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Introduction
Industries and services such as heavy industry, construction work, 

loading/unloading the harbor and automotive industries widely 
use overhead cranes. The main purpose of the overhead crane is to 
transport the heavy workpiece to the target position. However, the 
swing of the processed object must be eliminated at the target position 
for better performance and productivity. To increase the productivity 
of the overhead crane, fast accelerated and decelerated operations 
are required. However, fast acceleration and deceleration motions 
create a dangerous situation by shaking the workpiece suspended 
from the hoist. If heavy workloads are shaken too much, the facilities 
and infrastructure around the overhead crane can be destroyed or, in 
severe cases, the crane itself can be broken and may cause people 
to suffer serious injuries. The most important part of crane work is 
horizontal transport, which moves the workpiece horizontally to 
the goal position after lifting it. In this horizontal motion task, the 
trolley and workpiece must reach the desired goal position quickly 
while keeping a small swing angle. When the trolley reaches the 
target position, the swing angle is suppressed to zero. The following 
two main approaches are necessary to reach the above-mentioned 
requirement. The first one consists of designing a proper trajectory 
for the trolley (i.e., motion planning). The second approach involves 
designing an anti-swing controller (i.e., control design). In the first 
approach, the reference trajectory of the overhead crane has a general 
motion control velocity profile. That is, it is composed of three stages 
of acceleration, constant velocity, and deceleration. The accelerating 
and decelerating time and shape in the first and third phases increase 
the swing angle to its maximum value before decreasing the angle to 
zero. Consequently, the swing angle is zero in the constant velocity 
phase.1

The second approach has attracted the interest of researchers. 
Numerous control methods have also been studied for overhead 
cranes. Several controllers can be listed as linear, gain schedule, 
nonlinear, partial feedback linearization, sliding mode, adaptive, 
fuzzy logic, and so on.2–12 Each controller has its own advantages and 
disadvantages, the details of which can be found.13 A combination 
of control methods is considered by several authors (e.g., adaptive 

and adaptive fuzzy sliding-mode controls).14–19 These combinations 
produce complex controllers with parameters that do not guarantee 
system stability. Design methods based on the energy and passivity 
of the system has been studied. This control approach can be applied 
not only to fully actuated systems, but also to under-operating systems 
such as under-operated actuators,20,21 overhead cranes,4 and ball-
beam systems.22 The aforementioned method exhibits simplicity in 
designing a controller from energy-storage function, which adopts 
mechanical, kinetic, and potential energies. The additional energy 
affects the control performance. Based on the aforementioned studies, 
we utilize passivity to generalize the controller design for under 
actuated overhead crane systems. Five controllers, including linear 
and nonlinear controllers, are designed based on the total energy of 
an overhead crane. The Lyapunov candidate function is chosen by 
a combination of the system energy and the kinetic and potential 
energies. The origin of the closed-loop system is proven asymptotically 
stable by the Lyapunov technique and LaSalle invariance theorem. 
Energy-based controllers guarantee the asymptotic stability of the 
system; however, the choice of control parameters is an ad hoc issue. 
Another disadvantage of these controllers is that the swing angle 
converges slowly to zero. Therefore, the linear optimal controller 
in this study is switched on when the trolley reaches a point close 
to the destination. The system response is significantly improved by 
applying this technique. The remainder of this paper is organized as 
follows. Section 2 introduces the nonlinear dynamics of an overhead 
crane with two degrees of freedom (DOFs), as well as the useful 
properties of a dynamic system. Sections 3 presents an energy-based 
control design in which five controllers based on Lyapunov theory are 
derived. Section 4 shows the numerical and experimental verifications 
of the controllers. Section 5 concludes.

Dynamic model and its properties 
Dynamic model 

The control problem of the crane during the horizontal 
transportation phase is addressed in this section. The rope has constant 
length, and the system has two DOFs. The following assumptions are 
established to obtain the dynamic model of the system: 
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a.	 the payload is considered a point mass; 

b.	 the mass and stiffness of the hoisting rope are neglected; 

c.	 the effects of wind disturbances are not considered. Based on the 
Lagrangian formulation,23 the dynamic model of a 2D overhead 
crane system is represented by the following:

 		  M(q)q+C(q,q)q+Dq+g(q)=Bu    ,	    (1)

Where q = x, Τθ][    denotes the system state vector with x(t)  as 
the trolley displacement and (t)θ  as the payload swing angle (Figure 
1). M(q), C(q, q), D,  g(q) , B , and u  represent the inertia matrix, 
centripetal-Coriolis matrix, damping matrix, a term derived from 
potential energy, input control matrix, and force acting on the trolley, 
respectively. These variables are explicitly defined as follows:
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Figure 1 Overhead crane model.

where tm  and
p

m represent the trolley mass and payload mass, 
respectively; l denotes the length of the rope; g  is the gravitational 
acceleration;

x
d is the damping coefficient on the trolley, >0xd . The 

forceu summarizes the actuating forces cu  and coulomb forces rf as 
the following:

			   = −c ru u f  		       (2)

The coulomb friction in this study is modeled by the tanh function 
instead of the sign function:

		  = >>0 tanh( ), 1rf f cx c , 

where 0f  is the magnitude of the coulomb friction on the trolley. 

Eq. (1) can be rewritten as follows:

 	 θ θ θ θ+ + − + = 

 

2( ) cos sint p p p xm m x m l m l d x u ,	      (3)

	
θ θ θ+ + =



2cos sin 0p p pm l x m l m gl 	 .	      (4)

By solving θ  from Eq. (4) and integrating this variable into Eq. 
(3), we obtain the following: 

 		  q,q)+ + = 11 1(xm x d x h u ,	                      (5)

 		  θ θ θ+ =−

sin cosl g x ,		        (6)

with 	 θ= + 2
11 [ sin ],t pm m m

	

		
θ θ θ=− +21 sin ( cos )pm l gh 	 . 	       (7)

The following assumptions are made from the practical application 
of an overhead crane: i) the cable length is always positive (i.e., >0l
), and ii) the swing angle of the payload during the transportation 
process always remains in the interval between π−1

2
 and π1

2
, [

π θ π− < <1 1
2 2

]. The dynamic expression in Eq. (1) has the following 
important properties: (i) the inertia matrix is positive definite 
and symmetric, M =M >0T ; (ii) the matrix N=(M-2C)  is skew 
symmetric, Ts (M-2C)s=0  for ∀ ∈ ℜ2s  . 

Open-loop system passivity 

Consider that the energy-storage function E consists of the kinetic 
and potential energies of the system: 

		  T1E(q,q)= q M(q)q+P(q)
2

   ,		  (8)

With	                q θ= − ≥( ) (1 cos ) 0.P m glp

The energy-storage function derivative regarding time is calculated 
as follows:

		  T T T1E=q M(q)q+ q M(q)q+q g(q).
2

 

     	 (9)

Substituting the term M(q)q  from Eq. (1) and using the skew-

symmetric property of 1 M(q)-C(q,q)
2


  produces the following:

		      =− + ≤

  

2
xE d x xu xu 	 .	 (10)

The term xu  denotes the power supplied by the actuators for the 
trolley. The inequality in Eq. (10) shows that the system is passive. 
Integrating both sides from zero to t yields the following:

	 − = =− + ≤∫ ∫ ∫ ∫

  

2( ) (0) 0 0 0 0
t t t tE t E Eds d x ds xuds xudsx

or − ≤∫ ( ) (0) 0
tE t E xuds . In case of a zero input, that is, =0,u  the 

system will have a stable equilibrium θ θ( , , , )x x =( ,0,0,0)dx , where 
the total energy is minimized after taking the zero value. 

Energy-based control design

The control design aims to bring the trolley from an initial condition 
to a desired position while the payload swing angle is suppressed and 
vanishes completely at the load destination. This objective indicates 
that the state variables q θ=[ , ]Tx should reach their desired values

=q [ , 0]Tdxd after a short time. The forceu is derived initially by 
using an energy-based approach. The friction force is then added to 
obtain the actuating forces from Eq (2):

			   = +c ru u f  .	  	     (11)

Controller design

The passivity property of the system allows us to exploit the energy 
of the system, E or 2E , in the controller design. The following 
Lyapunov candidate function is proposed: 

	         i 2 2
E v

1 1 1V= k E (q,q)+ k (q)x + k xpi 2 2
   , 	    (12)

https://doi.org/10.15406/iratj.2018.04.00122


Comparative study of energy-based control design for overhead cranes 199
Copyright:

©2018 Won et al.

Citation: Won I, Hoang NQ, Lee S, et al. Comparative study of energy-based control design for overhead cranes. Int Rob Auto J. 2018;4(3):197‒203.
 DOI: 10.15406/iratj.2018.04.00122

Where i  can take the values of one or two, >0,pk  q ≥( ) 0vk , and 
= − .dx x x The second and third terms in V  are considered additional 

kinetic and potential energies that are related to the motion of the 
actuated coordinates, respectively. By differentiating V  with respect 
to time, one obtains the following: 

 	 i -1 2
E v v p

1V=k E E(q,q)+xk (q)x+ k (q)x +xk x
2


 

      .	         (13)

By substituting Eq. (10) into Eq. (13) and accounting for Eq. (5), 
the following is obtained: 
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						               (14)	
Eq. (14) suggests choosing the following control law:
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						                 (15)

with >0dk , 

		  =− − pd d pu k x k x ,			              (16)

		  −= − 



1
11 1

1
2nl v vu k m h k x .	                            (17)

By defining the controller via Eqs. (15) to (17), the derivative V
becomes the following:

	 − − 
 
 

=− − + ≤

 

2 1 1 2
11 0i

d E v xV k x k E k m d x .		            (18)

The variable pdu  is independent of vk , whereas nlu  is dependent 
on not only vk  but also its derivative vk  (Eq. (17)). The parameter i  
appears only in one term in Eq. (15). The system energy E  appears 
in the controller (Eq. (15)) only if =2i  because =1i  leads to =0 1E . 

The parameter vk can be chosen arbitrarily provided that it is non-
negative, thus leading to − ≥1

11 0v xk m d . The three cases for these choices 
are as follows: =0vk ; = ≠const 0vk ; qα= 11( ),vk m with α≥0 . The 
part nlu  in Eq. (17) that corresponds with the chosen vk  is expressed 
as follows:

		  = ⇒ =0 0v nlk u ,			            (19)

	    −= ⇒ = − 



1
11 1

1const
2v nl v vk u k m h k x ,		           (20)

	 α α α  
 
 

= > ⇒ = − 

11 1 11
1(q), 0
2v nlk m u h m x .	          (21)

The term in Eq. (21)s written in detail as follows:

 	 α θ θ θ θ θ−= + + 



2( cos cos )sinnl p l xu m g .

The five controllers obtained from Eqs. (15) and (17) by the 
combination of =1,2i  and the three cases of vk  are presented in the 
following. 

Controller 1. The simplest case is produced by =1i  and =0vk . For 
this case, Eq. (15) becomes a proportional-derivative (PD) controller. 

	 ( )− −= =− + 

1 1
1 E pd E d pu k u k k x k x .			           (22) 

Controller 2. By choosing =1i , = ≠const 0,vk  and = 0vk , one 
obtains the following:

 	 ( )− −= + +1 1
2 11( )E v pd nlu k k m u u ,		  	         (23)

where nlu  is defined in Eq. (16), and nlu  is defined in Eq. (20).

Controller 3. By choosing =2i , = ≠const 0vk , and = 0vk ,

		   ( )− −= + +1 1
3 11( )E v pd nlu k E k m u u ,	    (24)

where pdu  is defined in Eq. (16), and nlu  is defined in Eq. (20).

Controller 4. By choosing =1i  and qα= 11( )vk m ,

		  ( )α −= + +1
4 ( )E pd nlu k u u ,		     (25)

where nlu  is defined in Eq. (16), and nlu  is defined in Eq. (21).

Controller 5. By choosing =2i  and qα= 11( )vk m  ,

		  ( )α −= + +1
5 ( )E pd nlu k E u u ,		     (26)

where pdu  is defined in Eq. (16), and nlu  is defined in Eq. (21).

Remarks:

1)The controller in Eq. (22) is the simplest and does not require the 
swing angle and swing angle derivative for feedback. Other controllers 
require swing-angle sensors. 

2)The controllers in Eqs. (24) and (26) require a longer time than the 
controllers in Eqs. (23) and (25) in calculating the total energy  E  
of the system. 

3)The term dk  can be chosen as a function of θ  provided that dk is 
positive and definite. For example, in the case of the PD controller, 
one can write the following:

		  θ=− − 

 

2[ ( )]pd p du k x k x .		  (27)

4)All five controllers can be extended and applied to overhead cranes 
with three, four, or five DOFs.

Stability analysis

Theorem 1. The system in Eq. (1) with one of the controllers from 
Eqs. (22) to (26) are asymptotically stable at the equilibrium point:

		  q,qΩ= =
{( ): 0}x .			   (28)

Proof. The stability analysis of all five controllers is almost similar; 
thus, only the stability of the controller in Eq. (25) is proven. The 
proof of the stability of the equilibrium point or the desired position is 
based on LaSalle invariance theorem (e.g., see24). From Eq. (18), the 
invariant set Ω can be defined as follows:

		  q,qΩ= =
{( ): 0}x . [ =1 0V in Ω].

This expression denotes that =constx , θ θ,  can take any values, 
the constant x   in Ω is the equilibrium point = dx x , andθ =0, θ = 0
. The proof is obtained by contradiction. Assuming that ≠ dx x , that 
is, these variables have constant values that are different from the 
equilibrium, and by considering the control law in Eq. (25), the 
following expression is obtained: 

	  θ θ θ 
 
 
− − +=

+




2( cos sin1
( )

)v p
E

p
v

k x m l gu k
k k

.	 (29)

Eq. (5) with = 0x  deduces the condition for = 0x  as q,q =1( )h u : 

θ θ θ θ θ θ 
 
 

=
+

− + − − + 



2 21 .
( )

( cos )sin ( cos )sinp p v
v

p
E

m l g k g
k

x k
k

m l

After simplifying the aforementioned equation, we obtain the 
following:
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		  θ θ θ ==+ 

2( cos )sin constp pEm l g k xk .	           (30)

From Eq. (6), we obtain the following in Ω: 

		  θ θ+ = sin 0l g .			            (31)

From Eq. (31), if θ ≠0  or θ ≠ 0 , then =constl  in Ω yields the 
following; 

		  θ θ γ+ − = =

21 (1 cos ) const
2
l g .		           (32)

1) If γ θ θ= ⇒ = =0 0, 0 , then = 0x  from Eq. (30) causes =0u  from 
Eq. (29) =0u .

2) If γ ≠0 , taking θ2l  from Eq. (32) then placing it into Eq. (30) 
obtains the following:

	          γ θθ   =− + = s2 2 3 in constcosE p pm k xk g g , 

or

	          γ θ θ− + =( )sin2 2 3 cos constg g .		           (33)

From (33), θ ϕ= =const . This constant ϕ  must be zero 
because ϕ= ≠const 0  leads to θ ≠ 0  in Eq. (31). This case leads to
θ θ ≠( ), ( ) constt t . However, θ ϕ= =0  leads to γ =0 γ =0 ; hence, the 
assumption that γ ≠0  is invalid. Based on the previous analysis, the 
largest invariant set Ω includes only the equilibrium point of 

	   	 θ θ =

[ , , , ] [ ,0,0,0]T T
dx x x .

We conclude that the system states asymptotically converge to the 
desired values by invoking LaSalle invariance theorem.24

Numerical simulations and experiments

Numerical simulations are conducted by using MATLAB software 
to verify the validity and efficiency of the five controllers. Experiments 
are also conducted by using an overhead crane test bed to validate the 
control approach. The control objective of the overhead crane is to 
move the trolley to its destination while complementing the load anti-
swing.

Numerical simulations

In the simulation, the system parameters are set as follows: 

=2tm kg , =0.85pm kg , =0.7l Ns/m, =0.7l m, and = 29.81 /g m s . 

The target position of the trolley is set as =0.5dx m  m. The controllers 

in Eqs. (22) to (26) are implemented in the simulation. The parameters 
of these controllers are chosen as follows: 

	 =1Ek , =2vk , α = 1 , =20,pk  =40dk .

In the simulations, the fourth-order Runge–Kutta method with a 
time step of 0.01s is applied. The simulation results for the trolley 
displacement, load swing angle, and control input are shown in Figure 
2-4. The simulation results show that the energy control scheme 
controls the trolley to reach the desired destination while implementing 
anti-sway control. In all cases, the desired positions of the trolley and 
payload are reached after approximately 15s to 18s. During this time, 
the payload swing angle increases from zero at the starting time and 
damped oscillation. The maximum swing angle is approximately 4°. 
In addition to the maximum swing angleθmax , the settling time ,st  

maximum control forces maxu , and “energy consumption” (defined 
by =∫20 2

0I u dt ) are considered in comparing controller performances. 
The performance indices of each case are presented in Table 1. 

Remarks: 

a.	 The swing angle caused by the controllers in Eqs. (24) and (26) 
are relatively larger than that by other cases. The swing angle 
decreases slowly. These two controllers are derived from the 
square of the system energy 2E 2E , whereas the controllers in 
Eqs. (22), (23), and (25) are derived from 1E . The swing angles 
by the controllers derived from 1E  decrease significantly faster 
than those by controllers derived from 2E .

b.	 Table 1 shows that the swing angle and energy consumption of 
the controllers in Eqs. (23) and (25) are smaller than those of 
other controllers. However, the settling time of the trolley from 
the controllers in Eqs. (23) and (25) is longer than that from other 
controllers.

c.	 The simulation results show that the trolley position is reached. 
However, the swing angle is still vibrating and decreasing slowly.

d.	 The choice of control parameters, namely, α, , , ,E v pk k k  and
d

k , 
is an ad hoc problem. The choice of optimal parameters for the 
controllers is not addressed in this paper.

Figure 2 Trolley displacements.

Figure 3 Cable swing angle.

Figure 4 Trolley moving force.
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Table 1 Performance indices of the controllers 

Controller

1. (22) 3.47 15 10 29.05

2. (23) 2.38 19 4.21 22.88

3. (24) 3.32 16 7.01 28.26

4.(25) 2.62 19 5 24.13

5.(26) 3.8 15 10 31.32

The controllers based on the energy approach guarantees that the 
system reaches the desired position. However, choosing the control 
parameters is not easy, and the swing angle is still large when the 
trolley reaches its desired position. To overcome this difficulty, a 
linear state feedback controller is applied in conjunction with the 
controllers in Eq. (15). The linear state feedback controller is designed 
based on the linearized model of the system around the desired 
position. The linearized model is determined to be controllable. Thus, 
the pole placement technique or linear quadratic regulator (LQR) can 
be applied to determine the feedback gain matrix, K .25 The command 
control is then defined as follows:

			   6 du =-K(x-x ) 		  (34)

Where Tq , q= [ ] ,T Tx  =[ ,0,0,0]Td dxx . 

The linearized model around the desired position is given as 
follows:

			   Ax + B= ,ux
Matrices Q  and R  are chosen to obtain the feedback gain:

			   = =100diag(1,1,1,1), 1Q R ,
The matrix K  is given by the LQR command in MATLAB as the 

following:

			    
 = − −K 10 28.75 4.819 3.73 .

The aforementioned nonlinear controllers in Eqs. (22) to (26) 
guarantee the stability of the desired position; thus, the state variable 

θ=2q  and q  are small around the end position. Therefore, the 
stability of the closed-loop system is still guaranteed by switching 
from the nonlinear controllers to the LQR controller in Eq. (34). In 
the following simulation, the LQR controller is switched on when 
the trolley reaches 80% of its path. The simulation results by the 
combination of nonlinear (25) [ 4u ] and linear controllers (34) [

6u ], as well as (26) [ 5u ] and (34) [ 6u ], are shown in Figure 5-7. 
Figure 5 shows that the time history of the trolley displacement is not 
changed significantly after switching to linear control. The advantage 
of switching to the linear controller is clearly shown by comparing 
Figure 6 & 3. The swing angle after switching time converges to zero 
in a short period.

Experiments 

The controllers given by Eqs. (25) & (26) combined with Eq. 
(34) are implemented on the laboratory crane (Figure 8). The trolley 
is driven by a direct current (DC) motor, and incremental encoders 
with 1024 counts per revolution are used to measure the trolley 
displacements and payload swing angle. The crane system is connected 
to a target personal computer (PC) with two interfaced cards. An NI 
PCI-6602 card is used to send pulse-width modulation signals to the 

amplifiers of the DC motor and acquire signals from the encoders. 
An NI PCI-6025E multifunction card is used to transfer the direction 
control signals to the motor amplifiers. The target PC is connected to 
a host PC through RS-232 ports. The overhead crane is controlled by 
the host PC, which integrates the presented controller designs based 
on MATLAB/SIMULINK with xPC target solution. 

The parameters of the laboratory crane are as follows: =2.0tm kg
, =0.85pm kg , =0.7l m 0.7 m, and = 29.81 /g m s . The target position 
of the trolley is set as =0.5dx  m. The parameters of the controllers 
are chosen as follows: 

		  =1Ek , =2vk , α =1 , =20,pk  =40dk .

The experimental results are presented in Figure 9-11. The 
trolley reaches the set position after approximately 8s. The swing 
angle achieves the maximum value of approximately 5° and 10° by 
the controllers in Eqs. (25) and (26), respectively. The simulation 
and experimental results show that the controllers derived from E
achieves better performances than the controllers derived from 2E in 
terms of maximum swing and maximum driving forces. Moreover, 
system stability is not affected by switching to the LQR controller. 

Figure 5 Trolley displacement.

Figure 6 Cable swing angle.

Figure 7 Force on the trolley.

θ   max O   s
St   max

u N  
  

2I N S
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Figure 8 Laboratory overhead crane systems.

Figure 9 Trolley displacement.

Figure 10 Cable swing angle.

Figure 11 Force on the trolley.

Conclusion
The position control of overhead crane, which is a typical under-

actuated system, was compared for five different energy-based control 
methods. We have designed controllers for under actuated overhead 
crane systems with an energy-based approach that takes advantage of 
the passivity of the system. These energy-based nonlinear controllers 
are most effective for position control of overhead cranes and 
theoretically ensure asymptotic stability of the system. However, 
simulations and experimental results show that undesirable cable 
sway slowly decreases. This tendency is evident when the 2E of 
the total energy is used in controller design. Also, selecting control 

parameters is another problem of these energy based nonlinear 
controls. To overcome these problems, the LQR controller is used with 
conjunction of nonlinear controllers. As the system status approaches 
the target state, the system switches from the nonlinear controller to 
the LQR controller. The compared results among the five controllers 
with switching LQR technique show that the controllers derived 
from E  achieves better performances than the controllers derived 
from 2E  in terms of maximum swing and maximum driving forces. 
System stability is not affected by switching to the LQR controller.
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