Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 8 Issue 2

Novel constructing adequate simultaneous predictive limits or confidence intervals for future outcomes via pivotal quantities and ancillary statistics in the case of parametric uncertainty of applied real-life models

Nicholas Nechval,1 Gundars Berzins,1 Konstantin Nechval2

1BVEF Research Institute, University of Latvia, Latvia
2Aviation Department, Riga Aeronautical Institute, Latvia

Correspondence: Nicholas Nechval, BVEF Research Institute, University of Latvia, Riga LV-1586, Latvia

Received: May 16, 2024 | Published: June 26, 2024

Citation: Nechval N, Berzins G, Nechval K. Novel constructing adequate simultaneous predictive limits or confidence intervals for future outcomes via pivotal quantities and ancillary statistics in the case of parametric uncertainty of applied real-life models. Aeron Aero Open Access J. 2024;8(2):110-113. DOI: 10.15406/aaoaj.2024.08.00197

Download PDF

Abstract

In this paper, we consider the problems of constructing simultaneous predictive limits on future outcomes of all of l future samples using the results of a previous sample from the same underlying distribution belonging to invariant family. The approach used here emphasizes pivotal quantities relevant for obtaining ancillary statistics and is applicable whenever the statistical problem is invariant under a group of transformations that acts transitively on the parameter space. It does not require the construction of any tables and is applicable whether the data are complete or Type II censored. The lower simultaneous predictive limits are often used as warranty criteria by manufacturers. The technique used here emphasizes pivotal quantities relevant for obtaining ancillary statistics and is applicable whenever the statistical problem is invariant under a group of transformations that acts transitively on the parameter space. Applications of the proposed procedures are given for the two-parameter exponential distribution. The proposed technique is based on a probability transformation and pivotal quantity averaging to solve real-life problems in all areas including engineering, science, industry, automation & robotics, business & finance, medicine and biomedicine. It is conceptually simple and easy to use. The exact lower simultaneous predictive limits are found and illustrated with a numerical example.

Keywords: future samples, observations, exact lower simultaneous predictive limits, statistical methods of constructing

Introduction

Simultaneous predictive limits are required in many practical applications. In particular, it is often necessary to construct lower simultaneous predictive limits that are exceeded with probability 1-a by observations or functions of observations of all of l future samples, each consisting of m units. The predictive limits depend upon a previously available complete or type II censored sample of size n from the same distribution. For instance, a situation where such simultaneous predictive limits are required is given below:

A customer has placed an order for a product which has an underlying time-to-failure distribution. The terms of his purchase call for l monthly shipments. From each shipment the customer will select a random sample of m units and accept the shipment only if the smallest time to failure for this sample exceeds a specified lower limit. The manufacturer wishes to use the results of a previous sample of n units to calculate this limit so that the probability is 1-a that all l shipments will be accepted. It is assumed that the n past units and the lm future units are random samples from the same population.

In this paper we consider lower simultaneous predictive limits. The lower simultaneous predictive limit is based on observations in an initial sample. The technique used here emphasizes pivotal quantities relevant for obtaining ancillary statistics.1–7 The exact lower simultaneous predictive limit on future order statistics is obtained via the technique of invariant embedding and illustrated with numerical example.

Two-parameter exponential distribution

Let X = (X1 ≤; ... ≤ Xk) be the first k ordered observations (order statistics) in a sample of size n from the two-parameter exponential distribution with the probability density function

f ϑ (x)= σ 1 exp( xμ σ ),   σ>0, μ0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacqaHrpGsaeqaaOGaaiikaiaadIhacaGGPaGaeyypa0Jaeq4W dm3aaWbaaSqabeaacqGHsislcaaIXaaaaOGaciyzaiaacIhacaGGWb WaaeWaaeaacqGHsisldaWcaaqaaiaadIhacqGHsislcqaH8oqBaeaa cqaHdpWCaaaacaGLOaGaayzkaaGaaiilaiaabccacaqGGaGaaeiiai abeo8aZjabg6da+iaaicdacaGGSaGaaeiiaiabeY7aTjabgwMiZkaa icdacaGGSaaaaa@56C9@    (1)

and the cumulative probability distribution function

F ϑ (x)=1exp( xμ σ ), F ¯ ϑ (x)=1 F ϑ (x)=exp( xμ σ ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacqaHrpGsaeqaaOGaaiikaiaadIhacaGGPaGaeyypa0JaaGym aiabgkHiTiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaae aacaWG4bGaeyOeI0IaeqiVd0gabaGaeq4WdmhaaaGaayjkaiaawMca aiaacYcaceWGgbGbaebadaWgaaWcbaGaeqy0dOeabeaakiaacIcaca WG4bGaaiykaiabg2da9iaaigdacqGHsislcaWGgbWaaSbaaSqaaiab eg9akbqabaGccaGGOaGaamiEaiaacMcacqGH9aqpciGGLbGaaiiEai aacchadaqadaqaaiabgkHiTmaalaaabaGaamiEaiabgkHiTiabeY7a Tbqaaiabeo8aZbaaaiaawIcacaGLPaaacaGGSaaaaa@6246@    (2)

where ϑ=(μ,σ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy0dOKaey ypa0JaaiikaiabeY7aTjaacYcacqaHdpWCcaGGPaGaaiilaaaa@3EC7@ μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@379D@ is the shift parameter and σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdmhaaa@37AA@ is the scale parameter. It is assumed that these parameters are unknown. In Type II censoring, which is of primary interest here, the number of survivors is fixed and X is a random variable. In this case, the likelihood function is given by

L(μ,σ)= i=1 k f ϑ ( x i ) ( F ¯ ϑ ( x k ) ) nk = 1 σ k exp( [ i=1 k ( x i μ )+(nk)( x k μ) ]/σ ) = 1 σ k exp( [ i=1 k ( x i x 1 + x 1 μ )+(nk)( x k x 1 + x 1 μ) ]/σ ) = 1 σ k1 exp( [ i=1 k ( x i x 1 )+(nk)( x k x 1 ) ]/σ ) × 1 σ exp( n( x 1 μ) σ )= 1 σ k1 exp( s k σ )× 1 σ exp( k( s 1 μ) σ ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaaqca WGmbGaaiikaiabeY7aTjaacYcacqaHdpWCcaGGPaGaeyypa0Jcdaqe WbqcaauaaiaadAgakmaaBaaajeaqbaGaeqy0dOeabeaaaeaacaWGPb Gaeyypa0JaaGymaaqaaiaadUgaaKWaajabg+GivdqcaaKaaiikaiaa dIhakmaaBaaajeaqbaGaamyAaaqabaqcaaKaaiykaOWaaeWaaKaaaf aaceWGgbGbaebakmaaBaaajeaqbaGaeqy0dOeabeaajaaqcaGGOaGa amiEaOWaaSbaaKqaafaacaWGRbaabeaajaaqcaGGPaaacaGLOaGaay zkaaGcdaahaaqcbauabeaacaWGUbGaeyOeI0Iaam4AaaaajaaqcqGH 9aqpkmaalaaajaaqbaGaaGymaaqaaiabeo8aZPWaaWbaaKqaafqaba Gaam4AaaaaaaqcaaKaciyzaiaacIhacaGGWbGcdaqadaqcaauaaiab gkHiTOWaaSGbaKaaafaakmaadmaajaaqbaGcdaaeWbqcaauaaOWaae WaaKaaafaacaWG4bGcdaWgaaqcbauaaiaadMgaaeqaaKaaajabgkHi TiabeY7aTbGaayjkaiaawMcaaiabgUcaRiaacIcacaWGUbGaeyOeI0 Iaam4AaiaacMcacaGGOaGaamiEaOWaaSbaaKqaafaacaWGRbaabeaa jaaqcqGHsislcqaH8oqBcaGGPaaajeaqbaGaamyAaiabg2da9iaaig daaeaacaWGRbaajmaqcqGHris5aaqcaaKaay5waiaaw2faaaqaaiab eo8aZbaaaiaawIcacaGLPaaaaeaacqGH9aqpkmaalaaajaaqbaGaaG ymaaqaaiabeo8aZPWaaWbaaKqaafqabaGaam4AaaaaaaqcaaKaciyz aiaacIhacaGGWbGcdaqadaqcaauaaiabgkHiTOWaaSGbaKaaafaakm aadmaajaaqbaGcdaaeWbqcaauaaOWaaeWaaKaaafaacaWG4bGcdaWg aaqcbauaaiaadMgaaeqaaKaaajabgkHiTiaadIhakmaaBaaajeaqba GaaGymaaqabaqcaaKaey4kaSIaamiEaOWaaSbaaKqaafaacaaIXaaa beaajaaqcqGHsislcqaH8oqBaiaawIcacaGLPaaacqGHRaWkcaGGOa GaamOBaiabgkHiTiaadUgacaGGPaGaaiikaiaadIhakmaaBaaajeaq baGaam4AaaqabaqcaaKaeyOeI0IaamiEaOWaaSbaaKqaafaacaaIXa aabeaajaaqcqGHRaWkcaWG4bGcdaWgaaqcbauaaiaaigdaaeqaaKaa ajabgkHiTiabeY7aTjaacMcaaKqaafaacaWGPbGaeyypa0JaaGymaa qaaiaadUgaaKWaajabggHiLdaajaaqcaGLBbGaayzxaaaabaGaeq4W dmhaaaGaayjkaiaawMcaaaqaaiabg2da9OWaaSaaaKaaafaacaaIXa aabaGaeq4WdmNcdaahaaqcbauabeaacaWGRbGaeyOeI0IaaGymaaaa aaqcaaKaciyzaiaacIhacaGGWbGcdaqadaqcaauaaiabgkHiTOWaaS GbaKaaafaakmaadmaajaaqbaGcdaaeWbqcaauaaiaacIcacaWG4bGc daWgaaqcbauaaiaadMgaaeqaaKaaajabgkHiTiaadIhakmaaBaaaje aqbaGaaGymaaqabaqcaaKaaiykaiabgUcaRiaacIcacaWGUbGaeyOe I0Iaam4AaiaacMcacaGGOaGaamiEaOWaaSbaaKqaafaacaWGRbaabe aajaaqcqGHsislcaWG4bGcdaWgaaqcbauaaiaaigdaaeqaaKaaajaa cMcaaKqaafaacaWGPbGaeyypa0JaaGymaaqaaiaadUgaaKWaajabgg HiLdaajaaqcaGLBbGaayzxaaaabaGaeq4WdmhaaaGaayjkaiaawMca aaGcbaqcaaKaey41aqRcdaWcaaqcaauaaiaaigdaaeaacqaHdpWCaa GaciyzaiaacIhacaGGWbGcdaqadaqcaauaaiabgkHiTOWaaSaaaKaa afaacaWGUbGaaiikaiaadIhakmaaBaaajeaqbaGaaGymaaqabaqcaa KaeyOeI0IaeqiVd0Maaiykaaqaaiabeo8aZbaaaiaawIcacaGLPaaa cqGH9aqpkmaalaaajaaqbaGaaGymaaqaaiabeo8aZPWaaWbaaKqaaf qabaGaam4AaiabgkHiTiaaigdaaaaaaKaaajGacwgacaGG4bGaaiiC aOWaaeWaaKaaafaacqGHsislkmaalaaajaaqbaGaam4CaOWaaSbaaK qaafaacaWGRbaabeaaaKaaafaacqaHdpWCaaaacaGLOaGaayzkaaGa ey41aqRcdaWcaaqcaauaaiaaigdaaeaacqaHdpWCaaGaciyzaiaacI hacaGGWbGcdaqadaqcaauaaiabgkHiTOWaaSaaaKaaafaacaWGRbGa aiikaiaadohakmaaBaaajeaqbaGaaGymaaqabaqcaaKaeyOeI0Iaeq iVd0Maaiykaaqaaiabeo8aZbaaaiaawIcacaGLPaaacaGGSaaaaaa@1F86@    (3)

where

S=( S 1 = X 1 ,  S k = i=1 k ( Y i Y ) 1 +(nk)( X k X 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4uaiabg2 da9maabmaabaGaam4uamaaBaaaleaacaaIXaaabeaakiabg2da9iaa dIfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaeiiaiaadofadaWgaa WcbaGaam4AaaqabaGccqGH9aqpdaaeWbqaaiaacIcacaWGzbWaaSba aSqaaiaadMgaaeqaaOGaeyOeI0IaamywamaaBeaaleaacaaIXaaabe aakiaacMcacqGHRaWkcaGGOaGaamOBaiabgkHiTiaadUgacaGGPaGa aiikaiaadIfadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWGybWaaS baaSqaaiaaigdaaeqaaOGaaiykaaWcbaGaamyAaiabg2da9iaaigda aeaacaWGRbaaniabggHiLdaakiaawIcacaGLPaaaaaa@596B@    (4)

is the complete sufficient statistic for . The probability density function of S = (S1, Sk) is given by

f ϑ ( s 1 , s k )= 1 σ k1 exp( s k σ )× 1 σ exp( n( s 1 μ) σ ) 1 s k k2 0 s k k2 σ k1 exp( s k σ )d s k × 1 n 0 n σ exp( n( s 1 μ) σ )d s 1 = 1 σ k1 exp( s k σ )× 1 σ exp( n( s 1 μ) σ ) Γ(k1) s k k2 × 1 n = 1 Γ(k1) σ k1 s k k2 exp( s k σ )× n σ exp( n( s 1 μ) σ )= f σ ( s k ) f ϑ ( s 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaaqca WGMbWaaSbaaKqaafaacqaHrpGsaeqaaKaaajaacIcacaWGZbWaaSba aKqaafaacaaIXaaabeaajaaqcaGGSaGaam4CamaaBaaajeaqbaGaam 4AaaqabaqcaaKaaiykaiabg2da9maalaaabaWaaSaaaeaacaaIXaaa baGaeq4Wdm3aaWbaaKqaafqabaGaam4AaiabgkHiTiaaigdaaaaaaK aaajGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaWG ZbWaaSbaaKqaafaacaWGRbaabeaaaKaaafaacqaHdpWCaaaacaGLOa GaayzkaaGaey41aq7aaSaaaeaacaaIXaaabaGaeq4WdmhaaiGacwga caGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaWGUbGaaiikai aadohadaWgaaqcbauaaiaaigdaaeqaaKaaajabgkHiTiabeY7aTjaa cMcaaeaacqaHdpWCaaaacaGLOaGaayzkaaaabaWaaSaaaeaacaaIXa aabaGaam4CamaaDaaajeaqbaGaam4AaaqaaiaadUgacqGHsislcaaI YaaaaaaajaaqdaWdXbqaamaalaaabaGaam4CamaaDaaajeaqbaGaam 4AaaqaaiaadUgacqGHsislcaaIYaaaaaqcaauaaiabeo8aZnaaCaaa jeaqbeqaaiaadUgacqGHsislcaaIXaaaaaaajaaqciGGLbGaaiiEai aacchadaqadaqaaiabgkHiTmaalaaabaGaam4CamaaBaaajeaqbaGa am4AaaqabaaajaaqbaGaeq4WdmhaaaGaayjkaiaawMcaaiaadsgaca WGZbWaaSbaaKqaafaacaWGRbaabeaaaeaacaaIWaaabaGaeyOhIuka jmaqcqGHRiI8aKaaajabgEna0oaalaaabaGaaGymaaqaaiaad6gaaa Waa8qCaeaadaWcaaqaaiaad6gaaeaacqaHdpWCaaGaciyzaiaacIha caGGWbWaaeWaaeaacqGHsisldaWcaaqaaiaad6gacaGGOaGaam4Cam aaBaaajeaqbaGaaGymaaqabaqcaaKaeyOeI0IaeqiVd0Maaiykaaqa aiabeo8aZbaaaiaawIcacaGLPaaacaWGKbGaam4CamaaBaaajeaqba GaaGymaaqabaaabaGaaGimaaqaaiabg6HiLcqcdaKaey4kIipaaaaa jaaqbaGaeyypa0ZaaSaaaeaadaWcaaqaaiaaigdaaeaacqaHdpWCda ahaaqcbauabeaacaWGRbGaeyOeI0IaaGymaaaaaaqcaaKaciyzaiaa cIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiaadohadaWgaaqcba uaaiaadUgaaeqaaaqcaauaaiabeo8aZbaaaiaawIcacaGLPaaacqGH xdaTdaWcaaqaaiaaigdaaeaacqaHdpWCaaGaciyzaiaacIhacaGGWb WaaeWaaeaacqGHsisldaWcaaqaaiaad6gacaGGOaGaam4CamaaBaaa jeaqbaGaaGymaaqabaqcaaKaeyOeI0IaeqiVd0Maaiykaaqaaiabeo 8aZbaaaiaawIcacaGLPaaaaeaadaWcaaqaaiabfo5ahjaacIcacaWG RbGaeyOeI0IaaGymaiaacMcaaeaacaWGZbWaa0baaKqaafaacaWGRb aabaGaam4AaiabgkHiTiaaikdaaaaaaKaaajabgEna0oaalaaabaGa aGymaaqaaiaad6gaaaaaaaGcbaqcaaKaeyypa0ZaaSaaaeaacaaIXa aabaGaeu4KdCKaaiikaiaadUgacqGHsislcaaIXaGaaiykaiabeo8a ZnaaCaaajeaqbeqaaiaadUgacqGHsislcaaIXaaaaaaajaaqcaWGZb Waa0baaKqaafaacaWGRbaabaGaam4AaiabgkHiTiaaikdaaaqcaaKa ciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiaadohada WgaaqcbauaaiaadUgaaeqaaaqcaauaaiabeo8aZbaaaiaawIcacaGL PaaacqGHxdaTdaWcaaqaaiaad6gaaeaacqaHdpWCaaGaciyzaiaacI hacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiaad6gacaGGOaGaam4C amaaBaaajeaqbaGaaGymaaqabaqcaaKaeyOeI0IaeqiVd0Maaiykaa qaaiabeo8aZbaaaiaawIcacaGLPaaacqGH9aqpcaWGMbWaaSbaaKqa afaacqaHdpWCaeqaaKaaanaabmaabaGaam4CamaaBaaajeaqbaGaam 4AaaqabaaajaaqcaGLOaGaayzkaaGaamOzamaaBaaajeaqbaGaeqy0 dOeabeaajaaqdaqadaqaaiaadohadaWgaaqcbauaaiaaigdaaeqaaa qcaaKaayjkaiaawMcaaiaacYcaaaaa@157E@    (5)

where

f ϑ ( s 1 )= n σ exp( n( s 1 μ) σ ),    s 1 μ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacqaHrpGsaeqaaOWaaeWaaeaacaWGZbWaaSbaaSqaaiaaigda aeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGUbaabaGaeq 4WdmhaaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaa caWGUbGaaiikaiaadohadaWgaaWcbaGaaGymaaqabaGccqGHsislcq aH8oqBcaGGPaaabaGaeq4WdmhaaaGaayjkaiaawMcaaiaacYcacaqG GaGaaeiiaiaabccacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaeyyzIm RaeqiVd0Maaiilaaaa@5698@    (6)

f σ ( s k )= 1 Γ(k1) σ k1 s k k2 exp( s k σ ),    s k 0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacqaHdpWCaeqaaOWaaeWaaeaacaWGZbWaaSbaaSqaaiaadUga aeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaeu 4KdCKaaiikaiaadUgacqGHsislcaaIXaGaaiykaiabeo8aZnaaCaaa leqabaGaam4AaiabgkHiTiaaigdaaaaaaOGaam4CamaaDaaaleaaca WGRbaabaGaam4AaiabgkHiTiaaikdaaaGcciGGLbGaaiiEaiaaccha daqadaqaaiabgkHiTmaalaaabaGaam4CamaaBaaaleaacaWGRbaabe aaaOqaaiabeo8aZbaaaiaawIcacaGLPaaacaGGSaGaaeiiaiaabcca caqGGaGaam4CamaaBaaaleaacaWGRbaabeaakiabgwMiZkaaicdaca GGSaaaaa@5E0F@    (7)

V 1 = S 1 μ σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaaIXaaabeaakiabg2da9maalaaabaGaam4uamaaBaaaleaa caaIXaaabeaakiabgkHiTiabeY7aTbqaaiabeo8aZbaaaaa@3EF8@    (8)

is the pivotal quantity, the probability density function of which is given by

f 1 ( v 1 )=nexp( n v 1 ),    v 1 0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIXaaabeaakiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaiykaiabg2da9iaad6gaciGGLbGaaiiEaiaacchadaqadaqaai abgkHiTiaad6gacaWG2bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGa ayzkaaGaaiilaiaabccacaqGGaGaaeiiaiaadAhadaWgaaWcbaGaaG ymaaqabaGccqGHLjYScaaIWaGaaiilaaaa@4CE6@    (9)

V k = S k σ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGRbaabeaakiabg2da9maalaaabaGaam4uamaaBaaaleaa caWGRbaabeaaaOqaaiabeo8aZbaaaaa@3CBF@    (10)

is the pivotal quantity, the probability density function of which is given by

f k ( v k )= 1 Γ(k1) v k k2 exp( v k ),    v k 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGRbaabeaakmaabmaabaGaamODamaaBaaaleaacaWGRbaa beaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiabfo 5ahjaacIcacaWGRbGaeyOeI0IaaGymaiaacMcaaaGaamODamaaDaaa leaacaWGRbaabaGaam4AaiabgkHiTiaaikdaaaGcciGGLbGaaiiEai aacchadaqadaqaaiabgkHiTiaadAhadaWgaaWcbaGaam4Aaaqabaaa kiaawIcacaGLPaaacaGGSaGaaeiiaiaabccacaqGGaGaamODamaaBa aaleaacaWGRbaabeaakiabgwMiZkaaicdacaGGUaaaaa@56E5@    (11)

Practical example for constructing lower simultaneous prediction limit

Let's assume that an airline has a policy of replacing a specific device used in multiple locations in its fleet avionics systems every 7 months. The airline doesn't want one of these devices to fail before it can be replaced. Shipments of a batch of devices are carried out from each of l enterprises. Each enterprise selects a random sample of m devices. The manufacturer wishes to take this total random sample and calculate the lower limit of simultaneous forecasting such that all deliveries will be accepted with probability 1-a.

Innovative technique of constructing lower simultaneous prediction limit

For instance, suppose that X 1 ... X n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa aaleaacaaIXaaabeaakiabgsMiJkaac6cacaGGUaGaaiOlaiabgsMi JkaadIfadaWgaaWcbaGaamOBaaqabaaaaa@3F31@ and Y 1j ... Y mj ,j{ 1,...,l }, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaGaamOAaaqabaGccqGHKjYOcaGGUaGaaiOlaiaac6ca cqGHKjYOcaWGzbWaaSbaaSqaaiaad2gacaWGQbaabeaakiaacYcaca WGQbGaeyicI48aaiWaaeaacaaIXaGaaiilaiaac6cacaGGUaGaaiOl aiaacYcacaWGSbaacaGL7bGaayzFaaGaaiilaaaa@4C40@  denote n+lm independent and identically distributed random variables from a two –parameter exponential distribution (14), where ϑ=(μ,σ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy0dOKaey ypa0JaaiikaiabeY7aTjaacYcacqaHdpWCcaGGPaGaaiilaaaa@3EC7@ μ is the shift parameter andis the scale parameter. It is assumed that these parameters are unknown. Let

S=( S 1 = X 1 ,  S k = i=1 k ( X i X 1 )+(nk)( X k X 1 ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4uaiabg2 da9maabmaabaGaam4uamaaBaaaleaacaaIXaaabeaakiabg2da9iaa dIfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaeiiaiaadofadaWgaa WcbaGaam4AaaqabaGccqGH9aqpdaaeWbqaaiaacIcacaWGybWaaSba aSqaaiaadMgaaeqaaOGaeyOeI0IaamiwamaaBaaaleaacaaIXaaabe aakiaacMcacqGHRaWkcaGGOaGaamOBaiabgkHiTiaadUgacaGGPaGa aiikaiaadIfadaWgaaWcbaGaam4AaaqabaGccqGHsislcaWGybWaaS baaSqaaiaaigdaaeqaaOGaaiykaaWcbaGaamyAaiabg2da9iaaigda aeaacaWGRbaaniabggHiLdaakiaawIcacaGLPaaacaGGSaaaaa@5A18@    (12)

where X1=8, n=20, l=3, m=5, k=16 and Sk =103.5402, with

f ϑ ( s 1 )= n σ exp( n( s 1 μ) σ ),    s 1 μ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacqaHrpGsaeqaaOWaaeWaaeaacaWGZbWaaSbaaSqaaiaaigda aeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGUbaabaGaeq 4WdmhaaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaa caWGUbGaaiikaiaadohadaWgaaWcbaGaaGymaaqabaGccqGHsislcq aH8oqBcaGGPaaabaGaeq4WdmhaaaGaayjkaiaawMcaaiaacYcacaqG GaGaaeiiaiaabccacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaeyyzIm RaeqiVd0Maaiilaaaa@5698@    (13)

f σ ( s k )= 1 Γ(k1) σ k1 s k k2 exp( s k σ ),    s k 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacqaHdpWCaeqaaOWaaeWaaeaacaWGZbWaaSbaaSqaaiaadUga aeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaeu 4KdCKaaiikaiaadUgacqGHsislcaaIXaGaaiykaiabeo8aZnaaCaaa leqabaGaam4AaiabgkHiTiaaigdaaaaaaOGaam4CamaaDaaaleaaca WGRbaabaGaam4AaiabgkHiTiaaikdaaaGcciGGLbGaaiiEaiaaccha daqadaqaaiabgkHiTmaalaaabaGaam4CamaaBaaaleaacaWGRbaabe aaaOqaaiabeo8aZbaaaiaawIcacaGLPaaacaGGSaGaaeiiaiaabcca caqGGaGaam4CamaaBaaaleaacaWGRbaabeaakiabgwMiZkaaicdaca GGUaaaaa@5E11@    (14)

f ϑ ( y 1 )= lm σ exp( lm( y 1 μ) σ ),    y 1 μ, F ϑ ( y 1 )=1exp( lm( y 1 μ ) σ ), F ¯ ϑ ( y 1 )=exp( lm( y 1 μ ) σ ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb WaaSbaaSqaaiabeg9akbqabaGcdaqadaqaaiaadMhadaWgaaWcbaGa aGymaaqabaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaadYgaca WGTbaabaGaeq4WdmhaaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOe I0YaaSaaaeaacaWGSbGaamyBaiaacIcacaWG5bWaaSbaaSqaaiaaig daaeqaaOGaeyOeI0IaeqiVd0Maaiykaaqaaiabeo8aZbaaaiaawIca caGLPaaacaGGSaGaaeiiaiaabccacaqGGaGaamyEamaaBaaaleaaca aIXaaabeaakiabgwMiZkabeY7aTjaacYcaaeaacaWGgbWaaSbaaSqa aiabeg9akbqabaGccaGGOaGaamyEamaaBaaaleaacaaIXaaabeaaki aacMcacqGH9aqpcaaIXaGaeyOeI0IaciyzaiaacIhacaGGWbWaaeWa aeaacqGHsisldaWcaaqaaiaadYgacaWGTbWaaeWaaeaacaWG5bWaaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaeqiVd0gacaGLOaGaayzkaaaa baGaeq4WdmhaaaGaayjkaiaawMcaaiaacYcaaeaaceWGgbGbaebada WgaaWcbaGaeqy0dOeabeaakiaacIcacaWG5bWaaSbaaSqaaiaaigda aeqaaOGaaiykaiabg2da9iGacwgacaGG4bGaaiiCamaabmaabaGaey OeI0YaaSaaaeaacaWGSbGaamyBamaabmaabaGaamyEamaaBaaaleaa caaIXaaabeaakiabgkHiTiabeY7aTbGaayjkaiaawMcaaaqaaiabeo 8aZbaaaiaawIcacaGLPaaacaGGUaaaaaa@87E6@    (15)

It follows from (15) that

F ¯ ϑ ( y 1 )=exp( lm( y 1 μ ) σ )=exp( lm( y 1 s 1 + s 1 μ ) σ ) =exp( lm( y 1 s 1 ) σ )exp( lm( s 1 μ ) σ ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaceWGgb GbaebadaWgaaWcbaGaeqy0dOeabeaakiaacIcacaWG5bWaaSbaaSqa aiaaigdaaeqaaOGaaiykaiabg2da9iGacwgacaGG4bGaaiiCamaabm aabaGaeyOeI0YaaSaaaeaacaWGSbGaamyBamaabmaabaGaamyEamaa BaaaleaacaaIXaaabeaakiabgkHiTiabeY7aTbGaayjkaiaawMcaaa qaaiabeo8aZbaaaiaawIcacaGLPaaacqGH9aqpciGGLbGaaiiEaiaa cchadaqadaqaaiabgkHiTmaalaaabaGaamiBaiaad2gadaqadaqaai aadMhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGZbWaaSbaaSqa aiaaigdaaeqaaOGaey4kaSIaam4CamaaBaaaleaacaaIXaaabeaaki abgkHiTiabeY7aTbGaayjkaiaawMcaaaqaaiabeo8aZbaaaiaawIca caGLPaaaaeaacqGH9aqpciGGLbGaaiiEaiaacchadaqadaqaaiabgk HiTmaalaaabaGaamiBaiaad2gadaqadaqaaiaadMhadaWgaaWcbaGa aGymaaqabaGccqGHsislcaWGZbWaaSbaaSqaaiaaigdaaeqaaaGcca GLOaGaayzkaaaabaGaeq4WdmhaaaGaayjkaiaawMcaaiGacwgacaGG 4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaWGSbGaamyBamaabm aabaGaam4CamaaBaaaleaacaaIXaaabeaakiabgkHiTiabeY7aTbGa ayjkaiaawMcaaaqaaiabeo8aZbaaaiaawIcacaGLPaaacaGGUaaaaa a@8211@    (16)

It follows from (13) and (16) that

μ F ¯ ϑ ( y 1 ) f ϑ ( s 1 )d s 1 = μ exp( lm( y 1 s 1 ) σ ) exp( lm( s 1 μ ) σ ) n σ exp( n( s 1 μ) σ )d s 1 = n n+lm exp( lm( y 1 s 1 ) σ ) μ n+lm σ exp( [ n+lm ]( s 1 μ) σ )d s 1 = n n+lm exp( lm( y 1 s 1 ) σ ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajqgaG9 =aa8qCaeaaceWGgbGbaebadaWgaaqcKfaG=haacqaHrpGsaeqaaKaz aa2=caGGOaGaamyEamaaBaaajqwaa+FaaiaaigdaaeqaaKazaa2=ca GGPaaajqwaa+FaaiabeY7aTbqaaiabg6HiLcqcKnay=labgUIiYdqc Kbay=laadAgadaWgaaqcKfaG=haacqaHrpGsaeqaaKazaa2=caGGOa Gaam4CamaaBaaajqwaa+FaaiaaigdaaeqaaKazaa2=caGGPaGaamiz aiaadohadaWgaaqcKfaG=haacaaIXaaabeaajqgaG9Vaeyypa0Zaa8 qCaqaabeqaaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaa aeaacaWGSbGaamyBamaabmaabaGaamyEamaaBaaajqwaa+Faaiaaig daaeqaaKazaa2=cqGHsislcaWGZbWaaSbaaKazba4=baGaaGymaaqa baaajqgaG9VaayjkaiaawMcaaaqaaiabeo8aZbaaaiaawIcacaGLPa aaaeaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGa amiBaiaad2gadaqadaqaaiaadohadaWgaaqcKfaG=haacaaIXaaabe aajqgaG9VaeyOeI0IaeqiVd0gacaGLOaGaayzkaaaabaGaeq4Wdmha aaGaayjkaiaawMcaaaaajqwaa+FaaiabeY7aTbqaaiabg6HiLcqcKn ay=labgUIiYdqcKbay=paalaaabaGaamOBaaqaaiabeo8aZbaaciGG LbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGaamOBaiaacI cacaWGZbWaaSbaaKazba4=baGaaGymaaqabaqcKbay=labgkHiTiab eY7aTjaacMcaaeaacqaHdpWCaaaacaGLOaGaayzkaaGaamizaiaado hadaWgaaqcKfaG=haacaaIXaaabeaaaOqaaKazaa2=cqGH9aqpdaWc aaqaaiaad6gaaeaacaWGUbGaey4kaSIaamiBaiaad2gaaaGaciyzai aacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiaadYgacaWGTbWa aeWaaeaacaWG5bWaaSbaaKazba4=baGaaGymaaqabaqcKbay=labgk HiTiaadohadaWgaaqcKfaG=haacaaIXaaabeaaaKazaa2=caGLOaGa ayzkaaaabaGaeq4WdmhaaaGaayjkaiaawMcaamaapehabaWaaSaaae aacaWGUbGaey4kaSIaamiBaiaad2gaaeaacqaHdpWCaaGaciyzaiaa cIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaamaadmaabaGaamOBai abgUcaRiaadYgacaWGTbaacaGLBbGaayzxaaGaaiikaiaadohadaWg aaqcKfaG=haacaaIXaaabeaajqgaG9VaeyOeI0IaeqiVd0Maaiykaa qaaiabeo8aZbaaaiaawIcacaGLPaaacaWGKbGaam4CamaaBaaajqwa a+FaaiaaigdaaeqaaKazaa2=cqGH9aqpaKazba4=baGaeqiVd0gaba GaeyOhIukajq2aG9Vaey4kIipajqgaG9=aaSaaaeaacaWGUbaabaGa amOBaiabgUcaRiaadYgacaWGTbaaaiGacwgacaGG4bGaaiiCamaabm aabaGaeyOeI0YaaSaaaeaacaWGSbGaamyBamaabmaabaGaamyEamaa Baaajqwaa+FaaiaaigdaaeqaaKazaa2=cqGHsislcaWGZbWaaSbaaK azba4=baGaaGymaaqabaaajqgaG9VaayjkaiaawMcaaaqaaiabeo8a ZbaaaiaawIcacaGLPaaacaGGUaaaaaa@1AE9@    (17)

It follows from (17) that

n n+lm exp( lm( y 1 s 1 ) σ )= n n+lm exp( lm( y 1 s 1 ) s k s k σ ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGUbaabaGaamOBaiabgUcaRiaadYgacaWGTbaaaiGacwgacaGG4bGa aiiCamaabmaabaGaeyOeI0YaaSaaaeaacaWGSbGaamyBamaabmaaba GaamyEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadohadaWgaaWc baGaaGymaaqabaaakiaawIcacaGLPaaaaeaacqaHdpWCaaaacaGLOa GaayzkaaGaeyypa0ZaaSaaaeaacaWGUbaabaGaamOBaiabgUcaRiaa dYgacaWGTbaaaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaS aaaeaacaWGSbGaamyBamaabmaabaGaamyEamaaBaaaleaacaaIXaaa beaakiabgkHiTiaadohadaWgaaWcbaGaaGymaaqabaaakiaawIcaca GLPaaaaeaacaWGZbWaaSbaaSqaaiaadUgaaeqaaaaakmaalaaabaGa am4CamaaBaaaleaacaWGRbaabeaaaOqaaiabeo8aZbaaaiaawIcaca GLPaaacaGGUaaaaa@640B@    (18)

It follows from (14) and (18) that

0 n n+lm exp( lm( y 1 s 1 ) s k s k σ ) f σ ( s k )d s k = 0 n n+lm exp( lm( y 1 s 1 ) s k s k σ ) 1 Γ(k1) σ k1 s k k2 exp( s k σ )d s k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaajaayda WdXbqaamaalaaabaGaamOBaaqaaiaad6gacqGHRaWkcaWGSbGaamyB aaaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGaam iBaiaad2gadaqadaqaaiaadMhadaWgaaqcbawaaiaaigdaaeqaaKaa GjabgkHiTiaadohadaWgaaqcbawaaiaaigdaaeqaaaqcaaMaayjkai aawMcaaaqaaiaadohadaWgaaqcbawaaiaadUgaaeqaaaaajaaydaWc aaqaaiaadohadaWgaaqcbawaaiaadUgaaeqaaaqcaawaaiabeo8aZb aaaiaawIcacaGLPaaaaKqaGfaacaaIWaaabaGaeyOhIukajmaycqGH RiI8aKaaGjaadAgadaWgaaqcbawaaiabeo8aZbqabaqcaa2aaeWaae aacaWGZbWaaSbaaKqaGfaacaWGRbaabeaaaKaaGjaawIcacaGLPaaa caWGKbGaam4CamaaBaaajeaybaGaam4AaaqabaqcaaMaeyypa0dake aajaaydaWdXbqaamaalaaabaGaamOBaaqaaiaad6gacqGHRaWkcaWG SbGaamyBaaaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaala aabaGaamiBaiaad2gadaqadaqaaiaadMhadaWgaaqcbawaaiaaigda aeqaaKaaGjabgkHiTiaadohadaWgaaqcbawaaiaaigdaaeqaaaqcaa MaayjkaiaawMcaaaqaaiaadohadaWgaaqcbawaaiaadUgaaeqaaaaa jaaydaWcaaqaaiaadohadaWgaaqcbawaaiaadUgaaeqaaaqcaawaai abeo8aZbaaaiaawIcacaGLPaaaaKqaGfaacaaIWaaabaGaeyOhIuka jmaycqGHRiI8aKaaGnaalaaabaGaaGymaaqaaiabfo5ahjaacIcaca WGRbGaeyOeI0IaaGymaiaacMcacqaHdpWCdaahaaqcbawabeaacaWG RbGaeyOeI0IaaGymaaaaaaqcaaMaam4CamaaDaaajeaybaGaam4Aaa qaaiaadUgacqGHsislcaaIYaaaaKaaGjGacwgacaGG4bGaaiiCamaa bmaabaGaeyOeI0YaaSaaaeaacaWGZbWaaSbaaKqaGfaacaWGRbaabe aaaKaaGfaacqaHdpWCaaaacaGLOaGaayzkaaGaamizaiaadohadaWg aaqcbawaaiaadUgaaeqaaaaaaa@A400@
= n n+lm ( 1+lm y 1 s 1 s k ) (k1) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS aaaeaacaWGUbaabaGaamOBaiabgUcaRiaadYgacaWGTbaaamaabmaa baGaaGymaiabgUcaRiaadYgacaWGTbWaaSaaaeaacaWG5bWaaSbaaS qaaiaaigdaaeqaaOGaeyOeI0Iaam4CamaaBaaaleaacaaIXaaabeaa aOqaaiaadohadaWgaaWcbaGaam4AaaqabaaaaaGccaGLOaGaayzkaa WaaWbaaSqabeaacqGHsislcaGGOaGaam4AaiabgkHiTiaaigdacaGG PaaaaOGaaiilaaaa@4D69@    (19)

It follows from (16), (17), (18) and (19) that

E{ F ¯ ϑ ( y 1 ) }= n n+lm ( 1+lm y 1 s 1 s k ) (k1) = F ¯ ( y 1 s 1 s k )=1F( y 1 s 1 s k ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGabmOrayaaraWaaSbaaSqaaiabeg9akbqabaGccaGGOaGaamyE amaaBaaaleaacaaIXaaabeaakiaacMcaaiaawUhacaGL9baacqGH9a qpdaWcaaqaaiaad6gaaeaacaWGUbGaey4kaSIaamiBaiaad2gaaaWa aeWaaeaacaaIXaGaey4kaSIaamiBaiaad2gadaWcaaqaaiaadMhada WgaaWcbaGaaGymaaqabaGccqGHsislcaWGZbWaaSbaaSqaaiaaigda aeqaaaGcbaGaam4CamaaBaaaleaacaWGRbaabeaaaaaakiaawIcaca GLPaaadaahaaWcbeqaaiabgkHiTiaacIcacaWGRbGaeyOeI0IaaGym aiaacMcaaaGccqGH9aqpceWGgbGbaebadaqadaqaamaalaaabaGaam yEamaaBaaaleaacaaIXaaabeaakiabgkHiTiaadohadaWgaaWcbaGa aGymaaqabaaakeaacaWGZbWaaSbaaSqaaiaadUgaaeqaaaaaaOGaay jkaiaawMcaaiabg2da9iaaigdacqGHsislcaWGgbWaaeWaaeaadaWc aaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGHsislcaWGZbWaaS baaSqaaiaaigdaaeqaaaGcbaGaam4CamaaBaaaleaacaWGRbaabeaa aaaakiaawIcacaGLPaaacaGGUaaaaa@6CC9@    (20)

If (1α) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaig dacqGHsislcqaHXoqycaGGPaaaaa@3A87@ = 0.95, the manufacturer finds from

F ¯ ( y 1 s 1 s k )= n n+lm ( 1+lm y 1 s 1 s k ) (k1) =1α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaara WaaeWaaeaadaWcaaqaaiaadMhadaWgaaWcbaGaaGymaaqabaGccqGH sislcaWGZbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaam4CamaaBaaale aacaWGRbaabeaaaaaakiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaa d6gaaeaacaWGUbGaey4kaSIaamiBaiaad2gaaaWaaeWaaeaacaaIXa Gaey4kaSIaamiBaiaad2gadaWcaaqaaiaadMhadaWgaaWcbaGaaGym aaqabaGccqGHsislcaWGZbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaam 4CamaaBaaaleaacaWGRbaabeaaaaaakiaawIcacaGLPaaadaahaaWc beqaaiabgkHiTiaacIcacaWGRbGaeyOeI0IaaGymaiaacMcaaaGccq GH9aqpcaaIXaGaeyOeI0IaeqySdegaaa@5A65@    (21)

that

y 1 = s 1 + s k lm [ ( n (1α)(n+lm) ) 1/(k1) 1 ] =8+ 103.5402 3×5 [ ( 20 (10.05)(20+3×5) ) 1/(161) 1 ] =8+6.902679484[ 0.03332039 ]=80.23=7.77 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG5b WaaSbaaSqaaiaaigdaaeqaaOGaeyypa0Jaam4CamaaBaaaleaacaaI XaaabeaakiabgUcaRmaalaaabaGaam4CamaaBaaaleaacaWGRbaabe aaaOqaaiaadYgacaWGTbaaamaadmaabaWaaeWaaeaadaWcaaqaaiaa d6gaaeaacaGGOaGaaGymaiabgkHiTiabeg7aHjaacMcacaGGOaGaam OBaiabgUcaRiaadYgacaWGTbGaaiykaaaaaiaawIcacaGLPaaadaah aaWcbeqaaiaaigdacaGGVaGaaiikaiaadUgacqGHsislcaaIXaGaai ykaaaakiabgkHiTiaaigdaaiaawUfacaGLDbaaaeaacqGH9aqpcaaI 4aGaey4kaSYaaSaaaeaaqaaaaaaaaaWdbiaaigdacaaIWaGaaG4mai aac6cacaaI1aGaaGinaiaaicdacaaIYaaapaqaaiaaiodacqGHxdaT caaI1aaaamaadmaabaWaaeWaaeaadaWcaaqaaiaaikdacaaIWaaaba GaaiikaiaaigdacqGHsislcaaIWaGaaiOlaiaaicdacaaI1aGaaiyk aiaacIcacaaIYaGaaGimaiabgUcaRiaaiodacqGHxdaTcaaI1aGaai ykaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaGGVaGaaiik aiaaigdacaaI2aGaeyOeI0IaaGymaiaacMcaaaGccqGHsislcaaIXa aacaGLBbGaayzxaaaabaGaeyypa0JaaGioaiabgUcaR8qacaaI2aGa aiOlaiaaiMdacaaIWaGaaGOmaiaaiAdacaaI3aGaaGyoaiaaisdaca aI4aGaaGina8aadaWadaqaa8qacqGHsislcaaIWaGaaiOlaiaaicda caaIZaGaaG4maiaaiodacaaIYaGaaGimaiaaiodacaaI5aaapaGaay 5waiaaw2faaiabg2da9iaaiIdacqGHsislcaaIWaGaaiOlaiaaikda caaIZaGaeyypa0JaaG4naiaac6cacaaI3aGaaG4naaaaaa@9A50@    (22)

and he has 95% assurance that no failures will occur in each shipment before y 1 =7.77 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaG4naiaac6ca caaI3aGaaG4naaaa@3BF1@ month intervals.

Constructing confidence interval of equal tails or shortest length for lower simultaneous predictive limit

It follows from (20) that

F( y 1 s 1 s k )=1 n n+lm ( 1+lm y 1 s 1 s k ) (k1) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaWaaSaaaeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Ia am4CamaaBaaaleaacaaIXaaabeaaaOqaaiaadohadaWgaaWcbaGaam 4AaaqabaaaaaGccaGLOaGaayzkaaGaeyypa0JaaGymaiabgkHiTmaa laaabaGaamOBaaqaaiaad6gacqGHRaWkcaWGSbGaamyBaaaadaqada qaaiaaigdacqGHRaWkcaWGSbGaamyBamaalaaabaGaamyEamaaBaaa leaacaaIXaaabeaakiabgkHiTiaadohadaWgaaWcbaGaaGymaaqaba aakeaacaWGZbWaaSbaaSqaaiaadUgaaeqaaaaaaOGaayjkaiaawMca amaaCaaaleqabaGaeyOeI0IaaiikaiaadUgacqGHsislcaaIXaGaai ykaaaakiaac6caaaa@585A@    (23)

Let us assume that

F( y 1(2) s 1 s k )=1 n n+lm ( 1+lm y 1(2) s 1 s k ) (k1) =1α+p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaWaaSaaaeaacaWG5bWaaSbaaSqaaiaaigdacaGGOaGaaGOmaiaa cMcaaeqaaOGaeyOeI0Iaam4CamaaBaaaleaacaaIXaaabeaaaOqaai aadohadaWgaaWcbaGaam4AaaqabaaaaaGccaGLOaGaayzkaaGaeyyp a0JaaGymaiabgkHiTmaalaaabaGaamOBaaqaaiaad6gacqGHRaWkca WGSbGaamyBaaaadaqadaqaaiaaigdacqGHRaWkcaWGSbGaamyBamaa laaabaGaamyEamaaBaaaleaacaaIXaGaaiikaiaaikdacaGGPaaabe aakiabgkHiTiaadohadaWgaaWcbaGaaGymaaqabaaakeaacaWGZbWa aSbaaSqaaiaadUgaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqaba GaeyOeI0IaaiikaiaadUgacqGHsislcaaIXaGaaiykaaaakiabg2da 9iaaigdacqGHsislcqaHXoqycqGHRaWkcaWGWbaaaa@61F6@    (24)

and

F( y 1(1) s 1 s k )=1 n n+lm ( 1+lm y 1(1) s 1 s k ) (k1) =p, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaWaaSaaaeaacaWG5bWaaSbaaSqaaiaaigdacaGGOaGaaGymaiaa cMcaaeqaaOGaeyOeI0Iaam4CamaaBaaaleaacaaIXaaabeaaaOqaai aadohadaWgaaWcbaGaam4AaaqabaaaaaGccaGLOaGaayzkaaGaeyyp a0JaaGymaiabgkHiTmaalaaabaGaamOBaaqaaiaad6gacqGHRaWkca WGSbGaamyBaaaadaqadaqaaiaaigdacqGHRaWkcaWGSbGaamyBamaa laaabaGaamyEamaaBaaaleaacaaIXaGaaiikaiaaigdacaGGPaaabe aakiabgkHiTiaadohadaWgaaWcbaGaaGymaaqabaaakeaacaWGZbWa aSbaaSqaaiaadUgaaeqaaaaaaOGaayjkaiaawMcaamaaCaaaleqaba GaeyOeI0IaaiikaiaadUgacqGHsislcaaIXaGaaiykaaaakiabg2da 9iaadchacaGGSaaaaa@5E7B@    (25)

then

F( y 1(2) s 1 s k )F( y 1(1) s 1 s k )=1α+pp=1α. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaabm aabaWaaSaaaeaacaWG5bWaaSbaaSqaaiaaigdacaGGOaGaaGOmaiaa cMcaaeqaaOGaeyOeI0Iaam4CamaaBaaaleaacaaIXaaabeaaaOqaai aadohadaWgaaWcbaGaam4AaaqabaaaaaGccaGLOaGaayzkaaGaeyOe I0IaamOramaabmaabaWaaSaaaeaacaWG5bWaaSbaaSqaaiaaigdaca GGOaGaaGymaiaacMcaaeqaaOGaeyOeI0Iaam4CamaaBaaaleaacaaI XaaabeaaaOqaaiaadohadaWgaaWcbaGaam4AaaqabaaaaaGccaGLOa GaayzkaaGaeyypa0JaaGymaiabgkHiTiabeg7aHjabgUcaRiaadcha cqGHsislcaWGWbGaeyypa0JaaGymaiabgkHiTiabeg7aHjaac6caaa a@5A90@    (26)

It follows from (24) that

y 1(2) = s 1 + s k lm ( [ n ( αp )( n+lm ) ] 1/(k1) 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIXaGaaiikaiaaikdacaGGPaaabeaakiabg2da9iaadoha daWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaaiaadohadaWgaa WcbaGaam4AaaqabaaakeaacaWGSbGaamyBaaaadaqadaqaamaadmaa baWaaSaaaeaacaWGUbaabaWaaeWaaeaacqaHXoqycqGHsislcaWGWb aacaGLOaGaayzkaaWaaeWaaeaacaWGUbGaey4kaSIaamiBaiaad2ga aiaawIcacaGLPaaaaaaacaGLBbGaayzxaaWaaWbaaSqabeaacaaIXa Gaai4laiaacIcacaWGRbGaeyOeI0IaaGymaiaacMcaaaGccqGHsisl caaIXaaacaGLOaGaayzkaaGaaiOlaaaa@5886@    (27)

It follows from (25) that

y 1(1) = s 1 + s k lm ( [ n ( 1p )( n+lm ) ] 1/(k1) 1 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIXaGaaiikaiaaigdacaGGPaaabeaakiabg2da9iaadoha daWgaaWcbaGaaGymaaqabaGccqGHRaWkdaWcaaqaaiaadohadaWgaa WcbaGaam4AaaqabaaakeaacaWGSbGaamyBaaaadaqadaqaamaadmaa baWaaSaaaeaacaWGUbaabaWaaeWaaeaacaaIXaGaeyOeI0IaamiCaa GaayjkaiaawMcaamaabmaabaGaamOBaiabgUcaRiaadYgacaWGTbaa caGLOaGaayzkaaaaaaGaay5waiaaw2faamaaCaaaleqabaGaaGymai aac+cacaGGOaGaam4AaiabgkHiTiaaigdacaGGPaaaaOGaeyOeI0Ia aGymaaGaayjkaiaawMcaaiaac6caaaa@57A1@    (28)

If p=0.025, α=0.05, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaIWaGaaGynaiaacYcaaaa@3C21@ then the ( 1α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaeyOeI0IaeqySdegacaGLOaGaayzkaaGaeyOeI0caaa@3BA4@ confidence interval of equal tails for y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIXaaabeaaaaa@37CC@ is given by

[ y 1(1) =7.758455,  y 1(2) =9.601241 ], ( y 1(2) y 1(1) )=1.842786. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WG5bWaaSbaaSqaaiaaigdacaGGOaGaaGymaiaacMcaaeqaaOGaeyyp a0JaaG4naiaac6cacaaI3aGaaGynaiaaiIdacaaI0aGaaGynaiaaiw dacaGGSaGaaeiiaiaabMhadaWgaaWcbaGaaGymaiaacIcacaaIYaGa aiykaaqabaGccqGH9aqpcaaI5aGaaiOlaiaaiAdacaaIWaGaaGymai aaikdacaaI0aGaaGymaaGaay5waiaaw2faaiaacYcacaqGGaWaaeWa aeaacaWG5bWaaSbaaSqaaiaaigdacaGGOaGaaGOmaiaacMcaaeqaaO GaeyOeI0IaamyEamaaBaaaleaacaaIXaGaaiikaiaaigdacaGGPaaa beaaaOGaayjkaiaawMcaaiabg2da9iaaigdacaGGUaGaaGioaiaais dacaaIYaGaaG4naiaaiIdacaaI2aGaaiOlaaaa@6281@    (29)

If p=0, α=0.05, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaey ypa0JaaGimaiaac6cacaaIWaGaaGynaiaacYcaaaa@3C21@ then the ( 1α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaeyOeI0IaeqySdegacaGLOaGaayzkaaGaeyOeI0caaa@3BA4@ confidence interval of shortest length for y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaaIXaaabeaaaaa@37CC@ is given by

[ y 1(1) =7.747221,  y 1(2) =9.217217 ], ( y 1(2) y 1(1) )=1.469996. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WG5bWaaSbaaSqaaiaaigdacaGGOaGaaGymaiaacMcaaeqaaOGaeyyp a0JaaG4naiaac6cacaaI3aGaaGinaiaaiEdacaaIYaGaaGOmaiaaig dacaGGSaGaaeiiaiaabMhadaWgaaWcbaGaaGymaiaacIcacaaIYaGa aiykaaqabaGccqGH9aqpcaaI5aGaaiOlaiaaikdacaaIXaGaaG4nai aaikdacaaIXaGaaG4naaGaay5waiaaw2faaiaacYcacaqGGaWaaeWa aeaacaWG5bWaaSbaaSqaaiaaigdacaGGOaGaaGOmaiaacMcaaeqaaO GaeyOeI0IaamyEamaaBaaaleaacaaIXaGaaiikaiaaigdacaGGPaaa beaaaOGaayjkaiaawMcaaiabg2da9iaaigdacaGGUaGaaGinaiaaiA dacaaI5aGaaGyoaiaaiMdacaaI2aGaaiOlaaaa@6284@    (30)

Conclusion

In this paper we propose the novel technique of constructing simultaneous predictive limits on observations or functions of observations in all of k future samples under parametric uncertainty of the underlying distribution. The exact predictive limits are found and illustrated with a numerical example. We have illustrated the proposed methodology for the two-parameter exponential distribution. Application to other distributions could follow directly.

Acknowledgments

None.

Conflicts of interest

The authors declare that there is no conflict of interest.

References

  1. Nechval NA, Berzins G, Nechval KN. Adequate mathematical models of the cumulative distribution function of order statistics to construct accurate tolerance limits and confidence intervals of the shortest length or equal tails. WSEAS Transactions on Mathematics. 2023;20:154–166.
  2. Nechval NA, Berzins G, Nechval KN. Optimal statistical estimation and dynamic adaptive control of airline seat protection levels for several nested fare classes under parametric uncertainty of customer demand models. WSEAS Transactions on Mathematics. 2023;22:395–408.
  3. Nechval NA, Berzins G, Nechval KN. A unified technique for prediction and optimization of future outcomes under parametric uncertainty via pivotal quantities and ancillary statistics. AC&CS. 2023:57(3):234–257.
  4. Nechval NA, Berzins G, Nechval KN. A novel computational intelligence approach to making efficient decisions under parametric uncertainty of practical models and its applications to industry 4.0. In: Advanced Signal Processing for Industry 4.0. IOP Publishing Ltd; 2023;1(7):1–40.
  5. Nechval NA, Berzins G, Nechval KN. New applications of computational intelligence for constructing predictive or optimal statistical decisions under parametric uncertainty. AC&CS. 2023;57(5):473–489.
  6. Nechval NA, Berzins G, Nechval KN, et al. Adequate intelligent constructing predictive or optimal statistical decisions under parametric uncertainty of applied stochastic models. International Journal of Applied Mathematics and Machine Learning. 2023:17(1):43–81.
  7. Nechval NA, Berzins G, Nechval KN, Novel approach to the smart constructing adequate predictive or confidence decisions for applied mathematical models under parametric uncertainty via pivotal quantities and ancillary statistics. Aeron Aero Open Access J. 2024;8(2):58‒76.
Creative Commons Attribution License

©2024 Nechval, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.