.27+30.646t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa GaamiDaiaacMcacqGH9aqpcaWGbbGaamyzamaaCaaaleqabaGaeyOe I0IaaGimaiaac6cacaaIWaGaaGymaiaaiIdacaaI3aGaaGymaiaaiM dacaaIXaGaaGjbVlaadshaaaGccqGHRaWkcaaIXaGaaG4naiaaicda caaI4aGaaiOlaiaaikdacaaI3aGaey4kaSIaaG4maiaaicdacaGGUa GaaGOnaiaaisdacaaI2aGaaGjbVlaadshaaaa@5532@                                                     (50)

x(0)=A+1708.27 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa GaaGimaiaacMcacqGH9aqpcaWGbbGaey4kaSIaaGymaiaaiEdacaaI WaGaaGioaiaac6cacaaIYaGaaG4naaaa@41F3@                                                                                   (51)

A=x(0)1708.27 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacqGH9a qpcaWG4bGaaiikaiaaicdacaGGPaGaeyOeI0IaaGymaiaaiEdacaaI WaGaaGioaiaac6cacaaIYaGaaG4naaaa@41FE@                                                                                   (52)

A=354.392.133.6641708.27 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacqGH9a qpcaaIZaGaaGynaiaaisdacaGGUaGaaG4maiaaiMdacqGHflY1caaI YaGaaiOlaiaaigdacaaIZaGaeyyXICTaaG4maiaac6cacaaI2aGaaG OnaiaaisdacqGHsislcaaIXaGaaG4naiaaicdacaaI4aGaaiOlaiaa ikdacaaI3aaaaa@4E81@                                                             (53)

A1057.52 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacqGHij YUcaaIXaGaaGimaiaaiwdacaaI3aGaaiOlaiaaiwdacaaIYaaaaa@3EA7@                                                                                             (54)

x(t)=1057.52 e 0.0187191t +1708.27+30.646t(Gt) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa GaamiDaiaacMcacqGH9aqpcaaIXaGaaGimaiaaiwdacaaI3aGaaiOl aiaaiwdacaaIYaGaamyzamaaCaaaleqabaGaeyOeI0IaaGimaiaac6 cacaaIWaGaaGymaiaaiIdacaaI3aGaaGymaiaaiMdacaaIXaGaaGjb VlaadshaaaGccqGHRaWkcaaIXaGaaG4naiaaicdacaaI4aGaaiOlai aaikdacaaI3aGaey4kaSIaaG4maiaaicdacaGGUaGaaGOnaiaaisda caaI2aGaaGPaVlaaysW7caWG0bGaaGzbVlaaywW7caGGOaGaam4rai aadshacaGGPaaaaa@6153@                               (55)

If the function is divided by (2.13*3.664), the unit becomes ppm.

x(t)=135.50 e 0.0187191t +218.89+3.927t(ppm) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa GaamiDaiaacMcacqGH9aqpcaaIXaGaaG4maiaaiwdacaGGUaGaaGyn aiaaicdacaWGLbWaaWbaaSqabeaacqGHsislcaaIWaGaaiOlaiaaic dacaaIXaGaaGioaiaaiEdacaaIXaGaaGyoaiaaigdacaaMe8UaamiD aaaakiabgUcaRiaaikdacaaIXaGaaGioaiaac6cacaaI4aGaaGyoai abgUcaRiaaiodacaGGUaGaaGyoaiaaikdacaaI3aGaaGPaVlaaysW7 caWG0bGaaGzbVlaaywW7caGGOaGaamiCaiaadchacaWGTbGaaiykaa aa@603B@                                   (56)

In Figure 4 we find that the estimated function can reproduce the CO2 observations from Mauna Loa extremely well. Most years during the period 1990 to 2018, the deviations are less than 1 ppm.

Figure 4 Mauna Loa= CO2 observations from 1990 to 2018. Model= CO2 prediction model. The empirical CO2 observations from Mauna Loa, compare Figure 1 and the prediction according to the derived differential equation model are almost identical. The graph was derived with the following equation: x(t)=135.50 e 0.0187191t +218.89+3.927t(ppm) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa GaamiDaiaacMcacqGH9aqpcaaIXaGaaG4maiaaiwdacaGGUaGaaGyn aiaaicdacaWGLbWaaWbaaSqabeaacqGHsislcaaIWaGaaiOlaiaaic dacaaIXaGaaGioaiaaiEdacaaIXaGaaGyoaiaaigdacaaMe8UaamiD aaaakiabgUcaRiaaikdacaaIXaGaaGioaiaac6cacaaI4aGaaGyoai abgUcaRiaaiodacaGGUaGaaGyoaiaaikdacaaI3aGaaGPaVlaadsha caGGOaGaamiCaiaadchacaWGTbGaaiykaaaa@5B92@ .

Predictions into the future

Now, the estimated differential equation will be used to predict the future development of the CO2 level, conditional on the following four alternative global emission strategies:

Cont: During the period 2020 to 2100, the emissions continue to increase according to the trend estimated during the period 1990 to 2018.

Lev 2020: The emissions 2020 are estimated from the trend 1990 to 2018. Then, the emissions stay at that level until 2100.

Stop 2100: The emissions 2020 are estimated from the trend 1990 to 2018. Then, the emissions are reduced with a constant amount each year, such that the emissions are zero in 2100.

Stop 2050: The emissions 2020 are estimated from the trend 1990 to 2018. Then, the emissions are reduced with a constant amount each year, such that the emissions are zero in 2050.

In Figure 5 we see the graphs of the four emission scenarios and in Table 7. we find more details about the four scenarios.

Figure 5 Four different alternative scenarios for the future development of global CO2 emissions, during the time interval 2020 to 2100. The emission level 2020 is estimated via the linear approximation based on data from the time interval 1990 to 2018. The scenarios are used to predict the future development of CO2 in the atmosphere. Compare figure 6, Cont=The emissions continue to develop according to the trend during 1990 to 2018. Lev 2020=The emissions stay, for ever, at the level of 2020. Stop 2100=The emissions are reduced with the same amount each year, during the time interval 2020 until 2100. Then, the total emission is zero. Stop 2050=The emissions are reduced with the same amount each year, during the time interval 2020 until 2050. (Observation: The negative emissions after 2050 are technically possible but not necessarily optimal and relevant.)

Alternative

Year when t=0

x(0)_ppm

a0

ax

m0

m1

Cont

1990

354,39

40,951

-0,01872

21,672

0,57366

Lev 2020

2020

413,96911

40,951

-0,01872

38,8818

0

Stop 2100

2020

413,96911

40,951

-0,01872

38,8818

-0,48602

Stop 2050

2020

413,96911

40,951

-0,01872

38,8818

-1,29606

Table 7 Parameter values for predictions

The general principles derived and described in the earlier sections of this paper have been used to derive the equations of the CO2 level that are consistent with the four different emission scenarios. The parameters are presented in Table 8 for the unit Gt, and in Table 9 for the unit ppm.

Alternative

k0 (Gt)

k1 (Gt)

A (Gt)

Cont

1708,271011

30,64570412

1057,501954

Lev 2020

4264,777687

0

-1034,030282

Stop 2100

5651,809577

-25,96398865

-2421,062173

Stop 2050

7963,529394

-69,23730308

-4732,781989

Table 8 Parameter values for predictions

Alternative

k0 (ppm)

k1 (ppm)

A (ppm)

Cont

218,8878738

3,926761604

135,5021262

Lev 2020

546,4637133

0

-132,4946033

Stop 2100

724,1898816

-3,326873918

-310,2207716

Stop 2050

1020,400162

-8,871663781

-606,4310522

Table 9 Parameter values for predictions

Results and discussion

The developed model will now be used to investigate the dynamic effects of four different alternative scenarios for the future development of global CO2 emissions, during the time interval 2020 to 2100. In Figure 5 we find the four emission scenarios. The predictions of the future CO2 level, conditional on the different emission strategies, are found in Figure 6. The predictions function, (57) is used. Then, t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshaaaa@3807@ is defined according to the information in Table 7 and the parameter values A, k 0 , k 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgeacaGGSa Gaam4AamaaBaaaleaacaaIWaaabeaakiaacYcacaWGRbWaaSbaaSqa aiaaigdaaeqaaaaa@3CEB@ from Table 9 are used. 

Figure 6 Four different alternative scenarios for the future development of CO2 level in the atmosphere, during the time interval 2020 to 2100. The scenarios are conditional on the global emission scenarios found in figure 5. The emission level 2020 is estimated via the linear approximation based on data from the time interval 1990 to 2018. Cont=The emissions continue to develop according to the trend during 1990 to 2018.
Lev 2020=The emissions stay, for ever, at the level of 2020. Stop 2100=The emissions are reduced with the same amount each year, during the time interval 2020 until 2100. Then, the total emission is zero. Stop 2050=The emissions are reduced with the same amount each year, during the time interval 2020 until 2050. After 2050, the net emission is strictly negative and follows the same trend as before 2050. (Observation: The negative emissions after 2050 contribute to the dramatic fall of the CO2level after 2050 in this scenario. If the emissions would be zero after 2050, the CO2 level would converge to the pre-industrial level of 280 ppm. Alternative scenarios may easily be constructed.)

x(t)=A e 0.0187191t + k 0 + k 1 t(ppm) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadIhacaGGOa GaamiDaiaacMcacqGH9aqpcaWGbbGaamyzamaaCaaaleqabaGaeyOe I0IaaGimaiaac6cacaaIWaGaaGymaiaaiIdacaaI3aGaaGymaiaaiM dacaaIXaGaaGjbVlaadshaaaGccqGHRaWkcaWGRbWaaSbaaSqaaiaa icdaaeqaaOGaey4kaSIaam4AamaaBaaaleaacaaIXaaabeaakiaayk W7caaMe8UaamiDaiaaywW7caaMf8UaaiikaiaadchacaWGWbGaamyB aiaacMcaaaa@5841@                                                     (57)

Conclusion

Now, it is possible to understand the fundamental mechanisms of the dynamics of the CO2 level of the atmosphere, under the influence of global emissions.

A theoretical mathematical model of the dynamics of CO2 has been developed. This model is consistent with fundamental scientific principles. Furthermore, we can use the model to reproduce historical time series of empirical data. We can even use the model to calculate the pre-industrial level of CO2 and discover that the calculated equilibrium value is consistent with earlier research findings. The model can also be used for Predictions. We have investigated how the global CO2 level can be dynamically changed via different emissions strategies. Detailed predictions of possible future developments have been produced and described.

The CO2 and global warming topic is central to the present global political agenda. It is necessary to create a fundamental understanding of the principles and methods that can be used to handle the problems and to stabilize our global climate. The model developed in this paper can hopefully make it possible for a large part of the human population to really understand how the CO2 dynamics and emissions are connected. Without this fundamental understanding, it is difficult to convince critical persons that large investments in emission reductions may be necessary in order to stabilize the global climate.

The model developed in this paper should be possible to understand, investigate and to reproduce, in every detail by every person that has a PhD or masters degree in engineering, mathematics, mathematical statistics or mathematical economics. Earlier models presented on similar topics are not presented with all the details. Completeness and transparancy are necessary for complete understanding and acceptance.

According to the Occams razor, a scientific model should not be more complicated than necessary. In this paper, a differential equation is developed that is only based on very fundamental principles from physical science and mathematics. Two highly reliable sources of empirical data have been used to estimate the parameters. In the analysis, we have seen that a first order differential equation with emission forcing has been able to explain the development of the dynamics of the CO2 level in the atmosphere, with very high precision. Furthermore, the function shows that the CO2 equilibrium level, before the industrial revolution, should be 280 ppm, which confirms earlier empirical research. According to the opinion of the author, it is hardly possible to develop a more simple scientific model that explains the CO2 dynamics in a better way.

Finally, the author hopes that the new model will be used to optimize and control global emission reductions, in order to give our planet the optimal climate.

Funding

None.

Acknowledgments

None.

Conflicts of interest

The author declares that there was no conflict of interest.

References

Creative Commons Attribution License

©2020 Lohmander, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.