Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 4 Issue 3

Comparative study of energy-based control design for overhead cranes

In Sik Won,2 Nguyen Quang Hoang,1 Soon Geul Lee,2 Jae Kwan Ryu3

1Hanoi University of Science and Technology, Vietnam
2Kyung Hee University, South Korea
3LIG Nex1 Co. Ltd, South Korea

Correspondence: Soon-Geul Lee, Kyung Hee University, South Korea, Tel +82-31-2012506, Fax +82-31-2021204

Received: May 04, 2018 | Published: June 8, 2018

Citation: Won I, Hoang NQ, Lee S, et al. Comparative study of energy-based control design for overhead cranes. Int Rob Auto J. 2018;4(3):197-203. DOI: 10.15406/iratj.2018.04.00122

Download PDF

Abstract

This paper presents a position control problem for an under actuated overhead crane system, which has two degrees of freedom with only one actuator for trolley driving. An overhead crane transfers a work piece to a desired position while keeping the swing angle of the work piece small during this process. The rope should not have a swing angle at the load destination. In this paper, five controllers (i.e., linear and nonlinear controllers) are derived based on the passivity of the system. The total energy of the system and its square are used in a Lyapunov candidate function to design the controllers. The equilibrium point of the closed loop is proven asymptotically stable by the Lyapunov technique and LaSalle invariance theorem. The optimal linear controller is combined to force the swing angle to converge rapidly to zero by reaching the trolley location. Numerical simulations and experiments are conducted by using the test bed model to evaluate the controllers.

Keywords: under actuated nonlinear systems, overhead crane, energy-based control

Introduction

Industries and services such as heavy industry, construction work, loading/unloading the harbor and automotive industries widely use overhead cranes. The main purpose of the overhead crane is to transport the heavy workpiece to the target position. However, the swing of the processed object must be eliminated at the target position for better performance and productivity. To increase the productivity of the overhead crane, fast accelerated and decelerated operations are required. However, fast acceleration and deceleration motions create a dangerous situation by shaking the workpiece suspended from the hoist. If heavy workloads are shaken too much, the facilities and infrastructure around the overhead crane can be destroyed or, in severe cases, the crane itself can be broken and may cause people to suffer serious injuries. The most important part of crane work is horizontal transport, which moves the workpiece horizontally to the goal position after lifting it. In this horizontal motion task, the trolley and workpiece must reach the desired goal position quickly while keeping a small swing angle. When the trolley reaches the target position, the swing angle is suppressed to zero. The following two main approaches are necessary to reach the above-mentioned requirement. The first one consists of designing a proper trajectory for the trolley (i.e., motion planning). The second approach involves designing an anti-swing controller (i.e., control design). In the first approach, the reference trajectory of the overhead crane has a general motion control velocity profile. That is, it is composed of three stages of acceleration, constant velocity, and deceleration. The accelerating and decelerating time and shape in the first and third phases increase the swing angle to its maximum value before decreasing the angle to zero. Consequently, the swing angle is zero in the constant velocity phase.1

The second approach has attracted the interest of researchers. Numerous control methods have also been studied for overhead cranes. Several controllers can be listed as linear, gain schedule, nonlinear, partial feedback linearization, sliding mode, adaptive, fuzzy logic, and so on.2–12 Each controller has its own advantages and disadvantages, the details of which can be found.13 A combination of control methods is considered by several authors (e.g., adaptive and adaptive fuzzy sliding-mode controls).14–19 These combinations produce complex controllers with parameters that do not guarantee system stability. Design methods based on the energy and passivity of the system has been studied. This control approach can be applied not only to fully actuated systems, but also to under-operating systems such as under-operated actuators,20,21 overhead cranes,4 and ball-beam systems.22 The aforementioned method exhibits simplicity in designing a controller from energy-storage function, which adopts mechanical, kinetic, and potential energies. The additional energy affects the control performance. Based on the aforementioned studies, we utilize passivity to generalize the controller design for under actuated overhead crane systems. Five controllers, including linear and nonlinear controllers, are designed based on the total energy of an overhead crane. The Lyapunov candidate function is chosen by a combination of the system energy and the kinetic and potential energies. The origin of the closed-loop system is proven asymptotically stable by the Lyapunov technique and LaSalle invariance theorem. Energy-based controllers guarantee the asymptotic stability of the system; however, the choice of control parameters is an ad hoc issue. Another disadvantage of these controllers is that the swing angle converges slowly to zero. Therefore, the linear optimal controller in this study is switched on when the trolley reaches a point close to the destination. The system response is significantly improved by applying this technique. The remainder of this paper is organized as follows. Section 2 introduces the nonlinear dynamics of an overhead crane with two degrees of freedom (DOFs), as well as the useful properties of a dynamic system. Sections 3 presents an energy-based control design in which five controllers based on Lyapunov theory are derived. Section 4 shows the numerical and experimental verifications of the controllers. Section 5 concludes.

Dynamic model and its properties

Dynamic model

The control problem of the crane during the horizontal transportation phase is addressed in this section. The rope has constant length, and the system has two DOFs. The following assumptions are established to obtain the dynamic model of the system:

  1. the payload is considered a point mass;
  2. the mass and stiffness of the hoisting rope are neglected;
  3. the effects of wind disturbances are not considered. Based on the Lagrangian formulation,23 the dynamic model of a 2D overhead crane system is represented by the following:

  M(q) q ¨ +C(q, q ˙ ) q ˙ +D q ˙ +g(q)=Bu MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=1eacaWFOaGaa8xCaiaa=LcaceWF XbGbamaacaWFRaGaa83qaiaa=HcacaWFXbGaa8hlaiqa=fhagaGaai aa=LcaceWFXbGbaiaacaWFRaGaa8hraiqa=fhagaGaaiaa=TcacaWF NbGaa8hkaiaa=fhacaWFPaGaa8xpaiaa=jeacaWF1baaaa@4EEA@ ,           (1)

Where q= [x,θ] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=fhacaWF9aGaa83waiaa=HhacaWF SaGaaGjbVlaa=H7acaWFDbqcfa4aaWbaaeqabaqcLbmacaWFubaaaa aa@4654@ denotes the system state vector with x(t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=HhacaWFOaGaa8hDaiaa=Lcaaaa@3F09@  as the trolley displacement and θ(t) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaaiqaajuaGcaWF4oGaa8hkaiaa=rhacaWFPaaaaa@3F4B@ as the payload swing angle (Figure 1). M(q),C(q, q ˙ ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=1eacaWFOaGaa8xCaiaa=LcacaWF SaGaa83qaiaa=HcacaWFXbGaa8hlaiqa=fhagaGaaiaa=LcacaWFSa aaaa@44E5@ D, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=reacaWFSaaaaa@3D39@ g(q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=DgacaWFOaGaa8xCaiaa=Lcaaaa@3EF4@ , B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=jeaaaa@3C8A@ , and u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaaiqGajugibiaa=vhaaaa@3CC0@  represent the inertia matrix, centripetal-Coriolis matrix, damping matrix, a term derived from potential energy, input control matrix, and force acting on the trolley, respectively. These variables are explicitly defined as follows:

M(q)=[ m t + m p m p lcosθ m p lcosθ m p l 2 ]= M T (q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=1eacaWFOaGaa8xCaiaa=LcacaWF 9aqcfa4aamWaaeaajugibuaabeqaciaaaKqbagaajugibiaa=1galm aaBaaajuaGbaqcLbmacaWF0baajuaGbeaajugibiaa=TcacaWFTbWc daWgaaqcfayaaKqzadGaa8hCaaqcfayabaaabaqcLbsacaWFTbWcda WgaaqcfayaaKqzadGaa8hCaaqcfayabaqcLbsacaWFSbGaa83yaiaa =9gacaWFZbGaa8hUdaqcfayaaKqzGeGaa8xBaKqbaoaaBaaabaqcLb macaWFWbaajuaGbeaajugibiaa=XgacaWFJbGaa83Baiaa=nhacaWF 4oaajuaGbaqcLbsacaWFTbqcfa4aaSbaaeaajugibiaa=bhaaKqbag qaaKqzGeGaa8hBaKqbaoaaCaaabeqaaKqzadGaa8NmaaaaaaaajuaG caGLBbGaayzxaaqcLbsacaWF9aGaa8xtaKqbaoaaCaaabeqaaKqzad Gaa8hvaaaajugibiaa=HcacaWFXbGaa8xkaaaa@740D@ ,

C(q, q ˙ )=[ 0 - m p l θ ˙ sinθ 0 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=neacaWFOaGaa8xCaiaa=XcaceWF XbGbaiaacaWFPaGaa8xpaKqbaoaadmaabaqcLbsafaqabeGacaaaju aGbaqcLbsacaWFWaaajuaGbaqcLbsacaWFTaGaa8xBaSWaaSbaaKqb agaajugWaiaa=bhaaKqbagqaaKqzGeGaa8hBaiqa=H7agaGaaiaa=n hacaWFPbGaa8NBaiaa=H7aaKqbagaajugibiaa=bdaaKqbagaajugi biaa=bdaaaaajuaGcaGLBbGaayzxaaaaaa@5737@ , g(q)= [ 0 m p glsinθ ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=DgacaWFOaGaa8xCaiaa=LcacaWF 9aqcfa4aamWaaOqaaKqzGeqbaeqabeGaaaGcbaqcLbsacaWFWaaake aajugibiaa=1galmaaBaaabaqcLbmacaWFWbaaleqaaKqzGeGaa83z aiaa=XgacaWFZbGaa8xAaiaa=5gacaWF4oaaaaGccaGLBbGaayzxaa WcdaahaaqabeaajugWaiaa=rfaaaaaaa@50A6@ ,

D=[ d x 0 0 0 ], B=[ 1 0 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=reacaWF9aqcfa4aamWaaOqaaKqz GeqbaeqabiGaaaGcbaqcLbsacaWFKbqcfa4aaSbaaSqaaKqzadGaa8 hEaaWcbeaaaOqaaKqzGeGaa8hmaaGcbaqcLbsacaWFWaaakeaajugi biaa=bdaaaaakiaawUfacaGLDbaajugibiaa=XcacaWLjaGaa8Nqai aa=1dajuaGdaWadaGcbaqcLbsafaqabeGabaaakeaajugibiaa=fda aOqaaKqzGeGaa8hmaaaaaOGaay5waiaaw2faaaaa@51E9@ ,

where m t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabd2gaTLqbaoaaBaaabaqcLbmacqWG0baD aKqbagqaaaaa@40FB@ and m p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabd2gaTLqbaoaaBaaaleaajugWaiabdcha WbWcbeaaaaa@407B@ represent the trolley mass and payload mass, respectively; l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdYgaSbaa@3D1D@ denotes the length of the rope; g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdEgaNbaa@3D13@ is the gravitational acceleration; d x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdsgaKLqbaoaaBaaaleaajugWaiabdIha 4bWcbeaaaaa@4079@ is the damping coefficient on the trolley, d x >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdsgaKLqbaoaaBaaabaqcLbmacqWG4baE aKqbagqaaKqzGeGaeyOpa4JaeGimaadaaa@4375@ . The force u c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1LqbaoaaBaaabaqcLbmacqWGJbWy aKqbagqaaaaa@40E9@ summarizes the actuating forces f r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdAgaMTWaaSbaaKqbagaajugWaiabdkha Ybqcfayabaaaaa@40F4@  and coulomb forces f r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdAgaMTWaaSbaaKqbagaajugWaiabdkha Ybqcfayabaaaaa@40F4@ as the following:

u= u c f r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1jabg2da9iabdwha1TWaaSbaaKqb agaajugWaiabdogaJbqcfayabaqcLbsacqGHsislcqWGMbGzlmaaBa aajuaGbaqcLbmacqWGYbGCaKqbagqaaaaa@4A21@  (2)

Figure 1 Overhead crane model.

The coulomb friction in this study is modeled by the tanh function instead of the sign function:

f r = f 0 tanh(c x ˙ ), c>>1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdAgaMLqbaoaaBaaabaqcLbmacqWGYbGC aKqbagqaaKqzGeGaeyypa0JaemOzay2cdaWgaaqcfayaaKqzadGaeG imaadajuaGbeaajugibiGbcsha0jabcggaHjabc6gaUjabcIgaOjab cIcaOiabdogaJjqbdIha4zaacaGaeiykaKIaeiilaWIaaGjbVlaaxM aacqWGJbWycqGH+aGpcqGH+aGpcqaIXaqmaaa@591F@ ,

where f 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdAgaMLqbaoaaBaaabaqcLbmacqaIWaam aKqbagqaaaaa@406A@  is the magnitude of the coulomb friction on the trolley.

Eq. (1) can be rewritten as follows:

( m t + m p ) x ¨ + m p lcosθ θ ¨ m p l θ ˙ 2 sinθ+ d x x ˙ =u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabcIcaOiabd2gaTTWaaSbaaKqbagaajugW aiabdsha0bqcfayabaqcLbsacqGHRaWkcqWGTbqBlmaaBaaajuaGba qcLbmacqWGWbaCaKqbagqaaKqzGeGaeiykaKIafmiEaGNbamaacqGH RaWkcqWGTbqBjuaGdaWgaaqaaKqzadGaemiCaahajuaGbeaajugibi abdYgaSjGbcogaJjabc+gaVjabcohaZjabeI7aXjaaysW7cuaH4oqC gaWaaiabgkHiTiabd2gaTLqbaoaaBaaabaqcLbmacqWGWbaCaKqbag qaaKqzGeGaemiBaWMafqiUdeNbaiaalmaaCaaajuaGbeqaaKqzadGa eGOmaidaaKqzGeGagi4CamNaeiyAaKMaeiOBa4MaeqiUdeNaey4kaS Iaemizaq2cdaWgaaqcfayaaKqzadGaemiEaGhajuaGbeaajugibiqb dIha4zaacaGaeyypa0JaemyDauhaaa@7A79@ ,     (3)

m p lcosθ x ¨ + m p l 2 θ ¨ + m p glsinθ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabd2gaTTWaaSbaaKqbagaajugWaiabdcha WbqcfayabaqcLbsacqWGSbaBcyGGJbWycqGGVbWBcqGGZbWCcqaH4o qCcaaMe8UafmiEaGNbamaacqGHRaWkcqWGTbqBjuaGdaWgaaqaaKqz adGaemiCaahajuaGbeaajugibiabdYgaSLqbaoaaCaaabeqaaKqzad GaeGOmaidaaKqzGeGafqiUdeNbamaacqGHRaWkcqWGTbqBjuaGdaWg aaqaaKqzadGaemiCaahajuaGbeaajugibiabdEgaNjabdYgaSjGbco haZjabcMgaPjabc6gaUjabeI7aXjabg2da9iabicdaWaaa@6A37@ .       (4)

By solving θ ¨ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaaiiGajugibiqb=H7aXzaadaaaaa@3D83@  from Eq. (4) and integrating this variable into Eq. (3), we obtain the following:

m ¯ 11 x ¨ + d x x ˙ + h ¯ 1 (q, q ˙ )=u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiqbd2gaTzaaraqcfa4aaSbaaeaajugWaiab igdaXiabigdaXaqcfayabaqcLbsacuWG4baEgaWaaiabgUcaRiabds gaKLqbaoaaBaaabaqcLbmacqWG4baEaKqbagqaaKqzGeGafmiEaGNb aiaacqGHRaWkcuWGObaAgaqeaKqbaoaaBaaabaqcLbmacqaIXaqmaK qbagqaaKqzGeGaeiikaGcceaGaa8xCaiaa=XcaceWFXbGbaiaacaWF PaGaeyypa0JaemyDauhaaa@5899@ ,          (5)

l θ ¨ +gsinθ= x ¨ cosθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdYgaSjqbeI7aXzaadaGaey4kaSIaem4z aCMagi4CamNaeiyAaKMaeiOBa4MaeqiUdeNaeyypa0JaeyOeI0Iafm iEaGNbamaacyGGJbWycqGGVbWBcqGGZbWCcqaH4oqCaaa@5049@ ,             (6)

with   m ¯ 11 =[ m t + m p sin 2 θ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiqbd2gaTzaaraWcdaWgaaqcfayaaKqzadGa eGymaeJaeGymaedajuaGbeaajugibiabg2da9iabcUfaBjabd2gaTL qbaoaaBaaabaqcLbmacqWG0baDaKqbagqaaKqzGeGaey4kaSIaemyB a02cdaWgaaqcfayaaKqzadGaemiCaahajuaGbeaajugibiGbcohaZj abcMgaPjabc6gaUTWaaWbaaKqbagqabaqcLbmacqaIYaGmaaqcLbsa cqaH4oqCcqGGDbqxcqGGSaalaaa@5C50@
h ¯ 1 = m p sinθ(l θ ˙ 2 +gcosθ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdIgaOzaaraWcdaWgaaqcfayaaKqzadGa eGymaedajuaGbeaajugibiabg2da9abaaaaaaaaapeGaeyOeI0Iaem yBa0wcfa4damaaBaaabaqcLbmapeGaemiCaahajuaGpaqabaqcLbsa peGagi4CamNaeiyAaKMaeiOBa4MaeqiUdeNaeiikaGIaemiBaWMafq iUdeNbaiaalmaaCaaajuaGbeqaaKqzadGaeGOmaidaaKqzGeGaey4k aSIaem4zaCMagi4yamMaei4Ba8Maei4CamNaeqiUdeNaeiykaKcaaa@5F6B@ . (7)

The following assumptions are made from the practical application of an overhead crane: i) the cable length is always positive (i.e., l>0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdYgaSjabg6da+iabicdaWaaa@3F13@ ), and ii) the swing angle of the payload during the transportation process always remains in the interval between 1 2 π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabgkHiTKqbaoaaleaabaqcLbsacqaIXaqm aKqbagaajugibiabikdaYaaacqaHapaCaaa@4293@  and 1 2 π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajuaGdaWcbaqaaKqzGeGaeGymaedajuaGbaqcLbsa cqaIYaGmaaGaeqiWdahaaa@4117@ , [ 1 2 π<θ< 1 2 π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabgkHiTKqbaoaaleaabaqcLbsacqaIXaqm aKqbagaajugibiabikdaYaaacqaHapaCcqGH8aapcqaH4oqCcqGH8a apjuaGdaWcbaqaaKqzGeGaeGymaedajuaGbaqcLbsacqaIYaGmaaGa eqiWdahaaa@4C3B@ ]. The dynamic expression in Eq. (1) has the following important properties: (i) the inertia matrix is positive definite and symmetric, M= M T >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaaiqGajugibiaa=1eacaWF9aGaa8xtaKqbaoaaCaaa beqaaKqzadGaemivaqfaaKqzGeGaeyOpa4JaeGimaadaaa@43B7@ ; (ii) the matrix N=( M ˙ -2C) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=5eacaWF9aGaa8hkaiqa=1eagaGa aiaa=1cacaWFYaGaa83qaiaa=Lcaaaa@41A3@  is skew symmetric, s T ( M ˙ -2C)s=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=nhajuaGdaahaaqabeaajugWaiaa =rfaaaqcLbsacaWFOaGab8xtayaacaGaa8xlaiaa=jdacaWFdbGaa8 xkaiaa=nhacaWF9aGaa8hmaaaa@46AF@  for s 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabgcGiIiabhohaZjabgIGiolabgYricVWa aWbaaeqabaqcLbmacqaIYaGmaaaaaa@435A@ .

Open-loop system passivity

Consider that the energy-storage function E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdweafbaa@3CCF@ consists of the kinetic and potential energies of the system:

E(q, q ˙ )= 1 2 q ˙ T M(q) q ˙ +P(q) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=veacaWFOaGaa8xCaiaa=XcaceWF XbGbaiaacaWFPaGaa8xpaKqbaoaaleaabaqcLbsacaWFXaaajuaGba qcLbsacaWFYaaaaiqa=fhagaGaaKqbaoaaCaaabeqaaKqzadGaa8hv aaaajugibiaa=1eacaWFOaGaa8xCaiaa=LcaceWFXbGbaiaacaWFRa Gaa8huaiaa=HcacaWFXbGaa8xkaaaa@50F5@ ,     (8)

With P(q)= m p gl(1cosθ)0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdcfaqjabcIcaOGabaiaa=fhacqGGPaqk cqGH9aqpcqWGTbqBjuaGdaWgaaqaaKqzGeGaemiCaahajuaGbeaaju gibiabdEgaNjabdYgaSjabcIcaOiabigdaXiabgkHiTiGbcogaJjab c+gaVjabcohaZjabeI7aXjabcMcaPiabgwMiZkabicdaWiabc6caUa aa@557A@

The energy-storage function derivative regarding time is calculated as follows:

E ˙ = q ˙ T M(q) q ¨ + 1 2 q ˙ T M ˙ (q) q ˙ + q ˙ T g(q). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiqa=veagaGaaiaa=1daceWFXbGbaiaa juaGdaahaaqabeaajugWaiaa=rfaaaqcLbsacaWFnbGaa8hkaiaa=f hacaWFPaGab8xCayaadaGaa83kaKqbaoaaleaabaqcLbsacaWFXaaa juaGbaqcLbsacaWFYaaaaiqa=fhagaGaaSWaaWbaaKqbagqabaqcLb macaWFubaaaKqzGeGab8xtayaacaGaa8hkaiaa=fhacaWFPaGab8xC ayaacaGaa83kaiqa=fhagaGaaKqbaoaaCaaabeqaaKqzadGaa8hvaa aajugibiaa=DgacaWFOaGaa8xCaiaa=LcacaWFUaaaaa@5B20@   (9)

Substituting the term M(q) q ¨ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=1eacaWFOaGaa8xCaiaa=LcaceWF XbGbamaaaaa@3FD6@  from Eq. (1) and using the skew-symmetric property of 1 2 M ˙ (q)-C(q, q ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajuaGdaWcbaqaaGabaKqzGeGaa8xmaaqcfayaaKqz GeGaa8NmaaaaceWFnbGbaiaacaWFOaGaa8xCaiaa=LcacaWFTaGaa8 3qaiaa=HcacaWFXbGaa8hlaiqa=fhagaGaaiaa=Lcaaaa@4763@  produces the following:

E ˙ = d x x ˙ 2 + x ˙ u x ˙ u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdweafzaacaGaeyypa0JaeyOeI0Iaemiz aqwcfa4aaSbaaeaajugWaiabdIha4bqcfayabaqcLbsacuWG4baEga GaaSWaaWbaaKqbagqabaqcLbmacqaIYaGmaaqcLbsacqGHRaWkcuWG 4baEgaGaaiabdwha1jabgsMiJkqbdIha4zaacaGaemyDauhaaa@51FB@   (10)

The term x ˙ u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdIha4zaacaGaemyDauhaaa@3EB0@  denotes the power supplied by the actuators for the trolley. The inequality in Eq. (10) shows that the system is passive. Integrating both sides from zero to t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdsha0baa@3D2D@ yields the following:

E(t)E(0)= 0 t E ˙ ds = 0 t d x x ˙ 2 ds + 0 t x ˙ uds 0 t x ˙ uds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdweafjabcIcaOiabdsha0jabcMcaPiab gkHiTiabdweafjabcIcaOiabicdaWiabcMcaPiabg2da9Kqbaoaape dabaqcLbsacuWGfbqrgaGaaiabdsgaKjabdohaZbqcfayaaKqzGeGa eGimaadajuaGbaqcLbsacqWG0baDaiabgUIiYdGaeyypa0JaeyOeI0 scfa4aa8qmaeaajugibiabdsgaKLqbaoaaBaaabaqcLbsacqWG4baE aKqbagqaaKqzGeGafmiEaGNbaiaalmaaCaaajuaGbeqaaKqzadGaeG OmaidaaKqzGeGaemizaqMaem4CamhajuaGbaqcLbsacqaIWaamaKqb agaajugibiabdsha0bGaey4kIipacqGHRaWkjuaGdaWdXaqaaKqzGe GafmiEaGNbaiaacqWG1bqDcqWGKbazcqWGZbWCaKqbagaajugibiab icdaWaqcfayaaKqzGeGaemiDaqhacqGHRiI8aiabgsMiJMqbaoaape dabaqcLbsacuWG4baEgaGaaiabdwha1jabdsgaKjabdohaZbqcfaya aKqzGeGaeGimaadajuaGbaqcLbsacqWG0baDaiabgUIiYdaaaa@8554@

or E(t)E(0) 0 t x ˙ uds MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdweafjabcIcaOiabdsha0jabcMcaPiab gkHiTiabdweafjabcIcaOiabicdaWiabcMcaPiabgsMiJMqbaoaape dabaqcLbsacuWG4baEgaGaaiabdwha1jabdsgaKjabdohaZbqcfaya aKqzGeGaeGimaadajuaGbaqcLbsacqWG0baDaiabgUIiYdaaaa@53C2@ . In case of a zero input, that is, u=0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1jabg2da9iabicdaWiabcYcaSaaa @4003@  the system will have a stable equilibrium (x,θ, x ˙ , θ ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabcIcaOiabdIha4jabcYcaSiabeI7aXjab cYcaSiqbdIha4zaacaGaeiilaWIafqiUdeNbaiaacqGGPaqkaaa@467D@ =( x d ,0,0,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabg2da9iabcIcaOiabdIha4LqbaoaaBaaa baqcLbmacqWGKbazaKqbagqaaKqzGeGaeiilaWIaeGimaaJaeiilaW IaeGimaaJaeiilaWIaeGimaaJaeiykaKcaaa@49A1@ , where the total energy is minimized after taking the zero value.

Energy-based control design

The control design aims to bring the trolley from an initial condition to a desired position while the payload swing angle is suppressed and vanishes completely at the load destination. This objective indicates that the state variables q= [x, θ] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaaiqGajugibiaa=fhacqGH9aqpcqGGBbWwcqWG4baE cqGGSaalcqqGGaaicqaH4oqCcqGGDbqxlmaaCaaajuaGbeqaaKqzad Gaemivaqfaaaaa@4831@ should reach their desired values q d = [ x d , 0] T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaieaajugibiab=fhaXLqbaoaaBaaabaqcLbsacqWG KbazaKqbagqaaKqzGeGaeyypa0Jaei4waSLaemiEaGxcfa4aaSbaae aajugWaiabdsgaKbqcfayabaqcLbsacqGGSaalcqqGGaaicqaIWaam cqGGDbqxjuaGdaahaaqabeaajugWaiabdsfaubaaaaa@4FC5@ after a short time. The force u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1baa@3D2F@ is derived initially by using an energy-based approach. The friction force is then added to obtain the actuating forces from Eq (2):

u c =u+ f r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1TWaaSbaaKqbagaajugWaiabdoga JbqcfayabaqcLbsacqGH9aqpcqWG1bqDcqGHRaWkcqWGMbGzlmaaBa aajuaGbaqcLbmacqWGYbGCaKqbagqaaaaa@4A16@   (11)

Controller design

The passivity property of the system allows us to exploit the energy of the system, E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdweafbaa@3CCF@ or E 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdweafTWaaWbaaKqbagqabaqcLbmacqaI YaGmaaaaaa@3FAA@ , in the controller design. The following Lyapunov candidate function is proposed:

V= 1 i k E E i (q, q ˙ )+ 1 2 k v (q) x ˙ 2 + 1 2 k p x ˜ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=zfacaWF9aqcfa4aaSaaaeaajugi biaa=fdaaKqbagaajugibiaa=LgaaaGaa83AaKqbaoaaBaaabaqcLb macaWFfbaajuaGbeaajugibiaa=vealmaaCaaajuaGbeqaaKqzadGa a8xAaaaajugibiaa=HcacaWFXbGaa8hlaiqa=fhagaGaaiaa=Lcaca WFRaqcfa4aaSaaaeaajugibiaa=fdaaKqbagaajugibiaa=jdaaaGa a83AaSWaaSbaaKqbagaajugWaiaa=zhaaKqbagqaaKqzGeGaa8hkai aa=fhacaWFPaGab8hEayaacaWcdaahaaqcfayabeaajugWaiaa=jda aaqcLbsacaWFRaqcfa4aaSaaaeaajugibiaa=fdaaKqbagaajugibi aa=jdaaaGaa83AaKqbaoaaBaaabaqcLbsacaWFWbaajuaGbeaajugi biqa=HhagaacaKqbaoaaCaaabeqaaKqzadGaa8Nmaaaaaaa@69E4@ ,     (12)

Where i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdMgaPbaa@3D17@ can take the values of one or two, k p >0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWGWbaC aKqbagqaaKqzGeGaeyOpa4JaeGimaaJaeiilaWcaaa@4453@   k v (q)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWG2bGD aKqbagqaaKqzGeGaeiikaGcceaGaa8xCaiabcMcaPiabgwMiZkabic daWaaa@46ED@ , and x ˜ =x x d . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdIha4zaaiaGaeyypa0JaemiEaGNaeyOe I0IaemiEaGxcfa4aaSbaaeaajugWaiabdsgaKbqcfayabaqcLbsacq GGUaGlaaa@4757@ The second and third terms in V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdAfawbaa@3CF1@ are considered additional kinetic and potential energies that are related to the motion of the actuated coordinates, respectively. By differentiating V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdAfawbaa@3CF1@ with respect to time, one obtains the following:

V ˙ = k E E i-1 E ˙ (q, q ˙ )+ x ˙ k v (q) x ¨ + 1 2 k ˙ v (q) x ˙ 2 + x ˙ k p x ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiqa=zfagaGaaiaa=1dacaWFRbWcdaWg aaqcfayaaKqzadGaa8xraaqcfayabaqcLbsacaWFfbWcdaahaaqcfa yabeaajugWaiaa=LgacaWFTaGaa8xmaaaajugibiqa=veagaGaaiaa =HcacaWFXbGaa8hlaiqa=fhagaGaaiaa=LcacaWFRaGab8hEayaaca Gaa83AaSWaaSbaaKqbagaajugWaiaa=zhaaKqbagqaaKqzGeGaa8hk aiaa=fhacaWFPaGab8hEayaadaGaa83kaKqbaoaaleaabaqcLbsaca WFXaaajuaGbaqcLbsacaWFYaaaaiqa=TgagaGaaKqbaoaaBaaabaqc LbmacaWF2baajuaGbeaajugibiaa=HcacaWFXbGaa8xkaiqa=Hhaga GaaKqbaoaaCaaabeqaaKqzadGaa8Nmaaaajugibiaa=TcaceWF4bGb aiaacaWFRbWcdaWgaaqcfayaaKqzadGaa8hCaaqcfayabaqcLbsace WF4bGbaGaaaaa@6D7F@ .      (13)

By substituting Eq. (10) into Eq. (13) and accounting for Eq. (5), the following is obtained:

V ˙ = x ˙ [ ( k E E i1 + k v m ¯ 11 1 )u k v m ¯ 11 1 h ¯ 1 + 1 2 k ˙ v x ˙ + k p x ˜ ]( k E E i1 + k v m ¯ 11 1 ) d x x ˙ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdAfawzaacaGaeyypa0JafmiEaGNbaiaa juaGdaWadaqaamaabmaabaqcLbsacqWGRbWAlmaaBaaajuaGbaqcLb macqWGfbqraKqbagqaaKqzGeGaemyrau0cdaahaaqcfayabeaajugW aiabdMgaPjabgkHiTiabigdaXaaajugibiabgUcaRiabdUgaRTWaaS baaKqbagaajugWaiabdAha2bqcfayabaqcLbsacuWGTbqBgaqeaSWa a0baaKqbagaajugWaiabigdaXiabigdaXaqcfayaaKqzadGaeyOeI0 IaeGymaedaaaqcfaOaayjkaiaawMcaaKqzGeGaemyDauNaeyOeI0Ia em4AaSwcfa4aaSbaaeaajugWaiabdAha2bqcfayabaqcLbsacuWGTb qBgaqeaSWaa0baaKqbagaajugWaiabigdaXiabigdaXaqcfayaaKqz adGaeyOeI0IaeGymaedaaKqzGeGafmiAaGMbaebajuaGdaWgaaqaaK qzadGaeGymaedajuaGbeaajugibiabgUcaRKqbaoaaleaabaqcLbsa cqaIXaqmaKqbagaajugibiabikdaYaaacuWGRbWAgaGaaSWaaSbaaK qbagaajugWaiabdAha2bqcfayabaqcLbsacuWG4baEgaGaaiabgUca RiabdUgaRLqbaoaaBaaabaqcLbmacqWGWbaCaKqbagqaaKqzGeGafm iEaGNbaGaaaKqbakaawUfacaGLDbaajugibiabgkHiTKqbaoaabmaa baqcLbsacqWGRbWAlmaaBaaajuaGbaqcLbmacqWGfbqraKqbagqaaK qzGeGaemyrauucfa4aaWbaaeqabaqcLbmacqWGPbqAcqGHsislcqaI XaqmaaqcLbsacqGHRaWkcqWGRbWAjuaGdaWgaaqaaKqzadGaemODay hajuaGbeaajugibiqbd2gaTzaaraWcdaqhaaqcfayaaKqzadGaeGym aeJaeGymaedajuaGbaqcLbmacqGHsislcqaIXaqmaaaajuaGcaGLOa GaayzkaaqcLbsacqWGKbazjuaGdaWgaaqaaKqzGeGaemiEaGhajuaG beaajugibiqbdIha4zaacaWcdaahaaqcfayabeaajugWaiabikdaYa aajugibiabc6caUaaa@B91A@     (14)  

Eq. (14) suggests choosing the following control law:

u= ( k d x ˙ k p x ˜ + k v m ¯ 11 1 h ¯ 1 1 2 k ˙ v x ˙ ) ( k E E i1 + k v m ¯ 11 1 ) = ( k E E i1 + k v m ¯ 11 1 ) 1 ( u pd + u nl ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1jabg2da9KqbaoaalaaabaWaaeWa aeaajugibiabgkHiTiabdUgaRTWaaSbaaKqbagaajugWaiabdsgaKb qcfayabaqcLbsacuWG4baEgaGaaiabgkHiTiabdUgaRTWaaSbaaKqb agaajugWaiabdchaWbqcfayabaqcLbsacuWG4baEgaacaiabgUcaRi abdUgaRTWaaSbaaKqbagaajugWaiabdAha2bqcfayabaqcLbsacuWG TbqBgaqeaSWaa0baaKqbagaajugWaiabigdaXiabigdaXaqcfayaaK qzadGaeyOeI0IaeGymaedaaKqzGeGafmiAaGMbaebajuaGdaWgaaqa aKqzadGaeGymaedajuaGbeaajugibiabgkHiTKqbaoaaleaabaqcLb sacqaIXaqmaKqbagaajugibiabikdaYaaacuWGRbWAgaGaaSWaaSba aKqbagaajugWaiabdAha2bqcfayabaqcLbsacuWG4baEgaGaaaqcfa OaayjkaiaawMcaaaqaamacaYyadaqaiaiJjugibiadaY4GRbWAjuaG dGaGmUbaaeacaYycLbmacWaGmoyraueajuaGbKaGmcqcLbsacWaGmo yrau0cdGaGmYbaaKqbagqcaYyaiaiJjugWaiadaY4GPbqAcWaGmAOe I0IamaiJigdaXaaajugibiadaYOHRaWkcWaGmo4AaSwcfa4aiaiJBa aabGaGmMqzadGamaiJdAha2bqcfayajaiJaKqzGeGanaiJd2gaTzac aYyeaSWaiaiJDaaajuaGbGaGmMqzadGamaiJigdaXiadaYiIXaqmaK qbagacaYycLbmacWaGmAOeI0IamaiJigdaXaaaaKqbakacaYOLOaGa iaiJwMcaaaaajugibiabg2da9KqbaoaabmaabaqcLbsacqWGRbWAju aGdaWgaaqaaKqzadGaemyraueajuaGbeaajugibiabdweafTWaaWba aKqbagqabaqcLbmacqWGPbqAcqGHsislcqaIXaqmaaqcLbsacqGHRa WkcqWGRbWAlmaaBaaajuaGbaqcLbmacqWG2bGDaKqbagqaaKqzGeGa fmyBa0MbaebalmaaDaaajuaGbaqcLbmacqaIXaqmcqaIXaqmaKqbag aajugWaiabgkHiTiabigdaXaaaaKqbakaawIcacaGLPaaalmaaCaaa juaGbeqaaKqzadGaeyOeI0IaeGymaedaaKqbaoaabmaabaqcLbsacq WG1bqDjuaGdaWgaaqaaKqzadGaemiCaaNaemizaqgajuaGbeaajugi biabgUcaRiabdwha1TWaaSbaaKqbagaajugWaiabd6gaUjabdYgaSb qcfayabaaacaGLOaGaayzkaaqcLbsacqGGSaalaaa@EACF@ ,        (15)

with k d >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdsga KbqcfayabaqcLbsacqGH+aGpcqaIWaamaaa@4366@ ,

u pd = k d x ˙ k p x ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1TWaaSbaaKqbagaajugWaiabdcha WjabdsgaKbqcfayabaqcLbsacqGH9aqpcqGHsislcqWGRbWAlmaaBa aajuaGbaqcLbmacqWGKbazaKqbagqaaKqzGeGafmiEaGNbaiaacqGH sislcqWGRbWAjuaGdaWgaaqaaKqzadGaemiCaahajuaGbeaajugibi qbdIha4zaaiaaaaa@544E@ ,     (16)

u nl = k v m ¯ 11 1 h ¯ 1 1 2 k ˙ v x ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1TWaaSbaaKqbagaajugWaiabd6ga UjabdYgaSbqcfayabaqcLbsacqGH9aqpcqWGRbWAjuaGdaWgaaqaaK qzadGaemODayhajuaGbeaajugibiqbd2gaTzaaraWcdaqhaaqcfaya aKqzadGaeGymaeJaeGymaedajuaGbaqcLbmacqGHsislcqaIXaqmaa qcLbsacuWGObaAgaqeaSWaaSbaaKqbagaajugWaiabigdaXaqcfaya baqcLbsacqGHsisljuaGdaWcbaqaaKqzGeGaeGymaedajuaGbaqcLb sacqaIYaGmaaGafm4AaSMbaiaajuaGdaWgaaqaaKqzadGaemODayha juaGbeaajugibiqbdIha4zaacaaaaa@6512@ .       (17)

By defining the controller via Eqs. (15) to (17), the derivative V ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdAfawzaacaaaaa@3CFA@ becomes the following:

V ˙ = k d x ˙ 2 ( k E E i1 + k v m ¯ 11 1 ) d x x ˙ 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdAfawzaacaGaeyypa0JaeyOeI0Iaem4A aS2cdaWgaaqcfayaaKqzadGaemizaqgajuaGbeaajugibiqbdIha4z aacaWcdaahaaqcfayabeaajugWaiabikdaYaaajugibiabgkHiTKqb aoaabmaabaqcLbsacqWGRbWAjuaGdaWgaaqaaKqzadGaemyraueaju aGbeaajugibiabdweafLqbaoaaCaaabeqaaKqzadGaemyAaKMaeyOe I0IaeGymaedaaKqzGeGaey4kaSIaem4AaSwcfa4aaSbaaeaajugWai abdAha2bqcfayabaqcLbsacuWGTbqBgaqeaSWaa0baaKqbagaajugW aiabigdaXiabigdaXaqcfayaaKqzadGaeyOeI0IaeGymaedaaaqcfa OaayjkaiaawMcaaKqzGeGaemizaq2cdaWgaaqcfayaaKqzadGaemiE aGhajuaGbeaajugibiqbdIha4zaacaWcdaahaaqcfayabeaajugWai abikdaYaaajugibiabgsMiJkabicdaWaaa@774C@ .    (18)

The variable u pd MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1LqbaoaaBaaabaqcLbmacqWGWbaC cqWGKbazaKqbagqaaaaa@4254@  is independent of k v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdAha 2bqcfayabaaaaa@4106@ , whereas u nl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1TWaaSbaaKqbagaajugWaiabd6ga UjabdYgaSbqcfayabaaaaa@426B@  is dependent on not only k v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdAha 2bqcfayabaaaaa@4106@  but also its derivative k ˙ v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdUgaRzaacaqcfa4aaSbaaeaajugWaiab dAha2bqcfayabaaaaa@4104@  (Eq. (17)). The parameter i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdMgaPbaa@3D17@ appears only in one term in Eq. (15). The system energy E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdweafbaa@3CCF@  appears in the controller (Eq. (15)) only if i=2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdMgaPjabg2da9iabikdaYaaa@3F0F@  because i=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdMgaPjabg2da9iabigdaXaaa@3F0D@  leads to E 0 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdweafLqbaoaaCaaabeqaaKqzadGaeGim aadaaKqzGeGaeyypa0JaeGymaedaaa@4220@ .

The parameter k v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWG2bGD aKqbagqaaaaa@40FB@ can be chosen arbitrarily provided that it is non-negative, thus leading to k v m ¯ 11 1 d x 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWG2bGD aKqbagqaaKqzGeGafmyBa0MbaebalmaaDaaajuaGbaqcLbmacqaIXa qmcqaIXaqmaKqbagaajugWaiabgkHiTiabigdaXaaajugibiabdsga KLqbaoaaBaaabaqcLbmacqWG4baEaKqbagqaaKqzGeGaeyyzImRaeG imaadaaa@536D@ . The three cases for these choices are as follows: k v =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWG2bGD aKqbagqaaKqzGeGaeyypa0JaeGimaadaaa@437E@ ; k v =const0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWG2bGD aKqbagqaaKqzGeGaeyypa0Jagi4yamMaei4Ba8MaeiOBa4Maei4Cam NaeiiDaqNaeyiyIKRaeGimaadaaa@4C3D@ ; k v =α m ¯ 11 (q), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdAha 2bqcfayabaqcLbsacqGH9aqpcqaHXoqycuWGTbqBgaqeaKqbaoaaBa aabaqcLbmacqaIXaqmcqaIXaqmaKqbagqaaKqzGeGaeiikaGcceaGa a8xCaiabcMcaPiabcYcaSaaa@4E1F@ with α0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabeg7aHjabgwMiZkabicdaWaaa@400F@ . The part u nl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1LqbaoaaBaaabaqcLbmacqWGUbGB cqWGSbaBaKqbagqaaaaa@4260@  in Eq. (17) that corresponds with the chosen k v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdAha 2bqcfayabaaaaa@4106@  is expressed as follows:

k v =0 u nl =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeGacaasgaaEgKqzGeGaem4AaS2cdaWgaaqcfayaaKqz adGaemODayhajuaGbeaajugibiabg2da9iabicdaWiabgkDiElabdw ha1TWaaSbaaKqbagaajugWaiabd6gaUjabdYgaSbqcfayabaqcLbsa cqGH9aqpcqaIWaamaaa@4FE7@ ,        (19)

k v =const u nl = k v m ¯ 11 1 h ¯ 1 1 2 k ˙ v x ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWG2bGD aKqbagqaaKqzGeGaeyypa0Jagi4yamMaei4Ba8MaeiOBa4Maei4Cam NaeiiDaqNaeyO0H4TaemyDau3cdaWgaaqcfayaaKqzadGaemOBa4Ma emiBaWgajuaGbeaajugibiabg2da9iabdUgaRLqbaoaaBaaabaqcLb macqWG2bGDaKqbagqaaKqzGeGafmyBa0MbaebalmaaDaaajuaGbaqc LbmacqaIXaqmcqaIXaqmaKqbagaajugWaiabgkHiTiabigdaXaaaju gibiqbdIgaOzaaraWcdaWgaaqcfayaaKqzadGaeGymaedajuaGbeaa jugibiabgkHiTKqbaoaaleaabaqcLbsacqaIXaqmaKqbagaajugibi abikdaYaaacuWGRbWAgaGaaKqbaoaaBaaabaqcLbmacqWG2bGDaKqb agqaaKqzGeGafmiEaGNbaiaaaaa@753B@ ,           (20)

k v =α m ¯ 11 (q),α>0 u nl =α( h ¯ 1 1 2 m ¯ ˙ 11 x ˙ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdAha 2bqcfayabaqcLbsacqGH9aqpcqaHXoqycuWGTbqBgaqeaKqbaoaaBa aabaqcLbmacqaIXaqmcqaIXaqmaKqbagqaaKqzGeGaeiikaGccbaGa e8xCaeNaeiykaKIaeiilaWIaeqySdeMaeyOpa4JaeGimaaJaeyO0H4 TaemyDau3cdaWgaaqcfayaaKqzadGaemOBa4MaemiBaWgajuaGbeaa jugibiabg2da9iabeg7aHLqbaoaabmaabaqcLbsacuWGObaAgaqeaK qbaoaaBaaabaqcLbmacqaIXaqmaKqbagqaaKqzGeGaeyOeI0scfa4a aSqaaeaajugibiabigdaXaqcfayaaKqzGeGaeGOmaidaaiqbd2gaTz aaryaacaWcdaWgaaqcfayaaKqzadGaeGymaeJaeGymaedajuaGbeaa jugibiqbdIha4zaacaaajuaGcaGLOaGaayzkaaaaaa@73F9@ .              (21)

The term in Eq. (21)s written in detail as follows:

u nl =α m p (l θ ˙ 2 +gcosθ+ x ˙ θ ˙ cosθ)sinθ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1TWaaSbaaKqbagaajugWaiabd6ga UjabdYgaSbqcfayabaqcLbsacqGH9aqpqaaaaaaaaaWdbiabgkHiT8 aacqaHXoqypeGaemyBa02cdaWgaaqcfayaaKqzadGaemiCaahajuaG beaajugibiabcIcaOiabdYgaSjqbeI7aXzaacaqcfa4aaWbaaeqaba qcLbmacqaIYaGmaaqcLbsacqGHRaWkcqWGNbWzcyGGJbWycqGGVbWB cqGGZbWCcqaH4oqCcqGHRaWkcuWG4baEgaGaaiqbeI7aXzaacaGagi 4yamMaei4Ba8Maei4CamNaeqiUdeNaeiykaKIagi4CamNaeiyAaKMa eiOBa4MaeqiUdehaaa@6CC0@ .

The five controllers obtained from Eqs. (15) and (17) by the combination of i=1,2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdMgaPjabg2da9iabigdaXiabcYcaSiab ikdaYaaa@40DF@  and the three cases of k v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdAha 2bqcfayabaaaaa@4106@  are presented in the following.

Controller 1. The simplest case is produced by i=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdMgaPjabg2da9iabigdaXaaa@3F0D@  and k v =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdAha 2bqcfayabaqcLbsacqGH9aqpcqaIWaamaaa@4389@ . For this case, Eq. (15) becomes a proportional-derivative (PD) controller.

u 1 = k E 1 u pd = k E 1 ( k d x ˙ + k p x ˜ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1LqbaoaaBaaabaqcLbmacqaIXaqm aKqbagqaaKqzGeGaeyypa0Jaem4AaS2cdaqhaaqcfayaaKqzadGaem yraueajuaGbaqcLbmacqGHsislcqaIXaqmaaqcLbsacqWG1bqDjuaG daWgaaqaaKqzadGaemiCaaNaemizaqgajuaGbeaajugibiabg2da9i abgkHiTiabdUgaRTWaa0baaKqbagaajugWaiabdweafbqcfayaaKqz adGaeyOeI0IaeGymaedaaKqbaoaabmaabaqcLbsacqWGRbWAjuaGda WgaaqaaKqzadGaemizaqgajuaGbeaajugibiqbdIha4zaacaGaey4k aSIaem4AaS2cdaWgaaqcfayaaKqzadGaemiCaahajuaGbeaajugibi qbdIha4zaaiaaajuaGcaGLOaGaayzkaaaaaa@6E46@ . (22)

Controller 2. By choosing i=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdMgaPjabg2da9iabigdaXaaa@3F0D@ , k v =const0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdAha 2bqcfayabaqcLbsacqGH9aqpcyGGJbWycqGGVbWBcqGGUbGBcqGGZb WCcqGG0baDcqGHGjsUcqaIWaamcqGGSaalaaa@4D28@  and k ˙ v =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdUgaRzaacaqcfa4aaSbaaeaajugWaiab dAha2bqcfayabaqcLbsacqGH9aqpcqaIWaamaaa@4387@ , one obtains the following:

u 2 = ( k E + k v m ¯ 11 1 ) 1 ( u pd + u nl ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1LqbaoaaBaaabaqcLbmacqaIYaGm aKqbagqaaKqzGeGaeyypa0JaeiikaGIaem4AaSwcfa4aaSbaaeaaju gWaiabdweafbqcfayabaqcLbsacqGHRaWkcqWGRbWAlmaaBaaajuaG baqcLbmacqWG2bGDaKqbagqaaKqzGeGafmyBa0MbaebalmaaDaaaju aGbaqcLbmacqaIXaqmcqaIXaqmaKqbagaajugWaiabgkHiTiabigda XaaajugibiabcMcaPKqbaoaaCaaabeqaaKqzadGaeyOeI0IaeGymae daaKqbaoaabmaabaqcLbsacqWG1bqDlmaaBaaajuaGbaqcLbmacqWG WbaCcqWGKbazaKqbagqaaKqzGeGaey4kaSIaemyDau3cdaWgaaqcfa yaaKqzadGaemOBa4MaemiBaWgajuaGbeaaaiaawIcacaGLPaaaaaa@6E89@ ,       (23)

where     u pd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1LqbaoaaBaaabaqcLbmacqWGWbaC cqWGKbazaKqbagqaaaaa@4253@  is defined in Eq. (16), and u nl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1LqbaoaaBaaabaqcLbmacqWGUbGB cqWGSbaBaKqbagqaaaaa@425F@  is defined in Eq. (20).

Controller 3. By choosing i=2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdMgaPjabg2da9iabikdaYaaa@3F0F@ , k v =const0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdAha 2bqcfayabaqcLbsacqGH9aqpcyGGJbWycqGGVbWBcqGGUbGBcqGGZb WCcqGG0baDcqGHGjsUcqaIWaamaaa@4C48@ , and k ˙ v =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdUgaRzaacaqcfa4aaSbaaeaajugWaiab dAha2bqcfayabaqcLbsacqGH9aqpcqaIWaamaaa@4387@ ,

u 3 = ( k E E+ k v m ¯ 11 1 ) 1 ( u pd + u nl ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1TWaaSbaaKqbagaajugWaiabioda ZaqcfayabaqcLbsacqGH9aqpcqGGOaakcqWGRbWAlmaaBaaajuaGba qcLbmacqWGfbqraKqbagqaaKqzGeGaemyrauKaey4kaSIaem4AaSwc fa4aaSbaaeaajugWaiabdAha2bqcfayabaqcLbsacuWGTbqBgaqeaS Waa0baaKqbagaajugWaiabigdaXiabigdaXaqcfayaaKqzadGaeyOe I0IaeGymaedaaKqzGeGaeiykaKYcdaahaaqcfayabeaajugWaiabgk HiTiabigdaXaaajuaGdaqadaqaaKqzGeGaemyDau3cdaWgaaqcfaya aKqzadGaemiCaaNaemizaqgajuaGbeaajugibiabgUcaRiabdwha1L qbaoaaBaaabaqcLbmacqWGUbGBcqWGSbaBaKqbagqaaaGaayjkaiaa wMcaaaaa@6FA9@ ,      (24)

where   u pd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1LqbaoaaBaaabaqcLbmacqWGWbaC cqWGKbazaKqbagqaaaaa@4253@  is defined in Eq. (16), and u nl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1TWaaSbaaKqbagaajugWaiabd6ga UjabdYgaSbqcfayabaaaaa@426A@  is defined in Eq. (20).

Controller 4. By choosing i=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdMgaPjabg2da9iabigdaXaaa@3F0D@  and k v =α m ¯ 11 (q) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWG2bGD aKqbagqaaKqzGeGaeyypa0JaeqySdeMafmyBa0MbaebalmaaBaaaju aGbaqcLbmacqaIXaqmcqaIXaqmaKqbagqaaKqzGeGaeiikaGcceaGa a8xCaiabcMcaPaaa@4D3F@ ,

u 4 = ( k E +α) 1 ( u pd + u nl ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1TWaaSbaaKqbagaajugWaiabisda 0aqcfayabaqcLbsacqGH9aqpcqGGOaakcqWGRbWAlmaaBaaajuaGba qcLbmacqWGfbqraKqbagqaaKqzGeGaey4kaSIaeqySdeMaeiykaKsc fa4aaWbaaeqabaqcLbmacqGHsislcqaIXaqmaaqcfa4aaeWaaeaaju gibiabdwha1LqbaoaaBaaabaqcLbmacqWGWbaCcqWGKbazaKqbagqa aKqzGeGaey4kaSIaemyDau3cdaWgaaqcfayaaKqzadGaemOBa4Maem iBaWgajuaGbeaaaiaawIcacaGLPaaaaaa@60F2@ ,        (25)

where u pd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1LqbaoaaBaaabaqcLbmacqWGWbaC cqWGKbazaKqbagqaaaaa@4253@  is defined in Eq. (16), and u nl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1TWaaSbaaKqbagaajugWaiabd6ga UjabdYgaSbqcfayabaaaaa@426A@  is defined in Eq. (21).

Controller 5. By choosing i=2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdMgaPjabg2da9iabikdaYaaa@3F0F@  and k v =α m ¯ 11 (q) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWG2bGD aKqbagqaaKqzGeGaeyypa0JaeqySdeMafmyBa0MbaebalmaaBaaaju aGbaqcLbmacqaIXaqmcqaIXaqmaKqbagqaaKqzGeGaeiikaGcceaGa a8xCaiabcMcaPaaa@4D3F@ ,

u 5 = ( k E E+α) 1 ( u pd + u nl ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1TWaaSbaaKqbagaajugWaiabiwda 1aqcfayabaqcLbsacqGH9aqpcqGGOaakcqWGRbWAlmaaBaaajuaGba qcLbmacqWGfbqraKqbagqaaKqzGeGaemyrauKaey4kaSIaeqySdeMa eiykaKscfa4aaWbaaeqabaqcLbmacqGHsislcqaIXaqmaaqcfa4aae Waaeaajugibiabdwha1LqbaoaaBaaabaqcLbmacqWGWbaCcqWGKbaz aKqbagqaaKqzGeGaey4kaSIaemyDauxcfa4aaSbaaeaajugWaiabd6 gaUjabdYgaSbqcfayabaaacaGLOaGaayzkaaaaaa@61FC@ ,     (26)

where u pd MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1LqbaoaaBaaabaqcLbmacqWGWbaC cqWGKbazaKqbagqaaaaa@4253@  is defined in Eq. (16), and u nl MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1TWaaSbaaKqbagaajugWaiabd6ga UjabdYgaSbqcfayabaaaaa@426A@  is defined in Eq. (21).

Remarks:
1) The controller in Eq. (22) is the simplest and does not require the swing angle and swing angle derivative for feedback. Other controllers require swing-angle sensors.
2) The controllers in Eqs. (24) and (26) require a longer time than the controllers in Eqs. (23) and (25) in calculating the total energy E of the system.
3) The term k d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWGKbaz aKqbagqaaaaa@40D7@  can be chosen as a function of θ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbeI7aXzaacaaaaa@3D7B@  provided that k d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWGKbaz aKqbagqaaaaa@40D7@ is positive and definite. For example, in the case of the PD controller, one can write the following:

u pd = k p x ˜ [ k d ( θ ˙ 2 )] x ˙ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1TWaaSbaaKqbagaajugWaiabdcha WjabdsgaKbqcfayabaqcLbsacqGH9aqpcqGHsislcqWGRbWAlmaaBa aajuaGbaqcLbmacqWGWbaCaKqbagqaaKqzGeGafmiEaGNbaGaacqGH sislcqGGBbWwcqWGRbWAjuaGdaWgaaqaaKqzadGaemizaqgajuaGbe aajugibiabcIcaOiqbeI7aXzaacaWcdaahaaqcfayabeaajugWaiab ikdaYaaajugibiabcMcaPiabc2faDjqbdIha4zaacaaaaa@5DA9@ .            (27)

4) All five controllers can be extended and applied to overhead cranes with three, four, or five DOFs.

Stability analysis

Theorem 1. The system in Eq. (1) with one of the controllers from Eqs. (22) to (26) are asymptotically stable at the equilibrium point:

(q, q ˙ )=( x d ,0,0,0) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=HcacaWFXbGaa8hlaiqa=fhagaGa aiaa=LcacaWF9aGaa8hkaiaa=HhalmaaBaaajuaGbaqcLbmacaWFKb aajuaGbeaajugibiaa=XcacaWFWaGaa8hlaiaa=bdacaWFSaGaa8hm aiaa=Lcaaaa@4AC2@ .   (28)

Proof. The stability analysis of all five controllers is almost similar; thus, only the stability of the controller in Eq. (25) is proven. The proof of the stability of the equilibrium point or the desired position is based on LaSalle invariance theorem (e.g., see24). From Eq. (18), the invariant set W can be defined as follows:

Ω={(q, q ˙ ): x ˙ =0} MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabfM6axjabg2da9iabcUha7jabcIcaOGab aiaa=fhacaWFSaGab8xCayaacaGaeiykaKIaeiOoaOJafmiEaGNbai aacqGH9aqpcqaIWaamcqGG9bqFaaa@4A1A@ . [ V ˙ 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdAfawzaacaWcdaWgaaqcfayaaKqzadGa eGymaedajuaGbeaajugibiabg2da9iabicdaWaaa@42E3@ in W].

This expression denotes that x=const MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdIha4jabg2da9iGbcogaJjabc+gaVjab c6gaUjabcohaZjabcsha0baa@4533@ , θ, θ ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabeI7aXjabcYcaSiqbeI7aXzaacaaaaa@4011@  can take any values, the constant x ˜ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdIha4zaaiaaaaa@3D44@  in W is the equilibrium point x= x d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdIha4jabg2da9iabdIha4TWaaSbaaKqb agaajugWaiabdsgaKbqcfayabaaaaa@437B@ , and θ=0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabeI7aXjabg2da9iabicdaWiabcYcaSaaa @4046@ θ ˙ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbeI7aXzaacaGaeyypa0JaeGimaadaaa@3F6F@ . The proof is obtained by contradiction. Assuming that x x d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdIha4jabgcMi5kabdIha4LqbaoaaBaaa baqcLbmacqWGKbazaKqbagqaaaaa@4431@ , that is, these variables have constant values that are different from the equilibrium, and by considering the control law in Eq. (25), the following expression is obtained:

u= 1 ( k E + k v ) ( k p x ˜ k v m p (l θ ˙ 2 +gcosθ)sinθ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1jabg2da9KqbaoaalaaabaqcLbsa cqaIXaqmaKqbagaajugibiabcIcaOiabdUgaRLqbaoaaBaaabaqcLb macqWGfbqraKqbagqaaKqzGeGaey4kaSIaem4AaS2cdaWgaaqcfaya aKqzadGaemODayhajuaGbeaajugibiabcMcaPaaajuaGdaqadaqaaK qzGeaeaaaaaaaaa8qacqGHsislcqWGRbWAlmaaBaaajuaGbaqcLbma cqWGWbaCaKqbagqaaKqzGeGafmiEaGNbaGaacqGHsislpaGaem4AaS 2cdaWgaaqcfayaaKqzadGaemODayhajuaGbeaajugib8qacqWGTbqB l8aadaWgaaqcfayaaKqzadWdbiabdchaWbqcfa4daeqaaKqzGeWdbi abcIcaOiabdYgaSjqbeI7aXzaacaWcdaahaaqcfayabeaajugWaiab ikdaYaaajugibiabgUcaRiabdEgaNjGbcogaJjabc+gaVjabcohaZj abeI7aXjabcMcaPiGbcohaZjabcMgaPjabc6gaUjabeI7aXbqcfa4d aiaawIcacaGLPaaaaaa@7E13@ .      (29)

Eq. (5) with x ¨ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdIha4zaadaGaeyypa0JaeGimaadaaa@3F33@  deduces the condition for  as h ¯ 1 (q, q ˙ )=u MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdIgaOzaaraWcdaWgaaqcfayaaKqzadGa eGymaedajuaGbeaajugibiabcIcaOGabaiaa=fhacaWFSaGab8xCay aacaGaeiykaKIaeyypa0JaemyDauhaaa@47F2@ :

m p (l θ ˙ 2 +gcosθ)sinθ= 1 ( k E + k v ) ( k p x ˜ k v m p (l θ ˙ 2 +gcosθ)sinθ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibabaaaaaaaaapeGaeyOeI0IaemyBa0wcfa4d amaaBaaabaqcLbmapeGaemiCaahajuaGpaqabaqcLbsapeGaeiikaG IaemiBaWMafqiUdeNbaiaajuaGdaahaaqabeaajugWaiabikdaYaaa jugibiabgUcaRiabdEgaNjGbcogaJjabc+gaVjabcohaZjabeI7aXj abcMcaPiGbcohaZjabcMgaPjabc6gaUjabeI7aX9aacqGH9aqpjuaG daWcaaqaaKqzGeGaeGymaedajuaGbaqcLbsacqGGOaakcqWGRbWAju aGdaWgaaqaaKqzadGaemyraueajuaGbeaajugibiabgUcaRiabdUga RTWaaSbaaKqbagaajugWaiabdAha2bqcfayabaqcLbsacqGGPaqkaa qcfa4aaeWaaeaajugib8qacqGHsislcqWGRbWAjuaGdaWgaaqaaKqz adGaemiCaahajuaGbeaajugibiqbdIha4zaaiaGaeyOeI0YdaiabdU gaRLqbaoaaBaaabaqcLbmacqWG2bGDaKqbagqaaKqzGeWdbiabd2ga TTWdamaaBaaajuaGbaqcLbmapeGaemiCaahajuaGpaqabaqcLbsape GaeiikaGIaemiBaWMafqiUdeNbaiaalmaaCaaajuaGbeqaaKqzadGa eGOmaidaaKqzGeGaey4kaSIaem4zaCMagi4yamMaei4Ba8Maei4Cam NaeqiUdeNaeiykaKIagi4CamNaeiyAaKMaeiOBa4MaeqiUdehajuaG paGaayjkaiaawMcaaKqzGeGaeiOla4caaa@9B35@

After simplifying the aforementioned equation, we obtain the following:

k E m p (l θ ˙ 2 +gcosθ)sinθ= k p x ˜ =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdwea fbqcfayabaqcLbsaqaaaaaaaaaWdbiabd2gaTLqba+aadaWgaaqaaK qzadWdbiabdchaWbqcfa4daeqaaKqzGeWdbiabcIcaOiabdYgaSjqb eI7aXzaacaWcdaahaaqcfayabeaajugWaiabikdaYaaajugibiabgU caRiabdEgaNjGbcogaJjabc+gaVjabcohaZjabeI7aXjabcMcaPiGb cohaZjabcMgaPjabc6gaUjabeI7aX9aacqGH9aqppeGaem4AaSwcfa 4aaSbaaeaajugWaiabdchaWbqcfayabaqcLbsacuWG4baEgaacaiab g2da9iGbcogaJjabc+gaVjabc6gaUjabcohaZjabcsha0baa@6DF6@ .   (30)

From Eq. (6), we obtain the following in W:

l θ ¨ +gsinθ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdYgaSjqbeI7aXzaadaGaey4kaSIaem4z aCMagi4CamNaeiyAaKMaeiOBa4MaeqiUdeNaeyypa0JaeGimaadaaa@48ED@ .        (31)

From Eq. (31), if θ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabeI7aXjabgcMi5kabicdaWaaa@4026@  or θ ˙ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbeI7aXzaacaGaeyiyIKRaeGimaadaaa@402F@ , then l=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdYgaSjabg2da9iGbcogaJjabc+gaVjab c6gaUjabcohaZjabcsha0baa@451A@  in W yields the following;

1 2 l θ ˙ 2 +g(1cosθ)=γ=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajuaGdaWcbaqaaKqzGeGaeGymaedajuaGbaqcLbsa cqaIYaGmaaGaemiBaWMafqiUdeNbaiaalmaaCaaajuaGbeqaaKqzad GaeGOmaidaaKqzGeGaey4kaSIaem4zaCMaeiikaGIaeGymaeJaeyOe I0Iagi4yamMaei4Ba8Maei4CamNaeqiUdeNaeiykaKIaeyypa0Jaeq 4SdCMaeyypa0Jagi4yamMaei4Ba8MaeiOBa4Maei4CamNaeiiDaqha aa@5C30@ . (32)

1) If γ=0 θ ˙ =0,θ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabeo7aNjabg2da9iabicdaWiabgkDiElqb eI7aXzaacaGaeyypa0JaeGimaaJaeiilaWIaeqiUdeNaeyypa0JaeG imaadaaa@49F0@ , then x ˜ =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbdIha4zaaiaGaeyypa0JaeGimaadaaa@3F37@  from Eq. (30) causes u=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1jabg2da9iabicdaWaaa@3F23@  from Eq. (29) u=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1jabg2da9iabicdaWaaa@3F23@ .
2) If γ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabeo7aNjabgcMi5kabicdaWaaa@4017@ , taking l θ ˙ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdYgaSjqbeI7aXzaacaqcfa4aaWbaaeqa baqcLbmacqaIYaGmaaaaaa@41AB@  from Eq. (32) then placing it into Eq. (30) obtains the following:

k E m p [ 2γ2g+3gcosθ ]sinθ= k p x ˜ =const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdwea fbqcfayabaqcLbsaqaaaaaaaaaWdbiabd2gaTLqba+aadaWgaaqaaK qzadWdbiabdchaWbqcfa4daeqaa8qadaWadaqaaKqzGeWdaiabikda Yiabeo7aNjabgkHiTiabikdaYiabdEgaNjabgUcaRiabiodaZiabdE gaNjGbcogaJjabc+gaVjabcohaZjabeI7aXbqcfa4dbiaawUfacaGL DbaajugibiGbcohaZjabcMgaPjabc6gaUjabeI7aX9aacqGH9aqppe Gaem4AaS2cdaWgaaqcfayaaKqzadGaemiCaahajuaGbeaajugibiqb dIha4zaaiaGaeyypa0Jagi4yamMaei4Ba8MaeiOBa4Maei4CamNaei iDaqhaaa@6FB6@ ,
or
(2γ2g+3gcosθ)sinθ=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibabaaaaaaaaapeGaeiikaGYdaiabikdaYiab eo7aNjabgkHiTiabikdaYiabdEgaNjabgUcaRiabiodaZiabdEgaNj GbcogaJjabc+gaVjabcohaZjabeI7aX9qacqGGPaqkcyGGZbWCcqGG PbqAcqGGUbGBcqaH4oqCpaGaeyypa0Jagi4yamMaei4Ba8MaeiOBa4 Maei4CamNaeiiDaqhaaa@5A73@ .            (33)

From (33), θ=φ=const MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabeI7aXjabg2da9iabeA8aQjabg2da9iGb cogaJjabc+gaVjabc6gaUjabcohaZjabcsha0baa@4832@ . This constant φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabeA8aQbaa@3D79@  must be zero because φ=const0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabeA8aQjabg2da9iGbcogaJjabc+gaVjab c6gaUjabcohaZjabcsha0jabgcMi5kabicdaWaaa@482B@  leads to θ ¨ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbeI7aXzaadaGaeyiyIKRaeGimaadaaa@4031@  in Eq. (31). This case leads to θ ˙ (t),θ(t)const MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbeI7aXzaacaGaeiikaGIaemiDaqNaeiyk aKIaeiilaWIaeqiUdeNaeiikaGIaemiDaqNaeiykaKIaeyiyIKRagi 4yamMaei4Ba8MaeiOBa4Maei4CamNaeiiDaqhaaa@4F16@ . However, θ=φ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabeI7aXjabg2da9iabeA8aQjabg2da9iab icdaWaaa@4228@  leads to γ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabeo7aNjabg2da9iabicdaWaaa@3F56@ γ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabeo7aNjabg2da9iabicdaWaaa@3F56@ ; hence, the assumption that γ0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabeo7aNjabgcMi5kabicdaWaaa@4017@  is invalid. Based on the previous analysis, the largest invariant set W includes only the equilibrium point of

x,θ, x ˙ , θ ˙ ] T = [ x d ,0,0,0] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdIha4jabcYcaSiabeI7aXjabcYcaSiqb dIha4zaacaGaeiilaWIafqiUdeNbaiaacqGGDbqxjuaGdaahaaqabe aajugWaiabdsfaubaajugibiabg2da9iabcUfaBjabdIha4TWaaSba aKqbagaajugWaiabdsgaKbqcfayabaqcLbsacqGGSaalcqaIWaamcq GGSaalcqaIWaamcqGGSaalcqaIWaamcqGGDbqxjuaGdaahaaqabeaa jugWaiabdsfaubaaaaa@5B7A@ .

We conclude that the system states asymptotically converge to the desired values by invoking LaSalle invariance theorem.24

Numerical simulations and experiments

Numerical simulations are conducted by using MATLAB software to verify the validity and efficiency of the five controllers. Experiments are also conducted by using an overhead crane test bed to validate the control approach. The control objective of the overhead crane is to move the trolley to its destination while complementing the load anti-swing.

Numerical simulations

In the simulation, the system parameters are set as follows: m t =2kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabd2gaTTWaaSbaaKqbagaajugWaiabdsha 0bqcfayabaqcLbsacqGH9aqpcqaIYaGmcqWGRbWAcqWGNbWzaaa@4643@ , m p =0.85kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabd2gaTTWaaSbaaKqbagaajugWaiabdcha WbqcfayabaqcLbsacqGH9aqpcqaIWaamcqGGUaGlcqaI4aaocqaI1a qncqWGRbWAcqWGNbWzaaa@4911@ , d x =20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdsgaKLqbaoaaBaaabaqcLbmacqWG4baE aKqbagqaaKqzGeGaeyypa0JaeGOmaiJaeGimaadaaa@4466@ Ns/m, l=0.7 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdYgaSjabg2da9iabicdaWiabc6caUiab iEda3aaa@40F1@ m, and g=9.81m/ s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdEgaNjabg2da9iabiMda5iabc6caUiab iIda4iabigdaXiabd2gaTjabc+caViabdohaZLqbaoaaCaaabeqaaK qzadGaeGOmaidaaaaa@4873@ . The target position of the trolley is set as x d =0.5m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdIha4TWaaSbaaKqbagaajugWaiabdsga KbqcfayabaqcLbsacqGH9aqpcqaIWaamcqGGUaGlcqaI1aqncqWGTb qBaaa@46BE@  m. The controllers in Eqs. (22) to (26) are implemented in the simulation. The parameters of these controllers are chosen as follows:

k E =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWGfbqr aKqbagqaaKqzGeGaeyypa0JaeGymaedaaa@431E@ , k v =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdAha 2bqcfayabaqcLbsacqGH9aqpcqaIYaGmaaa@438D@ , α=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabeg7aHjabg2da9iabigdaXaaa@3F51@ , k p =20, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdcha WbqcfayabaqcLbsacqGH9aqpcqaIYaGmcqaIWaamcqGGSaalaaa@454F@   k d =40 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWGKbaz aKqbagqaaKqzGeGaeyypa0JaeGinaqJaeGimaadaaa@4450@ .

In the simulations, the fourth-order Runge–Kutta method with a time step of 0.01s is applied. The simulation results for the trolley displacement, load swing angle, and control input are shown in Figure 2-4. The simulation results show that the energy control scheme controls the trolley to reach the desired destination while implementing anti-sway control. In all cases, the desired positions of the trolley and payload are reached after approximately 15s to 18s. During this time, the payload swing angle increases from zero at the starting time and damped oscillation. The maximum swing angle is approximately 4°. In addition to the maximum swing angle θ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabeI7aXLqbaoaaBaaabaqcLbsacyGGTbqB cqGGHbqycqGG4baEaKqbagqaaaaa@4364@ , the settling time t s , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdsha0TWaaSbaaKqbagaajugWaiabdoha ZbqcfayabaqcLbsacqGGSaalaaa@4281@  maximum control forces u max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1LqbaoaaBaaabaqcLbmacyGGTbqB cqGGHbqycqGG4baEaKqbagqaaaaa@43C0@ , and “energy consumption” (defined by I= 0 20 u 2 dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdMeajjabg2da9iabgUIiYVWaa0baaKqb agaajugWaiabicdaWaqcfayaaKqzadGaeGOmaiJaeGimaadaaKqzGe GaemyDauxcfa4aaWbaaeqabaqcLbmacqaIYaGmaaqcLbsacqWGKbaz cqWG0baDaaa@4E3E@ ) are considered in comparing controller performances. The performance indices of each case are presented in Table 1.

Figure 2 Trolley displacements.
Figure 3 Cable swing angle.
Figure 4 Trolley moving force.

Controller

θ max [ O ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabeI7aXTWaaSbaaKqbagaajugWaiGbc2ga TjabcggaHjabcIha4bqcfayabaWaamWaaeaajugibiabd+eapbqcfa Oaay5waiaaw2faaaaa@4844@

t s [ S ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdsha0TWaaSbaaKqbagaajugWaiabdoha ZbqcfayabaWaamWaaeaacqWGtbWuaiaawUfacaGLDbaaaaa@4433@

u max [ N ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1LqbaoaaBaaabaqcLbmacyGGTbqB cqGGHbqycqGG4baEaKqbagqaamaadmaabaqcLbsacqWGobGtaKqbak aawUfacaGLDbaaaaa@47F4@

I[ N 2 S ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdMeajLqbaoaadmaabaqcLbsacqWGobGt juaGdaahaaqabeaajugWaiabikdaYaaajugibiabdofatbqcfaOaay 5waiaaw2faaaaa@4627@

1. (22)

3.47

15

10

29.05

2. (23)

2.38

19

4.21

22.88

3. (24)

3.32

16

7.01

28.26

4.(25)

2.62

19

5

24.13

5.(26)

3.8

15

10

31.32

Table 1 Performance indices of the controllers

Remarks:

  1. The swing angle caused by the controllers in Eqs. (24) and (26) are relatively larger than that by other cases. The swing angle decreases slowly. These two controllers are derived from the square of the system energy E 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdweafTWaaWbaaKqbagqabaqcLbmacqaI YaGmaaaaaa@3FAA@ E 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdweafTWaaWbaaKqbagqabaqcLbmacqaI YaGmaaaaaa@3FAA@ , whereas the controllers in Eqs. (22), (23), and (25) are derived from E 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdweafLqbaoaaCaaabeqaaKqzadGaeGym aedaaaaa@3F9D@ . The swing angles by the controllers derived from E 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdweafTWaaWbaaKqbagqabaqcLbmacqaI YaGmaaaaaa@3FAA@  decrease significantly faster than those by controllers derived from.
  2. Table 1 shows that the swing angle and energy consumption of the controllers in Eqs. (23) and (25) are smaller than those of other controllers. However, the settling time of the trolley from the controllers in Eqs. (23) and (25) is longer than that from other controllers.
  3. The simulation results show that the trolley position is reached. However, the swing angle is still vibrating and decreasing slowly.
  4. The choice of control parameters, namely, k E , k v ,α, k p , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdwea fbqcfayabaqcLbsacqGGSaalcqWGRbWAlmaaBaaajuaGbaqcLbmacq WG2bGDaKqbagqaaKqzGeGaeiilaWIaeqySdeMaeiilaWIaem4AaS2c daWgaaqcfayaaKqzadGaemiCaahajuaGbeaajugibiabcYcaSaaa@51F8@  and k d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaacqWGRbWAdaWgaaWcbaGaemizaqgabeaaaaa@3E09@ , is an ad hoc problem. The choice of optimal parameters for the controllers is not addressed in this paper.

The controllers based on the energy approach guarantees that the system reaches the desired position. However, choosing the control parameters is not easy, and the swing angle is still large when the trolley reaches its desired position. To overcome this difficulty, a linear state feedback controller is applied in conjunction with the controllers in Eq. (15). The linear state feedback controller is designed based on the linearized model of the system around the desired position. The linearized model is determined to be controllable. Thus, the pole placement technique or linear quadratic regulator (LQR) can be applied to determine the feedback gain matrix, K.25 The command control is then defined as follows:

u 6 =-K(x- x d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=vhalmaaBaaajuaGbaqcLbmacaWF 2aaajuaGbeaajugibiaa=1dacaWFTaGaa83saiaa=HcacaWF4bGaa8 xlaiaa=HhajuaGdaWgaaqaaKqzadGaa8hzaaqcfayabaqcLbsacaWF Paaaaa@4A84@ (34)

Where x= [ q T , q ˙ T ] T , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabhIha4jabg2da9iabbUfaBHabaiaa=fha lmaaCaaajuaGbeqaaKqzadGaa8hvaaaajugibiaa=XcaceWFXbGbai aajuaGdaahaaqabeaajugWaiabdsfaubaajugibiabb2faDLqbaoaa CaaabeqaaKqzadGaemivaqfaaKqzGeGaeiilaWcaaa@4ECC@   x d = [ x d ,0,0,0] T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabhIha4LqbaoaaBaaabaqcLbmacqWGKbaz aKqbagqaaKqzGeGaeyypa0Jaee4waSLaemiEaGxcfa4aaSbaaeaaju gWaiabdsgaKbqcfayabaqcLbsacqGGSaalcqaIWaamcqGGSaalcqaI WaamcqGGSaalcqaIWaamcqqGDbqxlmaaCaaajuaGbeqaaKqzadGaem ivaqfaaaaa@5350@ .

The linearized model around the desired position is given as follows:

x ˙ =Ax+Bu, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiqbhIha4zaacaGaeyypa0dceaGaa8xqaiaa =HhacaWFRaGaa8Nqaiabdwha1jabcYcaSaaa@43D1@

Matrices Q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaieaajugibiab=ffarbaa@3CEC@  and R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaieaajugibiab=jfasbaa@3CEE@  are chosen to obtain the feedback gain:

Q=100diag(1,1,1,1),R=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdgfarjabg2da9iabigdaXiabicdaWiab icdaWiGbcsgaKjabcMgaPjabcggaHjabcEgaNjabcIcaOiabigdaXi abcYcaSiabigdaXiabcYcaSiabigdaXiabcYcaSiabigdaXiabcMca PiabcYcaSiabdkfasjabg2da9iabigdaXaaa@5219@ ,

The matrix K is given by the LQR command in MATLAB as the following:

K=[ 10 28.75 4.819 3.73 ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaieaajugibiab=Tealjabg2da9Kqbaoaadmaabaqc LbsafaqabeqaeaaaaKqbagaajugibiabigdaXiabicdaWaqcfayaaK qzGeGaeyOeI0IaeGOmaiJaeGioaGJaeiOla4IaeG4naCJaeGynauda juaGbaqcLbsacqaI0aancqGGUaGlcqaI4aaocqaIXaqmcqaI5aqoaK qbagaajugibiabgkHiTiabiodaZiabc6caUiabiEda3iabiodaZaaa aKqbakaawUfacaGLDbaaaaa@5718@ .

The aforementioned nonlinear controllers in Eqs. (22) to (26) guarantee the stability of the desired position; thus, the state variable q 2 =θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdghaXTWaaSbaaKqbagaajugWaiabikda YaqcfayabaqcLbsacqGH9aqpcqaH4oqCaaa@43DA@  and q ˙ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaieaajugibiqb=fhaXzaacaaaaa@3D35@  are small around the end position. Therefore, the stability of the closed-loop system is still guaranteed by switching from the nonlinear controllers to the LQR controller in Eq. (34). In the following simulation, the LQR controller is switched on when the trolley reaches 80% of its path. The simulation results by the combination of nonlinear (25) [ u 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1LqbaoaaBaaabaqcLbmacqaI0aan aKqbagqaaaaa@4090@ ] and linear controllers (34) [ u 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=vhalmaaBaaajuaGbaqcLbmacaWF 2aaajuaGbeaaaaa@3FEB@ ], as well as (26) [ u 5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdwha1TWaaSbaaKqbagaajugWaiabiwda 1aqcfayabaaaaa@409D@ ] and (34) [ u 6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaaiqaajugibiaa=vhalmaaBaaajuaGbaqcLbmacaWF 2aaajuaGbeaaaaa@3FEB@ ], are shown in Figure 5-7. Figure 5 shows that the time history of the trolley displacement is not changed significantly after switching to linear control. The advantage of switching to the linear controller is clearly shown by comparing Figure 6 & 3. The swing angle after switching time converges to zero in a short period.

Figure 5 Trolley displacement.
Figure 6 Cable swing angle.
Figure 7 Force on the trolley.

Experiments

The controllers given by Eqs. (25) & (26) combined with Eq. (34) are implemented on the laboratory crane (Figure 8). The trolley is driven by a direct current (DC) motor, and incremental encoders with 1024 counts per revolution are used to measure the trolley displacements and payload swing angle. The crane system is connected to a target personal computer (PC) with two interfaced cards. An NI PCI-6602 card is used to send pulse-width modulation signals to the amplifiers of the DC motor and acquire signals from the encoders. An NI PCI-6025E multifunction card is used to transfer the direction control signals to the motor amplifiers. The target PC is connected to a host PC through RS-232 ports. The overhead crane is controlled by the host PC, which integrates the presented controller designs based on MATLAB/SIMULINK with xPC target solution.

Figure 8 Laboratory overhead crane systems.

The parameters of the laboratory crane are as follows: m t =2.0kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabd2gaTTWaaSbaaKqbagaajugWaiabdsha 0bqcfayabaqcLbsacqGH9aqpcqaIYaGmcqGGUaGlcqaIWaamcqWGRb WAcqWGNbWzaaa@4815@ , m p =0.85kg MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabd2gaTTWaaSbaaKqbagaajugWaiabdcha WbqcfayabaqcLbsacqGH9aqpcqaIWaamcqGGUaGlcqaI4aaocqaI1a qncqWGRbWAcqWGNbWzaaa@4911@ , l=0.7m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdYgaSjabg2da9iabicdaWiabc6caUiab iEda3iabd2gaTbaa@4254@ 0.7 m, and g=9.81m/ s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdEgaNjabg2da9iabiMda5iabc6caUiab iIda4iabigdaXiabd2gaTjabc+caViabdohaZTWaaWbaaKqbagqaba qcLbmacqaIYaGmaaaaaa@487E@ . The target position of the trolley is set as x d =0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdIha4LqbaoaaBaaabaqcLbmacqWGKbaz aKqbagqaaKqzGeGaeyypa0JaeGimaaJaeiOla4IaeGynaudaaa@4550@  m. The parameters of the controllers are chosen as follows:

k E =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWGfbqr aKqbagqaaKqzGeGaeyypa0JaeGymaedaaa@431E@ , k v =2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdAha 2bqcfayabaqcLbsacqGH9aqpcqaIYaGmaaa@438D@ , α=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabeg7aHjabg2da9iabigdaXaaa@3F51@ , k p =20, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRLqbaoaaBaaabaqcLbmacqWGWbaC aKqbagqaaKqzGeGaeyypa0JaeGOmaiJaeGimaaJaeiilaWcaaa@4544@   k d =40 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdUgaRTWaaSbaaKqbagaajugWaiabdsga KbqcfayabaqcLbsacqGH9aqpcqaI0aancqaIWaamaaa@445B@ .

The experimental results are presented in Figure 9-11. The trolley reaches the set position after approximately 8s. The swing angle achieves the maximum value of approximately 5° and 10° by the controllers in Eqs. (25) and (26), respectively. The simulation and experimental results show that the controllers derived from E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdweafbaa@3CCF@ achieves better performances than the controllers derived from E 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdweafLqbaoaaCaaabeqaaKqzadGaeGOm aidaaaaa@3F9F@ in terms of maximum swing and maximum driving forces. Moreover, system stability is not affected by switching to the LQR controller.

Figure 9 Trolley displacement.
Figure 10 Cable swing angle.
Figure 11 Force on the trolley.

Conclusion

The position control of overhead crane, which is a typical under-actuated system, was compared for five different energy-based control methods. We have designed controllers for under actuated overhead crane systems with an energy-based approach that takes advantage of the passivity of the system. These energy-based nonlinear controllers are most effective for position control of overhead cranes and theoretically ensure asymptotic stability of the system. However, simulations and experimental results show that undesirable cable sway slowly decreases. This tendency is evident when the E 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdweafLqbaoaaCaaabeqaaKqzadGaeGOm aidaaaaa@3F9F@ of the total energy is used in controller design. Also, selecting control parameters is another problem of these energy based nonlinear controls. To overcome these problems, the LQR controller is used with conjunction of nonlinear controllers. As the system status approaches the target state, the system switches from the nonlinear controller to the LQR controller. The compared results among the five controllers with switching LQR technique show that the controllers derived from E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba Waaqaafaaakeaajugibiabdweafbaa@3CCF@  achieves better performances than the controllers derived from E 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbb L8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbbG8FasPYRqj0=yi0dXd bba9pGe9xq=JbbG8A8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqaba WaaqaafaaakeaajugibiabdweafLqbaoaaCaaabeqaaKqzadGaeGOm aidaaaaa@3F9F@  in terms of maximum swing and maximum driving forces. System stability is not affected by switching to the LQR controller.

Acknowledgements

This research was supported by the Development of Robot System for Inspecting and Cleaning an Industrial Electrostatic Precipitators Program through the MKE (Grant Number: 10067781) and by the Development of Small High-torque MR Brake and High Efficiency Controller funded by Agency for Defense Development of Korea (Grant number: 20170859). It was also supported by the Senior-Friendly Product R&D Program funded by the Ministry of Health and Welfare through the Korea Health Industry Development Institute (HI15C1027).

Conflict of interest

The author declares there is no conflict of interest.

References

  1. Sun N, Fang Y, Zhang X, Yuan Y. Transportation task-oriented trajectory planning for under actuated overhead cranes using geometric analysis. IET Control Theory & Applications. 2012;6(10):1410–1423.
  2. Almutairi NB, Zribi M. Sliding mode control of a three-dimensional overhead crane. Journal of Vibration and Control. 2009;15(11):1679–1730.
  3. Chwa, D. Nonlinear tracking control of 3-D overhead cranes against the initial swing angle and the variation of payload weight. IEEE Trans Control Systems Technology. 2009;17(4):876–883.
  4. Fang Y, Dixon WE, Dawson DM, et al. Nonlinear coupling control laws for an under actuated overhead crane system. IEEE/ASME Transactions on Mechatronics. 2003;8(3):418–423.
  5. Omara HM, Nayfeh AH. Gantry cranes gain scheduling feedback control with friction compensation. Journal of Sound and Vibration. 2005;281(1-2):1–20.
  6. Park H, Chwa D, Hong KS. A feedback linearization control of container cranes: varying rope length. Int Journal of Control, Automation, and Systems. 2007;5(4):379–387.
  7. Park MS, Chwa D, Hong SK. Antisway tracking control of overhead cranes with system uncertainty and actuator nonlinearity using an adaptive fuzzy sliding-mode control. IEEE Trans Industrial Electronics. 2008;55(11):3972–3984.
  8. Tuan LA, Kim GH, Kim MY, et al. Partial feedback linearization control of overhead cranes with varying cable lengths. Int Journal of Precision Engineering and Manufacturing. 2012;13(4):501–507.
  9. Zhang X, Gao B, Chen H. Nonlinear controller for a gantry crane based on partial feedback linearization. Int Conference on Control and Automation; 2005:1074–1078.
  10. Le Anh Tuan, Tran Ngoc An, Viet-Hung Dang, et al. nonlinear controls of a rotating tower crane in conjunction with trolley motion. Journal of Systems and Control Engineering. 2013;227(5).
  11. Le Anh Tuan, VH Dang, ByungSo Kim, et al. Partial feedback linearization control of the three dimensional overhead crane. Int Journal of Control, Automation and Systems. 2013;11(4):718–727.
  12. Tuan Anh Le, Soon-Geul Lee. Sliding mode controls of double-pendulum crane systems. Journal of Mechanical Science and Technology. 2013;27(6):1863–1873.
  13. Abdel-Rahman EM, Nayfeh AH, et al. Dynamics and control of cranes: a Review. Journal of Vibration and Control. 2003;9: 863–908.
  14. Chang C. Adaptive fuzzy controller of the overhead cranes with nonlinear disturbance. IEEE Trans Industrial Informatics. 2007;3(2):164–172.
  15. Fang Y, Ma B, Wang P, et al. A motion planning-based adaptive control method for an under actuated crane system. IEEE Trans Control Systems Technology. 2012;20(1):241–248.
  16. Hua YJ, Shine YK. Adaptive coupling control for overhead crane systems. Mechatronics. 2007;17(2-3):143–152.
  17. Lee HH, Liang Y, Segura D. A sliding mode anti-swing trajectory control for overhead cranes with high speed load hoisting. Journal of Dynamic Systems, Measurements, and Control. 2006;128(4):842–845.
  18. Liu D, Yi J, Zhao D, et al. Adaptive sliding mode fuzzy control for a two-dimensional overhead crane. Mechatronics. 2005;15(5):505–522.
  19. Tuan Anh Le, Sang-Chan Moon, Won Gu Lee, et al. Adaptive Sliding Mode Control of the Overhead Crane with Varying Cable Length. Journal of Mechanical Science and Technology. 2013;27(3):885–893.
  20. Dong Y, Wang Z, Feng Z, et al. Energy based control of a class of underactuated mechanical systems. Congress on Image and Signal Processing. 2008;3:39–143.
  21. Fantoni I, Lozano R, Spong MW. Energy based control of the Pendubot. IEEE Transactions on Automatic Control. 2000;45(4):725–729.
  22. Li E, Liang ZZ, Hou ZG, et al. Energy-based balance control approach to the ball and beam system. Int Journal of Control. 2009;82(6):981–992.
  23. Spong MW, Hutchinson S, Vidyasagar M. Robot dynamics and control. John Wiley & Sons; 2005:1–303.
  24. Khalil HK. Nonlinear Systems. 3rd ed. Upper Saddle River, NJ, Prentice Hall; 2002.
  25. Ogata K. Modern Control Engineering. Prentice Hall; 2010.
Creative Commons Attribution License

©2018 Won, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.