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Introduction
Economic forest management is an interesting area from a 

methodological point of view. Several dynamic and stochastic 
processes should be considered. Market prices are very important to 
optimal decisions, but often change rapidly and cannot be perfectly 
predicted. The central question is this: What is the best way to 
sequentially update the information and adaptively determine the 
management decisions?

If we are interested in economic results and market adapted 
forest management decisions, we cannot ignore prices, costs and 
other economically important parameters. It is necessary to consider 
the degree of predictability of future values of these parameters. 
Furthermore, in a dynamic world, the economically optimal levels 
of adjustments of management decisions to changes in prices, that 
are not perfectly predictable, are important. In stochastic markets, 
production capacity levels, stock policies and flexibility are important 
to the expected profitability.

Forest management decisions can be taken at many different 
levels. When the level of detail increases, the number of partial 
decision problems increases almost without bound. In continuous 
cover forestry, CCF, we may consider the management of each tree 
as a decision problem. Should we harvest this tree now or wait until 
some future point in time? Furthermore, these decision problems 
at the tree level are not independent. If one tree is harvested now, 
the available space increases for other trees in the neighbourhood to 
continue growing.

With large numbers of problem dimensions, stochastic parameter 
changes, large numbers of nonlinearities and adaptive decisions, the 
problem structure makes it difficult or even impossible to utilize 
standardized linear and nonlinear programming methods from the 
field of operations research. In order to give relevant solutions to real 
world problems, it is necessary to let the model contain the relevant 

structure with respect to how different parts of the analyzed system 
are connected and influence each other. One way to do this is to use 
stochastic simulation.

In the present paper, stochastic simulation will be used as a part of 
an adaptive control function optimization procedure. This approach 
has been developed by Lohmander.1 With stochastic simulation as a 
subroutine, it is possible to search the best way to control the system 
to reach the most desirable solution, in case the following procedure 
is utilized: First, a stochastic simulation model of the complete system 
under analysis is developed. The adaptive control of this system is 
defined via a specified control function.

General theoretical principles in the field of analysis can be used to 
define the functional form of the adaptive control function to be used in 
the system. The exact values of the optimal parameters of the control 
function are still unknown. Next, the complete system is simulated 
with a large number of alternative control function parameter value 
combinations. Thereafter, multidimensional regression analysis is 
used to determine an approximating function that gives the expected 
objective function value of the system as a nonlinear function of the 
control function parameters. Then, we maximize the value of the 
approximating function. From the first order optimum conditions, the 
optimal parameter values of the control function are determined. In 
case the approximating function is quadratic, the equation system of 
first order optimum conditions is linear. Then, the optimum is usually 
unique and it is possible that the approximating function can be shown 
to be strictly concave. If that is the case, the derived control function 
parameters give a maximum that is globally unique. 

In case the approximating function is not quadratic, but for 
instance cubic, the analysis is more complicated. Then, the equation 
system of first order optimum conditions is not linear. Still, if the 
equation system only contains a limited number of nonlinearities, the 
solutions may be calculated via elimination and analytical methods of 
quadratic, cubic or quartic equations.
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In such cases, it may be found that the approximating function is 
strictly concave in some region(s). Then, it may be possible to show 
that one of the solutions of the first order optimum conditions gives 
an optimum that is also a locally unique maximum. In some cases, it 
may be possible to show that we also have a unique global maximum. 
In this paper, this method will be utilized to derive optimal adaptive 
control functions in forest management.

The idea to use approximations, in particular quadratic 
approximations of the functions to be optimized, is not new. Sir Isaac 
Newton developed the approach denoted Newton’s method. Newton’s 
method is usually described in terms of root-finding, but it can also 
be understood as maximizing a local quadratic approximation to the 
objective function. Galantai2 describes the theory of the Newton’s 
method. The ideas have been extended in many directions. One 
such case is Wierzbicki,3 who developed a method for quadratic 
approximations based on augmented Lagrangian functions for non 
convex nonlinear programming problems. Another case is Powel,4 
who created a new algorithm for unconstrained optimization models, 
leading to quadratic approximations via interpolations. Li5 made 
adaptive quadratic approximations to be used in structural and 
topology optimization and Lee et al.6 created an algorithm that gave 
local quadratic approximations for penalized optimization problems.

Optimization problems with many dimensions, nonlinearities and 
stochastic disturbances are common in most sectors of the economies. 
Lohmander7–9 presents alternative optimization methods to handle 
such situations in a rational way.

In this paper, we focus on CCF, continuous cover forestry. Initially, 
there are a large number of spatially distributed trees of different sizes. 
The central question is this: What is the best way to adaptively control 
and manage such a forest?

Lohmander10 shows that there is considerable option values 
associated with mixed forests. Single species forests give fewer 
options to adjust production to possible stochastic events. For instance, 
prices of different species may change. Then, it is valuable to have 
the option to adjust the harvest activities to these changing market 
conditions. Furthermore, some species may be negatively affected by 
pests, insects or large animals. Some species may not produce well 
in case the climate changes or if pollution increases. In these cases, it 
is valuable to be able to adaptively adjust forest production. This can 
easily be done if we already have several species growing in the forest. 
In some cases, it is possible to calculate the expected present value of 
forestry, conditional on the initial species mix. Lohmander7 contains 
several optimization methods and typical solutions to adaptive forest 
management problems.

In the present study, we develop and describe a general analytical 
and numerical method to handle management decision problems 
of this type: We want to optimize the harvest decisions over time. 
We want to maximize our objective function, the expected present 
value. The prices of the different species are stochastic. The problem 
is solved using an adaptive control function. The parameters of the 
control function are optimized via the first order optimum conditions 
of an approximation of the expected objective function. The second 
order maximum conditions are investigated. The expected objective 
function is estimated via Monte Carlo simulation.

In this section, a general procedure is given for a multi species 
forest with trees of different sizes. Now, we consider a mixed species 
forest. Initially, there is a large number of spatially distributed trees of 

different sizes and species. We want to optimize the harvest decisions 
over time. We want to maximize our objective function, the expected 
present value. The prices of the different species are stochastic.
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( )ib t is the basal area of tree number i (at height 1.3 meters above 
ground) at time t (from 

0
0t = ). Each period normally represents one 

year but other time intervals are sometimes more relevant. The initial 
condition is 0ib . (t)
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( , )u i t represents the control decision. If ( , ) 1u i t = , the tree i is 
harvested in period t . Otherwise, ( , ) 0u i t = .

    { }( , ) 0,1 ,u i t i t∈ ∀                                                   (3)

                                                                                                    
 (4)

( )ib t develops according to a discrete time process. The increment, 
growth, G , is a function of the basal area ( )ib t , the species ( )S i and 
the competition, ( , )L i t . { }( ) 1, .,S i N∈ where N is the total number 
of species. ( )ms i is a ”species dummy variable” defined in (5). 
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The level of competition of relevance to tree i  at time t is denoted
( , )L i t . In different studies, ( , )L i t has been specified in different 

ways. Usually, ( , )L i t is a strictly increasing function of the size (for 
instance basal area) of neighbour trees. Furthermore, neighbour trees 
that are close to tree i influence the value of ( , )L i t more than what 
more distant trees do. In Lohmander,1 ( , )L i t is the total basal area of 
neighbour trees per hectare within a circle of radius 10 meters, where 
tree   represents the center of the circle. In Lohmander et al.,11 ( , )L i t
is a nonlinear function of the properties of the competitors; ( , )L i t
decreases with the distance to the competitors and increases with the 
size of the competitors.

The general function (.)G , for ( , ) 0L i t = , has been defined and 
presented by Lohmander.12 Lohmander also derived a differential 
equation consistent with (.)G and the dynamic properties of the 
basal area development. Empirical estimations of the parameters of 

(.)G with variations of ( , )L i t have been performed for forests with 
different tree species in Iran by Hatami et al.13
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The present value of all profits is denoted Z . This is the discounted 
net value of all harvests. Hence it is a function of all harvest decisions, 
the rate of interest, the prices of the different species, the volumes of 
trees at different points in time and the harvest costs. 

( )
0 1

( , ) ( ( ), ) ( ( ), ( )) ( ( ), ( ), ))
T Irt

i i
t i

Z e u i t P S i t V S i b t C S i b t t−

= =
∑ ∑= −  

        
                (7)

rte− is the discounting factor of period t with rate of interest 
r. ( ( ), )P S i t denotes price per cubic meter of species i in period
t . ( ( ), )P S i t is a stationary variable which is stochastic at

, 0t n n− ∀ > . ( )( ( ), )E P S i t is the expected value of ( ( ), )P S i t
at , 0t n n− ∀ > . In the two species case, if trees i and j belong to 
different species, then ( ( ), )P S i t and ( ( ), )P S j t have correlation ρ . 
( )1 1 . ( ( ), ( ))iV S i b tρ− ≤ ≤ is the volume of tree i as a function of the 
species and the basal area. ( ( ), ( ), )iC S i b t t denotes the harvest cost of 
tree i . This cost is a function of species, basal area and time.

This problem is highly stochastic, multidimensional and nonlinear. 
Furthermore, it contains a large number of integer variables. It is 
necessary to define a reasonable type of adaptive control function that 
can be used to handle the many control decisions in a way that takes 
the stochastic prices and competition between trees into account. 
Then the parameters of the control function may be optimized. For 
this purpose, the following rule is suggested: First, we calculate the 
”limit diameter” ( )iD t of tree i at time t . The limit diameter is a 
function of the tree species index, the relative deviation of the price 
from the expected level and the competition. mα is the value of the 
limit diameter ( )iD t if the species is m , and at the same time, in case 
the price is a the expected level and ( , ) 0L i t = .
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In case the diameter ( )id t is larger than the limit diameter, we 
instantly harvest. Otherwise we wait at least one more period before 
we harvest the tree. (The particular functional form (8) can be 
generalized in several ways. For instance, the values of the parameters

Pα and Lα may be different for different species.)

                    (9)

κ denotes the harvest decision interval. This is an integer, 1κ ≥
. n is the total number of harvest decision intervals and n Tκ = , 
where T is the total planning horizon.

Z is a function of many things, including the stochastic price 
outcomes. When the control decisions are optimized, we are interested 
in the expected value of Z , namely ( )E Z , which is defined in (10). 

We may estimate ( )E Z for given parameter values via Monte Carlo 
simulation. The average value of Z is determined based on a large 
number of random outcomes of the stochastic prices of the different 
species. The correlations may be estimated from real price series and 
Cholesky factorization can be used to generate the correlated price 
series. It is a good idea to store all of the simulated price series and to 
use the same set of simulated price series in every step of the control 
function parameter optimizations. 

 

                  (10)

In the following derivations, N is assumed to take the value 2, 
which is a typical case in real applications. The procedure can easily 
be extended to other values of N . 

Procedure:

Make an initial guess ( )1 20 0 0 0
, , ,P Lα α α α of the optimal values 

of the parameters ( )1 2, , ,P Lα α α α .

Create a number, W, of alternative parameter combinations, 

w , such that stochastic variables ( )1 2, , ,P Lε ε ε ε are added to

( )1 20 0 0 0
, , ,P Lα α α α . The probability density functions of these 

stochastic variables are defined with consideration of the interesting 

parameter ranges. ( ),j jd d
γλ
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Make a quadratic approximation ( )1 2, , ,P Lα α α αΦ = Φ of the 

function ( )( )1 2( ) , , , , ...P LE Z E Z α α α α= according to the lines 

suggested by equations (11) – (14), via OLS, the ordinary least 

squares method.

It is important to be aware that cubic approximations or other 
functional forms may sometimes be more relevant.
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  ( )1 2, , ,P Lα α α αΦ = Φ                                         (11)
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Use the quadratic approximation ( )1 2, , ,P Lα α α αΦ = Φ
to determine the approximately optimal values of the parameters

1 2, , ,P Lα α α α . The approximate optimal values can be used as new 
initial conditions, and the approximation process can continue any 
number of iterations until the solution is considered satisfactory.

The first order optimum conditions are found in (15). 

        
                   (15)

We may determined the optimal parameter values via (16).
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M is presented in (17) and the second order maximum conditions 
are found in (18). 
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The optimal parameter values are obtained via (19)–(22).

                                                                                                   (19)
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Conclusion
It is possible to find optimal solutions also if the management 

problems have large numbers of integer variables, nonlinearities 
and stochastic processes. The introduced and tested methods are 
quite general and can be applied to many other kinds of problems in 
other sectors. The present approach makes it possible to determine 
optimal adaptive control rules and to estimate the economic values 
of mixed forests with trees in many size classes and of many species. 
With traditional forest management planning methods, the market 
price variations, locally relevant competition information, multi 
species management options and variations in timber quality are not 
considered in the optimal way. It is important to make market adapted 
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harvest decisions. A numerically specified model with empirical data, 
Lohmander et al (2017), showed that if the stochastic price variations 
are not considered when the harvest decisions are taken, the expected 
present value is reduced by 23%. As a result, the economic values 
of optimally managed forests are underestimated via traditional 
calculation methods.
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