Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 5 Issue 2

Control function optimization for stochastic continuous cover forest management

Peter Lohmander

Optimal Solutions in cooperation with Linnaeus University, Sweden

Correspondence: Peter Lohmander, Optimal Solutions in cooperation with Linnaeus University, Sweden

Received: February 13, 2019 | Published: April 18, 2019

Citation: Lohmander P. Control function optimization for stochastic continuous cover forest management. Int Rob Auto J. 2019;5(2):85-89. DOI: 10.15406/iratj.2019.05.00178

Download PDF

Abstract

Economically optimal management of continuous cover forests can be obtained via a new approach to adaptive control function optimization. We maximize our objective function, the expected present value, with consideration of stochastic prices, timber quality variations and dynamically changing spatial competition. The parameters of the control function are optimized via the first order optimum conditions based on a multivariate polynomial approximation of the objective function. The second order maximum conditions are investigated and used to determine relevant parameter ranges. The procedure is described and optimal results are derived for general function multi species CCF forests. A numerically specified model with empirical data showed that if the stochastic price variations are not considered when the harvest decisions are taken, the expected present value is reduced by 23%.

Keywords: economic optimization, multi species forests, forest management, stochastic processes, adaptive optimal control

Introduction

Economic forest management is an interesting area from a methodological point of view. Several dynamic and stochastic processes should be considered. Market prices are very important to optimal decisions, but often change rapidly and cannot be perfectly predicted. The central question is this: What is the best way to sequentially update the information and adaptively determine the management decisions?

If we are interested in economic results and market adapted forest management decisions, we cannot ignore prices, costs and other economically important parameters. It is necessary to consider the degree of predictability of future values of these parameters. Furthermore, in a dynamic world, the economically optimal levels of adjustments of management decisions to changes in prices, that are not perfectly predictable, are important. In stochastic markets, production capacity levels, stock policies and flexibility are important to the expected profitability.

Forest management decisions can be taken at many different levels. When the level of detail increases, the number of partial decision problems increases almost without bound. In continuous cover forestry, CCF, we may consider the management of each tree as a decision problem. Should we harvest this tree now or wait until some future point in time? Furthermore, these decision problems at the tree level are not independent. If one tree is harvested now, the available space increases for other trees in the neighbourhood to continue growing.

With large numbers of problem dimensions, stochastic parameter changes, large numbers of nonlinearities and adaptive decisions, the problem structure makes it difficult or even impossible to utilize standardized linear and nonlinear programming methods from the field of operations research. In order to give relevant solutions to real world problems, it is necessary to let the model contain the relevant structure with respect to how different parts of the analyzed system are connected and influence each other. One way to do this is to use stochastic simulation.

In the present paper, stochastic simulation will be used as a part of an adaptive control function optimization procedure. This approach has been developed by Lohmander.1 With stochastic simulation as a subroutine, it is possible to search the best way to control the system to reach the most desirable solution, in case the following procedure is utilized: First, a stochastic simulation model of the complete system under analysis is developed. The adaptive control of this system is defined via a specified control function.

General theoretical principles in the field of analysis can be used to define the functional form of the adaptive control function to be used in the system. The exact values of the optimal parameters of the control function are still unknown. Next, the complete system is simulated with a large number of alternative control function parameter value combinations. Thereafter, multidimensional regression analysis is used to determine an approximating function that gives the expected objective function value of the system as a nonlinear function of the control function parameters. Then, we maximize the value of the approximating function. From the first order optimum conditions, the optimal parameter values of the control function are determined. In case the approximating function is quadratic, the equation system of first order optimum conditions is linear. Then, the optimum is usually unique and it is possible that the approximating function can be shown to be strictly concave. If that is the case, the derived control function parameters give a maximum that is globally unique.

In case the approximating function is not quadratic, but for instance cubic, the analysis is more complicated. Then, the equation system of first order optimum conditions is not linear. Still, if the equation system only contains a limited number of nonlinearities, the solutions may be calculated via elimination and analytical methods of quadratic, cubic or quartic equations.

In such cases, it may be found that the approximating function is strictly concave in some region(s). Then, it may be possible to show that one of the solutions of the first order optimum conditions gives an optimum that is also a locally unique maximum. In some cases, it may be possible to show that we also have a unique global maximum. In this paper, this method will be utilized to derive optimal adaptive control functions in forest management.

The idea to use approximations, in particular quadratic approximations of the functions to be optimized, is not new. Sir Isaac Newton developed the approach denoted Newton’s method. Newton’s method is usually described in terms of root-finding, but it can also be understood as maximizing a local quadratic approximation to the objective function. Galantai2 describes the theory of the Newton’s method. The ideas have been extended in many directions. One such case is Wierzbicki,3 who developed a method for quadratic approximations based on augmented Lagrangian functions for non convex nonlinear programming problems. Another case is Powel,4 who created a new algorithm for unconstrained optimization models, leading to quadratic approximations via interpolations. Li5 made adaptive quadratic approximations to be used in structural and topology optimization and Lee et al.6 created an algorithm that gave local quadratic approximations for penalized optimization problems.

Optimization problems with many dimensions, nonlinearities and stochastic disturbances are common in most sectors of the economies. Lohmander7-9 presents alternative optimization methods to handle such situations in a rational way.

In this paper, we focus on CCF, continuous cover forestry. Initially, there are a large number of spatially distributed trees of different sizes. The central question is this: What is the best way to adaptively control and manage such a forest?

Lohmander10 shows that there is considerable option values associated with mixed forests. Single species forests give fewer options to adjust production to possible stochastic events. For instance, prices of different species may change. Then, it is valuable to have the option to adjust the harvest activities to these changing market conditions. Furthermore, some species may be negatively affected by pests, insects or large animals. Some species may not produce well in case the climate changes or if pollution increases. In these cases, it is valuable to be able to adaptively adjust forest production. This can easily be done if we already have several species growing in the forest. In some cases, it is possible to calculate the expected present value of forestry, conditional on the initial species mix. Lohmander7 contains several optimization methods and typical solutions to adaptive forest management problems.

Methods

In the present study, we develop and describe a general analytical and numerical method to handle management decision problems of this type: We want to optimize the harvest decisions over time. We want to maximize our objective function, the expected present value. The prices of the different species are stochastic. The problem is solved using an adaptive control function. The parameters of the control function are optimized via the first order optimum conditions of an approximation of the expected objective function. The second order maximum conditions are investigated. The expected objective function is estimated via Monte Carlo simulation.

In this section, a general procedure is given for a multi species forest with trees of different sizes. Now, we consider a mixed species forest. Initially, there is a large number of spatially distributed trees of different sizes and species. We want to optimize the harvest decisions over time. We want to maximize our objective function, the expected present value. The prices of the different species are stochastic.

b i (0)= b i0 i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacaGGOaGaaGim aiaacMcacqGH9aqpcaWGIbqcfa4aaSbaaKqaGeaajugWaiaadMgaca aIWaaaleqaaKqzGeGaeyiaIiIaamyAaaaa@4502@ (1)

bi(t) is the basal area of tree number i(at height 1.3 meters above ground) at time (t)(from t 0 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b qcfa4aaSbaaKqbGeaajugWaiaaicdaaKqbagqaaKqzGeGaeyypa0Ja aGimaaaa@3D20@ ). Each period normally represents one year but other time intervals are sometimes more relevant. The initial condition is bio.di(t) is the diameter of tree i at time t at height 1.3 meters above ground.

d i (t)=2 ( b i (t) π ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb qcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacaGGOaGaamiD aiaacMcacqGH9aqpcaaIYaqcfa4aaOaaaOqaaKqbaoaabmaakeaaju aGdaWcaaGcbaqcLbsacaWGIbqcfa4aaSbaaKqaGeaajugWaiaadMga aSqabaqcLbsacaGGOaGaamiDaiaacMcaaOqaaKqzGeGaeqiWdahaaa GccaGLOaGaayzkaaaaleqaaaaa@4C44@ (2)

u(i,t) represents the control decision. If u(i,t)=1, the tree i is harvested in period t. Otherwise,u(i,t)=0.

u(i,t){ 0,1 }i,t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b GaaiikaiaadMgacaGGSaGaamiDaiaacMcacqGHiiIZjuaGdaGadaGc baqcLbsacaaIWaGaaiilaiaaigdaaOGaay5Eaiaaw2haaKqzGeGaey iaIiIaamyAaiaacYcacaWG0baaaa@4670@ (3)

t=0 T u(i,t) 1i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaabCaO qaaKqzGeGaamyDaiaacIcacaWGPbGaaiilaiaadshacaGGPaaajeai baqcLbmacaWG0bGaeyypa0JaaGimaaqcbasaaKqzadGaamivaaqcLb sacqGHris5aiabgsMiJkaaigdacqGHaiIicaWGPbaaaa@4930@ (4)

bi(t) develops according to a discrete time process. The increment, growth,, is a function of the basal area bi(t), the species s(i) and the competition,L(i,t). S(i){ 1,.,N } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGtb GaaiikaiaadMgacaGGPaGaeyicI4Ccfa4aaiWaaOqaaKqzGeGaaGym aiaacYcacaGGUaGaaiilaiaad6eaaOGaay5Eaiaaw2haaaaa@422A@ where N is the total number of species. is a ”species dummy variable” defined in (5).

s m (i)={ 1 ifS(i)=m 0 ifS(i)m i,m{ 1,.,N } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGZb qcfa4aaSbaaKqaGeaajugWaiaad2gaaSqabaqcLbsacaGGOaGaamyA aiaacMcacqGH9aqpjuaGdaGabaGcbaqcLbsafaqabeGacaaakeaaju gibiaaigdaaOqaaKqzGeGaamyAaiaadAgacaaMe8Uaam4uaiaacIca caWGPbGaaiykaiabg2da9iaad2gaaOqaaKqzGeGaaGimaaGcbaqcLb sacaWGPbGaamOzaiaaysW7caWGtbGaaiikaiaadMgacaGGPaGaeyiy IKRaamyBaaaacaaMf8UaaGzbVlabgcGiIiaadMgacaGGSaGaamyBai abgIGioNqbaoaacmaakeaajugibiaaigdacaGGSaGaaiOlaiaacYca caWGobaakiaawUhacaGL9baaaiaawUhaaaaa@6544@ (5)

The level of competition of relevance to tree i at time t is denoted L(i,t). In different studies,L(i,t) has been specified in different ways. Usually, L(i,t) is a strictly increasing function of the size (for instance basal area) of neighbour trees. Furthermore, neighbour trees that are close to tree influence the value of L(i,t) more than what more distant trees do. In Lohmander,1 L(i,t) is the total basal area of neighbour trees per hectare within a circle of radius 10 meters, where tree   represents the center of the circle. In Lohmander et al.,11 L(i,t) is a nonlinear function of the properties of the competitors; L(i,t) decreases with the distance to the competitors and increases with the size of the competitors.

The general function G(.), for L(i,t)=0, has been defined and presented by Lohmander.12 Lohmander also derived a differential equation consistent with G(.) and the dynamic properties of the basal area development. Empirical estimations of the parameters of G(.) with variations of L(i,t) have been performed for forests with different tree species in Iran by Hatami et al.13

b i (t+1)={ b i (t)+G( b i (t),S(i),L(i,t) ) foru(i,t)=0 0 foru(i,t)=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGIb qcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacaGGOaGaamiD aiabgUcaRiaaigdacaGGPaGaeyypa0tcfa4aaiqaaOqaaKqzGeqbae qabiGaaaGcbaqcLbsacaWGIbqcfa4aaSbaaKqaGeaajugWaiaadMga aSqabaqcLbsacaGGOaGaamiDaiaacMcacqGHRaWkcaWGhbqcfa4aae WaaOqaaKqzGeGaamOyaKqbaoaaBaaajeaibaqcLbmacaWGPbaaleqa aKqzGeGaaiikaiaadshacaGGPaGaaiilaiaadofacaGGOaGaamyAai aacMcacaGGSaGaamitaiaacIcacaWGPbGaaiilaiaadshacaGGPaaa kiaawIcacaGLPaaaaeaajugibiaadAgacaWGVbGaamOCaiaaysW7ca WG1bGaaiikaiaadMgacaGGSaGaamiDaiaacMcacqGH9aqpcaaIWaaa keaajugibiaaicdaaOqaaKqzGeGaamOzaiaad+gacaWGYbGaaGjbVl aadwhacaGGOaGaamyAaiaacYcacaWG0bGaaiykaiabg2da9iaaigda aaaakiaawUhaaaaa@76B2@ (6)

The present value of all profits is denoted Z. This is the discounted net value of all harvests. Hence it is a function of all harvest decisions, the rate of interest, the prices of the different species, the volumes of trees at different points in time and the harvest costs.

Z= t=0 T e rt i=1 I u(i,t)( P(S(i),t)V(S(i), b i (t))C(S(i), b i (t),t)) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGAb Gaeyypa0tcfa4aaabCaOqaaKqzGeGaamyzaKqbaoaaCaaaleqajeai baqcLbmacqGHsislcaWGYbGaamiDaaaajuaGdaaeWbGcbaqcLbsaca WG1bGaaiikaiaadMgacaGGSaGaamiDaiaacMcajuaGdaqadaGcbaqc LbsacaWGqbGaaiikaiaadofacaGGOaGaamyAaiaacMcacaGGSaGaam iDaiaacMcacaWGwbGaaiikaiaadofacaGGOaGaamyAaiaacMcacaGG SaGaamOyaKqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaKqzGeGaai ikaiaadshacaGGPaGaaiykaiabgkHiTiaadoeacaGGOaGaam4uaiaa cIcacaWGPbGaaiykaiaacYcacaWGIbqcfa4aaSbaaKqaGeaajugWai aadMgaaSqabaqcLbsacaGGOaGaamiDaiaacMcacaGGSaGaamiDaiaa cMcacaGGPaaakiaawIcacaGLPaaaaKqaGeaajugWaiaadMgacqGH9a qpcaaIXaaajeaibaqcLbmacaWGjbaajugibiabggHiLdaajeaibaqc LbmacaWG0bGaeyypa0JaaGimaaqcbasaaKqzadGaamivaaqcLbsacq GHris5aaaa@7DD3@ (7)

e rt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGLb qcfa4aaWbaaSqabKqaGeaajugWaiabgkHiTiaadkhacaWG0baaaaaa @3C5F@ is the discounting factor of period t with rate of interest r. P(S(i),t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb GaaiikaiaadofacaGGOaGaamyAaiaacMcacaGGSaGaamiDaiaacMca aaa@3D7B@ denotes price per cubic meter of specie i sin period t. P(S(i),t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb GaaiikaiaadofacaGGOaGaamyAaiaacMcacaGGSaGaamiDaiaacMca aaa@3D7B@ t is a stationary variable which is stochastic at tn,n>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaeyOeI0IaamOBaiaacYcacaaMe8UaeyiaIiIaamOBaiabg6da+iaa icdaaaa@3F20@ . E( P(S(i),t) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb qcfa4aaeWaaOqaaKqzGeGaamiuaiaacIcacaWGtbGaaiikaiaadMga caGGPaGaaiilaiaadshacaGGPaaakiaawIcacaGLPaaaaaa@40FF@ is the expected value of P(S(i),t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb GaaiikaiaadofacaGGOaGaamyAaiaacMcacaGGSaGaamiDaiaacMca aaa@3D7B@ at tn,n>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG0b GaeyOeI0IaamOBaiaacYcacaaMe8UaeyiaIiIaamOBaiabg6da+iaa icdaaaa@3F20@ . In the two species case, if trees i and j belong to different species, then P(S(i),t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb GaaiikaiaadofacaGGOaGaamyAaiaacMcacaGGSaGaamiDaiaacMca aaa@3D7B@ and P(S(j),t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGqb GaaiikaiaadofacaGGOaGaamOAaiaacMcacaGGSaGaamiDaiaacMca aaa@3D7C@ have correlation ρ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHbp GCaaa@3845@ . ( 1ρ1 ).V(S(i), b i (t)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeyOeI0IaaGymaiabgsMiJkabeg8aYjabgsMiJkaaigda aOGaayjkaiaawMcaaKqzGeGaaiOlaiaadAfacaGGOaGaam4uaiaacI cacaWGPbGaaiykaiaacYcacaWGIbqcfa4aaSbaaKqaGeaajugWaiaa dMgaaSqabaqcLbsacaGGOaGaamiDaiaacMcacaGGPaaaaa@4E49@ is the volume of tree as a function of the species and the basal area. C(S(i), b i (t),t)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGdb GaaiikaiaadofacaGGOaGaamyAaiaacMcacaGGSaGaamOyaKqbaoaa BaaajeaibaqcLbmacaWGPbaaleqaaKqzGeGaaiikaiaadshacaGGPa GaaiilaiaadshacaGGPaGaaiykaaaa@4593@ denotes the harvest cost of tree i. This cost is a function of species, basal area and time.

This problem is highly stochastic, multidimensional and nonlinear. Furthermore, it contains a large number of integer variables. It is necessary to define a reasonable type of adaptive control function that can be used to handle the many control decisions in a way that takes the stochastic prices and competition between trees into account. Then the parameters of the control function may be optimized. For this purpose, the following rule is suggested: First, we calculate the ”limit diameter”Di(t) of tree i at time t. The limit diameter is a function of the tree species index, the relative deviation of the price from the expected level and the competition. α m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcbasaaKqzadGaamyBaaWcbeaaaaa@3B28@ is the value of the limit diameter Di(t) if the species is m, and at the same time, in case the price is a the expected level and L(i,t)=0.

D i (t)= m=1 N α m s m (i) + α P ( P(S(i),t)E( P(S(i),t) ) E( P(S(i),t) ) )+ α L L(t,i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGeb qcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacaGGOaGaamiD aiaacMcacqGH9aqpcaaMe8Ecfa4aaabCaOqaaKqzGeGaeqySdewcfa 4aaSbaaKqaGeaajugWaiaad2gaaSqabaqcLbsacaWGZbqcfa4aaSba aKqaGeaajugWaiaad2gaaSqabaqcLbsacaGGOaGaamyAaiaacMcaaK qaGeaajugWaiaad2gacqGH9aqpcaaIXaaajeaibaqcLbmacaWGobaa jugibiabggHiLdGaey4kaSIaeqySdewcfa4aaSbaaKqaGeaajugWai aadcfaaSqabaqcfa4aaeWaaOqaaKqbaoaalaaakeaajugibiaadcfa caGGOaGaam4uaiaacIcacaWGPbGaaiykaiaacYcacaWG0bGaaiykai abgkHiTiaadweajuaGdaqadaGcbaqcLbsacaWGqbGaaiikaiaadofa caGGOaGaamyAaiaacMcacaGGSaGaamiDaiaacMcaaOGaayjkaiaawM caaaqaaKqzGeGaamyraKqbaoaabmaakeaajugibiaadcfacaGGOaGa am4uaiaacIcacaWGPbGaaiykaiaacYcacaWG0bGaaiykaaGccaGLOa GaayzkaaaaaaGaayjkaiaawMcaaKqzGeGaey4kaSIaeqySdewcfa4a aSbaaKqaGeaajugWaiaadYeaaSqabaqcLbsacaWGmbGaaiikaiaads hacaGGSaGaamyAaiaacMcaaaa@8745@ (8)

In case the diameter d i (t) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb qcfa4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacaGGOaGaamiD aiaacMcaaaa@3D4F@ is larger than the limit diameter, we instantly harvest. Otherwise we wait at least one more period before we harvest the tree. (The particular functional form (8) can be generalized in several ways. For instance, the values of the parameters α P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcbasaaKqzadGaamiuaaWcbeaaaaa@3B0B@ and α L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcbasaaKqzadGaamitaaWcbeaaaaa@3B07@ may be different for different species.)

u(i,t)={ 0 if( d i (t) D i (t) )( 1 t=0 t1 u(i,t) )0 1 if( d i (t) D i (t) )( 1 t=0 t1 u(i,t) )>0 i,t{ 0,κ,2κ,...,nκ } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWG1b GaaiikaiaadMgacaGGSaGaamiDaiaacMcacqGH9aqpjuaGdaGabaGc baqcLbsafaqabeGacaaakeaajugibiaaicdaaOqaaKqzGeGaamyAai aadAgacaaMe8Ecfa4aaeWaaOqaaKqzGeGaamizaKqbaoaaBaaajeai baqcLbmacaWGPbaaleqaaKqzGeGaaiikaiaadshacaGGPaGaeyOeI0 IaamiraKqbaoaaBaaajeaibaqcLbmacaWGPbaaleqaaKqzGeGaaiik aiaadshacaGGPaaakiaawIcacaGLPaaajuaGdaqadaGcbaqcLbsaca aIXaGaeyOeI0scfa4aaabCaOqaaKqzGeGaamyDaiaacIcacaWGPbGa aiilaiaadshacaGGPaaajeaibaqcLbmacaWG0bGaeyypa0JaaGimaa qcbasaaKqzadGaamiDaiabgkHiTiaaigdaaKqzGeGaeyyeIuoaaOGa ayjkaiaawMcaaKqzGeGaeyizImQaaGimaaGcbaqcLbsacaaIXaaake aajugibiaadMgacaWGMbGaaGjbVNqbaoaabmaakeaajugibiaadsga juaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaajugibiaacIcacaWG0b GaaiykaiabgkHiTiaadseajuaGdaWgaaqcbasaaKqzadGaamyAaaWc beaajugibiaacIcacaWG0bGaaiykaaGccaGLOaGaayzkaaqcfa4aae WaaOqaaKqzGeGaaGymaiabgkHiTKqbaoaaqahakeaajugibiaadwha caGGOaGaamyAaiaacYcacaWG0bGaaiykaaqcbasaaKqzadGaamiDai abg2da9iaaicdaaKqaGeaajugWaiaadshacqGHsislcaaIXaaajugi biabggHiLdaakiaawIcacaGLPaaajugibiabg6da+iaaicdaaaaaki aawUhaaKqzGeGaaGzbVlabgcGiIiaadMgacaGGSaGaaGzbVlaadsha cqGHiiIZjuaGdaGadaGcbaqcLbsacaaIWaGaaiilaiabeQ7aRjaacY cacaaIYaGaeqOUdSMaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaWG UbGaeqOUdSgakiaawUhacaGL9baaaaa@B3B3@ (9)

κ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH6o WAaaa@3837@ denotes the harvest decision interval. This is an integer, κ1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH6o WAcqGHLjYScaaIXaaaaa@3AB8@ .n is the total number of harvest decision intervals and nκ=T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGUb GaeqOUdSMaeyypa0Jaamivaaaa@3B09@ , where T is the total planning horizon.

Z is a function of many things, including the stochastic price outcomes. When the control decisions are optimized, we are interested in the expected value of Z, namely E(Z), which is defined in (10). We may estimate E(Z) for given parameter values via Monte Carlo simulation. The average value of Z is determined based on a large number of random outcomes of the stochastic prices of the different species. The correlations may be estimated from real price series and Cholesky factorization can be used to generate the correlated price series. It is a good idea to store all of the simulated price series and to use the same set of simulated price series in every step of the control function parameter optimizations.

E(Z)=E( t=0 T e rt i=1 I u(i,t)( P(S(i),t)V(S(i), b i (t))C(S(i), b i (t),t) ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb GaaiikaiaadQfacaGGPaGaeyypa0JaamyraKqbaoaabmaakeaajuaG daaeWbGcbaqcLbsacaWGLbqcfa4aaWbaaSqabKqaGeaajugWaiabgk HiTiaadkhacaWG0baaaKqbaoaaqahakeaajugibiaadwhacaGGOaGa amyAaiaacYcacaWG0bGaaiykaKqbaoaabmaakeaajugibiaadcfaca GGOaGaam4uaiaacIcacaWGPbGaaiykaiaacYcacaWG0bGaaiykaiaa dAfacaGGOaGaam4uaiaacIcacaWGPbGaaiykaiaacYcacaWGIbqcfa 4aaSbaaKqaGeaajugWaiaadMgaaSqabaqcLbsacaGGOaGaamiDaiaa cMcacaGGPaGaeyOeI0Iaam4qaiaacIcacaWGtbGaaiikaiaadMgaca GGPaGaaiilaiaadkgajuaGdaWgaaqcbasaaKqzadGaamyAaaWcbeaa jugibiaacIcacaWG0bGaaiykaiaacYcacaWG0bGaaiykaaGccaGLOa GaayzkaaaajeaibaqcLbmacaWGPbGaeyypa0JaaGymaaqcbasaaKqz adGaamysaaqcLbsacqGHris5aaqcbasaaKqzadGaamiDaiabg2da9i aaicdaaKqaGeaajugWaiaadsfaaKqzGeGaeyyeIuoaaOGaayjkaiaa wMcaaaaa@823E@ (10)

In the following derivations,N is assumed to take the value 2, which is a typical case in real applications. The procedure can easily be extended to other values of N.

Procedure:

Make an initial guess ( α 1 0 , α 2 0 , α P 0 , α L 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqySdewcfa4aaSbaaKqaGeaajugWaiaaigdalmaaBaaa jiaibaqcLbmacaaIWaaajiaibeaaaSqabaqcLbsacaGGSaGaeqySde wcfa4aaSbaaKqaGeaajugWaiaaikdalmaaBaaajiaibaqcLbmacaaI WaaajiaibeaaaSqabaqcLbsacaGGSaGaeqySdewcfa4aaSbaaKqaGe aajugWaiaadcfalmaaBaaajiaibaqcLbmacaaIWaaajiaibeaaaSqa baqcLbsacaGGSaGaeqySdewcfa4aaSbaaKqaGeaajugWaiaadYealm aaBaaajiaibaqcLbmacaaIWaaajiaibeaaaSqabaaakiaawIcacaGL Paaaaaa@57F6@ of the optimal values of the parameters ( α 1 , α 2 , α P , α L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqySdewcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqc LbsacaGGSaGaeqySdewcfa4aaSbaaKqaGeaajugWaiaaikdaaSqaba qcLbsacaGGSaGaeqySdewcfa4aaSbaaKqaGeaajugWaiaadcfaaSqa baqcLbsacaGGSaGaeqySdewcfa4aaSbaaKqaGeaajugWaiaadYeaaS qabaaakiaawIcacaGLPaaaaaa@4E4E@ .

Create a number, W, of alternative parameter combinations, w , such that stochastic variables ( ε 1 , ε 2 , ε P , ε L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqyTduwcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqc LbsacaGGSaGaeqyTduwcfa4aaSbaaKqaGeaajugWaiaaikdaaSqaba qcLbsacaGGSaGaeqyTduwcfa4aaSbaaKqaGeaajugWaiaadcfaaSqa baqcLbsacaGGSaGaeqyTduwcfa4aaSbaaKqaGeaajugWaiaadYeaaS qabaaakiaawIcacaGLPaaaaaa@4E6E@ are added to ( α 1 0 , α 2 0 , α P 0 , α L 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqySdewcfa4aaSbaaKqaGeaajugWaiaaigdalmaaBaaa jiaibaqcLbmacaaIWaaajiaibeaaaSqabaqcLbsacaGGSaGaeqySde wcfa4aaSbaaKqaGeaajugWaiaaikdalmaaBaaajiaibaqcLbmacaaI WaaajiaibeaaaSqabaqcLbsacaGGSaGaeqySdewcfa4aaSbaaKqaGe aajugWaiaadcfalmaaBaaajiaibaqcLbmacaaIWaaajiaibeaaaSqa baqcLbsacaGGSaGaeqySdewcfa4aaSbaaKqaGeaajugWaiaadYealm aaBaaajiaibaqcLbmacaaIWaaajiaibeaaaSqabaaakiaawIcacaGL Paaaaaa@57F6@ . The probability density functions of these stochastic variables are defined with consideration of the interesting parameter ranges. ( d j λ , d j γ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaamizaKqbaoaaBaaajeaibaqcLbmacaWGQbWcdaWgaaqc casaaKqzadGaeq4UdWgajiaibeaaaSqabaqcLbsacaGGSaGaamizaK qbaoaaBaaajeaibaqcLbmacaWGQbWcdaWgaaqccasaaKqzadGaeq4S dCgajiaibeaaaSqabaaakiaawIcacaGLPaaaaaa@487E@ denote the lower ( λ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH7o aBaaa@3839@ ) and upper ( γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHZo Wzaaa@382C@ ) bounds of ε j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzjuaGdaWgaaqcbasaaKqzadGaamOAaaWcbeaaaaa@3B2D@ , j{ 1,2,P,L } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGQb GaeyicI4Ccfa4aaiWaaOqaaKqzGeGaaGymaiaacYcacaaIYaGaaiil aiaadcfacaGGSaGaamitaaGccaGL7bGaayzFaaaaaa@4187@ .

d 1 λ < ε 1 < d 1 γ ; d 2 λ < ε 2 < d 2 γ ; d P λ < ε P < d P γ ; d L λ < ε L < d L γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb qcfa4aaSbaaKqaGeaajugWaiaaigdalmaaBaaajiaibaqcLbmacqaH 7oaBaKGaGeqaaaWcbeaajugibiabgYda8iabew7aLLqbaoaaBaaaje aibaqcLbmacaaIXaaaleqaaKqzGeGaeyipaWJaamizaKqbaoaaBaaa jeaibaqcLbmacaaIXaWcdaWgaaqccauaaKqzadGaeq4SdCgajiaqbe aaaSqabaqcLbsacaGG7aGaaGjbVlaadsgajuaGdaWgaaqcbasaaKqz adGaaGOmaSWaaSbaaKGaGeaajugWaiabeU7aSbqccasabaaaleqaaK qzGeGaeyipaWJaeqyTduwcfa4aaSbaaKqaGeaajugWaiaaikdaaSqa baqcLbsacqGH8aapcaWGKbqcfa4aaSbaaKqaGeaajugWaiaaikdalm aaBaaajiaibaqcLbmacqaHZoWzaKGaGeqaaaWcbeaajugibiaacUda caaMe8UaamizaKqbaoaaBaaajeaibaqcLbmacaWGqbWcdaWgaaqcca saaKqzadGaeq4UdWgajiaibeaaaSqabaqcLbsacqGH8aapcqaH1oqz juaGdaWgaaqcbasaaKqzadGaamiuaaWcbeaajugibiabgYda8iaads gajuaGdaWgaaqcbasaaKqzadGaamiuaSWaaSbaaKGaGeaajugWaiab eo7aNbqccasabaaaleqaaKqzGeGaai4oaiaaysW7caWGKbqcfa4aaS baaKqaGeaajugWaiaadYealmaaBaaajiaibaqcLbmacqaH7oaBaKGa GeqaaaWcbeaajugibiabgYda8iabew7aLLqbaoaaBaaajeaibaqcLb macaWGmbaaleqaaKqzGeGaeyipaWJaamizaKqbaoaaBaaajeaibaqc LbmacaWGmbWcdaWgaaqccasaaKqzadGaeq4SdCgajiaibeaaaSqaba aaaa@96ED@ . Normally, this means that d 1 λ <0< d 1 γ ; d 2 λ <0< d 2 γ ; d P λ <0< d P γ ; d L λ <0< d L γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGKb qcfa4aaSbaaKqaGeaajugWaiaaigdalmaaBaaajiaibaqcLbmacqaH 7oaBaKGaGeqaaaWcbeaajugibiabgYda8iaaicdacqGH8aapcaWGKb qcfa4aaSbaaKqaGeaajugWaiaaigdalmaaBaaajiaibaqcLbmacqaH ZoWzaKGaGeqaaaWcbeaajugibiaacUdacaaMe8UaamizaKqbaoaaBa aajeaibaqcLbmacaaIYaWcdaWgaaqccasaaKqzadGaeq4UdWgajiai beaaaSqabaqcLbsacqGH8aapcaaIWaGaeyipaWJaamizaKqbaoaaBa aajeaibaqcLbmacaaIYaWcdaWgaaqccasaaKqzadGaeq4SdCgajiai beaaaSqabaqcLbsacaGG7aGaaGjbVlaadsgajuaGdaWgaaqcbasaaK qzadGaamiuaSWaaSbaaKGaGeaajugWaiabeU7aSbqccasabaaaleqa aKqzGeGaeyipaWJaaGimaiabgYda8iaadsgajuaGdaWgaaqcbasaaK qzadGaamiuaSWaaSbaaKGaGeaajugWaiabeo7aNbqccasabaaaleqa aKqzGeGaai4oaiaaysW7caWGKbqcfa4aaSbaaKqaGeaajugWaiaadY ealmaaBaaajiaibaqcLbmacqaH7oaBaKGaGeqaaaWcbeaajugibiab gYda8iaaicdacqGH8aapcaWGKbqcfa4aaSbaaKqaGeaajugWaiaadY ealmaaBaaajiaibaqcLbmacqaHZoWzaKGaGeqaaaWcbeaaaaa@8558@ . Let ε j w MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzjuaGdaWgaaqcbasaaKqzadGaamOAaSWaaSbaaKGaGeaajugWaiaa dEhaaKGaGeqaaaWcbeaaaaa@3DD9@ denote the value of ε j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaH1o qzjuaGdaWgaaqcbasaaKqzadGaamOAaaWcbeaaaaa@3B2D@ in parameter combination w. ( α 1 w , α 2 w , α P w , α L w )=( α 1 0 + ε 1 w , α 2 0 + ε 2 w , α P 0 + ε P w , α L 0 + ε L w ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaeWaaO qaaKqzGeGaeqySdewcfa4aaSbaaKqaGeaajugWaiaaigdalmaaBaaa jiaibaqcLbmacaWG3baajiaibeaaaSqabaqcLbsacaGGSaGaeqySde wcfa4aaSbaaKqaGeaajugWaiaaikdalmaaBaaajiaqbaqcLbmacaWG 3baajiaqbeaaaSqabaqcLbsacaGGSaGaeqySdewcfa4aaSbaaKqaGe aajugWaiaadcfalmaaBaaajiaibaqcLbmacaWG3baajiaibeaaaSqa baqcLbsacaGGSaGaeqySdewcfa4aaSbaaKqaGeaajugWaiaadYealm aaBaaajiaibaqcLbmacaWG3baajiaibeaaaSqabaaakiaawIcacaGL Paaajugibiabg2da9Kqbaoaabmaakeaajugibiabeg7aHLqbaoaaBa aajeaibaqcLbmacaaIXaWcdaWgaaqccasaaKqzadGaaGimaaqccasa baaaleqaaKqzGeGaey4kaSIaeqyTduwcfa4aaSbaaKqaGeaajugWai aaigdalmaaBaaajiaibaqcLbmacaWG3baajiaibeaaaSqabaqcLbsa caGGSaGaeqySdewcfa4aaSbaaKqaGeaajugWaiaaikdalmaaBaaaji aibaqcLbmacaaIWaaajiaibeaaaSqabaqcLbsacqGHRaWkcqaH1oqz juaGdaWgaaqcbasaaKqzadGaaGOmaSWaaSbaaKGaGeaajugWaiaadE haaKGaGeqaaaWcbeaajugibiaacYcacqaHXoqyjuaGdaWgaaqcbasa aKqzadGaamiuaSWaaSbaaKGaGeaajugWaiaaicdaaKGaGeqaaaWcbe aajugibiabgUcaRiabew7aLLqbaoaaBaaajeaibaqcLbmacaWGqbWc daWgaaqccasaaKqzadGaam4DaaqccasabaaaleqaaKqzGeGaaiilai abeg7aHLqbaoaaBaaajeaibaqcLbmacaWGmbWcdaWgaaqccasaaKqz adGaaGimaaqccasabaaaleqaaKqzGeGaey4kaSIaeqyTduwcfa4aaS baaKqaGeaajugWaiaadYealmaaBaaajiaibaqcLbmacaWG3baajiai beaaaSqabaaakiaawIcacaGLPaaaaaa@9F48@ .

For each random parameter combination w, estimate the value of E(Z)=E( Z( α 1 w , α 2 w , α P w , α L w ,... ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb GaaiikaiaadQfacaGGPaGaeyypa0JaamyraKqbaoaabmaakeaajugi biaadQfajuaGdaqadaGcbaqcLbsacqaHXoqyjuaGdaWgaaqcbasaaK qzadGaaGymaSWaaSbaaKGaGeaajugWaiaadEhaaKGaGeqaaaWcbeaa jugibiaacYcacqaHXoqyjuaGdaWgaaqcbasaaKqzadGaaGOmaSWaaS baaKGaGeaajugWaiaadEhaaKGaGeqaaaWcbeaajugibiaacYcacqaH XoqyjuaGdaWgaaqcbasaaKqzadGaamiuaSWaaSbaaKGaGeaajugWai aadEhaaKGaGeqaaaWcbeaajugibiaacYcacqaHXoqyjuaGdaWgaaqc basaaKqzadGaamitaSWaaSbaaKGaGeaajugWaiaadEhaaKGaGeqaaa WcbeaajugibiaacYcacaGGUaGaaiOlaiaac6caaOGaayjkaiaawMca aaGaayjkaiaawMcaaaaa@6543@ .

Make a quadratic approximation Φ=Φ( α 1 , α 2 , α P , α L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrcqGH9aqpcqqHMoGrjuaGdaqadaGcbaqcLbsacqaHXoqyjuaGdaWg aaqcbasaaKqzadGaaGymaaWcbeaajugibiaacYcacqaHXoqyjuaGda WgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiaacYcacqaHXoqyjuaG daWgaaqcbasaaKqzadGaamiuaaWcbeaajugibiaacYcacqaHXoqyju aGdaWgaaqcbasaaKqzadGaamitaaWcbeaaaOGaayjkaiaawMcaaaaa @52D7@ of the function E(Z)=E( Z( α 1 , α 2 , α P , α L ,... ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacaWGfb GaaiikaiaadQfacaGGPaGaeyypa0JaamyraKqbaoaabmaakeaajugi biaadQfajuaGdaqadaGcbaqcLbsacqaHXoqyjuaGdaWgaaqcbasaaK qzadGaaGymaaWcbeaajugibiaacYcacqaHXoqyjuaGdaWgaaqcbasa aKqzadGaaGOmaaWcbeaajugibiaacYcacqaHXoqyjuaGdaWgaaqcba saaKqzadGaamiuaaWcbeaajugibiaacYcacqaHXoqyjuaGdaWgaaqc basaaKqzadGaamitaaWcbeaajugibiaacYcacaGGUaGaaiOlaiaac6 caaOGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa@5A93@ according to the lines suggested by equations (11) – (14), via OLS, the ordinary least squares method.

It is important to be aware that cubic approximations or other functional forms may sometimes be more relevant.

Φ=Φ( α 1 , α 2 , α P , α L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrcqGH9aqpcqqHMoGrjuaGdaqadaGcbaqcLbsacqaHXoqyjuaGdaWg aaqcbasaaKqzadGaaGymaaWcbeaajugibiaacYcacqaHXoqyjuaGda WgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiaacYcacqaHXoqyjuaG daWgaaqcbasaaKqzadGaamiuaaWcbeaajugibiaacYcacqaHXoqyju aGdaWgaaqcbasaaKqzadGaamitaaWcbeaaaOGaayjkaiaawMcaaaaa @52D7@ (11)

Φ=Φ( α 1 , α 2 , α P , α L ) = k 1 α 1 + k 2 α 2 + k P α P + k L α L + + k 11 α 1 2 + k 22 α 2 2 + k PP α P 2 + k LL α L 2 + + k 12 α 1 α 2 + k 1P α 1 α P + k 1L α 1 α L + k 2P α 2 α P + k 2L α 2 α L + k PL α P α L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi abfA6agjabg2da9iabfA6agLqbaoaabmaakeaajugibiabeg7aHLqb aoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaaiilaiabeg7aHL qbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaaiilaiabeg7a HLqbaoaaBaaajeaibaqcLbmacaWGqbaaleqaaKqzGeGaaiilaiabeg 7aHLqbaoaaBaaajeaibaqcLbmacaWGmbaaleqaaaGccaGLOaGaayzk aaaabaqcLbsacaaMf8UaaGPaVlabg2da9iaadUgajuaGdaWgaaqcba saaKqzadGaaGymaaWcbeaajugibiabeg7aHLqbaoaaBaaajeaibaqc LbmacaaIXaaaleqaaKqzGeGaey4kaSIaam4AaKqbaoaaBaaajeaiba qcLbmacaaIYaaaleqaaKqzGeGaeqySdewcfa4aaSbaaKqaGeaajugW aiaaikdaaSqabaqcLbsacqGHRaWkcaWGRbqcfa4aaSbaaKqaGeaaju gWaiaadcfaaSqabaqcLbsacqaHXoqyjuaGdaWgaaqcbasaaKqzadGa amiuaaWcbeaajugibiabgUcaRiaadUgajuaGdaWgaaqcbasaaKqzad GaamitaaWcbeaajugibiabeg7aHLqbaoaaBaaajeaibaqcLbmacaWG mbaaleqaaKqzGeGaey4kaScakeaajugibiaaywW7caaMf8Uaey4kaS Iaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXaGaaGymaaWcbeaajugi biabeg7aHLqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqbaoaaCa aaleqajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSIaam4AaKqbaoaa BaaajeaibaqcLbmacaaIYaGaaGOmaaWcbeaajugibiabeg7aHLqbao aaBaaajeaibaqcLbmacaaIYaaaleqaaKqbaoaaCaaaleqajeaibaqc LbmacaaIYaaaaKqzGeGaey4kaSIaam4AaKqbaoaaBaaajeaibaqcLb macaWGqbGaamiuaaWcbeaajugibiabeg7aHLqbaoaaBaaajeaibaqc LbmacaWGqbaaleqaaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaK qzGeGaey4kaSIaam4AaKqbaoaaBaaajeaibaqcLbmacaWGmbGaamit aaWcbeaajugibiabeg7aHLqbaoaaBaaajeaibaqcLbmacaWGmbaale qaaKqbaoaaCaaaleqajeaibaqcLbmacaaIYaaaaKqzGeGaey4kaSca keaajugibiaaywW7caaMf8Uaey4kaSIaam4AaKqbaoaaBaaajeaiba qcLbmacaaIXaGaaGOmaaWcbeaajugibiabeg7aHLqbaoaaBaaajeai baqcLbmacaaIXaaaleqaaKqzGeGaeqySdewcfa4aaSbaaKqaGeaaju gWaiaaikdaaSqabaqcLbsacqGHRaWkcaWGRbqcfa4aaSbaaKqaGeaa jugWaiaaigdacaWGqbaaleqaaKqzGeGaeqySdewcfa4aaSbaaKqaGe aajugWaiaaigdaaSqabaqcLbsacqaHXoqyjuaGdaWgaaqcbasaaKqz adGaamiuaaWcbeaajugibiabgUcaRiaadUgajuaGdaWgaaqcbasaaK qzadGaaGymaiaadYeaaSqabaqcLbsacqaHXoqyjuaGdaWgaaqcbasa aKqzadGaaGymaaWcbeaajugibiabeg7aHLqbaoaaBaaajeaibaqcLb macaWGmbaaleqaaKqzGeGaey4kaSIaam4AaKqbaoaaBaaajeaibaqc LbmacaaIYaGaamiuaaWcbeaajugibiabeg7aHLqbaoaaBaaajeaiba qcLbmacaaIYaaaleqaaKqzGeGaeqySdewcfa4aaSbaaKqaGeaajugW aiaadcfaaSqabaqcLbsacqGHRaWkcaWGRbqcfa4aaSbaaKqaGeaaju gWaiaaikdacaWGmbaaleqaaKqzGeGaeqySdewcfa4aaSbaaKqaGeaa jugWaiaaikdaaSqabaqcLbsacqaHXoqyjuaGdaWgaaqcbasaaKqzad GaamitaaWcbeaajugibiabgUcaRiaadUgajuaGdaWgaaqcbasaaKqz adGaamiuaiaadYeaaSqabaqcLbsacqaHXoqyjuaGdaWgaaqcbasaaK qzadGaamiuaaWcbeaajugibiabeg7aHLqbaoaaBaaajeaibaqcLbma caWGmbaaleqaaaaaaa@2010@ (12)

Φ( α 1 , α 2 , α P , α L )E(Z( α 1 , α 2 , α P , α L ,...)) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrcaGGOaGaeqySdewcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqc LbsacaGGSaGaeqySdewcfa4aaSbaaKqaGeaajugWaiaaikdaaSqaba qcLbsacaGGSaGaeqySdewcfa4aaSbaaKqaGeaajugWaiaadcfaaSqa baqcLbsacaGGSaGaeqySdewcfa4aaSbaaKqaGeaajugWaiaadYeaaS qabaqcLbsacaGGPaGaeyisISRaamyraiaacIcacaWGAbGaaiikaiab eg7aHLqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaaiilai abeg7aHLqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaaiil aiabeg7aHLqbaoaaBaaajeaibaqcLbmacaWGqbaaleqaaKqzGeGaai ilaiabeg7aHLqbaoaaBaaajeaibaqcLbmacaWGmbaaleqaaKqzGeGa aiilaiaac6cacaGGUaGaaiOlaiaacMcacaGGPaaaaa@6E84@ (13)

min k 0 , k 1 ,..., k PL Ψ=E[ ( Φ( α 1 , α 2 , α P , α L ; k 1 ,..., k PL )E(Z( α 1 , α 2 , α P , α L ,...)) ) 2 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaCbeaO qaaKqzGeGaciyBaiaacMgacaGGUbaajqwaa+FaaKqzadGaam4AaSWa aSbaaKGaGeaajugWaiaaicdaaKGaGeqaaKqzadGaaiilaiaadUgalm aaBaaajiaibaqcLbmacaaIXaaajiaibeaajugWaiaacYcacaGGUaGa aiOlaiaac6cacaGGSaGaam4AaSWaaSbaaKGaGeaajugWaiaadcfaca WGmbaajiaibeaaaSqabaqcLbsacqqHOoqwcqGH9aqpcaWGfbqcfa4a amWaaOqaaKqbaoaabmaakeaajugibiabfA6agLqbaoaabmaakeaaju gibiabeg7aHLqbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGa aiilaiabeg7aHLqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGe Gaaiilaiabeg7aHLqbaoaaBaaajeaibaqcLbmacaWGqbaaleqaaKqz GeGaaiilaiabeg7aHLqbaoaaBaaajeaibaqcLbmacaWGmbaaleqaaK qzGeGaai4oaiaadUgajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaa jugibiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaam4AaKqbaoaaBa aajeaibaqcLbmacaWGqbGaamitaaWcbeaaaOGaayjkaiaawMcaaKqz GeGaeyOeI0IaamyraiaacIcacaWGAbGaaiikaiabeg7aHLqbaoaaBa aajeaibaqcLbmacaaIXaaaleqaaKqzGeGaaiilaiabeg7aHLqbaoaa BaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaaiilaiabeg7aHLqbao aaBaaajeaibaqcLbmacaWGqbaaleqaaKqzGeGaaiilaiabeg7aHLqb aoaaBaaajeaibaqcLbmacaWGmbaaleqaaKqzGeGaaiilaiaac6caca GGUaGaaiOlaiaacMcacaGGPaaakiaawIcacaGLPaaajuaGdaahaaWc beqcbasaaKqzadGaaGOmaaaaaOGaay5waiaaw2faaaaa@A11F@ (14)

Use the quadratic approximation Φ=Φ( α 1 , α 2 , α P , α L ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqqHMo GrcqGH9aqpcqqHMoGrjuaGdaqadaGcbaqcLbsacqaHXoqyjuaGdaWg aaqcbasaaKqzadGaaGymaaWcbeaajugibiaacYcacqaHXoqyjuaGda WgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiaacYcacqaHXoqyjuaG daWgaaqcbasaaKqzadGaamiuaaWcbeaajugibiaacYcacqaHXoqyju aGdaWgaaqcbasaaKqzadGaamitaaWcbeaaaOGaayjkaiaawMcaaaaa @52D7@ to determine the approximately optimal values of the parameters α 1 , α 2 , α P , α L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiaacYcacqaH XoqyjuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiaacYcacq aHXoqyjuaGdaWgaaqcbasaaKqzadGaamiuaaWcbeaajugibiaacYca cqaHXoqyjuaGdaWgaaqcbasaaKqzadGaamitaaWcbeaaaaa@4C23@ . The approximate optimal values can be used as new initial conditions, and the approximation process can continue any number of iterations until the solution is considered satisfactory.

The first order optimum conditions are found in (15).

{ dΦ d α 1 = k 1 +2 k 11 α 1 + k 12 α 2 + k 1P α P + k 1L α L =0 dΦ d α 2 = k 2 + k 12 α 1 +2 k 22 α 2 + k 2P α P + k 2L α L =0 dΦ d α P = k P + k 1P α 1 + k 2P α 2 +2 k PP α P + k PL α L =0 dΦ d α L = k L + k 1L α 1 + k 2L α 2 + k PL α P +2 k LL α L =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaiqaaO qaaKqzGeqbaeqabqqaaaaakeaajuaGdaWcaaGcbaqcLbsacaWGKbGa euOPdyeakeaajugibiaadsgacqaHXoqyjuaGdaWgaaqcbasaaKqzad GaaGymaaWcbeaaaaqcLbsacqGH9aqpcaWGRbqcfa4aaSbaaKqaGeaa jugWaiaaigdaaSqabaqcLbsacqGHRaWkcaaIYaGaam4AaKqbaoaaBa aajeaibaqcLbmacaaIXaGaaGymaaWcbeaajugibiabeg7aHLqbaoaa BaaajeaibaqcLbmacaaIXaaaleqaaKqzGeGaey4kaSIaam4AaKqbao aaBaaajeaibaqcLbmacaaIXaGaaGOmaaWcbeaajugibiabeg7aHLqb aoaaBaaajeaibaqcLbmacaaIYaaaleqaaKqzGeGaey4kaSIaam4AaK qbaoaaBaaajeaibaqcLbmacaaIXaGaamiuaaWcbeaajugibiabeg7a HLqbaoaaBaaajeaibaqcLbmacaWGqbaaleqaaKqzGeGaey4kaSIaam 4AaKqbaoaaBaaajeaibaqcLbmacaaIXaGaamitaaWcbeaajugibiab eg7aHLqbaoaaBaaajeaibaqcLbmacaWGmbaaleqaaKqzGeGaeyypa0 JaaGimaaGcbaqcfa4aaSaaaOqaaKqzGeGaamizaiabfA6agbGcbaqc LbsacaWGKbGaeqySdewcfa4aaSbaaKqaGeaajugWaiaaikdaaSqaba aaaKqzGeGaeyypa0Jaam4AaKqbaoaaBaaajeaibaqcLbmacaaIYaaa leqaaKqzGeGaey4kaSIaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXa GaaGOmaaWcbeaajugibiabeg7aHLqbaoaaBaaajeaibaqcLbmacaaI XaaaleqaaKqzGeGaey4kaSIaaGOmaiaadUgajuaGdaWgaaqcbasaaK qzadGaaGOmaiaaikdaaSqabaqcLbsacqaHXoqyjuaGdaWgaaqcbasa aKqzadGaaGOmaaWcbeaajugibiabgUcaRiaadUgajuaGdaWgaaqcba saaKqzadGaaGOmaiaadcfaaSqabaqcLbsacqaHXoqyjuaGdaWgaaqc basaaKqzadGaamiuaaWcbeaajugibiabgUcaRiaadUgajuaGdaWgaa qcbasaaKqzadGaaGOmaiaadYeaaSqabaqcLbsacqaHXoqyjuaGdaWg aaqcbasaaKqzadGaamitaaWcbeaajugibiabg2da9iaaicdaaOqaaK qbaoaalaaakeaajugibiaadsgacqqHMoGraOqaaKqzGeGaamizaiab eg7aHLqbaoaaBaaajeaibaqcLbmacaWGqbaaleqaaaaajugibiabg2 da9iaadUgajuaGdaWgaaqcbasaaKqzadGaamiuaaWcbeaajugibiab gUcaRiaadUgajuaGdaWgaaqcbasaaKqzadGaaGymaiaadcfaaSqaba qcLbsacqaHXoqyjuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugi biabgUcaRiaadUgajuaGdaWgaaqcbasaaKqzadGaaGOmaiaadcfaaS qabaqcLbsacqaHXoqyjuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaa jugibiabgUcaRiaaikdacaWGRbqcfa4aaSbaaKqaGeaajugWaiaadc facaWGqbaaleqaaKqzGeGaeqySdewcfa4aaSbaaKqaGeaajugWaiaa dcfaaSqabaqcLbsacqGHRaWkcaWGRbqcfa4aaSbaaKqaGeaajugWai aadcfacaWGmbaaleqaaKqzGeGaeqySdewcfa4aaSbaaKqaGeaajugW aiaadYeaaSqabaqcLbsacqGH9aqpcaaIWaaakeaajuaGdaWcaaGcba qcLbsacaWGKbGaeuOPdyeakeaajugibiaadsgacqaHXoqyjuaGdaWg aaqcbasaaKqzadGaamitaaWcbeaaaaqcLbsacqGH9aqpcaWGRbqcfa 4aaSbaaKqaGeaajugWaiaadYeaaSqabaqcLbsacqGHRaWkcaWGRbqc fa4aaSbaaKqaGeaajugWaiaaigdacaWGmbaaleqaaKqzGeGaeqySde wcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaqcLbsacqGHRaWkcaWG Rbqcfa4aaSbaaKqaGeaajugWaiaaikdacaWGmbaaleqaaKqzGeGaeq ySdewcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaqcLbsacqGHRaWk caWGRbqcfa4aaSbaaKqaGeaajugWaiaadcfacaWGmbaaleqaaKqzGe GaeqySdewcfa4aaSbaaKqaGeaajugWaiaadcfaaSqabaqcLbsacqGH RaWkcaaIYaGaam4AaKqbaoaaBaaajeaibaqcLbmacaWGmbGaamitaa Wcbeaajugibiabeg7aHLqbaoaaBaaajeaibaqcLbmacaWGmbaaleqa aKqzGeGaeyypa0JaaGimaaaaaOGaay5Eaaaaaa@30FC@ (15)

We may determined the optimal parameter values via (16).

[ 2 k 11 k 12 k 1P k 1L k 12 2 k 22 k 2P k 2L k 1P k 2P 2 k PP k PL k 1L k 2L k PL 2 k LL ][ α 1 α 2 α P α L ]=[ k 1 k 2 k P k L ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aamWaaO qaaKqzGeqbaeqabqabaaaaaOqaaKqzGeGaaGOmaiaadUgajuaGdaWg aaqcbasaaKqzadGaaGymaiaaigdaaSqabaaakeaajugibiaadUgaju aGdaWgaaqcbasaaKqzadGaaGymaiaaikdaaSqabaaakeaajugibiaa dUgajuaGdaWgaaqcbasaaKqzadGaaGymaiaadcfaaSqabaaakeaaju gibiaadUgajuaGdaWgaaqcbasaaKqzadGaaGymaiaadYeaaSqabaaa keaajugibiaadUgajuaGdaWgaaqcbasaaKqzadGaaGymaiaaikdaaS qabaaakeaajugibiaaikdacaWGRbqcfa4aaSbaaKqaGeaajugWaiaa ikdacaaIYaaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaaju gWaiaaikdacaWGqbaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqa GeaajugWaiaaikdacaWGmbaaleqaaaGcbaqcLbsacaWGRbqcfa4aaS baaKqaGeaajugWaiaaigdacaWGqbaaleqaaaGcbaqcLbsacaWGRbqc fa4aaSbaaKqaGeaajugWaiaaikdacaWGqbaaleqaaaGcbaqcLbsaca aIYaGaam4AaKqbaoaaBaaajeaibaqcLbmacaWGqbGaamiuaaWcbeaa aOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqcLbmacaWGqbGaamitaa WcbeaaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXaGa amitaaWcbeaaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqcLbmaca aIYaGaamitaaWcbeaaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqc LbmacaWGqbGaamitaaWcbeaaaOqaaKqzGeGaaGOmaiaadUgajuaGda WgaaqcbasaaKqzadGaamitaiaadYeaaSqabaaaaaGccaGLBbGaayzx aaqcfa4aamWaaOqaaKqzGeqbaeqabqqaaaaakeaajugibiabeg7aHL qbaoaaBaaajeaibaqcLbmacaaIXaaaleqaaaGcbaqcLbsacqaHXoqy juaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaaaOqaaKqzGeGaeqySde wcfa4aaSbaaKqaGeaajugWaiaadcfaaSqabaaakeaajugibiabeg7a HLqbaoaaBaaajeaibaqcLbmacaWGmbaaleqaaaaaaOGaay5waiaaw2 faaKqzGeGaeyypa0tcfa4aamWaaOqaaKqzGeqbaeqabqqaaaaakeaa jugibiabgkHiTiaadUgajuaGdaWgaaqcbasaaKqzadGaaGymaaWcbe aaaOqaaKqzGeGaeyOeI0Iaam4AaKqbaoaaBaaajeaibaqcLbmacaaI YaaaleqaaaGcbaqcLbsacqGHsislcaWGRbqcfa4aaSbaaKqaGeaaju gWaiaadcfaaSqabaaakeaajugibiabgkHiTiaadUgajuaGdaWgaaqc basaaKqzadGaamitaaWcbeaaaaaakiaawUfacaGLDbaaaaa@C040@ (16)

| M | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeGaamytaaGccaGLhWUaayjcSdaaaa@3B1B@ is presented in (17) and the second order maximum conditions are found in (18).

| M |=| 2 k 11 k 12 k 1P k 1L k 12 2 k 22 k 2P k 2L k 1P k 2P 2 k PP k PL k 1L k 2L k PL 2 k LL | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcfa4aaqWaaO qaaKqzGeGaamytaaGccaGLhWUaayjcSdqcLbsacqGH9aqpjuaGdaab daGcbaqcLbsafaqabeabeaaaaaGcbaqcLbsacaaIYaGaam4AaKqbao aaBaaajeaibaqcLbmacaaIXaGaaGymaaWcbeaaaOqaaKqzGeGaam4A aKqbaoaaBaaajeaibaqcLbmacaaIXaGaaGOmaaWcbeaaaOqaaKqzGe Gaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXaGaamiuaaWcbeaaaOqa aKqzGeGaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXaGaamitaaWcbe aaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXaGaaGOm aaWcbeaaaOqaaKqzGeGaaGOmaiaadUgajuaGdaWgaaqcbasaaKqzad GaaGOmaiaaikdaaSqabaaakeaajugibiaadUgajuaGdaWgaaqcbasa aKqzadGaaGOmaiaadcfaaSqabaaakeaajugibiaadUgajuaGdaWgaa qcbasaaKqzadGaaGOmaiaadYeaaSqabaaakeaajugibiaadUgajuaG daWgaaqcbasaaKqzadGaaGymaiaadcfaaSqabaaakeaajugibiaadU gajuaGdaWgaaqcbasaaKqzadGaaGOmaiaadcfaaSqabaaakeaajugi biaaikdacaWGRbqcfa4aaSbaaKqaGeaajugWaiaadcfacaWGqbaale qaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaajugWaiaadcfacaWG mbaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaajugWaiaaig dacaWGmbaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaajugW aiaaikdacaWGmbaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGe aajugWaiaadcfacaWGmbaaleqaaaGcbaqcLbsacaaIYaGaam4AaKqb aoaaBaaajeaibaqcLbmacaWGmbGaamitaaWcbeaaaaaakiaawEa7ca GLiWoaaaa@96AB@ (17)

| 2 k 11 |<0,| 2 k 11 k 12 k 12 2 k 22 |>0, | 2 k 11 k 12 k 1P k 12 2 k 22 k 2P k 1P k 2P 2 k PP |<0,| 2 k 11 k 12 k 1P k 1L k 12 2 k 22 k 2P k 2L k 1P k 2P 2 k PP k PL k 1L k 2L k PL 2 k LL |>0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajugibi aaywW7caaMf8Ecfa4aaqWaaOqaaKqzGeGaaGOmaiaadUgajuaGdaWg aaqcbasaaKqzadGaaGymaiaaigdaaSqabaaakiaawEa7caGLiWoaju gibiabgYda8iaaicdacaGGSaGaaGzbVlaaywW7caaMf8UaaGzbVlaa ywW7caaMf8UaaGzbVlaaysW7juaGdaabdaGcbaqcLbsafaqabeGaca aakeaajugibiaaikdacaWGRbqcfa4aaSbaaKqaGeaajugWaiaaigda caaIXaaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaajugWai aaigdacaaIYaaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaa jugWaiaaigdacaaIYaaaleqaaaGcbaqcLbsacaaIYaGaam4AaKqbao aaBaaajeaibaqcLbmacaaIYaGaaGOmaaWcbeaaaaaakiaawEa7caGL iWoajugibiabg6da+iaaicdacaGGSaaakeaajuaGdaabdaGcbaqcLb safaqabeWadaaakeaajugibiaaikdacaWGRbqcfa4aaSbaaKqaGeaa jugWaiaaigdacaaIXaaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaK qaGeaajugWaiaaigdacaaIYaaaleqaaaGcbaqcLbsacaWGRbqcfa4a aSbaaKqaGeaajugWaiaaigdacaWGqbaaleqaaaGcbaqcLbsacaWGRb qcfa4aaSbaaKqaGeaajugWaiaaigdacaaIYaaaleqaaaGcbaqcLbsa caaIYaGaam4AaKqbaoaaBaaajeaibaqcLbmacaaIYaGaaGOmaaWcbe aaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqcLbmacaaIYaGaamiu aaWcbeaaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXa GaamiuaaWcbeaaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqcLbma caaIYaGaamiuaaWcbeaaaOqaaKqzGeGaaGOmaiaadUgajuaGdaWgaa qcbasaaKqzadGaamiuaiaadcfaaSqabaaaaaGccaGLhWUaayjcSdqc LbsacqGH8aapcaaIWaGaaiilaiaaywW7juaGdaabdaGcbaqcLbsafa qabeabeaaaaaGcbaqcLbsacaaIYaGaam4AaKqbaoaaBaaajeaibaqc LbmacaaIXaGaaGymaaWcbeaaaOqaaKqzGeGaam4AaKqbaoaaBaaaje aibaqcLbmacaaIXaGaaGOmaaWcbeaaaOqaaKqzGeGaam4AaKqbaoaa BaaajeaibaqcLbmacaaIXaGaamiuaaWcbeaaaOqaaKqzGeGaam4AaK qbaoaaBaaajeaibaqcLbmacaaIXaGaamitaaWcbeaaaOqaaKqzGeGa am4AaKqbaoaaBaaajeaibaqcLbmacaaIXaGaaGOmaaWcbeaaaOqaaK qzGeGaaGOmaiaadUgajuaGdaWgaaqcbasaaKqzadGaaGOmaiaaikda aSqabaaakeaajugibiaadUgajuaGdaWgaaqcbasaaKqzadGaaGOmai aadcfaaSqabaaakeaajugibiaadUgajuaGdaWgaaqcbasaaKqzadGa aGOmaiaadYeaaSqabaaakeaajugibiaadUgajuaGdaWgaaqcbasaaK qzadGaaGymaiaadcfaaSqabaaakeaajugibiaadUgajuaGdaWgaaqc basaaKqzadGaaGOmaiaadcfaaSqabaaakeaajugibiaaikdacaWGRb qcfa4aaSbaaKqaGeaajugWaiaadcfacaWGqbaaleqaaaGcbaqcLbsa caWGRbqcfa4aaSbaaKqaGeaajugWaiaadcfacaWGmbaaleqaaaGcba qcLbsacaWGRbqcfa4aaSbaaKqaGeaajugWaiaaigdacaWGmbaaleqa aaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaajugWaiaaikdacaWGmb aaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaajugWaiaadcfa caWGmbaaleqaaaGcbaqcLbsacaaIYaGaam4AaKqbaoaaBaaajeaiba qcLbmacaWGmbGaamitaaWcbeaaaaaakiaawEa7caGLiWoajugibiab g6da+iaaicdaaaaa@0579@ (18)

The optimal parameter values are obtained via (19)–(22).

α 1 = | k 1 k 12 k 1P k 1L k 2 2 k 22 k 2P k 2L k P k 2P 2 k PP k PL k L k 2L k PL 2 k LL | | M | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcbasaaKqzadGaaGymaaWcbeaajugibiabg2da9Kqb aoaalaaakeaajuaGdaabdaGcbaqcLbsafaqabeabeaaaaaGcbaqcLb sacqGHsislcaWGRbqcfa4aaSbaaKqaGeaajugWaiaaigdaaSqabaaa keaajugibiaadUgajuaGdaWgaaqcbasaaKqzadGaaGymaiaaikdaaS qabaaakeaajugibiaadUgajuaGdaWgaaqcbasaaKqzadGaaGymaiaa dcfaaSqabaaakeaajugibiaadUgajuaGdaWgaaqcbasaaKqzadGaaG ymaiaadYeaaSqabaaakeaajugibiabgkHiTiaadUgajuaGdaWgaaqc basaaKqzadGaaGOmaaWcbeaaaOqaaKqzGeGaaGOmaiaadUgajuaGda WgaaqcbasaaKqzadGaaGOmaiaaikdaaSqabaaakeaajugibiaadUga juaGdaWgaaqcbasaaKqzadGaaGOmaiaadcfaaSqabaaakeaajugibi aadUgajuaGdaWgaaqcbasaaKqzadGaaGOmaiaadYeaaSqabaaakeaa jugibiabgkHiTiaadUgajuaGdaWgaaqcbasaaKqzadGaamiuaaWcbe aaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqcLbmacaaIYaGaamiu aaWcbeaaaOqaaKqzGeGaaGOmaiaadUgajuaGdaWgaaqcbasaaKqzad GaamiuaiaadcfaaSqabaaakeaajugibiaadUgajuaGdaWgaaqcbasa aKqzadGaamiuaiaadYeaaSqabaaakeaajugibiabgkHiTiaadUgaju aGdaWgaaqcbasaaKqzadGaamitaaWcbeaaaOqaaKqzGeGaam4AaKqb aoaaBaaajeaibaqcLbmacaaIYaGaamitaaWcbeaaaOqaaKqzGeGaam 4AaKqbaoaaBaaajeaibaqcLbmacaWGqbGaamitaaWcbeaaaOqaaKqz GeGaaGOmaiaadUgajuaGdaWgaaqcbasaaKqzadGaamitaiaadYeaaS qabaaaaaGccaGLhWUaayjcSdaabaqcfa4aaqWaaOqaaKqzGeGaamyt aaGccaGLhWUaayjcSdaaaaaa@9C5A@ (19)

α 2 = | 2 k 11 k 1 k 1P k 1L k 12 k 2 k 2P k 2L k 1P k P 2 k PP k PL k 1L k L k PL 2 k LL | | M | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcbasaaKqzadGaaGOmaaWcbeaajugibiabg2da9Kqb aoaalaaakeaajuaGdaabdaGcbaqcLbsafaqabeabeaaaaaGcbaqcLb sacaaIYaGaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXaGaaGymaaWc beaaaOqaaKqzGeGaeyOeI0Iaam4AaKqbaoaaBaaajeaibaqcLbmaca aIXaaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaajugWaiaa igdacaWGqbaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaaju gWaiaaigdacaWGmbaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqa GeaajugWaiaaigdacaaIYaaaleqaaaGcbaqcLbsacqGHsislcaWGRb qcfa4aaSbaaKqaGeaajugWaiaaikdaaSqabaaakeaajugibiaadUga juaGdaWgaaqcbasaaKqzadGaaGOmaiaadcfaaSqabaaakeaajugibi aadUgajuaGdaWgaaqcbasaaKqzadGaaGOmaiaadYeaaSqabaaakeaa jugibiaadUgajuaGdaWgaaqcbasaaKqzadGaaGymaiaadcfaaSqaba aakeaajugibiabgkHiTiaadUgajuaGdaWgaaqcbasaaKqzadGaamiu aaWcbeaaaOqaaKqzGeGaaGOmaiaadUgajuaGdaWgaaqcbasaaKqzad GaamiuaiaadcfaaSqabaaakeaajugibiaadUgajuaGdaWgaaqcbasa aKqzadGaamiuaiaadYeaaSqabaaakeaajugibiaadUgajuaGdaWgaa qcbasaaKqzadGaaGymaiaadYeaaSqabaaakeaajugibiabgkHiTiaa dUgajuaGdaWgaaqcbasaaKqzadGaamitaaWcbeaaaOqaaKqzGeGaam 4AaKqbaoaaBaaajeaibaqcLbmacaWGqbGaamitaaWcbeaaaOqaaKqz GeGaaGOmaiaadUgajuaGdaWgaaqcbasaaKqzadGaamitaiaadYeaaS qabaaaaaGccaGLhWUaayjcSdaabaqcfa4aaqWaaOqaaKqzGeGaamyt aaGccaGLhWUaayjcSdaaaaaa@9C57@ (20)

α P = | 2 k 11 k 12 k 1 k 1L k 12 2 k 22 k 2 k 2L k 1P k 2P k P k PL k 1L k 2L k L 2 k LL | | M | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcbasaaKqzadGaamiuaaWcbeaajugibiabg2da9Kqb aoaalaaakeaajuaGdaabdaGcbaqcLbsafaqabeabeaaaaaGcbaqcLb sacaaIYaGaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXaGaaGymaaWc beaaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXaGaaG OmaaWcbeaaaOqaaKqzGeGaeyOeI0Iaam4AaKqbaoaaBaaajeaibaqc LbmacaaIXaaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaaju gWaiaaigdacaWGmbaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqa GeaajugWaiaaigdacaaIYaaaleqaaaGcbaqcLbsacaaIYaGaam4AaK qbaoaaBaaajeaibaqcLbmacaaIYaGaaGOmaaWcbeaaaOqaaKqzGeGa eyOeI0Iaam4AaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqaaaGcba qcLbsacaWGRbqcfa4aaSbaaKqaGeaajugWaiaaikdacaWGmbaaleqa aaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaajugWaiaaigdacaWGqb aaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaajugWaiaaikda caWGqbaaleqaaaGcbaqcLbsacqGHsislcaWGRbqcfa4aaSbaaKqaGe aajugWaiaadcfaaSqabaaakeaajugibiaadUgajuaGdaWgaaqcbasa aKqzadGaamiuaiaadYeaaSqabaaakeaajugibiaadUgajuaGdaWgaa qcbasaaKqzadGaaGymaiaadYeaaSqabaaakeaajugibiaadUgajuaG daWgaaqcbasaaKqzadGaaGOmaiaadYeaaSqabaaakeaajugibiabgk HiTiaadUgajuaGdaWgaaqcbasaaKqzadGaamitaaWcbeaaaOqaaKqz GeGaaGOmaiaadUgajuaGdaWgaaqcbasaaKqzadGaamitaiaadYeaaS qabaaaaaGccaGLhWUaayjcSdaabaqcfa4aaqWaaOqaaKqzGeGaamyt aaGccaGLhWUaayjcSdaaaaaa@9C0C@ (21)

α L = | 2 k 11 k 12 k 1P k 1 k 12 2 k 22 k 2P k 2 k 1P k 2P 2 k PP k P k 1L k 2L k PL k L | | M | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbsacqaHXo qyjuaGdaWgaaqcbasaaKqzadGaamitaaWcbeaajugibiabg2da9Kqb aoaalaaakeaajuaGdaabdaGcbaqcLbsafaqabeabeaaaaaGcbaqcLb sacaaIYaGaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXaGaaGymaaWc beaaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqcLbmacaaIXaGaaG OmaaWcbeaaaOqaaKqzGeGaam4AaKqbaoaaBaaajeaibaqcLbmacaaI XaGaamiuaaWcbeaaaOqaaKqzGeGaeyOeI0Iaam4AaKqbaoaaBaaaje aibaqcLbmacaaIXaaaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqa GeaajugWaiaaigdacaaIYaaaleqaaaGcbaqcLbsacaaIYaGaam4AaK qbaoaaBaaajeaibaqcLbmacaaIYaGaaGOmaaWcbeaaaOqaaKqzGeGa am4AaKqbaoaaBaaajeaibaqcLbmacaaIYaGaamiuaaWcbeaaaOqaaK qzGeGaeyOeI0Iaam4AaKqbaoaaBaaajeaibaqcLbmacaaIYaaaleqa aaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaajugWaiaaigdacaWGqb aaleqaaaGcbaqcLbsacaWGRbqcfa4aaSbaaKqaGeaajugWaiaaikda caWGqbaaleqaaaGcbaqcLbsacaaIYaGaam4AaKqbaoaaBaaajeaiba qcLbmacaWGqbGaamiuaaWcbeaaaOqaaKqzGeGaeyOeI0Iaam4AaKqb aoaaBaaajeaibaqcLbmacaWGqbaaleqaaaGcbaqcLbsacaWGRbqcfa 4aaSbaaKqaGeaajugWaiaaigdacaWGmbaaleqaaaGcbaqcLbsacaWG Rbqcfa4aaSbaaKqaGeaajugWaiaaikdacaWGmbaaleqaaaGcbaqcLb sacaWGRbqcfa4aaSbaaKqaGeaajugWaiaadcfacaWGmbaaleqaaaGc baqcLbsacqGHsislcaWGRbqcfa4aaSbaaKqaGeaajugWaiaadYeaaS qabaaaaaGccaGLhWUaayjcSdaabaqcfa4aaqWaaOqaaKqzGeGaamyt aaGccaGLhWUaayjcSdaaaaaa@9C18@ (22)

Conclusion

It is possible to find optimal solutions also if the management problems have large numbers of integer variables, nonlinearities and stochastic processes. The introduced and tested methods are quite general and can be applied to many other kinds of problems in other sectors. The present approach makes it possible to determine optimal adaptive control rules and to estimate the economic values of mixed forests with trees in many size classes and of many species. With traditional forest management planning methods, the market price variations, locally relevant competition information, multi species management options and variations in timber quality are not considered in the optimal way. It is important to make market adapted harvest decisions. A numerically specified model with empirical data, Lohmander et al (2017), showed that if the stochastic price variations are not considered when the harvest decisions are taken, the expected present value is reduced by 23%. As a result, the economic values of optimally managed forests are underestimated via traditional calculation methods.

Acknowledgments

The author appreciates funding from FORMAS via Linnaeus University in Sweden.

Conflicts of interest

The author declares there is no conflict of interest.

References

  1. Lohmander P. Optimal Stochastic Dynamic Control of Spatially Distributed Interdependent 
    Production Units. In: Cao BY, editor. IWDS 2016: Fuzzy Information and Engineering and Decision. 2018. p. 115–122.
  2. Galantai A. The theory of Newton’s method, Journal of Computational and Applied Mathematics. 2000;124(1–2):25–44.
  3. Wierzbicki AP. A quadratic approximation method based on augmented Lagrangian functions for nonconvex nonlinear programming problems. International Institute for Applied Systems Analysis. 1978. 54 p.
  4. Powel MJD. UOBYQA: unconstrained optimization by quadratic approximation. Mathematical Programming. 2002;92(3):555–582.
  5. Li L, Khandelwal K. An adaptive quadratic approximation for structural and topology optimization. Computers & Structures. 2015;151:130–147.
  6. Lee S, Kwon S, Kim Y. A modified local quadratic approximation algorithm for penalized optimization problems. Computational Statistics and Data Analysis. 2016;94:275–286.
  7. Lohmander P. Adaptive optimization of forest management in a stochastic world. In: Weintraub A, editor. Handbook of Operations Research in Natural Resources. 2007. p. 525–544.
  8. Lohmander P. ICMDS 2016 Conference report. Fuzzy Information and Engineering. 2017;9(2):269–270.
  9. Lohmander P. Applications and Mathematical Modeling in Operations Research. In: Cao BY, editor. IWDS 2016: Fuzzy Information and Engineering and Decision. 2018. p. 46–53.
  10. Lohmander, P. Optimal sequential forestry decisions under risk. Annals of Operations Research. 2000;95(1–4):217–228.
  11. Lohmander P, Olsson JO, Fagerberg N, et al. High resolution adaptive optimization of continuous cover spruce forest management in southern Sweden. Symposium on Systems Analysis in Forest Resources. 2017. p. 37–38.
  12. Lohmander P. A General Dynamic Function for the Basal Area of Individual Trees Derived from a Production Theoretically Motivated Autonomous Differential Equation. Iranian Journal of Management Studies. 2017;10(4):917–928.
  13. Hatami N, Lohmander P, Moayeri MH, et al. A basal area increment model for individual trees in mixed continuous cover forests in Iranian Caspian forests. Journal of Forestry Research. 2018. p 1–8.
Creative Commons Attribution License

©2019 Lohmander. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.