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Introduction
Simultaneous predictive limits are required in many practical 

applications. In particular, it is often necessary to construct lower 
simultaneous predictive limits that are exceeded with probability 
1−α by observations or functions of observations of all of l future 
samples, each consisting of m units. The predictive limits depend 
upon a previously available complete or type II censored sample of 
size n from the same distribution. For instance, a situation where such 
simultaneous predictive limits are required is given below: 

A customer has placed an order for a product which has an 
underlying time-to-failure distribution. The terms of his purchase 
call for l monthly shipments. From each shipment the customer will 
select a random sample of m units and accept the shipment only if 
the smallest time to failure for this sample exceeds a specified lower 
limit. The manufacturer wishes to use the results of a previous sample 
of n units to calculate this limit so that the probability is 1−α that all l 
shipments will be accepted. It is assumed that the n past units and the 
lm future units are random samples from the same population.

In this paper we consider lower simultaneous predictive limits. 
The lower simultaneous predictive limit is based on observations 
in an initial sample. The technique used here emphasizes pivotal 
quantities relevant for obtaining ancillary statistics.1–7 The exact lower 
simultaneous predictive limit on future order statistics is obtained via 
the technique of invariant embedding and illustrated with numerical 
example.

Two-parameter exponential distribution

Let X = (X1 ≤ ... ≤ Xk) be the first k ordered observations (order 
statistics) in a sample of size n from the two-parameter exponential 
distribution with the probability density function
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where ( , ),ϑ µ σ= µ is the shift parameter and σ is the scale 
parameter. It is assumed that these parameters are unknown. In Type II 
censoring, which is of primary interest here, the number of survivors 
is fixed and X is a random variable. In this case, the likelihood function 
is given by
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Abstract

In this paper, we consider the problems of constructing simultaneous predictive limits on 
future outcomes of all of l future samples using the results of a previous sample from 
the same underlying distribution belonging to invariant family. The approach used here 
emphasizes pivotal quantities relevant for obtaining ancillary statistics and is applicable 
whenever the statistical problem is invariant under a group of transformations that acts 
transitively on the parameter space. It does not require the construction of any tables and 
is applicable whether the data are complete or Type II censored. The lower simultaneous 
predictive limits are often used as warranty criteria by manufacturers. The technique 
used here emphasizes pivotal quantities relevant for obtaining ancillary statistics and is 
applicable whenever the statistical problem is invariant under a group of transformations 
that acts transitively on the parameter space. Applications of the proposed procedures are 
given for the two-parameter exponential distribution. The proposed technique is based on 
a probability transformation and pivotal quantity averaging to solve real-life problems 
in all areas including engineering, science, industry, automation & robotics, business & 
finance, medicine and biomedicine. It is conceptually simple and easy to use. The exact 
lower simultaneous predictive limits are found and illustrated with a numerical example.

Keywords: future samples, observations, exact lower simultaneous predictive limits, 
statistical methods of constructing

Aeronautics and Aerospace Open Access Journal

Research Article Open Access

https://crossmark.crossref.org/dialog/?doi=10.15406/aaoaj.2024.08.00197&domain=pdf


Novel constructing adequate simultaneous predictive limits or confidence intervals for future outcomes 
via pivotal quantities and ancillary statistics in the case of parametric uncertainty of applied real-life 
models

111
Copyright:

©2024 Nechval et al.

Citation: Nechval N, Berzins G, Nechval K. Novel constructing adequate simultaneous predictive limits or confidence intervals for future outcomes via pivotal 
quantities and ancillary statistics in the case of parametric uncertainty of applied real-life models. Aeron Aero Open Access J. 2024;8(2):110‒113. 
DOI: 10.15406/aaoaj.2024.08.00197

1 11
1

1 exp ( ) ( )( )
k

i kk
i

x x n k x x σ
σ −

=

  
= − − + − −  

  
∑

1( )1 exp n x µ
σ σ

− × − 
 

1
1

( )1 1exp exp ,k
k

s k s µ
σ σ σ σ−

−   = − × −  
  

                          (3)

where

1 1 1 1
1

,  ( ) ( )( )
k

k i k
i

S X S Y Y n k X X
=

 
= = = − + − − 
 

∑S  (4)

is the complete sufficient statistic for ( , ),ϑ µ σ= . The probability 
density function of S = (S1, Sk) is given by
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is the pivotal quantity, the probability density function of which 
is given by
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is the pivotal quantity, the probability density function of which 
is given by
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Practical example for constructing lower simultaneous 
prediction limit

Let’s assume that an airline has a policy of replacing a specific 
device used in multiple locations in its fleet avionics systems every 7 
months. The airline doesn’t want one of these devices to fail before it 
can be replaced. Shipments of a batch of devices are carried out from 
each of l enterprises. Each enterprise selects a random sample of m 
devices. The manufacturer wishes to take this total random sample 
and calculate the lower limit of simultaneous forecasting such that all 
deliveries will be accepted with probability 1−α.

Innovative technique of constructing lower 
simultaneous prediction limit

For instance, suppose that 1 ... nX X≤ ≤ and { }1 ... , 1,..., ,j mjY Y j l≤ ≤ ∈  
denote n+lm independent and identically distributed random 
variables from a two –parameter exponential distribution (14), where 

( , ),ϑ µ σ= µ is the shift parameter andσ is the scale parameter. It is 
assumed that these parameters are unknown. Let
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where X1=8, n=20, l=3, m=5, k=16 and Sk =103.5402, with
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It follows from (15) that
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It follows from (17) that
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and he has 95% assurance that no failures will occur in each shipment before 1 7.77y = month intervals.

Constructing confidence interval of equal tails or 
shortest length for lower simultaneous predictive limit

It follows from (20) that
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If p=0.025, 0.05,α = then the ( )1 α− −
 
confidence interval of 

equal tails for 1y is given by 

( )1(1) 1(2) 1(2) 1(1)7.758455,  y 9.601241 ,  1.842786.y y y = = − =                (29)

If p=0, 0.05,α = then the
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length for 1y is given by 

( )1(1) 1(2) 1(2) 1(1)7.747221,  y 9.217217 ,  1.469996.y y y = = − =      (30)

Conclusion
In this paper we propose the novel technique of constructing 

simultaneous predictive limits on observations or functions of 
observations in all of k future samples under parametric uncertainty of 
the underlying distribution. The exact predictive limits are found and 
illustrated with a numerical example. We have illustrated the proposed 
methodology for the two-parameter exponential distribution. 
Application to other distributions could follow directly.
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