Submit manuscript...
eISSN: 2574-8092

International Robotics & Automation Journal

Research Article Volume 6 Issue 4

Adaptive mobile firefighting resources: stochastic dynamic optimization of international cooperation

Peter Lohmander

Optimal Solutions in Cooperation with Linnaeus University, Sweden

Correspondence: Peter Lohmander, Optimal Solutions in Cooperation with Linnaeus University, Hoppets Grand 6, SE 903 34 Umea, Sweden

Received: October 17, 2020 | Published: November 17, 2020

Citation: Lohmander P. Adaptive mobile firefighting resources: stochastic dynamic optimization of international cooperation. Int Rob Auto J . 2020;6(4):150?155. DOI: 10.15406/iratj.2020.06.00213

Download PDF

Abstract

Forest fires cause severe problems in many countries. Forest fire areas in nine European countries are investigated with respect to yearly averages, standard deviations and correlations between nations. In the region IFPS (Italy, France, Portugal and Spain), the average yearly burned area during the years 2010 to 2018 was 313.4 kha and in FGLNS (Finland, Germany, Latvia, Norway and Sweden) the corresponding area was only 7.6 kha. The correlations between the regions are strictly negative and the correlations within the regions are strictly positive.

Since forest fires usually do not occur in every country at the same time, there is a potential expected gain from international cooperation, where easily mobile firefighting resources such as water bombing airplanes are moved between nations. A general stochastic dynamic programming approach to adaptive moves of such resources is defined and suggested. General properties of the solution are derived. A particular version of the model is created and analytical derivations are performed. It is demonstrated that the expected objective function value, the expected present value of total costs, is a strictly increasing function of the fire correlation between nations. Adaptive moves of mobile resources between the regions IFPS and FGLNS have the advantage of negative correlations between these regions. Some adaptive moves can also be motivated within the regions even with positive correlations, thanks to the low costs of short moves.

Introduction

Forest fires cause severe problems, locally and globally. A general reference on present forest conditions is FAO (2020).1 Abatzoglou and Williams, et al 2016,2 Coogan, et al 20193 and Williams, et al 2019,4 describe and give warnings for increasing wildfire frequencies as a result of global warming. The fire emissions of CO2, have international consequences via the effect on global warming. The released CO2 moves without friction across the globe. Recent studies and results concerning CO2 dynamics and rational forest management are found in Lohmander (2020a, 2020b and 2020c).5–7 Countries close to the equator mostly have much larger and more dramatic forest fires than countries closer to the poles. Table 1, shows this very clearly, where it is found that the European countries in the south: Italy, France, Portugal and Spain, denoted “IFPS”, on average, together, have the average yearly burned area of 313 400 hectares. The corresponding figure for the five European countries in the north, Finland, Germany, Latvia, Norway and Sweden, “FGLNS”, is only 7 600 hectares. Hence, the average burned forest area in the southern countries is more than 41 times larger than in the north. Of course, the forest areas are not identical and many other things differ between the regions. Still, it is quite clear that the forest fire problems are much worse in warmer climates. Forest fires normally occur during the warm season and are reduced during the winter. When there is winter north of the equator, there is summer further south. Hence, fires are more common south of the equator during the period when they are less common in the north and vice versa. This periodic pattern can be used to move firefighting capacity over the equator in order to utilize it more rationally. Cave, 20199 discusses the firefighting resource problem including Australia, California and many other regions of the world. Global warming has made the problems worse. The firefighting aircrafts are now more often included in international contracts where these move between nations. The Maritime Executive, 202010 presents a suggestion where Canada and Australia share 14 water bombers and use a special ship to move the planes between the nations in order to handle the fire seasons on both sides of the equator. Firefighting resources can also be shared between countries on the same side of the equator. Fire & Rescue World News, 201811 describes how Sweden during 2018 requested help from the European Union. The Swedish fires were much larger than earlier years and the Swedish firefighting resources were insufficient. Italy was able to assist with water bombers. Later, Mason, 202012 report that Sweden expands the water bomber capacity, intended for operations in Sweden and other parts of Northern Europe. April to September is considered to be the relevant fire season there. This paper focuses on optimization of firefighting with stochastic fires and adaptive moves of firefighting units, in particular water bombing aircrafts, between nations. First, statistics from nine European countries will be used to investigate the stochastic properties of fires, including average burned areas, standard deviations and correlations across countries and regions. Then, a general stochastic dynamic programming model for optimal adaptive allocation of firefighting units across nations, will be developed. General conclusions will be derived based on the mathematical model, including the effects on the expected total result of the number of countries in the cooperation contract and the effects of fire correlations between regions.

 

Average Burned Area (kha)

Standard Deviation (kha)

Relative Standard Deviation

Italy

62,3

43,1

0,7

France

10,9

6,8

0,6

Portugal

144,6

156,3

1,1

Spain

95,7

66,3

0,7

Finland

0,5

0,4

0,7

Germany

0,5

0,7

1,3

Latvia

0,6

0,9

1,5

Norway

0,8

1,1

1,3

Sweden

5,1

8,5

1,7

IFPS

313,4

240,1

0,8

FGLNS

7,6

11,1

1,5

Table 1 The average yearly burned areas in different countries and regions during nine years (from 2010 until 2018). The standard deviations and the relative standard deviations have also been calculated. “IFPS” denotes the region including Italy, France, Portugal and Spain. “FGLNS” denotes the region including Finland, Germany, Latvia, Norway and Sweden. Source of the list of burned areas: San-Miguel-Ayanz et al., 20198

In Table 2, we find the correlations between the burned areas in the different countries. The correlations between the countries in the southern region, IFPS, are all strictly positive. This part of the correlation table has been marked by yellow.  The correlations between the countries in the northern region, FGLNS, are all strictly positive. This part of the correlation table has been marked by red.  The turquoise section of Table 2 shows that all correlations of burned areas of countries in IFPS with countries in FGLNS, are strictly negative. This pattern is repeated if we look at the correlation table only containing the two groups IFPS and FGLNS, which is found in Table 3.

 

Italy

France

Portugal

Spain

Finland

Germany

Latvia

Norway

Sweden

Italy

1,000

               

France

0,634

1,000

             

Portugal

0,657

0,859

1,000

           

Spain

0,944

0,464

0,482

1,000

         

Finland

-0,492

-0,313

-0,230

-0,651

1,000

       

Germany

-0,349

-0,238

-0,184

-0,369

0,666

1,000

     

Latvia

-0,459

-0,291

-0,280

-0,467

0,742

0,951

1,000

   

Norway

-0,427

-0,081

-0,158

-0,531

0,682

0,824

0,864

1,000

 

Sweden

-0,464

-0,377

-0,356

-0,521

0,894

0,767

0,888

0,762

1,000

Table 2 Correlations of burned areas in different countries during nine years (from 2010 until 2018). The original data that were used to calculate these correlations are available in the official statistics by San-Miguel-Ayanz et al., 20198

 

IFPS

FGLNS

IFPS

1

 

FGLNS

-0,458

1

Table 3 Correlations of burned areas in two regions during nine years (from 2010 until 2018). Source of empirical data observations: San-Miguel-Ayanz et al., 20198

Figure 1 shows that the strictly negative correlation between the burned areas in IFPS and FGLNS can be understood from the empirical observations from year 2010 until 2018. During this period, we note that the fire areas in the north have been comparatively large when they have been comparatively small in the south and vice versa. Still, all of the countries are located north of the equator. We also observe that the burned areas differ very much between years.  Hence, it is very likely that we can obtain better use of the firefighting resources in Europe if these can be easily moved between the regions IFPS and FGLNS. The fire areas and the absolute variations are much larger in the south than in the north. So, even if the firefighting capacity would not be optimized for Europe, but for the regions in isolation, we can expect that IFPS many years would have very large excess capacity. Some parts of this excess capacity could be sent to FGLNS if needed without causing problems in IFPS.

Figure 1 Observations of combinations of burned areas in two regions during nine years (from 2010 until 2018). The raw fire data are available in San-Miguel-Ayanz et al., 2019.8

Materials and methods

The optimization problem is defined as a stochastic dynamic programming problem. Hence, it is possible to sequentially optimize the decisions, based on the latest information about the stochastic events and the state of the complete system. This methodology is absolutely necessary in this problem in order to make it relevant, since the fires are truly stochastic in nature and the central problem is to act in a way that is optimal and adaptive. In equation (1), we find the decision problem at the time horizon. It may seem to be unrealistic to have a time horizon, but since this can be defined at a point in time many years from the present, it does not influence the decisions and values in earlier periods more than we want it to. The time period is t , the time horizon is T and  is the rate of interest in the capital market. fk,t is the state in country (or region) k at time t. 1kn MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacqGHKj YOcaWGRbGaeyizImQaamOBaaaa@3D16@ . 1 f k,t F k,t ,k,t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaigdacqGHKj YOcaWGMbWaaSbaaSqaaiaadUgacaGGSaGaamiDaaqabaGccqGHKjYO caWGgbWaaSbaaSqaaiaadUgacaGGSaGaamiDaaqabaGccaaMc8Uaai ilaiaaykW7cqGHaiIicaWGRbGaaiilaiaadshaaaa@49B6@ . Note that the state in the optimization problem is multidimensional and includes all relevant information, such as the fire states in all different countries, available local firefighting resources, infrastructure and so on. i t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgadaWgaa WcbaGaamiDaaqabaaaaa@3921@ is the entering state (the location) of a mobile firefighting resource unit. In the analysis in this paper, we consider i t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgadaWgaa WcbaGaamiDaaqabaaaaa@3921@  to have dimension 1. The problem may be generalized to multidimensional versions if necessary. The adaptive decision is to move this resource to location j t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQgadaWgaa WcbaGaamiDaaqabaaaaa@3922@ . In this paper, we consider j t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQgadaWgaa WcbaGaamiDaaqabaaaaa@3922@  with dimension 1. This can be generalized. The feasible set is  J T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQeadaWgaa WcbaGaamivaaqabaaaaa@38E2@ , which is a function of the entering state. C denotes the sum of all costs in a particular period. This includes costs of moving firefighting equipment, costs of forests destroyed by fires and other associated costs. ϕ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMbaa@38D6@ is the expected present value of all costs, in the present and future periods, as a function the time period and the entering state, which may be described in detail as the combination of the initial location(s) of mobile resources and the states in all countries, f 1,t ,. f n,t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaaGymaiaacYcacaWG0baabeaakiaacYcacaGGUaGaamOzamaa BaaaleaacaWGUbGaaiilaiaadshaaeqaaaaa@3FA8@ .

Definitions:

At the time horizon, t=T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshacqGH9a qpcaWGubaaaa@39E6@ , we have:

ϕ( T, i T , f 1,T ,., f n,T )= = min j T J T ( i T ) { e rT C( T, i T , j T , f 1,T ,., f n,T ) } i T , f 1,T ,., f n,T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqy1dy 2aaeWaaeaacaWGubGaaiilaiaadMgadaWgaaWcbaGaamivaaqabaGc caGGSaGaamOzamaaBaaaleaacaaIXaGaaiilaiaadsfaaeqaaOGaai ilaiaac6cacaGGSaGaamOzamaaBaaaleaacaWGUbGaaiilaiaadsfa aeqaaaGccaGLOaGaayzkaaGaeyypa0dabaGaeyypa0ZaaCbeaeaaci GGTbGaaiyAaiaac6gaaSqaaiaadQgadaWgaaadbaGaamivaaqabaWc cqGHiiIZcaWGkbWaaSbaaWqaaiaadsfaaeqaaSGaaiikaiaadMgada WgaaadbaGaamivaaqabaWccaGGPaaabeaakmaacmaabaGaamyzamaa CaaaleqabaGaeyOeI0IaamOCaiaadsfaaaGccaWGdbWaaeWaaeaaca WGubGaaiilaiaadMgadaWgaaWcbaGaamivaaqabaGccaGGSaGaamOA amaaBaaaleaacaWGubaabeaakiaacYcacaWGMbWaaSbaaSqaaiaaig dacaGGSaGaamivaaqabaGccaGGSaGaaiOlaiaacYcacaWGMbWaaSba aSqaaiaad6gacaGGSaGaamivaaqabaaakiaawIcacaGLPaaaaiaawU hacaGL9baaaeaaaeaacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaa ywW7cqGHaiIicaWGPbWaaSbaaSqaaiaadsfaaeqaaOGaaiilaiaadA gadaWgaaWcbaGaaGymaiaacYcacaWGubaabeaakiaacYcacaGGUaGa aiilaiaadAgadaWgaaWcbaGaamOBaiaacYcacaWGubaabeaaaaaa@83C2@        (1)

The complete problem is solved via Bellman backward recursion. When we go from one period to the next, it is necessary to calculate probabilities to move between states. τ( . ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabes8a0naabm aabaGaaiOlaaGaayjkaiaawMcaaaaa@3B0E@ denotes the conditional transition probabilities.

For t| 0t<T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadshadaabba qaamaaBaaaleaacaaIWaGaeyizImQaamiDaiabgYda8iaadsfaaeqa aaGccaGLhWoaaaa@3F16@ , we have:

ϕ( t, i t , f 1,t ,., f n,t )= = min j t J t ( i t ) { e rt C( t, i t , j t , f 1,t ,., f n,t ) + f 1,t =1 F 1,t f n,t =1 F n,t [ τ( f 1,t+1 ,., f n,t+1 | t, i t , j t , f 1,t ,., f n,t )ϕ( t+1, i t+1 , f 1,t+1 ,., f n,t+1 ) ] } t| 0t<T , i t , f 1,t ,., f n,t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqy1dy 2aaeWaaeaacaWG0bGaaiilaiaadMgadaWgaaWcbaGaamiDaaqabaGc caGGSaGaamOzamaaBaaaleaacaaIXaGaaiilaiaadshaaeqaaOGaai ilaiaac6cacaGGSaGaamOzamaaBaaaleaacaWGUbGaaiilaiaadsha aeqaaaGccaGLOaGaayzkaaGaeyypa0dabaGaeyypa0ZaaCbeaeaaci GGTbGaaiyAaiaac6gaaSqaaiaadQgadaWgaaadbaGaamiDaaqabaWc cqGHiiIZcaWGkbWaaSbaaWqaaiaadshaaeqaaSGaaiikaiaadMgada WgaaadbaGaamiDaaqabaWccaGGPaaabeaakmaacmaaeaqabeaacaWG LbWaaWbaaSqabeaacqGHsislcaWGYbGaamiDaaaakiaadoeadaqada qaaiaadshacaGGSaGaamyAamaaBaaaleaacaWG0baabeaakiaacYca caWGQbWaaSbaaSqaaiaadshaaeqaaOGaaiilaiaadAgadaWgaaWcba GaaGymaiaacYcacaWG0baabeaakiaacYcacaGGUaGaaiilaiaadAga daWgaaWcbaGaamOBaiaacYcacaWG0baabeaaaOGaayjkaiaawMcaaa qaaiabgUcaRmaaqahabaGaeyyXICTaeyyXICTaeyyXIC9aaabCaeaa daWadaqaaiabes8a0naabmaabaGaamOzamaaBaaaleaacaaIXaGaai ilaiaadshacqGHRaWkcaaIXaaabeaakiaacYcacaGGUaGaaiilaiaa dAgadaWgaaWcbaGaamOBaiaacYcacaWG0bGaey4kaSIaaGymaaqaba GcdaabbaqaaiaadshacaGGSaGaamyAamaaBaaaleaacaWG0baabeaa kiaacYcacaWGQbWaaSbaaSqaaiaadshaaeqaaOGaaiilaiaadAgada WgaaWcbaGaaGymaiaacYcacaWG0baabeaakiaacYcacaGGUaGaaiil aiaadAgadaWgaaWcbaGaamOBaiaacYcacaWG0baabeaaaOGaay5bSd aacaGLOaGaayzkaaGaeyyXICTaeqy1dy2aaeWaaeaacaWG0bGaey4k aSIaaGymaiaacYcacaWGPbWaaSbaaSqaaiaadshacqGHRaWkcaaIXa aabeaakiaacYcacaWGMbWaaSbaaSqaaiaaigdacaGGSaGaamiDaiab gUcaRiaaigdaaeqaaOGaaiilaiaac6cacaGGSaGaamOzamaaBaaale aacaWGUbGaaiilaiaadshacqGHRaWkcaaIXaaabeaaaOGaayjkaiaa wMcaaaGaay5waiaaw2faaaWcbaGaamOzamaaBaaameaacaWGUbGaai ilaiaadshaaeqaaSGaeyypa0JaaGymaaqaaiaadAeadaWgaaadbaGa amOBaiaacYcacaWG0baabeaaa0GaeyyeIuoaaSqaaiaadAgadaWgaa adbaGaaGymaiaacYcacaWG0baabeaaliabg2da9iaaigdaaeaacaWG gbWaaSbaaWqaaiaaigdacaGGSaGaamiDaaqabaaaniabggHiLdaaaO Gaay5Eaiaaw2haaaqaaaqaaiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaGzbVlabgcGiIiaadshadaabbaqaamaaBaaaleaacaaIWaGaey izImQaamiDaiabgYda8iaadsfaaeqaaaGccaGLhWoacaGGSaGaamyA amaaBaaaleaacaWG0baabeaakiaacYcacaWGMbWaaSbaaSqaaiaaig dacaGGSaGaamiDaaqabaGccaGGSaGaaiOlaiaacYcacaWGMbWaaSba aSqaaiaad6gacaGGSaGaamiDaaqabaaaaaa@EA5A@        (2)

The entering location in the following period is determined by the move in this period.

i t+1 = j t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadMgadaWgaa WcbaGaamiDaiabgUcaRiaaigdaaeqaaOGaeyypa0JaamOAamaaBaaa leaacaWG0baabeaaaaa@3DE2@      (3)

The states in the different countries k in the following period, are functions of time, the earlier states and moves, and stochastic events, ε k,t+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew7aLnaaBa aaleaacaWGRbGaaiilaiaadshacqGHRaWkcaaIXaaabeaaaaa@3D17@ .

f k,t+1 = f k,t+1 ( t+1, i t , j t , f k,t , ε k,t+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgadaWgaa WcbaGaam4AaiaacYcacaWG0bGaey4kaSIaaGymaaqabaGccqGH9aqp caWGMbWaaSbaaSqaaiaadUgacaGGSaGaamiDaiabgUcaRiaaigdaae qaaOWaaeWaaeaacaWG0bGaey4kaSIaaGymaiaacYcacaWGPbWaaSba aSqaaiaadshaaeqaaOGaaiilaiaadQgadaWgaaWcbaGaamiDaaqaba GccaGGSaGaamOzamaaBaaaleaacaWGRbGaaiilaiaadshaaeqaaOGa aiilaiabew7aLnaaBaaaleaacaWGRbGaaiilaiaadshacqGHRaWkca aIXaaabeaaaOGaayjkaiaawMcaaaaa@57A9@     (4)

The level of detail described in equations (1) to (4) is typically necessary in numerical versions of this optimization problem. An introduction to stochastic dynamic programming is given in Winston WL, et al., 2004.13 Alternative solution algorithms in cases of large dimensionality and alternative formulations are described in Lohmander, et al.,201714 and Lohmander, et al.,2018.15 Now, however, some general properties and results will be investigated and determined. In order to make the exposition easy to follow, the notation is simplified in the following steps:

j= j t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQgacqGH9a qpcaWGQbWaaSbaaSqaaiaadshaaeqaaaaa@3B17@   J= J t ( i t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadQeacqGH9a qpcaaMb8UaaGPaVlaadQeadaWgaaWcbaGaamiDaaqabaGccaGGOaGa amyAamaaBaaaleaacaWG0baabeaakiaacMcaaaa@416C@       (5)

ψ( j t )= e rt C( t, i t , j t , f 1,t ,., f n,t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeI8a5jaacI cacaWGQbWaaSbaaSqaaiaadshaaeqaaOGaaiykaiabg2da9iaadwga daahaaWcbeqaaiabgkHiTiaadkhacaWG0baaaOGaam4qamaabmaaba GaamiDaiaacYcacaWGPbWaaSbaaSqaaiaadshaaeqaaOGaaiilaiaa dQgadaWgaaWcbaGaamiDaaqabaGccaGGSaGaamOzamaaBaaaleaaca aIXaGaaiilaiaadshaaeqaaOGaaiilaiaac6cacaGGSaGaamOzamaa BaaaleaacaWGUbGaaiilaiaadshaaeqaaaGccaGLOaGaayzkaaaaaa@5440@        (6)

β( j t )= f 1,t =1 F 1,t f n,t =1 F n,t [ τ( f 1,t+1 ,., f n,t+1 | t, i t , j t , f 1,t ,., f n,t )ϕ( t+1, i t+1 , f 1,t+1 ,., f n,t+1 ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabek7aIjaacI cacaWGQbWaaSbaaSqaaiaadshaaeqaaOGaaiykaiabg2da9maaqaha baGaeyyXICTaeyyXICTaeyyXIC9aaabCaeaadaWadaqaaiabes8a0n aabmaabaGaamOzamaaBaaaleaacaaIXaGaaiilaiaadshacqGHRaWk caaIXaaabeaakiaacYcacaGGUaGaaiilaiaadAgadaWgaaWcbaGaam OBaiaacYcacaWG0bGaey4kaSIaaGymaaqabaGcdaabbaqaaiaadsha caGGSaGaamyAamaaBaaaleaacaWG0baabeaakiaacYcacaWGQbWaaS baaSqaaiaadshaaeqaaOGaaiilaiaadAgadaWgaaWcbaGaaGymaiaa cYcacaWG0baabeaakiaacYcacaGGUaGaaiilaiaadAgadaWgaaWcba GaamOBaiaacYcacaWG0baabeaaaOGaay5bSdaacaGLOaGaayzkaaGa eyyXICTaeqy1dy2aaeWaaeaacaWG0bGaey4kaSIaaGymaiaacYcaca WGPbWaaSbaaSqaaiaadshacqGHRaWkcaaIXaaabeaakiaacYcacaWG MbWaaSbaaSqaaiaaigdacaGGSaGaamiDaiabgUcaRiaaigdaaeqaaO Gaaiilaiaac6cacaGGSaGaamOzamaaBaaaleaacaWGUbGaaiilaiaa dshacqGHRaWkcaaIXaaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2 faaaWcbaGaamOzamaaBaaameaacaWGUbGaaiilaiaadshaaeqaaSGa eyypa0JaaGymaaqaaiaadAeadaWgaaadbaGaamOBaiaacYcacaWG0b aabeaaa0GaeyyeIuoaaSqaaiaadAgadaWgaaadbaGaaGymaiaacYca caWG0baabeaaliabg2da9iaaigdaaeaacaWGgbWaaSbaaWqaaiaaig dacaGGSaGaamiDaaqabaaaniabggHiLdaaaa@9819@        (7)

Hence, we want to minimize according to expression (8):

ϕ= min jJ { ψ(j)+β(j) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMjabg2 da9maaxababaGaciyBaiaacMgacaGGUbaaleaacaWGQbGaeyicI4Sa amOsaaqabaGcdaGadaqaaiabeI8a5jaacIcacaWGQbGaaiykaiabgU caRiabek7aIjaacIcacaWGQbGaaiykaaGaay5Eaiaaw2haaaaa@4B45@          (8)

The problem may be even more simplified with the following objective function:

φ(j)=ψ(j)+β(j) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeA8aQjaacI cacaWGQbGaaiykaiabg2da9iabeI8a5jaacIcacaWGQbGaaiykaiab gUcaRiabek7aIjaacIcacaWGQbGaaiykaaaa@44FA@       (9)

ϕ= min jJ { φ(j) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMjabg2 da9maaxababaGaciyBaiaacMgacaGGUbaaleaacaWGQbGaeyicI4Sa amOsaaqabaGcdaGadaqaaiabeA8aQjaacIcacaWGQbGaaiykaaGaay 5Eaiaaw2haaaaa@4669@       (10)

In order to determine the minimum, we may use the linear programming approach:

ϕ=maxχ s.t.χφ(j)j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqy1dy Maeyypa0JaciyBaiaacggacaGG4bGaeq4XdmgabaGaam4Caiaac6ca caWG0bGaaiOlaiaaysW7caaMe8UaaGjbVlaaykW7cqaHhpWycqGHKj YOcqaHgpGAcaGGOaGaamOAaiaacMcacaaMe8UaeyiaIiIaamOAaaaa aa@52B2@      (11)

Notation is once again simplified:

α j =φ(j),1jK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaWGQbaabeaakiabg2da9iabeA8aQjaacIcacaWGQbGaaiyk aiaaysW7caGGSaGaaGjbVlaaigdacqGHKjYOcaWGQbGaeyizImQaam 4saaaa@488B@      (12)

ϕ=maxχ s.t. χ α j ,1jK MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeqy1dy Maeyypa0JaciyBaiaacggacaGG4bGaeq4XdmgabaGaam4Caiaac6ca caWG0bGaaiOlaiaaysW7aeaacaaMf8UaaGzbVlabeE8aJjabgsMiJk abeg7aHnaaBaaaleaacaWGQbaabeaakiaaysW7caGGSaGaaGjbVlaa igdacqGHKjYOcaWGQbGaeyizImQaam4saaaaaa@564B@         (13)

From Figure 2 it is clear that the objective function nonstrictly decreases if the number of possible moves of the firefighting resource increases. This is stated in equation (14). This is one strong motive why we should consider alternative options to expand international cooperation in the firefighting operations. (Note that possibly increasing costs of administration are ignored here.)

Figure 2 illustrates the linear programming approach to the optimization problem.

( ΔK>0 )( Δϕ0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaey iLdqKaam4saiabg6da+iaaicdaaiaawIcacaGLPaaacqGHshI3daqa daqaaiabgs5aejabew9aMjabgsMiJkaaicdaaiaawIcacaGLPaaaaa a@4614@          (14)

If the fire problems in two countries have strong positive correlation, the fire areas and the economic importance of using constrained firefighting resources, are usually high in both countries simultaneously. Hence, in times when fire conditions are difficult, the marginal values of the resource are high in both countries. In other periods with limited fire problems, the marginal values of the resource are low in both countries. Figure 3 illustrates the situation with strongly positive correlation. In case (a), the economic effect of sending the firefighting resource to region 1 gives a very low objective function value. The alternative destination, region 2, also gives a low objective function value. Region 1 is however the best alternative. We may assume that the difference between these two options is caused by the fact that the resources initially are located to region 1 and that a transport of the resources from region 1 to region 2 implies that we get increased costs. Region 1 is the optimal location also in cases (b) and (c), since the importance of having the resource in the different regions are strongly positively correlated. Compare Tables 2 & 3 If fire conditions are difficult in one of the countries in the southern region (IFPS), they are usually difficult also in the other countries in the south. Hence, there is often no reason to relocate resources from one country withing the region to another in the same region. The situation is the same within the northern region (FGLNS).

Figure 3 Optimization with two regions when the correlation is 1.

Figure 4 illustrates the case where the correlation is zero. In two of the cases (a) and (b), we still prefer to use the mobile resources in region 1. In the final case, however, it is better to send the resources to region 2.

Figure 4 Optimization with two regions when the correlation is 0.

Figure 5 shows what happens if we have strongly negative correlation between the fire problems in the different regions. When conditions are difficult in one region, they are often better in the other region. Hence, it is rather likely that the importance of using the resource in some region is high.

Figure 5 Optimization with two regions when the correlation is -1.

In equation (15), we state that the objective function is a nonstrictly increasing function of the correlation. This follows from the three Figures 3, 4 & 5.

( Δ ρ j 1 , j 2 >0 )( Δϕ0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaey iLdqKaeqyWdi3aaSbaaSqaaiaadQgadaWgaaadbaGaaGymaaqabaWc caGGSaGaamOAamaaBaaameaacaaIYaaabeaaaSqabaGccqGH+aGpca aIWaaacaGLOaGaayzkaaGaeyO0H49aaeWaaeaacqGHuoarcqaHvpGz cqGHLjYScaaIWaaacaGLOaGaayzkaaaaaa@4BC0@        (15)

Special case:

Is it possible that a relevant specification of the model implies that the expected value of the objective function is a strictly increasing function of the correlation of the fire problems in different countries or regions? In order to investigate this question, we start with a simplified version of the general problem. First, we limit the problem to two countries or regions. Then, we only need one correlation and do not need the indices.

ρ= ρ 1,2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg8aYjabg2 da9iabeg8aYnaaBaaaleaacaaIXaGaaiilaiaaikdaaeqaaaaa@3DE7@       (16)

We assume that the relationship is linear, the expected values are the same and that the standard deviations ( σ 1 , σ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaabmaabaGaeq 4Wdm3aaSbaaSqaaiaaigdaaeqaaOGaaiilaiabeo8aZnaaBaaaleaa caaIYaaabeaaaOGaayjkaiaawMcaaaaa@3EB0@ are equal. Compare Råde, Westergren, et al, 2004.16 The parameter connects equations (18) and (20).

E( α 2 | α 1 )=E( α 2 )+ρ σ 2 σ 1 ( α 1 E( α 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaamaaeiaabaGaeqySde2aaSbaaSqaaiaaikdaaeqaaaGccaGLiWoa cqaHXoqydaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaacqGH9a qpcaWGfbGaaiikaiabeg7aHnaaBaaaleaacaaIYaaabeaakiaacMca cqGHRaWkcqaHbpGCdaWcaaqaaiabeo8aZnaaBaaaleaacaaIYaaabe aaaOqaaiabeo8aZnaaBaaaleaacaaIXaaabeaaaaGcdaqadaqaaiab eg7aHnaaBaaaleaacaaIXaaabeaakiabgkHiTiaadweacaGGOaGaeq ySde2aaSbaaSqaaiaaigdaaeqaaOGaaiykaaGaayjkaiaawMcaaaaa @57A6@      (17)

E( α 2 )=E( α 1 )=y+ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweacaGGOa GaeqySde2aaSbaaSqaaiaaikdaaeqaaOGaaiykaiabg2da9iaadwea caGGOaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9i aadMhacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@45E8@      (18)

The probability density function is binary, as seen in (19). It is defined in equation (20).

f( α 1 ){ 0,1 } α 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaiykaiabgIGiopaacmaa baGaaGimaiaacYcacaaIXaaacaGL7bGaayzFaaGaeyiaIiIaeqySde 2aaSbaaSqaaiaaigdaaeqaaaaa@4512@        (19)

f( α 1 )={ 0 1 0 α 1 <y y α 1 y+1 y+1< α 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadAgacaGGOa GaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaaiykaiabg2da9maaceaa baqbaeqabeGaaaqaauaabeqadeaaaeaacaaIWaaabaGaaGymaaqaai aaicdaaaaabaqbaeqabmqaaaqaaiabeg7aHnaaBaaaleaacaaIXaaa beaakiabgYda8iaadMhaaeaacaWG5bGaeyizImQaeqySde2aaSbaaS qaaiaaigdaaeqaaOGaeyizImQaamyEaiabgUcaRiaaigdaaeaacaWG 5bGaey4kaSIaaGymaiabgYda8iabeg7aHnaaBaaaleaacaaIXaaabe aaaaaaaaGccaGL7baaaaa@54B0@        (20)

We assume that the stochastic deviations (residuals) from the function (17) are small. Then, we can α 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaaIYaaabeaaaaa@3995@ approximate by the conditional expected value E( α 2 | α 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaamaaeiaabaGaeqySde2aaSbaaSqaaiaaikdaaeqaaaGccaGLiWoa cqaHXoqydaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaaa@4018@ . This is seen in (21).

α 2 =y+ 1 2 +ρ( α 1 y 1 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabeg7aHnaaBa aaleaacaaIYaaabeaakiabg2da9iaadMhacqGHRaWkdaWcaaqaaiaa igdaaeaacaaIYaaaaiabgUcaRiabeg8aYnaabmaabaGaeqySde2aaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaamyEaiabgkHiTmaalaaabaGa aGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaaa@4926@       (21)

The optimal objective function becomes the expression in equation (22).

ϕ( α 1 , α 2 ( α 1 ))=min( α 1 , α 2 ( α 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMjaacI cacqaHXoqydaWgaaWcbaGaaGymaaqabaGccaGGSaGaeqySde2aaSba aSqaaiaaikdaaeqaaOGaaiikaiabeg7aHnaaBaaaleaacaaIXaaabe aakiaacMcacaGGPaGaeyypa0JaciyBaiaacMgacaGGUbWaaeWaaeaa cqaHXoqydaWgaaWcbaGaaGymaaqabaGccaGGSaGaeqySde2aaSbaaS qaaiaaikdaaeqaaOGaaiikaiabeg7aHnaaBaaaleaacaaIXaaabeaa kiaacMcaaiaawIcacaGLPaaaaaa@5304@      (22)

In (23) and (24), we see how this depends on the parameters.

ϕ={ α 1 α 1 <y+ 1 2 α 2 α 1 y+ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMjabg2 da9maaceaabaqbaeqabiGaaaqaaiabeg7aHnaaBaaaleaacaaIXaaa beaaaOqaaiabeg7aHnaaBaaaleaacaaIXaaabeaakiabgYda8iaadM hacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaaqaaiabeg7aHnaa BaaaleaacaaIYaaabeaaaOqaaiabeg7aHnaaBaaaleaacaaIXaaabe aakiabgwMiZkaadMhacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaa aaaaaiaawUhaaaaa@4EDF@      (23)

ϕ={ α 1 α 1 <y+ 1 2 y+ 1 2 +ρ( α 1 y 1 2 ) α 1 y+ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMjabg2 da9maaceaabaqbaeqabiGaaaqaaiabeg7aHnaaBaaaleaacaaIXaaa beaaaOqaaiabeg7aHnaaBaaaleaacaaIXaaabeaakiabgYda8iaadM hacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaaqaaiaadMhacqGH RaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiabgUcaRiabeg8aYnaabm aabaGaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaamyEaiab gkHiTmaalaaabaGaaGymaaqaaiaaikdaaaaacaGLOaGaayzkaaaaba GaeqySde2aaSbaaSqaaiaaigdaaeqaaOGaeyyzImRaamyEaiabgUca RmaalaaabaGaaGymaaqaaiaaikdaaaaaaaGaay5Eaaaaaa@5ACF@      (24)

Now, we investigate the expected optimal objective function value.

E( ϕ )= ϕ( α 1 , α 2 ( α 1 ))f( α 1 )d α 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaiabew9aMbGaayjkaiaawMcaaiabg2da9maapehabaGaeqy1dyMa aiikaiabeg7aHnaaBaaaleaacaaIXaaabeaakiaacYcacqaHXoqyda WgaaWcbaGaaGOmaaqabaGccaGGOaGaeqySde2aaSbaaSqaaiaaigda aeqaaOGaaiykaiaacMcacaWGMbGaaiikaiabeg7aHnaaBaaaleaaca aIXaaabeaakiaacMcacaWGKbGaeqySde2aaSbaaSqaaiaaigdaaeqa aaqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aaaa@577A@      (25)

Equations (20), (24) and (25) give (26).

E( ϕ )= y y+ 1 2 α 1 d α 1 + y+ 1 2 y+1 ( y+ 1 2 +ρ( α 1 y 1 2 ) )d α 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaiabew9aMbGaayjkaiaawMcaaiabg2da9maapehabaGaeqySde2a aSbaaSqaaiaaigdaaeqaaOGaamizaiabeg7aHnaaBaaaleaacaaIXa aabeaaaeaacaWG5baabaGaamyEaiabgUcaRmaalaaabaGaaGymaaqa aiaaikdaaaaaniabgUIiYdGccqGHRaWkdaWdXbqaamaabmaabaGaam yEaiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaey4kaSIaeqyW di3aaeWaaeaacqaHXoqydaWgaaWcbaGaaGymaaqabaGccqGHsislca WG5bGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGL PaaaaiaawIcacaGLPaaacaWGKbGaeqySde2aaSbaaSqaaiaaigdaae qaaaqaaiaadMhacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaaqa aiaadMhacqGHRaWkcaaIXaaaniabgUIiYdaaaa@65B6@      (26)

In equations (27), (28) and (29), this is further developed.

E( ϕ )= [ ( α 1 ) 2 2 ] y+0 y+ 1 2 + [ ( y+ 1 2 ρy 1 2 ρ ) α 1 + 1 2 ρ ( α 1 ) 2 ] y+ 1 2 y+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaiabew9aMbGaayjkaiaawMcaaiabg2da9maadmaabaWaaSaaaeaa daqadaqaaiabeg7aHnaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawM caamaaCaaaleqabaGaaGOmaaaaaOqaaiaaikdaaaaacaGLBbGaayzx aaWaa0baaSqaaiaadMhacqGHRaWkcaaIWaaabaGaamyEaiabgUcaRm aalaaabaGaaGymaaqaaiaaikdaaaaaaOGaey4kaSYaamWaaeaadaqa daqaaiaadMhacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiabgk HiTiabeg8aYjaadMhacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaa aiabeg8aYbGaayjkaiaawMcaaiabeg7aHnaaBaaaleaacaaIXaaabe aakiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaGaeqyWdi3aaeWa aeaacqaHXoqydaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaada ahaaWcbeqaaiaaikdaaaaakiaawUfacaGLDbaadaqhaaWcbaGaamyE aiabgUcaRmaalaaabaGaaGymaaqaaiaaikdaaaaabaGaamyEaiabgU caRiaaigdaaaaaaa@6BC8@      (27)

E( ϕ )= 1 2 ( ( y+ 1 2 ) 2 y 2 )+( y+ 1 2 ρy 1 2 ρ ) 1 2 + 1 2 ρ( ( y+1 ) 2 ( y+ 1 2 ) 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaiabew9aMbGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqa aiaaikdaaaWaaeWaaeaadaqadaqaaiaadMhacqGHRaWkdaWcaaqaai aaigdaaeaacaaIYaaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaakiabgkHiTiaadMhadaahaaWcbeqaaiaaikdaaaaakiaawIcaca GLPaaacqGHRaWkdaqadaqaaiaadMhacqGHRaWkdaWcaaqaaiaaigda aeaacaaIYaaaaiabgkHiTiabeg8aYjaadMhacqGHsisldaWcaaqaai aaigdaaeaacaaIYaaaaiabeg8aYbGaayjkaiaawMcaamaalaaabaGa aGymaaqaaiaaikdaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaa aacqaHbpGCdaqadaqaamaabmaabaGaamyEaiabgUcaRiaaigdaaiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccqGHsisldaqadaqaai aadMhacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaaGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaaaa@68D1@       (28)

Results

The expected optimal objective function value can be expressed as (29).

E( ϕ )= 3 8 +y+ ρ 8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaiabew9aMbGaayjkaiaawMcaaiabg2da9maalaaabaGaaG4maaqa aiaaiIdaaaGaey4kaSIaamyEaiabgUcaRmaalaaabaGaeqyWdihaba GaaGioaaaaaaa@4312@       (29)

We observe, in (30), that the expected optimal objective function value is a strictly increasing function of the correlation.

dE( ϕ ) dρ = 1 8 >0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaalaaabaGaam izaiaadweadaqadaqaaiabew9aMbGaayjkaiaawMcaaaqaaiaadsga cqaHbpGCaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGioaaaacqGH+a GpcaaIWaaaaa@4320@      (30)

Equation (31) shows the expected optimal objective function values for three different correlation levels. Note that the Figures 6, 7 & 8 present the same results via areas marked by red color. These areas should be interpreted as integrals.

Figure 6 The expected objective function value, the red area plus y, with correlation 1.

Figure 7 The expected objective function value, the red area plus y, with correlation 0.

Figure 8 The expected objective function value, the red area plus y, with correlation -1.

E( ϕ )={ y+0.5 y+0.375 y+0.25 ρ=1 ρ=0 ρ=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaqada qaaiabew9aMbGaayjkaiaawMcaaiabg2da9maaceaabaqbaeqabeGa aaqaauaabeqadeaaaeaacaWG5bGaey4kaSIaaGimaiaac6cacaaI1a aabaGaamyEaiabgUcaRiaaicdacaGGUaGaaG4maiaaiEdacaaI1aaa baGaamyEaiabgUcaRiaaicdacaGGUaGaaGOmaiaaiwdaaaaabaqbae qabmqaaaqaaiabeg8aYjabg2da9iaaigdaaeaacqaHbpGCcqGH9aqp caaIWaaabaGaeqyWdiNaeyypa0JaeyOeI0IaaGymaaaaaaaacaGL7b aaaaa@573E@      (31)

Finally, in Figure 9 we find a graph of the expected optimal objective value as a function of the correlation.14–16

Figure 9 The expected objective function value as a function of the correlation.

Discussion

A model is just an approximation of some part of reality. The first model, defined in (1) – (4), is more general than the more specific analytical versions, found in equations (16)-(31). The ultimate goals of the models are two: a. To define and describe the system and 2. to derive some general conclusions concerning how the system should be controlled. The more general version (1) – (4) is useful when we have lots of empirical data available and want to create a precise numerical model. The more specific analytical models give us the option to understand general properties of the system and the optimal controls. The author suggests that future efforts to determine optimal strategies for international adaptive firefighting cooperation are based on explicit numerical versions of the defined optimization model according to equations (1), (2), (3) and (4). Without such analyses, expected costs will be higher, and fire problems worse, than necessary.

Conclusion

First, statistical properties of fires in different countries and regions in nine European countries were derived and described. It was found that two regions, IFPS and FGLNS, could be defined and that the fire correlations within the regions are negative and that the correlations between the regions are positive. This turned out to have important consequences for optimal international firefighting cooperation.

Allocation of internationally mobile firefighting units, such as water bombing airplanes, has been defined as a general multi period adaptive optimization problem. This was done via stochastic dynamic programming. Furthermore, a linear programming solution procedure was used to derive general conclusions. It was found that the objective function non-strictly decreases if the number of possible moves of the firefighting resources increases. This motivates expansion of international cooperation in firefighting operations. Furthermore, the objective function is a non-strictly increasing function of the correlation between the forest fire levels in different countries.

A specific version of the adaptive optimization problem was used to investigate the optimization problem is detail and to show how analytical solutions can be calculated. With this model, the expected optimal objective function value was determined as an explicit function of the correlation. It was proved that the expected optimal objective function value is a strictly increasing function of the correlation. Hence, since the lowest possible value of the expected objective function value is desired, the ideal situation is if the countries that share mobile firefighting resources have strongly negative fire correlation. Of course, the costs of moving equipment between nations is also an important factor.

Hence, as we understand from Table 3, adaptive firefighting cooperation between the regions IFPS and FGLNS have considerable advantages, thanks to the negative fire correlations. We must however not forget that the costs of moving equipment between some of these regions may be high. The costs of moving resources between the countries withing the regions IFPS and/or FGLNS are generally lower. Such moves are however usually less motivated since the degrees of fire problems have strongly positive correlations within the regions, as we see in Table 2.

Funding

None.

Acknowledgments

None.

Conflicts of interest

The authors declare that there is no conflict of interest.

References

  1. FAO. Global Forest Resources Assessment 2020: Main report. Rome. 2020.
  2. Abatzoglou JT, Williams AP. Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(42):11770–11775.
  3. Coogan SCP, Robinne FN, Jain P, et al. Scientists’ warning on wildfire — a Canadian perspective. Canadian Journal of Forest Research. 2019; 49(9):1015–1023.  
  4. Williams AP, Abatzoglou JT, Gershunov A, et al. Observed Impacts of Anthropogenic Climate Change on Wildfire in California. Earth’s Future. 2019.  
  5. Lohmander P. Dynamics and control of the CO2 level via a differential equation and alternative global emission strategies. International Robotics & Automation Journal, 2020;6(1):7‒15.
  6. Lohmander P. Fundamental principles of optimal utilization of forests with consideration of global warming. Central Asian Journal of Environmental Science and Technology Innovation. 2020;1(3):134–142.
  7. Lohmander P. Optimization of continuous cover forestry expansion under the influence of global warming. International Robotics & Automation Journal. 2020;6(3):127–132.
  8. San-Miguel-Ayanz J, Durrant T, Boca R, et al. Forest Fires in Europe, Middle East and North Africa 2018. European commission. 2019.
  9. Cave D. The World Burns All Year. Are There Enough Planes to Douse the Flames?. The New York Times. 2019.
  10. The Maritime Executive. Canada and Australia Could Transport Water Bombers by Sea. The Maritime Executive. 2020.
  11. Fire & Rescue World News. Italian water bombers on standby to assist Scandinavia´s forest fire efforts. International Association of Fire and Rescue Services. 2018.
  12. Mason R. Sweden’s wildfire defense expands with air tractor scooper water bombers. The Aerial Firefighting Magazine.  2020.
  13. Winston WL. Operations Research – Applications and algorithms (with CD-ROM and InfoTrac). Thomson, Brooks/Cole, 4th edition. 2004.
  14. Lohmander P. Two Approaches to Optimal Adaptive Control under Large Dimensionality. International Robotics and Automation Journal. 2017;3(4):328–330.
  15. Lohmander P. Applications and Mathematical Modeling in Operations Research. In: Cao BY, editor. Fuzzy Information and Engineering and Decision. IWDS 2016. 2018.
  16. Råde L, Westergren B. Mathematics Handbook for Science and Engineering. Springer. 1999.
Creative Commons Attribution License

©2020 Lohmander. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.