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Introduction
The global warming and CO2 dynamics issue, for very good 

reasons, attracts considerable global interest. The climate of our 
planet is of key importance to all life. The author recommends the 
reader to study Ramade1 in detail for a deep understanding of many of 
the connected issues and theories. 

The first ambition is to understand the fundamental mechanisms of 
the dynamics of the CO2 level of the atmosphere under the influence 
of global emissions. 

We will investigate if it is possible to develop a theoretical 
mathematical model of the dynamics of CO2. Such a model should 
be consistent with fundamental scientific principles. Furthermore, 
it should be possible to use the model to reproduce historical time 
series of empirical data. If such a model can be developed, it should 
be possible to use it also for predictions. Then, the most important 
application is to investigate how the global CO2 level can be 
dynamically changed via different emissions strategies.

Statistics of the CO2 level in the atmosphere 
and the global CO2 emissions 

The CO2 level of the atmosphere has been recorded since 1958, 
at the Mauna Loa observatory. See Tans and Keeling2. The statistical 

tables are well documented and freely available via the internet. In 
Figure 1 the annual mean values of  CO2 are shown. The web link 
connected to the reference provides access to all observations via a 
text file with instructions. In several cases, transformations between 
different physical units are necessary. O’Hara3 includes the relevant 
conversion factors.

In Figure 2 we find observations of global CO2 emissions from 
fossil fuels combustion and processes. These data come from 
European Commission4. The observations from 1990, 2000, 2010 
and 2018 have been used in the analysis of this paper. There are two 
reasons for this: First, emission data were only collected with ten 
year intervals during the early years. Second, sufficiently long time 
intervals are needed if we want to be able to estimate the changes of 
CO2 in the atmosphere with sufficiently high precision.   

In the estimations of a differential equation, the following three 
periods will be used: 1990–2000, 2000–2010 and 2010–2018. More 
details about these periods are found in Table 1.

The emission forced differential equation of 
the global CO2 level

The general theory of differential equations can be studied in 
Braun.5
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Abstract

The analysis in this paper shows that the fundamental theory of the CO2 level in the 
atmosphere, under the influence of changing CO2 emissions, can be modeled as a first order 
linear differential equation with a forcing function, describing industrial emissions. 

Observations of the CO2 level at the Mauna Loa CO2 observatory and official statistics of 
global CO2 emissions, from Edgar, the Joint Research Centre at the European Commission, 
are used to estimate all parameters of the forced CO2 differential equation.

The estimated differential equation has a logical theoretical foundation and convincing 
statistical properties. It is used to reproduce the time path of the CO2 data from Mauna 
Loa, from year 1990 to 2018, with very small errors. Furthermore, the differential equation 
shows that the global CO2 level, without emissions, has a stable equilibrium at 280 ppm. 
This value has earlier been reported by IPCC as the pre-industrial CO2 level.

The differential function is applied to derive four dynamic cases of the global CO2 level, 
from the year 2020 until 2100, conditional on four different strategies concerning the 
development of global CO2 emissions: 

i.	 Emissions continue to increase according to the trend during 1990–2018

ii.	 Emissions stay for ever at the 2020 level

iii.	 Emissions are reduced with a linear trend to become zero year 2100

iv.	 Emissions are reduced with a linear trend to become zero year 2050

In case i., the CO2 level year 2100 will be 688 ppm. In cases ii. and iii., the CO2 levels in 
2100 will be 517 ppm and 389 respectively. In case iv., the CO2 level in 2050 is 408 ppm 
and then rapidly falls.
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 Let us first consider the following differential equation. We will 
soon discover that it has to be adjusted in order to become relevant to 
the CO2 problem. 

			   0
dxx a
dt

•
= =                                        (1)

( )x x t= is the CO2 level in the atmosphere as a function of time. 
dxx
dt

•
=  is the change per time unit, or the time derivative, of x . 

There are constant ”natural” emissions, from the oceans, volcanoes 

and other parts of the natural environment, greater than zero. 0 0a >

. Hence, dxx
dt

•
= would be strictly positive and x would increase over 

time, without bound, if nothing would stop that.

However, earlier CO2 research has already shown that the CO2 
level has been stable during very long periods of time. Compare 
Ramade1 and Solomon et al.6

Figure 1 CO2 in the atmosphere, annual mean values, Mauna Loa, (ppm). Source: Tans and Keeling.2

Figure 2 Obs=Observations of global CO2 emissions from fossil fuels combustion and processes. Source: European Commission.4 Approx=Linear approximation 
via the least squares method, by the author of this paper. Compare equation (47).  Approx 21.672 0.57366( 1990)Year= + − . 0.984R ≈ .
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Table 1 Atmospheric CO2 data

i
(period)

 t
(year)

tψ   
(ppm)

ix∆
(ppm)

t∆
(years)

ix
(ppm)

ix
(Gt CO2 )

i
xx
t

• ∆
≈
∆

(ppm per year)

i
xx
t

• ∆
≈
∆

(Gt Co2 per year)

1990 354.39

1 15.16 10 361.97 2824.9 1.516 11.831

2000 369.55

2 20.35 10 379.725 2963.5 2.035 15.882

2010 389.90

3 18.62 8 399.21 3115.6 2.3275 18.165

2018 408.52

Definitions in table 1: 2ψ =t CO  in atmosphere, annual mean value of observations, Mauna Loa

 2=ix CO
 in atmosphere, calculated mean value

Gt denotes Giga tonnes and ppm denotes parts per million

Let us assume that the oceans (and, to some degree, other parts of 
the natural environment) absorb a part of the CO2 in the atmosphere. 
Let us also assume that the absorbtion is proportional to the CO2 level 
in the atmosphere, x . This is a very reasonable assumption since 
the probability that a CO2 molecule touches the surface of the sea is 
proportional to the CO2 level in the atmosphere. Let the absorbtion be 

xa x− . Then, we have this differential equation of global CO2: 

  		     
0 x

dxx a a x
dt

•
= = +                            	          (2)

Is there an equilibrium?

		
0 0x

dxx a a x
dt

•
= = + =                        	         (3)

Yes, there is one and only one equilbrium.

		

00 0eq
x

ax x x
a

• − = ⇒ = = > 
 

                        (4)

Is this equilibrium stable? Yes, if something disturbes x so that 

eqx x< , then 0x
•
> , which means that x  increases until eqx x= . If 

eqx x> , then 0x
•
< , and x  decreases until eqx x= .

According to earlier research, the pre-industrial equilibrium level 
of CO2 was 280 ppm (parts per million). Compare the IPCC report 
by Solomon et al.6 In this paper, we will find that the derived model 
confirms this finding. In other words, we will confirm that. 

			 

0 280eq
x

ax
a
−

= ≈                          (5)

In order to determine the parameters of a function, it is necessary 
to have some variation in the data. In particular, when we want to 
determine the values of the parameters of the differential equation 
of x , we can not do this if eqx x= all the time. In this respect, it 
is useful to observe that the industrial emissions of CO2 during the 
latest decades have created earlier not available variation in x . Let 
us regard global emissions of CO2, after the industrial revolution, 

( )tϕ , as a function of t. The emissions are added to the CO2 in the 
atmosphere.

			   0 ( )xx a a x tϕ
•
= + +                     (6)

Now, since we have access to empirical data for ,x ϕ
• 

 
 

in different 

time periods, we can estimate the parameters ( )0, xa a via the ordinary 

least squares method (regression analysis) in the following way:

		  0( ) ( ) ( )xy t x t a a x tϕ
•

= − = +                            (7)

Table 1 includes the transformations of the available atmospheric 
CO2 raw data to a time seriers of x

•
 that will be used in the analysis. 

In a similar way, in Table 2 the global emission data is developed to 
time series data for ϕ .

In different statistical sources and equations, the CO2 of the 
atmosphere is given in different units. Following the principles by 
O’Hara3, the following transformation rules have been applied: 1 ppm 
(CO2) can be transformed to 2.13*3.664=7.80432 Gt CO2. 1 ppm by 
volume of atmosphere CO2=2.13 Gt C. 1 g C=0.083 mole CO2=3.664 
g CO2.

Now, the data series developed in Table 1 and Table 2 are used to 
produce the regression data set found in Table 3. 

Below, a very high level of detail in the calculations has been 
selected. The motivation is the following: The CO2 dynamics and 
global warming issue is critical to the present global political debate. 
It is necessary that the reader can investigate and repeat all derivations 
without problems.

We want to determine the parameters ( )0, xa a in this function:

			   0 xy a a x= +                                 (8)

We minimize the sum of squares of the residuals:

		
( )2

0,0 1
min

N

i x ia ax i
Z y a a x

=

= − −∑                         (9)

These are the first order optimum conditions:

	       

( )( )

( )( )

0
10

0
1

2 ( 1) 0

2 ( ) 0

N

i x i
i
N

i x i i
ix

dZ y a a x
da

dZ y a a x x
da

=

=


= − − − =



 = − − − =

∑

∑
               (10)
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Table 2 Atmospheric CO2 data transformations

i
(period)

 t
(year)

tγ   
(Gt CO2) 

iϕ   

(Gt CO2 per year) 
iφ

(Gt CO2 per year) 
iφ

(ppm per year) 

1990 22.637

1 24.119 12.288 1.5745

2000 25.601

2 29.7185 13.8365 1.7729

2010 33.836

3 35.8615 17.6965 2.2675

2018 37.887

Definitions in table 2: tγ   = Global total CO2 emission, observation

iϕ  = Global total CO2 emission, calculated mean value

i i ixφ ϕ
•

= −

Table 3 Regression data

i ix
(ppm)

iy
(Gt CO2 per year) 

1 361.97 -12.288

2 379.725 -13.8365

3 399.21 -17.6965

Definitions in table 3: i i i iy xφ ϕ
• = − = − − 

 

They are further developed:

	         

( )( )

( )( )

0
10

2
0

1

2 0

2 0

N

x i i
i

N

i x i i i
ix

dZ a a x y
da

dZ a x a x x y
da

=

=


= + − =



 = + − =

∑

∑
                                (11)

We also want to investigate if the derived solution gives a unique 
minimum: 

		

2

2
0

2 1 2 0d Z N
da

= = >∑                                                        (12)

		

2
2

2 2 0
x

d Z x
da

= >∑                                                                (13)

	

	

2 2

2
00

22 2

2
0

2 1 2

2 2
x

x x

d Z d Z
xda dada

x xd Z d Z
da da da

Φ = = ∑ ∑
∑ ∑

                              (14)

	   
( )( )22

24 4
N x

N x x
x x

Φ = = −∑ ∑ ∑∑ ∑
                          (15)

		

22
24

x x
N

N N

   Φ = −      

∑ ∑                                               (16)

	  	
[ ]( )22 24N E x E x Φ = −                                                   (17)

		  ( )2 ( ) 0 0N Var x> ∧ > ⇒Φ >                                            (18)

Hence, the second order conditions of a unique minimum are 
satisfied. The first order conditions give a unique minimum. The first 
order optimum conditions imply:

		

( ) ( ) ( )
( ) ( ) ( )

0

2
0

i x i

i i x i i

N a x a y

x a x a x y

 + =


+ =

∑ ∑
∑ ∑ ∑

                                (19)

The parameters can be determined from this simultaneous equation 
system (Table 4): 

		

0
2
i i

x i ii i

N x a y
a x yx x

    
=    
       

∑ ∑
∑∑ ∑

                                       (20)

The point 0( , )xa a is determined via Cramers rule:

	       

2

0

2

85248.955 40.951
2081.723

i i

i i i

i

i i

y x

x y x
a

N x

x x

= ≈ ≈

∑ ∑
∑ ∑

∑
∑ ∑

                           (21)

	    
2

304.118 0.14609
2081.723

i

i i i
x

i

i i

N y
x x y

a
N x

x x

−
= ≈ ≈ −

∑
∑ ∑

∑
∑ ∑

                              (22)

If we express x
•

 in the unit Gt CO2/year, and x  in the unit ppm, 
we have this equation:

40.951 0.14609x x
•
= −                                                             (23)

What is the equilibrium value of x , via the derived function, in 
case there are no emissions?

https://doi.org/10.15406/iratj.2020.06.00197
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0 0x eq

dxx a a x
dt

•
= = + =                                                             (24)

		

0 280.31 ( )eq
x

ax ppm
a
−

= ≈                                                     (25)

Note that this value confirms the ealier empirical finding by 

Solomon et al.6 If we express x
•

 in the unit Gt CO2/year, and x  in 
the unit Gt CO2, we get the following differential equation (Figure 3). 
Note that the coefficient of x has been divided by 2.13*3.664, namely 
by 7.80432  : 

		  40.951 0.0187191x x
•
= −                                                    (26)

	         

40.951 2187.66 ( )
0.0187191eqx Gt−

= ≈
−

                                    (27)

Figure 3 Determination of the global CO2 differential equation via the empirical observations of CO2 from Mouna Loa and the empirical observations of global 
CO2 emissions. The estimated equilibrium value of CO2 is 280 ppm, in case the global emissions of CO2 are zero. This confirms the earlier findings. Compare 
Solomon et al.6 The estimated function is: 40.951 – 0.14609 * CO2 (ppm). The multiple correlation coefficient R=0.977. Since the number of observations is 
limited, more detailed regression statistics will not be given here.

Table 4 Parameter values

N        3

ix∑  1140.905

2
ix∑ 434581.9806

i ix y∑ -16766.57209

iy∑    -43.821

Determination of the differential equation of 
CO2 in the atmosphere under the influence 
of changing CO2 emissions 

Now, the complete differential equation will be determined, giving 
the dynamic development of the CO2 level in the amosphere as a 
function of the development of the global emissions. 

This is the differential equation in general form: 

		  0 ( )xx a a x tϕ
•
= + +                                                 (28)

We will consider the special case of emissions that grow with a 
linear trend, since that is supported by the available empirical data. 
(Note that the forcing function could be generalized to almost any 
form, if considered relevant.) 

		  0 1( )t m m tϕ = +                                                     (29)

The differential equation becomes:

		  0 0 1xx a x a m m t
•
− = + +                                            (30)

Solution of the homogenous equation:

		  0h x hx a x
•
− =                                                            (31)

		
st

hx Ae=                                                                 (32)

		
st

hx sAe
•
=                                                                 (33)

		  ( ) 0x hs a x− =                                                            (34)

https://doi.org/10.15406/iratj.2020.06.00197
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		  ( )0h xx s a≠ ⇒ =                                                       (35)

		  ( ) a tx
hx t Ae=                                                              (36)

Determination of the particular solution:

		  0 1px k k t= +                                                             (37)

	          0 0 1p x px a x a m m t
•
− = + +                                          (38)

	           ( )1 0 1 0 0 1xk a k k t a m m t− + = + +                                  (39)

	
		

1 0 0 0

1 1

x

x

k a k a m
a k m

− = +
 − =

                                                (40)

	                 
( ) 1

1 1 1x
x

ma k m k
a
−

− = ⇒ =                                                (41)

( ) 1 1
1 0 0 0 1 0 0 0x x

x x

m mk a k a m k a k a m
a a

   − −
− = + ∧ = ⇒ − = +   

    		
								      
						                

(42)

		

1
0 0

0
x

x

ma m
a

k
a

 
− + + 
 =                                                                        (43)

Determination of 0 1( )t m m tϕ = +

Now, in order to use the derived function for predictions, we 
estimate the parameters ( )0 1,m m . We follow the same procedure as in 
the earlier section of this paper (Table 5 & 6).

Table 5 Regression data

j Year t  ( )tϕ  
(Gt CO2 per year) 

1 1990 0 22.637

2 2000 10 25.601

3 2010 20 33.836

4 2018 28 37.887

Definitions in table 5: –1990Yeart =

Table 6 Parameter values

N 4

jt∑ 58

2
jt∑ 1284

j jt ϕ∑ 1993.566

jϕ∑ 119.961

The parameters can be determined from this simultaneous equation 
system: 

		

0
2

1

j j

j jj j

N t m
m tt t

ϕ

ϕ

    
  =   
       

∑ ∑
∑∑ ∑

                                            (44)

The point 0 1( , )m m is determined via Cramers rule:

		

	

2

0

2

38403.096 21.672
1772

j j

j j j

j

j j

t

t t
m

N t

t t

ϕ

ϕ
= ≈ ≈

∑ ∑
∑ ∑

∑
∑ ∑

                               (45)

	

1

2

1016.526 0.57366
1772

j

j j j

j

j j

N

t t
m

N t

t t

ϕ

ϕ
= ≈ ≈

∑
∑ ∑

∑
∑ ∑

                                    (46)

(The multiple correlation coefficient: R=0.984 )

		  ( ) 21.672 0.57366t tϕ = +                                                                (47)

	                

1
1

0.57366 30.646
0.0187191x

mk
a
− −

= = ≈
−

                                                    (48)

( )
1

0 0

0
40.951 21.672 30.646

1708.27
0.0187191

x

x

ma m
a

k
a

 
− + +  − + − = = ≈

−
                 

						                 (49)

             
0.0187191( ) 1708.27 30.646tx t Ae t−= + +                                                      (50)

	           (0) 1708.27x A= +                                                                                    (51)

	           (0) 1708.27A x= −                                                                                    (52)

        354.39 2.13 3.664 1708.27A = ⋅ ⋅ −                                                              (53)

		  1057.52A ≈                                                                                              (54)
0.0187191( ) 1057.52 1708.27 30.646 ( )tx t e t Gt−= + +          (55)

If the function is divided by (2.13*3.664), the unit becomes ppm.
0.0187191( ) 135.50 218.89 3.927 ( )tx t e t ppm−= + +                    (56)

In Figure 4 we find that the estimated function can reproduce the 
CO2 observations from Mauna Loa extremely well. Most years during 
the period 1990 to 2018, the deviations are less than 1 ppm. 

Predictions into the future
Now, the estimated differential equation will be used to predict the 

future development of the CO2 level, conditional on the following four 
alternative global emission strategies:

Cont: During the period 2020 to 2100, the emissions continue to 
increase according to the trend estimated during the period 1990 to 
2018.

Lev 2020: The emissions 2020 are estimated from the trend 1990 
to 2018. Then, the emissions stay at that level until 2100.

Stop 2100: The emissions 2020 are estimated from the trend 1990 
to 2018. Then, the emissions are reduced with a constant amount each 
year, such that the emissions are zero in 2100.

Stop 2050: The emissions 2020 are estimated from the trend 1990 
to 2018. Then, the emissions are reduced with a constant amount each 
year, such that the emissions are zero in 2050.

https://doi.org/10.15406/iratj.2020.06.00197
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In Figure 5 we see the graphs of the four emission scenarios and in 
Table 7. we find more details about the four scenarios.

The general principles derived and described in the earlier sections 

of this paper have been used to derive the equations of the CO2 level 
that are consistent with the four different emission scenarios. The 
parameters are presented in Table 8 for the unit Gt, and in Table 9 for 
the unit ppm.

Figure 4 Mauna Loa= CO2 observations from 1990 to 2018. Model= CO2 prediction model. The empirical CO2 observations from Mauna Loa, compare 
Figure 1 and the prediction according to the derived differential equation model are almost identical. The graph was derived with the following equation: 

0.0187191( ) 135.50 218.89 3.927 ( )tx t e t ppm−= + + .

Figure 5 Four different alternative scenarios for the future development of global CO2 emissions, during the time interval 2020 to 2100. The emission level 
2020 is estimated via the linear approximation based on data from the time interval 1990 to 2018. The scenarios are used to predict the future development of 
CO2 in the atmosphere. Compare figure 6, Cont=The emissions continue to develop according to the trend during 1990 to 2018. Lev 2020=The emissions stay, 
for ever, at the level of 2020. Stop 2100=The emissions are reduced with the same amount each year, during the time interval 2020 until 2100. Then, the total 
emission is zero. Stop 2050=The emissions are reduced with the same amount each year, during the time interval 2020 until 2050. (Observation: The negative 
emissions after 2050 are technically possible but not necessarily optimal and relevant.)

https://doi.org/10.15406/iratj.2020.06.00197
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Table 7 Parameter values for predictions 

Alternative Year when t=0 x(0)_ppm a0 ax m0 m1

Cont 1990 354,39 40,951 -0,01872 21,672 0,57366

Lev 2020 2020 413,96911 40,951 -0,01872 38,8818 0

Stop 2100 2020 413,96911 40,951 -0,01872 38,8818 -0,48602

Stop 2050 2020 413,96911 40,951 -0,01872 38,8818 -1,29606

Table 8 Parameter values for predictions

Alternative k0 (Gt) k1 (Gt) A (Gt)

Cont 1708,271011 30,64570412 1057,501954

Lev 2020 4264,777687 0 -1034,030282

Stop 2100 5651,809577 -25,96398865 -2421,062173

Stop 2050 7963,529394 -69,23730308 -4732,781989

Results and discussion
The developed model will now be used to investigate the dynamic 

effects of four different alternative scenarios for the future development 
of global CO2 emissions, during the time interval 2020 to 2100. In 
Figure 5 we find the four emission scenarios. The predictions of the 
future CO2 level, conditional on the different emission strategies, are 

found in Figure 6. The predictions function, (57) is used. Then, t  
is defined according to the information in Table 7 and the parameter 
values 0 1, ,A k k  from Table 9 are used.  

	
0.0187191

0 1( ) ( )tx t Ae k k t ppm−= + +                                                      (57)

Figure 6 Four different alternative scenarios for the future development of CO2 level in the atmosphere, during the time interval 2020 to 2100. The scenarios 
are conditional on the global emission scenarios found in figure 5. The emission level 2020 is estimated via the linear approximation based on data from the time 
interval 1990 to 2018. Cont=The emissions continue to develop according to the trend during 1990 to 2018. 

Lev 2020=The emissions stay, for ever, at the level of 2020. Stop 2100=The emissions are reduced with the same amount each year, during the time interval 2020 
until 2100. Then, the total emission is zero. Stop 2050=The emissions are reduced with the same amount each year, during the time interval 2020 until 2050. 
After 2050, the net emission is strictly negative and follows the same trend as before 2050. (Observation: The negative emissions after 2050 contribute to the 
dramatic fall of the CO2level after 2050 in this scenario. If the emissions would be zero after 2050, the CO2 level would converge to the pre-industrial level of 
280 ppm. Alternative scenarios may easily be constructed.)

https://doi.org/10.15406/iratj.2020.06.00197
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Table 9 Parameter values for predictions

Alternative k0 (ppm) k1 (ppm) A (ppm)

Cont 218,8878738 3,926761604 135,5021262

Lev 2020 546,4637133 0 -132,4946033

Stop 2100 724,1898816 -3,326873918 -310,2207716

Stop 2050 1020,400162 -8,871663781 -606,4310522

Conclusion
Now, it is possible to understand the fundamental mechanisms of 

the dynamics of the CO2 level of the atmosphere, under the influence 
of global emissions. 

A theoretical mathematical model of the dynamics of CO2 has 
been developed. This model is consistent with fundamental scientific 
principles. Furthermore, we can use the model to reproduce historical 
time series of empirical data. We can even use the model to calculate 
the pre-industrial level of CO2 and discover that the calculated 
equilibrium value is consistent with earlier research findings. The 
model can also be used for Predictions. We have investigated how the 
global CO2 level can be dynamically changed via different emissions 
strategies. Detailed predictions of possible future developments have 
been produced and described.

The CO2 and global warming topic is central to the present global 
political agenda. It is necessary to create a fundamental understanding 
of the principles and methods that can be used to handle the problems 
and to stabilize our global climate. The model developed in this 
paper can hopefully make it possible for a large part of the human 
population to really understand how the CO2 dynamics and emissions 
are connected. Without this fundamental understanding, it is difficult 
to convince critical persons that large investments in emission 
reductions may be necessary in order to stabilize the global climate.

The model developed in this paper should be possible to understand, 
investigate and to reproduce, in every detail by every person that has 
a PhD or masters degree in engineering, mathematics, mathematical 
statistics or mathematical economics. Earlier models presented on 
similar topics are not presented with all the details. Completeness 
and transparancy are necessary for complete understanding and 
acceptance. 

According to the Occams razor, a scientific model should not be 
more complicated than necessary. In this paper, a differential equation 
is developed that is only based on very fundamental principles from 
physical science and mathematics. Two highly reliable sources of 
empirical data have been used to estimate the parameters. In the 
analysis, we have seen that a first order differential equation with 
emission forcing has been able to explain the development of the 
dynamics of the CO2 level in the atmosphere, with very high precision. 
Furthermore, the function shows that the CO2 equilibrium level, before 
the industrial revolution, should be 280 ppm, which confirms earlier 
empirical research. According to the opinion of the author, it is hardly 
possible to develop a more simple scientific model that explains the 
CO2 dynamics in a better way.

Finally, the author hopes that the new model will be used to 
optimize and control global emission reductions, in order to give our 
planet the optimal climate.
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