Submit manuscript...
eISSN: 2576-4500

Aeronautics and Aerospace Open Access Journal

Research Article Volume 8 Issue 2

Novel approach to the smart constructing adequate predictive or confidence decisions for applied mathematical models under parametric uncertainty via pivotal quantities and ancillary statistics

Nicholas Nechval,1 Gundars Berzins,1 Konstantin Nechval2

1BVEF Research Institute, University of Latvia, Latvia
2Aviation Department, Riga Aeronautical Institute, Latvia

Correspondence: Nicholas Nechval, BVEF Research Institute, University of Latvia, Riga LV-1586, Latvia

Received: March 30, 2024 | Published: April 11, 2024

Citation: Nechval N, Berzins G, Nechval K. Novel approach to the smart constructing adequate predictive or confidence decisions for applied mathematical models under parametric uncertainty via pivotal quantities and ancillary statistics. Aeron Aero Open Access J. 2024;8(2):58-76. DOI: 10.15406/aaoaj.2024.08.00194

Download PDF

Abstract

The technique used here emphasizes pivotal quantities and ancillary statistics relevant for obtaining statistical predictive or confidence decisions for anticipated outcomes of applied stochastic models under parametric uncertainty and is applicable whenever the statistical problem is invariant under a group of transformations that acts transitively on the parameter space. It does not require the construction of any tables and is applicable whether the experimental data are complete or Type II censored. The proposed technique is based on a probability transformation and pivotal quantity averaging to solve real-life problems in all areas including engineering, science, industry, automation & robotics, business & finance, medicine and biomedicine. It is conceptually simple and easy to use.

Keywords: anticipated outcomes, parametric uncertainty, unknown (nuisance) parameters, elimination, pivotal quantities, ancillary statistics, new-sample prediction, within-sample prediction

Introduction

Statistical predictive or confidence decisions (under parametric uncertainty) for future random quantities (future outcomes, order statistics, etc.) based on the past and current data is the most prevalent form of statistical inference. Predictive inferences for future random quantities are widely used in risk management, finance, insurance, economics, hydrology, material sciences, telecommunications, and many other industries. Predictive inferences (predictive distributions, prediction or tolerance limits (or intervals), confidence limits (or intervals) for future random quantities on the basis of the past and present knowledge represent a fundamental problem of statistics, arising in many contexts and producing varied solutions. The approach used here is a special case of more general considerations applicable whenever the statistical problem is invariant under a group of transformations, which acts transitively on the parameter space.1–29

  1. Adequate mathematical models of cumulative distribution functions of order statistics for constructing one-sided tolerance limits (or two-sided tolerance interval) in new (future) data samples under parametric uncertainty

Theorem 1: Let us assume that Y1£ … £Yn will be a new (future) random sample of n ordered observations from a known distribution with a probability density function (pdf) f ρ (y), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacqaHbpGCaeqaaOGaaiikaiaadMhacaGGPaGaaiilaaaa@3BBF@  cumulative distribution function (cdf) F ρ (y) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacqaHbpGCaeqaaOGaaiikaiaadMhacaGGPaaaaa@3AEF@ , where ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@3797@ is the parameter (in general, vector). Then the adequate mathematical models for a cumulative probability distribution function of the kth order statistic Yk, kÎ{1, 2, …, n}, to construct one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@378E@ − content tolerance limits (or two-sided tolerance interval) for Yk with confidence level β, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaai ilaaaa@3828@ are given as follows:

  1. Adequate Applied Mathematical Model 1 of a Cumulative Distribution Function of the kth Order Statistic Yk is given by

0 F ρ ( y k ) f k,nk+1 (r)dr = P ρ ( Y k y k |n)= j=k n ( n j ) [ F ρ ( y k )] j   [1 F ρ ( y k )] nj . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca WGMbWaaSbaaSqaaiaadUgacaGGSaGaamOBaiabgkHiTiaadUgacqGH RaWkcaaIXaaabeaakiaacIcacaWGYbGaaiykaiaadsgacaWGYbaale aacaaIWaaabaGaamOramaaBaaameaacqaHbpGCaeqaaSGaaiikaiaa dMhadaWgaaadbaGaam4AaaqabaWccaGGPaaaniabgUIiYdGccqGH9a qpcaWGqbWaaSbaaSqaaiabeg8aYbqabaGccaGGOaGaamywamaaBaaa leaacaWGRbaabeaakiabgsMiJkaadMhadaWgaaWcbaGaam4Aaaqaba GccaGG8bGaamOBaiaacMcacqGH9aqpdaaeWbqaamaabmaabaqbaeqa biqaaaqaaiaad6gaaeaacaWGQbaaaaGaayjkaiaawMcaaaWcbaGaam OAaiabg2da9iaadUgaaeaacaWGUbaaniabggHiLdGccaGGBbGaamOr amaaBaaaleaacqaHbpGCaeqaaOGaaiikaiaadMhadaWgaaWcbaGaam 4AaaqabaGccaGGPaGaaiyxamaaCaaaleqabaGaamOAaaaakiaabcca caGGBbGaaGymaiabgkHiTiaadAeadaWgaaWcbaGaeqyWdihabeaaki aacIcacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaaiykaiaac2fadaah aaWcbeqaaiaad6gacqGHsislcaWGQbaaaOGaaiOlaaaa@7974@   (1)

In the above case, a ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ upper, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit y k U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaamyvaaaaaaa@38DC@  with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( 0 F ρ ( y k U ) f k,nk+1 (r)drγ ) }=E{ Pr( P ρ ( Y k y k U |n)γ ) }=β, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaamaapehabaGaamOzamaaBaaaleaa caWGRbGaaiilaiaad6gacqGHsislcaWGRbGaey4kaSIaaGymaaqaba GccaGGOaGaamOCaiaacMcacaWGKbGaamOCaiabgwMiZkabeo7aNbWc baGaaGimaaqaaiaadAeadaWgaaadbaGaeqyWdihabeaaliaacIcaca WG5bWaa0baaWqaaiaadUgaaeaacaWGvbaaaSGaaiykaaqdcqGHRiI8 aaGccaGLOaGaayzkaaaacaGL7bGaayzFaaGaeyypa0Jaamyramaacm aabaGaciiuaiaackhadaqadaqaaiaadcfadaWgaaWcbaGaeqyWdiha beaakiaacIcacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyizImQaam yEamaaDaaaleaacaWGRbaabaGaamyvaaaakiaacYhacaWGUbGaaiyk aiabgwMiZkabeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2 da9iabek7aIjaacYcaaaa@7034@  (2)

where

f k,nk+1 (r)= 1 Β( k,nk+1 ) r k1 (1r) (nk+1)1 ,   0<r<1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaadaWgaaadbaGaam4AaiaacYcacaWGUbGaeyOeI0Iaam4Aaiab gUcaRiaaigdaaeqaaaWcbeaakiaacIcacaWGYbGaaiykaiabg2da9m aalaaabaGaaGymaaqaaiabfk5acnaabmaabaGaam4AaiaacYcacaWG UbGaeyOeI0Iaam4AaiabgUcaRiaaigdaaiaawIcacaGLPaaaaaGaam OCamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaGccaGGOaGaaGym aiabgkHiTiaadkhacaGGPaWaaWbaaSqabeaacaGGOaGaamOBaiabgk HiTiaadUgacqGHRaWkcaaIXaGaaiykaiabgkHiTiaaigdaaaGccaGG SaGaaeiiaiaabccacaqGGaGaaGimaiabgYda8iaadkhacqGH8aapca aIXaGaaiilaaaa@6186@  (3)

is the probability density function (pdf) of the beta distribution (Beta(k,nk+1)) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadk eacaWGLbGaamiDaiaadggacaqGOaGaam4AaiaacYcacaWGUbGaeyOe I0Iaam4AaiabgUcaRiaaigdacaqGPaGaaeykaaaa@4233@  with the shape parameters k and nk+1.

Proof: It follows from (1) that

d d y k 0 F ρ ( y k ) f k,nk+1 (r)dr = d d y k P ρ ( Y k y k |n). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbaabaGaamizaiaadMhadaWgaaWcbaGaam4AaaqabaaaaOWaa8qC aeaacaWGMbWaaSbaaSqaaiaadUgacaGGSaGaamOBaiabgkHiTiaadU gacqGHRaWkcaaIXaaabeaakiaacIcacaWGYbGaaiykaiaadsgacaWG YbaaleaacaaIWaaabaGaamOramaaBaaameaacqaHbpGCaeqaaSGaai ikaiaadMhadaWgaaadbaGaam4AaaqabaWccaGGPaaaniabgUIiYdGc cqGH9aqpdaWcaaqaaiaadsgaaeaacaWGKbGaamyEamaaBaaaleaaca WGRbaabeaaaaGccaWGqbWaaSbaaSqaaiabeg8aYbqabaGccaGGOaGa amywamaaBaaaleaacaWGRbaabeaakiabgsMiJkaadMhadaWgaaWcba Gaam4AaaqabaGccaGG8bGaamOBaiaacMcacaGGUaaaaa@606B@  (4)

This ends the proof.

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ lower, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( P ρ ( Y k > y k L |n)γ ) }=E{ Pr( 1 0 F μ ( y k L ) f k,nk+1 (u)duγ ) }=β. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaaiaadcfadaWgaaWcbaGaeqyWdiha beaakiaacIcacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4Jaam yEamaaDaaaleaacaWGRbaabaGaamitaaaakiaacYhacaWGUbGaaiyk aiabgwMiZkabeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2 da9iaadweadaGadaqaaiGaccfacaGGYbWaaeWaaeaacaaIXaGaeyOe I0Yaa8qCaeaacaWGMbWaaSbaaSqaaiaadUgacaGGSaGaamOBaiabgk HiTiaadUgacqGHRaWkcaaIXaaabeaakiaacIcacaWG1bGaaiykaiaa dsgacaWG1bGaeyyzImRaeq4SdCgaleaacaaIWaaabaGaamOramaaBa aameaacqaH8oqBaeqaaSGaaiikaiaadMhadaqhaaadbaGaam4Aaaqa aiaadYeaaaWccaGGPaaaniabgUIiYdaakiaawIcacaGLPaaaaiaawU hacaGL9baacqGH9aqpcqaHYoGycaGGUaaaaa@711B@  (5)

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@  two-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance interval with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

[ arg y k L ( E{ Pr( P ρ ( Y k > y k L |n)γ ) }=β ),  arg y k U ( E{ Pr( P ρ ( Y k y k U |n)γ ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WfqaqaaiGacggacaGGYbGaai4zaaWcbaGaamyEamaaDaaameaacaWG RbaabaGaamitaaaaaSqabaGcdaqadaqaaiaadweadaGadaqaaiGacc facaGGYbWaaeWaaeaacaWGqbWaaSbaaSqaaiabeg8aYbqabaGccaGG OaGaamywamaaBaaaleaacaWGRbaabeaakiabg6da+iaadMhadaqhaa WcbaGaam4AaaqaaiaadYeaaaGccaGG8bGaamOBaiaacMcacqGHLjYS cqaHZoWzaiaawIcacaGLPaaaaiaawUhacaGL9baacqGH9aqpcqaHYo GyaiaawIcacaGLPaaacaGGSaGaaeiiamaaxababaGaciyyaiaackha caGGNbaaleaacaWG5bWaa0baaWqaaiaadUgaaeaacaWGvbaaaaWcbe aakmaabmaabaGaamyramaacmaabaGaciiuaiaackhadaqadaqaaiaa dcfadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWGzbWaaSbaaSqaai aadUgaaeqaaOGaeyizImQaamyEamaaDaaaleaacaWGRbaabaGaamyv aaaakiaacYhacaWGUbGaaiykaiabgwMiZkabeo7aNbGaayjkaiaawM caaaGaay5Eaiaaw2haaiabg2da9iabek7aIbGaayjkaiaawMcaaaGa ay5waiaaw2faaaaa@79FC@
=[ arg y k L ( E{ Pr( 0 F μ ( y k L ) f k,nk+1 (r)dr1γ ) }=β ),  arg y k U ( E{ Pr( 0 F ρ ( y k U ) f k,nk+1 (r)drγ ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaqaabeqaamaaxababaGaciyyaiaackhacaGGNbaaleaacaWG5bWa a0baaWqaaiaadUgaaeaacaWGmbaaaaWcbeaakmaabmaabaGaamyram aacmaabaGaciiuaiaackhadaqadaqaamaapehabaGaamOzamaaBaaa leaacaWGRbGaaiilaiaad6gacqGHsislcaWGRbGaey4kaSIaaGymaa qabaGccaGGOaGaamOCaiaacMcacaWGKbGaamOCaiabgsMiJkaaigda cqGHsislcqaHZoWzaSqaaiaaicdaaeaacaWGgbWaaSbaaWqaaiabeY 7aTbqabaWccaGGOaGaamyEamaaDaaameaacaWGRbaabaGaamitaaaa liaacMcaa0Gaey4kIipaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haai abg2da9iabek7aIbGaayjkaiaawMcaaiaacYcaaeaadaWfqaqaaiaa bccaciGGHbGaaiOCaiaacEgaaSqaaiaadMhadaqhaaadbaGaam4Aaa qaaiaadwfaaaaaleqaaOWaaeWaaeaacaWGfbWaaiWaaeaaciGGqbGa aiOCamaabmaabaWaa8qCaeaacaWGMbWaaSbaaSqaaiaadUgacaGGSa GaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXaaabeaakiaacIcacaWG YbGaaiykaiaadsgacaWGYbGaeyyzImRaeq4SdCgaleaacaaIWaaaba GaamOramaaBaaameaacqaHbpGCaeqaaSGaaiikaiaadMhadaqhaaad baGaam4AaaqaaiaadwfaaaWccaGGPaaaniabgUIiYdaakiaawIcaca GLPaaaaiaawUhacaGL9baacqGH9aqpcqaHYoGyaiaawIcacaGLPaaa aaGaay5waiaaw2faaaaa@8EF5@
=[ y k L ,  y k U ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaeaacaWG5bWaa0baaSqaaiaadUgaaeaacaWGmbaaaOGaaiilaiaa bccacaWG5bWaa0baaSqaaiaadUgaaeaacaWGvbaaaaGccaGLBbGaay zxaaGaaiOlaaaa@40D8@   (6)

  1. Adequate Applied Mathematical Model 2 of a Cumulative Distribution Function of the kth Order Statistic Yk is given by

1 F ρ ( y k ) 1 f nk+1,k (r)dr = P ρ ( Y k y k |n)= j=k n ( n j ) [ F ρ ( y k )] j   [1 F ρ ( y k )] nj . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca WGMbWaaSbaaSqaaiaad6gacqGHsislcaWGRbGaey4kaSIaaGymaiaa cYcacaWGRbaabeaakiaacIcacaWGYbGaaiykaiaadsgacaWGYbaale aacaaIXaGaeyOeI0IaamOramaaBaaameaacqaHbpGCaeqaaSGaaiik aiaadMhadaWgaaadbaGaam4AaaqabaWccaGGPaaabaGaaGymaaqdcq GHRiI8aOGaeyypa0JaamiuamaaBaaaleaacqaHbpGCaeqaaOGaaiik aiaadMfadaWgaaWcbaGaam4AaaqabaGccqGHKjYOcaWG5bWaaSbaaS qaaiaadUgaaeqaaOGaaiiFaiaad6gacaGGPaGaeyypa0ZaaabCaeaa daqadaqaauaabeqaceaaaeaacaWGUbaabaGaamOAaaaaaiaawIcaca GLPaaaaSqaaiaadQgacqGH9aqpcaWGRbaabaGaamOBaaqdcqGHris5 aOGaai4waiaadAeadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWG5b WaaSbaaSqaaiaadUgaaeqaaOGaaiykaiaac2fadaahaaWcbeqaaiaa dQgaaaGccaqGGaGaai4waiaaigdacqGHsislcaWGgbWaaSbaaSqaai abeg8aYbqabaGccaGGOaGaamyEamaaBaaaleaacaWGRbaabeaakiaa cMcacaGGDbWaaWbaaSqabeaacaWGUbGaeyOeI0IaamOAaaaakiaac6 caaaa@7B1D@  (7)

In the above case, a ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ upper, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386A@ content tolerance limit y k U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaamyvaaaaaaa@38DC@  with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( 1 F ρ ( y k U ) 1 f nk+1,k (r)dr γ )=E{ Pr( P ρ ( Y k y k U |n)γ ) } }=β, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaamaapehabaGaamOzamaaBaaaleaa caWGUbGaeyOeI0Iaam4AaiabgUcaRiaaigdacaGGSaGaam4Aaaqaba GccaGGOaGaamOCaiaacMcacaWGKbGaamOCaaWcbaGaaGymaiabgkHi TiaadAeadaWgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWaa0baaW qaaiaadUgaaeaacaWGvbaaaSGaaiykaaqaaiaaigdaa0Gaey4kIipa kiabgwMiZkabeo7aNbGaayjkaiaawMcaaiabg2da9iaadweadaGada qaaiGaccfacaGGYbWaaeWaaeaacaWGqbWaaSbaaSqaaiabeg8aYbqa baGccaGGOaGaamywamaaBaaaleaacaWGRbaabeaakiabgsMiJkaadM hadaqhaaWcbaGaam4AaaqaaiaadwfaaaGccaGG8bGaamOBaiaacMca cqGHLjYScqaHZoWzaiaawIcacaGLPaaaaiaawUhacaGL9baaaiaawU hacaGL9baacqGH9aqpcqaHYoGycaGGSaaaaa@71DD@  (8)

where

f nk+1,l (u)= 1 Β( nk+1,k ) r (nk+1)1 (1r) k1 f k,nk+1 (r),   0<r<1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaadaWgaaadbaGaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXaGa aiilaiaadYgaaeqaaaWcbeaakiaacIcacaWG1bGaaiykaiabg2da9m aalaaabaGaaGymaaqaaiabfk5acnaabmaabaGaamOBaiabgkHiTiaa dUgacqGHRaWkcaaIXaGaaiilaiaadUgaaiaawIcacaGLPaaaaaGaam OCamaaCaaaleqabaGaaiikaiaad6gacqGHsislcaWGRbGaey4kaSIa aGymaiaacMcacqGHsislcaaIXaaaaOGaaiikaiaaigdacqGHsislca WGYbGaaiykamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaGccaWG MbWaaSbaaSqaamaaBaaameaacaWGRbGaaiilaiaad6gacqGHsislca WGRbGaey4kaSIaaGymaaqabaaaleqaaOGaaiikaiaadkhacaGGPaGa aiilaiaabccacaqGGaGaaeiiaiaaicdacqGH8aapcaWGYbGaeyipaW JaaGymaiaacYcaaaa@6B40@  (9)

is the probability density function (pdf) of the beta distribution (Beta(nk+1,k)) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadk eacaWGLbGaamiDaiaadggacaqGOaGaamOBaiabgkHiTiaadUgacqGH RaWkcaaIXaGaaiilaiaadUgacaqGPaGaaeykaaaa@4233@  with the shape parameters nk+1 and k.

Proof: It follows from (9) that

d d y k 1 F ρ ( y k ) 1 f nk+1,k (r)dr = d d y k P ρ ( Y k y k |n). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbaabaGaamizaiaadMhadaWgaaWcbaGaam4AaaqabaaaaOWaa8qC aeaacaWGMbWaaSbaaSqaaiaad6gacqGHsislcaWGRbGaey4kaSIaaG ymaiaacYcacaWGRbaabeaakiaacIcacaWGYbGaaiykaiaadsgacaWG YbaaleaacaaIXaGaeyOeI0IaamOramaaBaaameaacqaHbpGCaeqaaS GaaiikaiaadMhadaWgaaadbaGaam4AaaqabaWccaGGPaaabaGaaGym aaqdcqGHRiI8aOGaeyypa0ZaaSaaaeaacaWGKbaabaGaamizaiaadM hadaWgaaWcbaGaam4AaaqabaaaaOGaamiuamaaBaaaleaacqaHbpGC aeqaaOGaaiikaiaadMfadaWgaaWcbaGaam4AaaqabaGccqGHKjYOca WG5bWaaSbaaSqaaiaadUgaaeqaaOGaaiiFaiaad6gacaGGPaGaaiOl aaaa@6214@  (10)

This ends the proof.

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ lower, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaq6bcqaHZo WzcqGHsislaaa@3919@ content tolerance limit with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( P ρ ( Y k > y k L |n)γ ) }=E{ Pr( 1 1 F ρ ( y k L ) 1 f nk+1,k (r)dr γ ) }=β. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaaiaadcfadaWgaaWcbaGaeqyWdiha beaakiaacIcacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4Jaam yEamaaDaaaleaacaWGRbaabaGaamitaaaakiaacYhacaWGUbGaaiyk aiabgwMiZkabeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2 da9iaadweadaGadaqaaiGaccfacaGGYbWaaeWaaeaacaaIXaGaeyOe I0Yaa8qCaeaacaWGMbWaaSbaaSqaaiaad6gacqGHsislcaWGRbGaey 4kaSIaaGymaiaacYcacaWGRbaabeaakiaacIcacaWGYbGaaiykaiaa dsgacaWGYbaaleaacaaIXaGaeyOeI0IaamOramaaBaaameaacqaHbp GCaeqaaSGaaiikaiaadMhadaqhaaadbaGaam4AaaqaaiaadYeaaaWc caGGPaaabaGaaGymaaqdcqGHRiI8aOGaeyyzImRaeq4SdCgacaGLOa GaayzkaaaacaGL7bGaayzFaaGaeyypa0JaeqOSdiMaaiOlaaaa@72C8@  (11)

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@  two-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance interval with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

[ arg y k L ( E{ Pr( P ρ ( Y k > y k L |n)γ ) }=β ),  arg y k U ( E{ Pr( P ρ ( Y k y k U |n)γ ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WfqaqaaiGacggacaGGYbGaai4zaaWcbaGaamyEamaaDaaameaacaWG RbaabaGaamitaaaaaSqabaGcdaqadaqaaiaadweadaGadaqaaiGacc facaGGYbWaaeWaaeaacaWGqbWaaSbaaSqaaiabeg8aYbqabaGccaGG OaGaamywamaaBaaaleaacaWGRbaabeaakiabg6da+iaadMhadaqhaa WcbaGaam4AaaqaaiaadYeaaaGccaGG8bGaamOBaiaacMcacqGHLjYS cqaHZoWzaiaawIcacaGLPaaaaiaawUhacaGL9baacqGH9aqpcqaHYo GyaiaawIcacaGLPaaacaGGSaWaaCbeaeaacaqGGaGaciyyaiaackha caGGNbaaleaacaWG5bWaa0baaWqaaiaadUgaaeaacaWGvbaaaaWcbe aakmaabmaabaGaamyramaacmaabaGaciiuaiaackhadaqadaqaaiaa dcfadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWGzbWaaSbaaSqaai aadUgaaeqaaOGaeyizImQaamyEamaaDaaaleaacaWGRbaabaGaamyv aaaakiaacYhacaWGUbGaaiykaiabgwMiZkabeo7aNbGaayjkaiaawM caaaGaay5Eaiaaw2haaiabg2da9iabek7aIbGaayjkaiaawMcaaaGa ay5waiaaw2faaaaa@79FC@
=[ y k L ,  y k U ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaeaacaWG5bWaa0baaSqaaiaadUgaaeaacaWGmbaaaOGaaiilaiaa bccacaWG5bWaa0baaSqaaiaadUgaaeaacaWGvbaaaaGccaGLBbGaay zxaaGaaiOlaaaa@40D8@  (12)

  1. Adequate Applied Mathematical Model 3 of a Cumulative Distribution Function of the kth Order Statistic Yk is given by

0 nk+1 k F ρ ( y k ) 1 F ρ ( y k ) φ k,nk+1 (r)dr = P ρ ( Y k y k |n)= j=k n ( n j ) [ F ρ ( y k )] j   [1 F ρ ( y k )] nj . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaacq aHgpGAdaWgaaWcbaGaam4AaiaacYcacaWGUbGaeyOeI0Iaam4Aaiab gUcaRiaaigdaaeqaaOGaaiikaiaadkhacaGGPaGaamizaiaadkhaaS qaaiaaicdaaeaadaWcaaqaaiaad6gacqGHsislcaWGRbGaey4kaSIa aGymaaqaaiaadUgaaaWaaSaaaeaacaWGgbWaaSbaaWqaaiabeg8aYb qabaWccaGGOaGaamyEamaaBaaameaacaWGRbaabeaaliaacMcaaeaa caaIXaGaeyOeI0IaamOramaaBaaameaacqaHbpGCaeqaaSGaaiikai aadMhadaWgaaadbaGaam4AaaqabaWccaGGPaaaaaqdcqGHRiI8aOGa eyypa0JaamiuamaaBaaaleaacqaHbpGCaeqaaOGaaiikaiaadMfada WgaaWcbaGaam4AaaqabaGccqGHKjYOcaWG5bWaaSbaaSqaaiaadUga aeqaaOGaaiiFaiaad6gacaGGPaGaeyypa0ZaaabCaeaadaqadaqaau aabeqaceaaaeaacaWGUbaabaGaamOAaaaaaiaawIcacaGLPaaaaSqa aiaadQgacqGH9aqpcaWGRbaabaGaamOBaaqdcqGHris5aOGaai4wai aadAeadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWG5bWaaSbaaSqa aiaadUgaaeqaaOGaaiykaiaac2fadaahaaWcbeqaaiaadQgaaaGcca qGGaGaai4waiaaigdacqGHsislcaWGgbWaaSbaaSqaaiabeg8aYbqa baGccaGGOaGaamyEamaaBaaaleaacaWGRbaabeaakiaacMcacaGGDb WaaWbaaSqabeaacaWGUbGaeyOeI0IaamOAaaaakiaac6caaaa@87AD@  (13)

In the above case, a ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ upper, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit y k U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaamyvaaaaaaa@38DC@  with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( 0 nk+1 k F ρ ( y k U ) 1 F ρ ( y k U ) φ k,nk+1 (r)drγ ) }=E{ Pr( P ρ ( Y k y k U |n)γ ) }=β, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaamaapehabaGaeqOXdO2aaSbaaSqa aiaadUgacaGGSaGaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXaaabe aakiaacIcacaWGYbGaaiykaiaadsgacaWGYbGaeyyzImRaeq4SdCga leaacaaIWaaabaWaaSaaaeaacaWGUbGaeyOeI0Iaam4AaiabgUcaRi aaigdaaeaacaWGRbaaamaalaaabaGaamOramaaBaaameaacqaHbpGC aeqaaSGaaiikaiaadMhadaqhaaadbaGaam4AaaqaaiaadwfaaaWcca GGPaaabaGaaGymaiabgkHiTiaadAeadaWgaaadbaGaeqyWdihabeaa liaacIcacaWG5bWaa0baaWqaaiaadUgaaeaacaWGvbaaaSGaaiykaa aaa0Gaey4kIipaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2da 9iaadweadaGadaqaaiGaccfacaGGYbWaaeWaaeaacaWGqbWaaSbaaS qaaiabeg8aYbqabaGccaGGOaGaamywamaaBaaaleaacaWGRbaabeaa kiabgsMiJkaadMhadaqhaaWcbaGaam4AaaqaaiaadwfaaaGccaGG8b GaamOBaiaacMcacqGHLjYScqaHZoWzaiaawIcacaGLPaaaaiaawUha caGL9baacqGH9aqpcqaHYoGycaGGSaaaaa@7F48@  (14)

where

φ k,nk+1 (r)= 1 Β( k,nk+1 )   [ k nk+1 r ] k1 [ 1+ k nk+1 r ] n+1 k nk+1 ,   r(0,), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaadUgacaGGSaGaamOBaiabgkHiTiaadUgacqGHRaWkcaaI XaaabeaakiaacIcacaWGYbGaaiykaiabg2da9maalaaabaGaaGymaa qaaiabfk5acnaabmaabaGaam4AaiaacYcacaWGUbGaeyOeI0Iaam4A aiabgUcaRiaaigdaaiaawIcacaGLPaaaaaGaaeiiamaalaaabaWaam WaaeaadaWcaaqaaiaadUgaaeaacaWGUbGaeyOeI0Iaam4AaiabgUca RiaaigdaaaGaamOCaaGaay5waiaaw2faamaaCaaaleqabaGaam4Aai abgkHiTiaaigdaaaaakeaadaWadaqaaiaaigdacqGHRaWkdaWcaaqa aiaadUgaaeaacaWGUbGaeyOeI0Iaam4AaiabgUcaRiaaigdaaaGaam OCaaGaay5waiaaw2faamaaCaaaleqabaGaamOBaiabgUcaRiaaigda aaaaaOWaaSaaaeaacaWGRbaabaGaamOBaiabgkHiTiaadUgacqGHRa WkcaaIXaaaaiaacYcacaqGGaGaaeiiaiaabccacaWGYbGaeyicI4Sa aiikaiaaicdacaGGSaGaeyOhIuQaaiykaiaacYcaaaa@72F7@  (15)

is the probability density function (pdf) of the F distribution (F(k,nk+1)) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadA eacaqGOaGaam4AaiaacYcacaWGUbGaeyOeI0Iaam4AaiabgUcaRiaa igdacaqGPaGaaeykaaaa@3F6E@ with parameters k and nk+1, which are positive integers known as the degrees of freedom for the numerator and the degrees of freedom for the denominator.

Proof: It follows from (13) that

d d y k 0 nk+1 k F ρ ( y k ) 1 F ρ ( y k ) φ k,nk+1 (r)dr = d d y k P ρ ( Y k y k |n). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbaabaGaamizaiaadMhadaWgaaWcbaGaam4AaaqabaaaaOWaa8qC aeaacqaHgpGAdaWgaaWcbaGaam4AaiaacYcacaWGUbGaeyOeI0Iaam 4AaiabgUcaRiaaigdaaeqaaOGaaiikaiaadkhacaGGPaGaamizaiaa dkhaaSqaaiaaicdaaeaadaWcaaqaaiaad6gacqGHsislcaWGRbGaey 4kaSIaaGymaaqaaiaadUgaaaWaaSaaaeaacaWGgbWaaSbaaWqaaiab eg8aYbqabaWccaGGOaGaamyEamaaBaaameaacaWGRbaabeaaliaacM caaeaacaaIXaGaeyOeI0IaamOramaaBaaameaacqaHbpGCaeqaaSGa aiikaiaadMhadaWgaaadbaGaam4AaaqabaWccaGGPaaaaaqdcqGHRi I8aOGaeyypa0ZaaSaaaeaacaWGKbaabaGaamizaiaadMhadaWgaaWc baGaam4AaaqabaaaaOGaamiuamaaBaaaleaacqaHbpGCaeqaaOGaai ikaiaadMfadaWgaaWcbaGaam4AaaqabaGccqGHKjYOcaWG5bWaaSba aSqaaiaadUgaaeqaaOGaaiiFaiaad6gacaGGPaGaaiOlaaaa@6EA4@  (16)

This ends the proof.

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ lower, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( P ρ ( Y k > y k L |n)γ ) }=E{ Pr( 1 0 nk+1 k F ρ ( y k L ) 1 F ρ ( y k L ) φ k,nk+1 (r)drγ ) }=β. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaaiaadcfadaWgaaWcbaGaeqyWdiha beaakiaacIcacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4Jaam yEamaaDaaaleaacaWGRbaabaGaamitaaaakiaacYhacaWGUbGaaiyk aiabgwMiZkabeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2 da9iaadweadaGadaqaaiGaccfacaGGYbWaaeWaaeaacaaIXaGaeyOe I0Yaa8qCaeaacqaHgpGAdaWgaaWcbaGaam4AaiaacYcacaWGUbGaey OeI0Iaam4AaiabgUcaRiaaigdaaeqaaOGaaiikaiaadkhacaGGPaGa amizaiaadkhacqGHLjYScqaHZoWzaSqaaiaaicdaaeaadaWcaaqaai aad6gacqGHsislcaWGRbGaey4kaSIaaGymaaqaaiaadUgaaaWaaSaa aeaacaWGgbWaaSbaaWqaaiabeg8aYbqabaWccaGGOaGaamyEamaaDa aameaacaWGRbaabaGaamitaaaaliaacMcaaeaacaaIXaGaeyOeI0Ia amOramaaBaaameaacqaHbpGCaeqaaSGaaiikaiaadMhadaqhaaadba Gaam4AaaqaaiaadYeaaaWccaGGPaaaaaqdcqGHRiI8aaGccaGLOaGa ayzkaaaacaGL7bGaayzFaaGaeyypa0JaeqOSdiMaaiOlaaaa@802A@  (17)

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@  two-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance interval with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

[ arg y k L ( E{ Pr( P ρ ( Y k > y k L |n)γ ) }=β ),  arg y k U ( E{ Pr( P ρ ( Y k y k U |n)γ ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WfqaqaaiGacggacaGGYbGaai4zaaWcbaGaamyEamaaDaaameaacaWG RbaabaGaamitaaaaaSqabaGcdaqadaqaaiaadweadaGadaqaaiGacc facaGGYbWaaeWaaeaacaWGqbWaaSbaaSqaaiabeg8aYbqabaGccaGG OaGaamywamaaBaaaleaacaWGRbaabeaakiabg6da+iaadMhadaqhaa WcbaGaam4AaaqaaiaadYeaaaGccaGG8bGaamOBaiaacMcacqGHLjYS cqaHZoWzaiaawIcacaGLPaaaaiaawUhacaGL9baacqGH9aqpcqaHYo GyaiaawIcacaGLPaaacaGGSaGaaeiiamaaxababaGaciyyaiaackha caGGNbaaleaacaWG5bWaa0baaWqaaiaadUgaaeaacaWGvbaaaaWcbe aakmaabmaabaGaamyramaacmaabaGaciiuaiaackhadaqadaqaaiaa dcfadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWGzbWaaSbaaSqaai aadUgaaeqaaOGaeyizImQaamyEamaaDaaaleaacaWGRbaabaGaamyv aaaakiaacYhacaWGUbGaaiykaiabgwMiZkabeo7aNbGaayjkaiaawM caaaGaay5Eaiaaw2haaiabg2da9iabek7aIbGaayjkaiaawMcaaaGa ay5waiaaw2faaaaa@79FC@
=[ arg y k L ( E{ Pr( 0 nk+1 k F ρ ( y k L ) 1 F ρ ( y k L ) φ k,nk+1 (r)dr1γ ) }=β ),  arg y k U ( E{ Pr( 0 nk+1 k F ρ ( y k U ) 1 F ρ ( y k U ) φ k,nk+1 (r)drγ ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaqaabeqaamaaxababaGaciyyaiaackhacaGGNbaaleaacaWG5bWa a0baaWqaaiaadUgaaeaacaWGmbaaaaWcbeaakmaabmaabaGaamyram aacmaabaGaciiuaiaackhadaqadaqaamaapehabaGaeqOXdO2aaSba aSqaaiaadUgacaGGSaGaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXa aabeaakiaacIcacaWGYbGaaiykaiaadsgacaWGYbGaeyizImQaaGym aiabgkHiTiabeo7aNbWcbaGaaGimaaqaamaalaaabaGaamOBaiabgk HiTiaadUgacqGHRaWkcaaIXaaabaGaam4AaaaadaWcaaqaaiaadAea daWgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWaa0baaWqaaiaadU gaaeaacaWGmbaaaSGaaiykaaqaaiaaigdacqGHsislcaWGgbWaaSba aWqaaiabeg8aYbqabaWccaGGOaGaamyEamaaDaaameaacaWGRbaaba GaamitaaaaliaacMcaaaaaniabgUIiYdaakiaawIcacaGLPaaaaiaa wUhacaGL9baacqGH9aqpcqaHYoGyaiaawIcacaGLPaaacaGGSaaaba WaaCbeaeaacaqGGaGaciyyaiaackhacaGGNbaaleaacaWG5bWaa0ba aWqaaiaadUgaaeaacaWGvbaaaaWcbeaakmaabmaabaGaamyramaacm aabaGaciiuaiaackhadaqadaqaamaapehabaGaeqOXdO2aaSbaaSqa aiaadUgacaGGSaGaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXaaabe aakiaacIcacaWGYbGaaiykaiaadsgacaWGYbGaeyyzImRaeq4SdCga leaacaaIWaaabaWaaSaaaeaacaWGUbGaeyOeI0Iaam4AaiabgUcaRi aaigdaaeaacaWGRbaaamaalaaabaGaamOramaaBaaameaacqaHbpGC aeqaaSGaaiikaiaadMhadaqhaaadbaGaam4AaaqaaiaadwfaaaWcca GGPaaabaGaaGymaiabgkHiTiaadAeadaWgaaadbaGaeqyWdihabeaa liaacIcacaWG5bWaa0baaWqaaiaadUgaaeaacaWGvbaaaSGaaiykaa aaa0Gaey4kIipaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2da 9iabek7aIbGaayjkaiaawMcaaaaacaGLBbGaayzxaaaaaa@AD1E@
=[ y k L ,  y k U ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaeaacaWG5bWaa0baaSqaaiaadUgaaeaacaWGmbaaaOGaaiilaiaa bccacaWG5bWaa0baaSqaaiaadUgaaeaacaWGvbaaaaGccaGLBbGaay zxaaGaaiOlaaaa@40D8@  (18)

  1. Adequate Applied Mathematical Model 4 of a Cumulative Distribution Function of the kth Order Statistic Yk is given by

k nk+1 1 F ρ ( y k ) F ρ ( y k ) φ nk+1,k (r)dr = P ρ ( Y k y k |n)= j=k n ( n j ) [ F ρ ( y k )] j   [1 F ρ ( y k )] nj . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaacq aHgpGAdaWgaaWcbaGaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXaGa aiilaiaadUgaaeqaaOGaaiikaiaadkhacaGGPaGaamizaiaadkhaaS qaamaalaaabaGaam4Aaaqaaiaad6gacqGHsislcaWGRbGaey4kaSIa aGymaaaadaWcaaqaaiaaigdacqGHsislcaWGgbWaaSbaaWqaaiabeg 8aYbqabaWccaGGOaGaamyEamaaBaaameaacaWGRbaabeaaliaacMca aeaacaWGgbWaaSbaaWqaaiabeg8aYbqabaWccaGGOaGaamyEamaaBa aameaacaWGRbaabeaaliaacMcaaaaabaGaeyOhIukaniabgUIiYdGc cqGH9aqpcaWGqbWaaSbaaSqaaiabeg8aYbqabaGccaGGOaGaamywam aaBaaaleaacaWGRbaabeaakiabgsMiJkaadMhadaWgaaWcbaGaam4A aaqabaGccaGG8bGaamOBaiaacMcacqGH9aqpdaaeWbqaamaabmaaba qbaeqabiqaaaqaaiaad6gaaeaacaWGQbaaaaGaayjkaiaawMcaaaWc baGaamOAaiabg2da9iaadUgaaeaacaWGUbaaniabggHiLdGccaGGBb GaamOramaaBaaaleaacqaHbpGCaeqaaOGaaiikaiaadMhadaWgaaWc baGaam4AaaqabaGccaGGPaGaaiyxamaaCaaaleqabaGaamOAaaaaki aabccacaGGBbGaaGymaiabgkHiTiaadAeadaWgaaWcbaGaeqyWdiha beaakiaacIcacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaaiykaiaac2 fadaahaaWcbeqaaiaad6gacqGHsislcaWGQbaaaOGaaiOlaaaa@8864@  (19)

In the above case, a ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ upper, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit y k U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaamyvaaaaaaa@38DC@  with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( k nk+1 1 F ρ ( y k U ) F ρ ( y k U ) φ nk+1,k (r)drγ ) }=E{ Pr( P ρ ( Y k y k U |n)γ ) }=β, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaamaapehabaGaeqOXdO2aaSbaaSqa aiaad6gacqGHsislcaWGRbGaey4kaSIaaGymaiaacYcacaWGRbaabe aakiaacIcacaWGYbGaaiykaiaadsgacaWGYbGaeyyzImRaeq4SdCga leaadaWcaaqaaiaadUgaaeaacaWGUbGaeyOeI0Iaam4AaiabgUcaRi aaigdaaaWaaSaaaeaacaaIXaGaeyOeI0IaamOramaaBaaameaacqaH bpGCaeqaaSGaaiikaiaadMhadaqhaaadbaGaam4Aaaqaaiaadwfaaa WccaGGPaaabaGaamOramaaBaaameaacqaHbpGCaeqaaSGaaiikaiaa dMhadaqhaaadbaGaam4AaaqaaiaadwfaaaWccaGGPaaaaaqaaiabg6 HiLcqdcqGHRiI8aaGccaGLOaGaayzkaaaacaGL7bGaayzFaaGaeyyp a0JaamyramaacmaabaGaciiuaiaackhadaqadaqaaiaadcfadaWgaa WcbaGaeqyWdihabeaakiaacIcacaWGzbWaaSbaaSqaaiaadUgaaeqa aOGaeyizImQaamyEamaaDaaaleaacaWGRbaabaGaamyvaaaakiaacY hacaWGUbGaaiykaiabgwMiZkabeo7aNbGaayjkaiaawMcaaaGaay5E aiaaw2haaiabg2da9iabek7aIjaacYcaaaa@7FFF@  (20)

where

φ nk+1,k (r)= nk+1 k Β( nk+1,k ) [ nk+1 k r ] nk [ 1+ nk+1 k r ] n+1 ,   r(0,), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdO2aaS baaSqaaiaad6gacqGHsislcaWGRbGaey4kaSIaaGymaiaacYcacaWG RbaabeaakiaacIcacaWGYbGaaiykaiabg2da9maalaaabaWaaSaaae aacaWGUbGaeyOeI0Iaam4AaiabgUcaRiaaigdaaeaacaWGRbaaaaqa aiabfk5acnaabmaabaGaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXa GaaiilaiaadUgaaiaawIcacaGLPaaaaaWaaSaaaeaadaWadaqaamaa laaabaGaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXaaabaGaam4Aaa aacaWGYbaacaGLBbGaayzxaaWaaWbaaSqabeaacaWGUbGaeyOeI0Ia am4AaaaaaOqaamaadmaabaGaaGymaiabgUcaRmaalaaabaGaamOBai abgkHiTiaadUgacqGHRaWkcaaIXaaabaGaam4AaaaacaWGYbaacaGL BbGaayzxaaWaaWbaaSqabeaacaWGUbGaey4kaSIaaGymaaaaaaGcca GGSaGaaeiiaiaabccacaqGGaGaamOCaiabgIGiolaacIcacaaIWaGa aiilaiabg6HiLkaacMcacaGGSaaaaa@71D1@  (21)

is the probability density function (pdf) of the F distribution (F(nk+1,k)) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadA eacaqGOaGaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXaGaaiilaiaa dUgacaqGPaGaaeykaaaa@3F6E@ with parameters nk+1 and k, which are positive integers known as the degrees of freedom for the numerator and the degrees of freedom for the denominator.

Proof: It follows from (19) that

d d y k k nk+1 1 F ρ ( y k ) F ρ ( y k ) φ nk+1,k (r)dr = d d y k P ρ ( Y k y k |n). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbaabaGaamizaiaadMhadaWgaaWcbaGaam4AaaqabaaaaOWaa8qC aeaacqaHgpGAdaWgaaWcbaGaamOBaiabgkHiTiaadUgacqGHRaWkca aIXaGaaiilaiaadUgaaeqaaOGaaiikaiaadkhacaGGPaGaamizaiaa dkhaaSqaamaalaaabaGaam4Aaaqaaiaad6gacqGHsislcaWGRbGaey 4kaSIaaGymaaaadaWcaaqaaiaaigdacqGHsislcaWGgbWaaSbaaWqa aiabeg8aYbqabaWccaGGOaGaamyEamaaBaaameaacaWGRbaabeaali aacMcaaeaacaWGgbWaaSbaaWqaaiabeg8aYbqabaWccaGGOaGaamyE amaaBaaameaacaWGRbaabeaaliaacMcaaaaabaGaeyOhIukaniabgU IiYdGccqGH9aqpdaWcaaqaaiaadsgaaeaacaWGKbGaamyEamaaBaaa leaacaWGRbaabeaaaaGccaWGqbWaaSbaaSqaaiabeg8aYbqabaGcca GGOaGaamywamaaBaaaleaacaWGRbaabeaakiabgsMiJkaadMhadaWg aaWcbaGaam4AaaqabaGccaGG8bGaamOBaiaacMcacaGGUaaaaa@6F5B@  (22)

This ends the proof.

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ lower, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( 1 k nk+1 1 F ρ ( y k L ) F ρ ( y k L ) φ nk+1,k (r)drγ ) }=E{ Pr( P ρ ( Y k > y k L |n)γ ) }=β. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaaiaaigdacqGHsisldaWdXbqaaiab eA8aQnaaBaaaleaacaWGUbGaeyOeI0Iaam4AaiabgUcaRiaaigdaca GGSaGaam4AaaqabaGccaGGOaGaamOCaiaacMcacaWGKbGaamOCaiab gwMiZkabeo7aNbWcbaWaaSaaaeaacaWGRbaabaGaamOBaiabgkHiTi aadUgacqGHRaWkcaaIXaaaamaalaaabaGaaGymaiabgkHiTiaadAea daWgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWaa0baaWqaaiaadU gaaeaacaWGmbaaaSGaaiykaaqaaiaadAeadaWgaaadbaGaeqyWdiha beaaliaacIcacaWG5bWaa0baaWqaaiaadUgaaeaacaWGmbaaaSGaai ykaaaaaeaacqGHEisPa0Gaey4kIipaaOGaayjkaiaawMcaaaGaay5E aiaaw2haaiabg2da9iaadweadaGadaqaaiGaccfacaGGYbWaaeWaae aacaWGqbWaaSbaaSqaaiabeg8aYbqabaGccaGGOaGaamywamaaBaaa leaacaWGRbaabeaakiabg6da+iaadMhadaqhaaWcbaGaam4Aaaqaai aadYeaaaGccaGG8bGaamOBaiaacMcacqGHLjYScqaHZoWzaiaawIca caGLPaaaaiaawUhacaGL9baacqGH9aqpcqaHYoGycaGGUaaaaa@80E1@  (23)

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@  two-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance interval with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

[ arg y k L ( E{ Pr( P ρ ( Y k > y k L |n)γ ) }=β ),  arg y k U ( E{ Pr( P ρ ( Y k y k U |n)γ ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WfqaqaaiGacggacaGGYbGaai4zaaWcbaGaamyEamaaDaaameaacaWG RbaabaGaamitaaaaaSqabaGcdaqadaqaaiaadweadaGadaqaaiGacc facaGGYbWaaeWaaeaacaWGqbWaaSbaaSqaaiabeg8aYbqabaGccaGG OaGaamywamaaBaaaleaacaWGRbaabeaakiabg6da+iaadMhadaqhaa WcbaGaam4AaaqaaiaadYeaaaGccaGG8bGaamOBaiaacMcacqGHLjYS cqaHZoWzaiaawIcacaGLPaaaaiaawUhacaGL9baacqGH9aqpcqaHYo GyaiaawIcacaGLPaaacaGGSaGaaeiiamaaxababaGaciyyaiaackha caGGNbaaleaacaWG5bWaa0baaWqaaiaadUgaaeaacaWGvbaaaaWcbe aakmaabmaabaGaamyramaacmaabaGaciiuaiaackhadaqadaqaaiaa dcfadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWGzbWaaSbaaSqaai aadUgaaeqaaOGaeyizImQaamyEamaaDaaaleaacaWGRbaabaGaamyv aaaakiaacYhacaWGUbGaaiykaiabgwMiZkabeo7aNbGaayjkaiaawM caaaGaay5Eaiaaw2haaiabg2da9iabek7aIbGaayjkaiaawMcaaaGa ay5waiaaw2faaaaa@79FC@
=[ arg y k L ( E{ Pr( k nk+1 1 F ρ ( y k L ) F ρ ( y k L ) φ nk+1,k (r)dr1γ ) }=β ),  arg y k U ( E{ Pr( k nk+1 1 F ρ ( y k U ) F ρ ( y k U ) φ nk+1,k (r)drγ ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaqaabeqaamaaxababaGaciyyaiaackhacaGGNbaaleaacaWG5bWa a0baaWqaaiaadUgaaeaacaWGmbaaaaWcbeaakmaabmaabaGaamyram aacmaabaGaciiuaiaackhadaqadaqaamaapehabaGaeqOXdO2aaSba aSqaaiaad6gacqGHsislcaWGRbGaey4kaSIaaGymaiaacYcacaWGRb aabeaakiaacIcacaWGYbGaaiykaiaadsgacaWGYbGaeyizImQaaGym aiabgkHiTiabeo7aNbWcbaWaaSaaaeaacaWGRbaabaGaamOBaiabgk HiTiaadUgacqGHRaWkcaaIXaaaamaalaaabaGaaGymaiabgkHiTiaa dAeadaWgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWaa0baaWqaai aadUgaaeaacaWGmbaaaSGaaiykaaqaaiaadAeadaWgaaadbaGaeqyW dihabeaaliaacIcacaWG5bWaa0baaWqaaiaadUgaaeaacaWGmbaaaS GaaiykaaaaaeaacqGHEisPa0Gaey4kIipaaOGaayjkaiaawMcaaaGa ay5Eaiaaw2haaiabg2da9iabek7aIbGaayjkaiaawMcaaiaacYcaae aadaWfqaqaaiaabccaciGGHbGaaiOCaiaacEgaaSqaaiaadMhadaqh aaadbaGaam4AaaqaaiaadwfaaaaaleqaaOWaaeWaaeaacaWGfbWaai WaaeaaciGGqbGaaiOCamaabmaabaWaa8qCaeaacqaHgpGAdaWgaaWc baGaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXaGaaiilaiaadUgaae qaaOGaaiikaiaadkhacaGGPaGaamizaiaadkhacqGHLjYScqaHZoWz aSqaamaalaaabaGaam4Aaaqaaiaad6gacqGHsislcaWGRbGaey4kaS IaaGymaaaadaWcaaqaaiaaigdacqGHsislcaWGgbWaaSbaaWqaaiab eg8aYbqabaWccaGGOaGaamyEamaaDaaameaacaWGRbaabaGaamyvaa aaliaacMcaaeaacaWGgbWaaSbaaWqaaiabeg8aYbqabaWccaGGOaGa amyEamaaDaaameaacaWGRbaabaGaamyvaaaaliaacMcaaaaabaGaey OhIukaniabgUIiYdaakiaawIcacaGLPaaaaiaawUhacaGL9baacqGH 9aqpcqaHYoGyaiaawIcacaGLPaaaaaGaay5waiaaw2faaaaa@AE8C@
=[ y k L ,  y k U ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaeaacaWG5bWaa0baaSqaaiaadUgaaeaacaWGmbaaaOGaaiilaiaa bccacaWG5bWaa0baaSqaaiaadUgaaeaacaWGvbaaaaGccaGLBbGaay zxaaGaaiOlaaaa@40D8@  (24)

  1. Adequate mathematical models of conditional cumulative distribution functions of order statistic for constructing one-sided tolerance limits (or two-sided tolerance interval) in new (future) data samples under parametric uncertainty

Theorem 2: Let us assume that Y1£ … £Yn will be a new (future) random sample of n ordered observations from a known distribution with a probability density function (pdf) f ρ (y), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacqaHbpGCaeqaaOGaaiikaiaadMhacaGGPaGaaiilaaaa@3BBF@  cumulative distribution function (cdf) F ρ (y) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacqaHbpGCaeqaaOGaaiikaiaadMhacaGGPaaaaa@3AEF@ , where ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@3797@ is the parameter (in general, vector). Then the adequate mathematical models for a conditional cumulative distribution function (ccdf) of the lth order statistic Yl, lÎ{2, …, n}, to construct one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCgaaa@378E@ − content tolerance limits (or two-sided tolerance interval) for Yl (1 £ k < l £ n) ), given Yk=yk, with confidence level β, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdiMaai ilaaaa@3828@ are determined as follows:

  1. Adequate Applied Mathematical Model 5 of a Conditional Cumulative Distribution Function of the lth Order Statistic Yl is given by

0 1 F ¯ ρ ( y l ) F ¯ ρ ( y k ) f lk,nl+1 (r)dr = P ρ ( Y l y l | Y k = y k ;n)= j=lk nk ( nk j ) [ 1 F ¯ ρ ( y l ) F ¯ ρ ( y k ) ] j [ F ¯ ρ ( y l ) F ¯ ρ ( y k ) ] nkj , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca WGMbWaaSbaaSqaaiaadYgacqGHsislcaWGRbGaaiilaiaad6gacqGH sislcaWGSbGaey4kaSIaaGymaaqabaGccaGGOaGaamOCaiaacMcaca WGKbGaamOCaaWcbaGaaGimaaqaaiaaigdacqGHsisldaWcaaqaaiqa dAeagaqeamaaBaaameaacqaHbpGCaeqaaSGaaiikaiaadMhadaWgaa adbaGaamiBaaqabaWccaGGPaaabaGabmOrayaaraWaaSbaaWqaaiab eg8aYbqabaWccaGGOaGaamyEamaaBaaameaacaWGRbaabeaaliaacM caaaaaniabgUIiYdGccqGH9aqpcaWGqbWaaSbaaSqaaiabeg8aYbqa baGccaGGOaGaamywamaaBaaaleaacaWGSbaabeaakiabgsMiJkaadM hadaWgaaWcbaGaamiBaaqabaGccaGG8bGaamywamaaBaaaleaacaWG Rbaabeaakiabg2da9iaadMhadaWgaaWcbaGaam4AaaqabaGccaGG7a GaamOBaiaacMcacqGH9aqpdaaeWbqaamaabmaabaqbaeqabiqaaaqa aiaad6gacqGHsislcaWGRbaabaGaamOAaaaaaiaawIcacaGLPaaaaS qaaiaadQgacqGH9aqpcaWGSbGaeyOeI0Iaam4Aaaqaaiaad6gacqGH sislcaWGRbaaniabggHiLdGcdaWadaqaaiaaigdacqGHsisldaWcaa qaaiqadAeagaqeamaaBaaaleaacqaHbpGCaeqaaOGaaiikaiaadMha daWgaaWcbaGaamiBaaqabaGccaGGPaaabaGabmOrayaaraWaaSbaaS qaaiabeg8aYbqabaGccaGGOaGaamyEamaaBaaaleaacaWGRbaabeaa kiaacMcaaaaacaGLBbGaayzxaaWaaWbaaSqabeaacaWGQbaaaOWaam WaaeaadaWcaaqaaiqadAeagaqeamaaBaaaleaacqaHbpGCaeqaaOGa aiikaiaadMhadaWgaaWcbaGaamiBaaqabaGccaGGPaaabaGabmOray aaraWaaSbaaSqaaiabeg8aYbqabaGccaGGOaGaamyEamaaBaaaleaa caWGRbaabeaakiaacMcaaaaacaGLBbGaayzxaaWaaWbaaSqabeaaca WGUbGaeyOeI0Iaam4AaiabgkHiTiaadQgaaaGccaGGSaaaaa@9D9F@  (25)

In the above case, a ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ upper, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit y l U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGSbaabaGaamyvaaaaaaa@38DD@  with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( 0 1 F ¯ ρ ( y l U ) F ¯ ρ ( y k ) f lk,nl+1 (r)dr γ ) }=E{ Pr( P ρ ( Y l y l U | Y k = y k ;n)γ ) }=β, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaamaapehabaGaamOzamaaBaaaleaa caWGSbGaeyOeI0Iaam4AaiaacYcacaWGUbGaeyOeI0IaamiBaiabgU caRiaaigdaaeqaaOGaaiikaiaadkhacaGGPaGaamizaiaadkhaaSqa aiaaicdaaeaacaaIXaGaeyOeI0YaaSaaaeaaceWGgbGbaebadaWgaa adbaGaeqyWdihabeaaliaacIcacaWG5bWaa0baaWqaaiaadYgaaeaa caWGvbaaaSGaaiykaaqaaiqadAeagaqeamaaBaaameaacqaHbpGCae qaaSGaaiikaiaadMhadaWgaaadbaGaam4AaaqabaWccaGGPaaaaaqd cqGHRiI8aOGaeyyzImRaeq4SdCgacaGLOaGaayzkaaaacaGL7bGaay zFaaGaeyypa0JaamyramaacmaabaGaciiuaiaackhadaqadaqaaiaa dcfadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWGzbWaaSbaaSqaai aadYgaaeqaaOGaeyizImQaamyEamaaDaaaleaacaWGSbaabaGaamyv aaaakiaacYhacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0Jaam yEamaaBaaaleaacaWGRbaabeaakiaacUdacaWGUbGaaiykaiabgwMi Zkabeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2da9iabek 7aIjaacYcaaaa@802D@  (26)

where F ¯ μ (z)=1 F μ (z), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaara WaaSbaaSqaaiabeY7aTbqabaGccaGGOaGaamOEaiaacMcacqGH9aqp caaIXaGaeyOeI0IaamOramaaBaaaleaacqaH8oqBaeqaaOGaaiikai aadQhacaGGPaGaaiilaaaa@437B@

f lk,nl+1 (r)= r lk1 (1r) (nl+1)1 Β( lk,nl+1 ) ,   0<r<1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGSbGaeyOeI0Iaam4AaiaacYcacaWGUbGaeyOeI0IaamiB aiabgUcaRiaaigdaaeqaaOGaaiikaiaadkhacaGGPaGaeyypa0ZaaS aaaeaacaWGYbWaaWbaaSqabeaacaWGSbGaeyOeI0Iaam4AaiabgkHi TiaaigdaaaGccaGGOaGaaGymaiabgkHiTiaadkhacaGGPaWaaWbaaS qabeaacaGGOaGaamOBaiabgkHiTiaadYgacqGHRaWkcaaIXaGaaiyk aiabgkHiTiaaigdaaaaakeaacqqHsoGqdaqadaqaaiaadYgacqGHsi slcaWGRbGaaiilaiaad6gacqGHsislcaWGSbGaey4kaSIaaGymaaGa ayjkaiaawMcaaaaacaGGSaGaaeiiaiaabccacaqGGaGaaGimaiabgY da8iaadkhacqGH8aapcaaIXaGaaiilaaaa@6630@  (27)

is the probability density function (pdf) of the beta distribution (Beta(lk,nl+1)) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadk eacaWGLbGaamiDaiaadggacaqGOaGaamiBaiabgkHiTiaadUgacaqG SaGaamOBaiabgkHiTiaadYgacqGHRaWkcaaIXaGaaeykaiaabMcaaa a@4411@  with shape parameters l−k and n−l+1.

Proof: It follows from (25) that

d d y l 0 1 F ¯ ρ ( y l ) F ¯ ρ ( y k ) f lk,nl+1 (r)dr = d d y l P ρ ( Y l y l | Y k = y k ;n). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbaabaGaamizaiaadMhadaWgaaWcbaGaamiBaaqabaaaaOWaa8qC aeaacaWGMbWaaSbaaSqaaiaadYgacqGHsislcaWGRbGaaiilaiaad6 gacqGHsislcaWGSbGaey4kaSIaaGymaaqabaGccaGGOaGaamOCaiaa cMcacaWGKbGaamOCaaWcbaGaaGimaaqaaiaaigdacqGHsisldaWcaa qaaiqadAeagaqeamaaBaaameaacqaHbpGCaeqaaSGaaiikaiaadMha daWgaaadbaGaamiBaaqabaWccaGGPaaabaGabmOrayaaraWaaSbaaW qaaiabeg8aYbqabaWccaGGOaGaamyEamaaBaaameaacaWGRbaabeaa liaacMcaaaaaniabgUIiYdGccqGH9aqpdaWcaaqaaiaadsgaaeaaca WGKbGaamyEamaaBaaaleaacaWGSbaabeaaaaGccaWGqbWaaSbaaSqa aiabeg8aYbqabaGccaGGOaGaamywamaaBaaaleaacaWGSbaabeaaki abgsMiJkaadMhadaWgaaWcbaGaamiBaaqabaGccaGG8bGaamywamaa BaaaleaacaWGRbaabeaakiabg2da9iaadMhadaWgaaWcbaGaam4Aaa qabaGccaGG7aGaamOBaiaacMcacaGGUaaaaa@7067@  (28)

This ends the proof.

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ lower, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( 1 0 1 F ¯ ρ ( y l L ) F ¯ ρ ( y k ) f lk,nl+1 (r)dr γ ) }=E{ Pr( P ρ ( Y l > y l L | Y k = y k ;n)γ ) }=β. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaaiaaigdacqGHsisldaWdXbqaaiaa dAgadaWgaaWcbaGaamiBaiabgkHiTiaadUgacaGGSaGaamOBaiabgk HiTiaadYgacqGHRaWkcaaIXaaabeaakiaacIcacaWGYbGaaiykaiaa dsgacaWGYbaaleaacaaIWaaabaGaaGymaiabgkHiTmaalaaabaGabm OrayaaraWaaSbaaWqaaiabeg8aYbqabaWccaGGOaGaamyEamaaDaaa meaacaWGSbaabaGaamitaaaaliaacMcaaeaaceWGgbGbaebadaWgaa adbaGaeqyWdihabeaaliaacIcacaWG5bWaaSbaaWqaaiaadUgaaeqa aSGaaiykaaaaa0Gaey4kIipakiabgwMiZkabeo7aNbGaayjkaiaawM caaaGaay5Eaiaaw2haaiabg2da9iaadweadaGadaqaaiGaccfacaGG YbWaaeWaaeaacaWGqbWaaSbaaSqaaiabeg8aYbqabaGccaGGOaGaam ywamaaBaaaleaacaWGSbaabeaakiabg6da+iaadMhadaqhaaWcbaGa amiBaaqaaiaadYeaaaGccaGG8bGaamywamaaBaaaleaacaWGRbaabe aakiabg2da9iaadMhadaWgaaWcbaGaam4AaaqabaGccaGG7aGaamOB aiaacMcacqGHLjYScqaHZoWzaiaawIcacaGLPaaaaiaawUhacaGL9b aacqGH9aqpcqaHYoGycaGGUaaaaa@8118@  (29)

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@  two-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance interval with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

[ arg y l L ( E{ Pr( P ρ ( Y l > y l L | Y k = y k ;n)γ ) }=β ),  arg y l U ( E{ Pr( P ρ ( Y l y l U |n)γ ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WfqaqaaiGacggacaGGYbGaai4zaaWcbaGaamyEamaaDaaameaacaWG SbaabaGaamitaaaaaSqabaGcdaqadaqaaiaadweadaGadaqaaiGacc facaGGYbWaaeWaaeaacaWGqbWaaSbaaSqaaiabeg8aYbqabaGccaGG OaGaamywamaaBaaaleaacaWGSbaabeaakiabg6da+iaadMhadaqhaa WcbaGaamiBaaqaaiaadYeaaaGccaGG8bGaamywamaaBaaaleaacaWG Rbaabeaakiabg2da9iaadMhadaWgaaWcbaGaam4AaaqabaGccaGG7a GaamOBaiaacMcacqGHLjYScqaHZoWzaiaawIcacaGLPaaaaiaawUha caGL9baacqGH9aqpcqaHYoGyaiaawIcacaGLPaaacaGGSaGaaeiiam aaxababaGaciyyaiaackhacaGGNbaaleaacaWG5bWaa0baaWqaaiaa dYgaaeaacaWGvbaaaaWcbeaakmaabmaabaGaamyramaacmaabaGaci iuaiaackhadaqadaqaaiaadcfadaWgaaWcbaGaeqyWdihabeaakiaa cIcacaWGzbWaaSbaaSqaaiaadYgaaeqaaOGaeyizImQaamyEamaaDa aaleaacaWGSbaabaGaamyvaaaakiaacYhacaWGUbGaaiykaiabgwMi Zkabeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2da9iabek 7aIbGaayjkaiaawMcaaaGaay5waiaaw2faaaaa@7FEF@
=[ arg y k L ( E{ Pr( 0 1 F ¯ ρ ( y l L ) F ¯ ρ ( y k ) f lk,nl+1 (r)dr 1γ ) }=β ),  arg y k U ( E{ Pr( 0 1 F ¯ ρ ( y l U ) F ¯ ρ ( y k ) f lk,nl+1 (r)dr γ ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaqaabeqaamaaxababaGaciyyaiaackhacaGGNbaaleaacaWG5bWa a0baaWqaaiaadUgaaeaacaWGmbaaaaWcbeaakmaabmaabaGaamyram aacmaabaGaciiuaiaackhadaqadaqaamaapehabaGaamOzamaaBaaa leaacaWGSbGaeyOeI0Iaam4AaiaacYcacaWGUbGaeyOeI0IaamiBai abgUcaRiaaigdaaeqaaOGaaiikaiaadkhacaGGPaGaamizaiaadkha aSqaaiaaicdaaeaacaaIXaGaeyOeI0YaaSaaaeaaceWGgbGbaebada WgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWaa0baaWqaaiaadYga aeaacaWGmbaaaSGaaiykaaqaaiqadAeagaqeamaaBaaameaacqaHbp GCaeqaaSGaaiikaiaadMhadaWgaaadbaGaam4AaaqabaWccaGGPaaa aaqdcqGHRiI8aOGaeyizImQaaGymaiabgkHiTiabeo7aNbGaayjkai aawMcaaaGaay5Eaiaaw2haaiabg2da9iabek7aIbGaayjkaiaawMca aiaacYcaaeaadaWfqaqaaiaabccaciGGHbGaaiOCaiaacEgaaSqaai aadMhadaqhaaadbaGaam4AaaqaaiaadwfaaaaaleqaaOWaaeWaaeaa caWGfbWaaiWaaeaaciGGqbGaaiOCamaabmaabaWaa8qCaeaacaWGMb WaaSbaaSqaaiaadYgacqGHsislcaWGRbGaaiilaiaad6gacqGHsisl caWGSbGaey4kaSIaaGymaaqabaGccaGGOaGaamOCaiaacMcacaWGKb GaamOCaaWcbaGaaGimaaqaaiaaigdacqGHsisldaWcaaqaaiqadAea gaqeamaaBaaameaacqaHbpGCaeqaaSGaaiikaiaadMhadaqhaaadba GaamiBaaqaaiaadwfaaaWccaGGPaaabaGabmOrayaaraWaaSbaaWqa aiabeg8aYbqabaWccaGGOaGaamyEamaaBaaameaacaWGRbaabeaali aacMcaaaaaniabgUIiYdGccqGHLjYScqaHZoWzaiaawIcacaGLPaaa aiaawUhacaGL9baacqGH9aqpcqaHYoGyaiaawIcacaGLPaaaaaGaay 5waiaaw2faaaaa@A313@
=[ y l L ,  y l U ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaeaacaWG5bWaa0baaSqaaiaadYgaaeaacaWGmbaaaOGaaiilaiaa bccacaWG5bWaa0baaSqaaiaadYgaaeaacaWGvbaaaaGccaGLBbGaay zxaaGaaiOlaaaa@40DA@  (30)

  1. Adequate Applied Mathematical Model 6 of a Conditional Cumulative Distribution Function of the lth Order Statistic Yl is given by

F ¯ ρ ( y l ) F ¯ ρ ( y k ) 1 f nl+1,lk (r)dr = P ρ ( Y l y l | Y k = y k ;n)= j=lk nk ( nk j ) [ 1 F ¯ ρ ( y l ) F ¯ ρ ( y k ) ] j [ F ¯ ρ ( y l ) F ¯ ρ ( y k ) ] nkj , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca WGMbWaaSbaaSqaaiaad6gacqGHsislcaWGSbGaey4kaSIaaGymaiaa cYcacaWGSbGaeyOeI0Iaam4AaaqabaGccaGGOaGaamOCaiaacMcaca WGKbGaamOCaaWcbaWaaSaaaeaaceWGgbGbaebadaWgaaadbaGaeqyW dihabeaaliaacIcacaWG5bWaaSbaaWqaaiaadYgaaeqaaSGaaiykaa qaaiqadAeagaqeamaaBaaameaacqaHbpGCaeqaaSGaaiikaiaadMha daWgaaadbaGaam4AaaqabaWccaGGPaaaaaqaaiaaigdaa0Gaey4kIi pakiabg2da9iaadcfadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWG zbWaaSbaaSqaaiaadYgaaeqaaOGaeyizImQaamyEamaaBaaaleaaca WGSbaabeaakiaacYhacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyyp a0JaamyEamaaBaaaleaacaWGRbaabeaakiaacUdacaWGUbGaaiykai abg2da9maaqahabaWaaeWaaeaafaqabeGabaaabaGaamOBaiabgkHi TiaadUgaaeaacaWGQbaaaaGaayjkaiaawMcaaaWcbaGaamOAaiabg2 da9iaadYgacqGHsislcaWGRbaabaGaamOBaiabgkHiTiaadUgaa0Ga eyyeIuoakmaadmaabaGaaGymaiabgkHiTmaalaaabaGabmOrayaara WaaSbaaSqaaiabeg8aYbqabaGccaGGOaGaamyEamaaBaaaleaacaWG SbaabeaakiaacMcaaeaaceWGgbGbaebadaWgaaWcbaGaeqyWdihabe aakiaacIcacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaaiykaaaaaiaa wUfacaGLDbaadaahaaWcbeqaaiaadQgaaaGcdaWadaqaamaalaaaba GabmOrayaaraWaaSbaaSqaaiabeg8aYbqabaGccaGGOaGaamyEamaa BaaaleaacaWGSbaabeaakiaacMcaaeaaceWGgbGbaebadaWgaaWcba GaeqyWdihabeaakiaacIcacaWG5bWaaSbaaSqaaiaadUgaaeqaaOGa aiykaaaaaiaawUfacaGLDbaadaahaaWcbeqaaiaad6gacqGHsislca WGRbGaeyOeI0IaamOAaaaakiaacYcaaaa@9BF8@  (31)

In the above case, a ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ upper, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit y l U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGSbaabaGaamyvaaaaaaa@38DD@  with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( F ¯ ρ ( y l U ) F ¯ ρ ( y k ) 1 f nl+1,lk (r)dr γ ) }=E{ Pr( P ρ ( Y l y l U | Y k = y k ;n)γ ) }=β, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaamaapehabaGaamOzamaaBaaaleaa caWGUbGaeyOeI0IaamiBaiabgUcaRiaaigdacaGGSaGaamiBaiabgk HiTiaadUgaaeqaaOGaaiikaiaadkhacaGGPaGaamizaiaadkhaaSqa amaalaaabaGabmOrayaaraWaaSbaaWqaaiabeg8aYbqabaWccaGGOa GaamyEamaaDaaameaacaWGSbaabaGaamyvaaaaliaacMcaaeaaceWG gbGbaebadaWgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWaaSbaaW qaaiaadUgaaeqaaSGaaiykaaaaaeaacaaIXaaaniabgUIiYdGccqGH LjYScqaHZoWzaiaawIcacaGLPaaaaiaawUhacaGL9baacqGH9aqpca WGfbWaaiWaaeaaciGGqbGaaiOCamaabmaabaGaamiuamaaBaaaleaa cqaHbpGCaeqaaOGaaiikaiaadMfadaWgaaWcbaGaamiBaaqabaGccq GHKjYOcaWG5bWaa0baaSqaaiaadYgaaeaacaWGvbaaaOGaaiiFaiaa dMfadaWgaaWcbaGaam4AaaqabaGccqGH9aqpcaWG5bWaaSbaaSqaai aadUgaaeqaaOGaai4oaiaad6gacaGGPaGaeyyzImRaeq4SdCgacaGL OaGaayzkaaaacaGL7bGaayzFaaGaeyypa0JaeqOSdiMaaiilaaaa@7E86@  (32)

where F ¯ ρ (y)=1 F ρ (y), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaara WaaSbaaSqaaiabeg8aYbqabaGccaGGOaGaamyEaiaacMcacqGH9aqp caaIXaGaeyOeI0IaamOramaaBaaaleaacqaHbpGCaeqaaOGaaiikai aadMhacaGGPaGaaiilaaaa@438D@

f nl+1,lk (r)= r ( nl+1 )1 (1r) lk1 Β( nl+1,lk ) ,   0<r<1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGUbGaeyOeI0IaamiBaiabgUcaRiaaigdacaGGSaGaamiB aiabgkHiTiaadUgaaeqaaOGaaiikaiaadkhacaGGPaGaeyypa0ZaaS aaaeaacaWGYbWaaWbaaSqabeaadaqadaqaaiaad6gacqGHsislcaWG SbGaey4kaSIaaGymaaGaayjkaiaawMcaaiabgkHiTiaaigdaaaGcca GGOaGaaGymaiabgkHiTiaadkhacaGGPaWaaWbaaSqabeaacaWGSbGa eyOeI0Iaam4AaiabgkHiTiaaigdaaaaakeaacqqHsoGqdaqadaqaai aad6gacqGHsislcaWGSbGaey4kaSIaaGymaiaacYcacaWGSbGaeyOe I0Iaam4AaaGaayjkaiaawMcaaaaacaGGSaGaaeiiaiaabccacaqGGa GaaGimaiabgYda8iaadkhacqGH8aapcaaIXaGaaiilaaaa@6660@  (33)

is the probability density function (pdf) of the beta distribution (Beta(nl+1,lk)) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadk eacaWGLbGaamiDaiaadggacaqGOaGaamOBaiabgkHiTiaadYgacqGH RaWkcaaIXaGaaiilaiaadYgacqGHsislcaWGRbGaaeykaiaabMcaaa a@4412@  with shape parameters n−l+1 and l−k.

Proof: It follows from (31) that

d d y l F ¯ ρ ( y l ) F ¯ ρ ( y k ) 1 f nl+1,lk (r)dr = d d y l P ρ ( Y l y l | Y k = y k ;n). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbaabaGaamizaiaadMhadaWgaaWcbaGaamiBaaqabaaaaOWaa8qC aeaacaWGMbWaaSbaaSqaaiaad6gacqGHsislcaWGSbGaey4kaSIaaG ymaiaacYcacaWGSbGaeyOeI0Iaam4AaaqabaGccaGGOaGaamOCaiaa cMcacaWGKbGaamOCaaWcbaWaaSaaaeaaceWGgbGbaebadaWgaaadba GaeqyWdihabeaaliaacIcacaWG5bWaaSbaaWqaaiaadYgaaeqaaSGa aiykaaqaaiqadAeagaqeamaaBaaameaacqaHbpGCaeqaaSGaaiikai aadMhadaWgaaadbaGaam4AaaqabaWccaGGPaaaaaqaaiaaigdaa0Ga ey4kIipakiabg2da9maalaaabaGaamizaaqaaiaadsgacaWG5bWaaS baaSqaaiaadYgaaeqaaaaakiaadcfadaWgaaWcbaGaeqyWdihabeaa kiaacIcacaWGzbWaaSbaaSqaaiaadYgaaeqaaOGaeyizImQaamyEam aaBaaaleaacaWGSbaabeaakiaacYhacaWGzbWaaSbaaSqaaiaadUga aeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGRbaabeaakiaacUdaca WGUbGaaiykaiaac6caaaa@6EC0@  (34)

This ends the proof.

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ lower, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( 1 F ¯ ρ ( y l L ) F ¯ ρ ( y k ) 1 f nl+1,lk (r)dr γ ) }=E{ Pr( P ρ ( Y l > y l L | Y k = y k ;n)γ ) }=β. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaaiaaigdacqGHsisldaWdXbqaaiaa dAgadaWgaaWcbaGaamOBaiabgkHiTiaadYgacqGHRaWkcaaIXaGaai ilaiaadYgacqGHsislcaWGRbaabeaakiaacIcacaWGYbGaaiykaiaa dsgacaWGYbaaleaadaWcaaqaaiqadAeagaqeamaaBaaameaacqaHbp GCaeqaaSGaaiikaiaadMhadaqhaaadbaGaamiBaaqaaiaadYeaaaWc caGGPaaabaGabmOrayaaraWaaSbaaWqaaiabeg8aYbqabaWccaGGOa GaamyEamaaBaaameaacaWGRbaabeaaliaacMcaaaaabaGaaGymaaqd cqGHRiI8aOGaeyyzImRaeq4SdCgacaGLOaGaayzkaaaacaGL7bGaay zFaaGaeyypa0JaamyramaacmaabaGaciiuaiaackhadaqadaqaaiaa dcfadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWGzbWaaSbaaSqaai aadYgaaeqaaOGaeyOpa4JaamyEamaaDaaaleaacaWGSbaabaGaamit aaaakiaacYhacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0Jaam yEamaaBaaaleaacaWGRbaabeaakiaacUdacaWGUbGaaiykaiabgwMi Zkabeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2da9iabek 7aIjaac6caaaa@7F71@  (35)

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@  two-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance interval with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

[ arg y l L ( E{ Pr( P ρ ( Y l > y l L | Y k = y k ;n)γ ) }=β ),  arg y l U ( E{ Pr( P ρ ( Y l y l U | Y k = y k ;n)γ ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaada WfqaqaaiGacggacaGGYbGaai4zaaWcbaGaamyEamaaDaaameaacaWG SbaabaGaamitaaaaaSqabaGcdaqadaqaaiaadweadaGadaqaaiGacc facaGGYbWaaeWaaeaacaWGqbWaaSbaaSqaaiabeg8aYbqabaGccaGG OaGaamywamaaBaaaleaacaWGSbaabeaakiabg6da+iaadMhadaqhaa WcbaGaamiBaaqaaiaadYeaaaGccaGG8bGaamywamaaBaaaleaacaWG Rbaabeaakiabg2da9iaadMhadaWgaaWcbaGaam4AaaqabaGccaGG7a GaamOBaiaacMcacqGHLjYScqaHZoWzaiaawIcacaGLPaaaaiaawUha caGL9baacqGH9aqpcqaHYoGyaiaawIcacaGLPaaacaGGSaGaaeiiam aaxababaGaciyyaiaackhacaGGNbaaleaacaWG5bWaa0baaWqaaiaa dYgaaeaacaWGvbaaaaWcbeaakmaabmaabaGaamyramaacmaabaGaci iuaiaackhadaqadaqaaiaadcfadaWgaaWcbaGaeqyWdihabeaakiaa cIcacaWGzbWaaSbaaSqaaiaadYgaaeqaaOGaeyizImQaamyEamaaDa aaleaacaWGSbaabaGaamyvaaaakiaacYhacaWGzbWaaSbaaSqaaiaa dUgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGRbaabeaakiaacU dacaWGUbGaaiykaiabgwMiZkabeo7aNbGaayjkaiaawMcaaaGaay5E aiaaw2haaiabg2da9iabek7aIbGaayjkaiaawMcaaaGaay5waiaaw2 faaaaa@85DC@
=[ arg y l L ( E{ Pr( F ¯ ρ ( y l L ) F ¯ ρ ( y k ) 1 f nl+1,lk (r)dr 1γ ) }=β ),  arg y k U ( E{ Pr( F ¯ ρ ( y l U ) F ¯ ρ ( y k ) 1 f nl+1,lk (r)dr γ ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaqaabeqaamaaxababaGaciyyaiaackhacaGGNbaaleaacaWG5bWa a0baaWqaaiaadYgaaeaacaWGmbaaaaWcbeaakmaabmaabaGaamyram aacmaabaGaciiuaiaackhadaqadaqaamaapehabaGaamOzamaaBaaa leaacaWGUbGaeyOeI0IaamiBaiabgUcaRiaaigdacaGGSaGaamiBai abgkHiTiaadUgaaeqaaOGaaiikaiaadkhacaGGPaGaamizaiaadkha aSqaamaalaaabaGabmOrayaaraWaaSbaaWqaaiabeg8aYbqabaWcca GGOaGaamyEamaaDaaameaacaWGSbaabaGaamitaaaaliaacMcaaeaa ceWGgbGbaebadaWgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWaaS baaWqaaiaadUgaaeqaaSGaaiykaaaaaeaacaaIXaaaniabgUIiYdGc cqGHKjYOcaaIXaGaeyOeI0Iaeq4SdCgacaGLOaGaayzkaaaacaGL7b GaayzFaaGaeyypa0JaeqOSdigacaGLOaGaayzkaaGaaiilaaqaamaa xababaGaaeiiaiGacggacaGGYbGaai4zaaWcbaGaamyEamaaDaaame aacaWGRbaabaGaamyvaaaaaSqabaGcdaqadaqaaiaadweadaGadaqa aiGaccfacaGGYbWaaeWaaeaadaWdXbqaaiaadAgadaWgaaWcbaGaam OBaiabgkHiTiaadYgacqGHRaWkcaaIXaGaaiilaiaadYgacqGHsisl caWGRbaabeaakiaacIcacaWGYbGaaiykaiaadsgacaWGYbaaleaada WcaaqaaiqadAeagaqeamaaBaaameaacqaHbpGCaeqaaSGaaiikaiaa dMhadaqhaaadbaGaamiBaaqaaiaadwfaaaWccaGGPaaabaGabmOray aaraWaaSbaaWqaaiabeg8aYbqabaWccaGGOaGaamyEamaaBaaameaa caWGRbaabeaaliaacMcaaaaabaGaaGymaaqdcqGHRiI8aOGaeyyzIm Raeq4SdCgacaGLOaGaayzkaaaacaGL7bGaayzFaaGaeyypa0JaeqOS digacaGLOaGaayzkaaaaaiaawUfacaGLDbaaaaa@9FC6@
=[ y l L ,  y l U ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaeaacaWG5bWaa0baaSqaaiaadYgaaeaacaWGmbaaaOGaaiilaiaa bccacaWG5bWaa0baaSqaaiaadYgaaeaacaWGvbaaaaGccaGLBbGaay zxaaGaaiOlaaaa@40DA@  (36)

This ends the proof.

  1. Adequate Applied Mathematical Model 7 of a Conditional Cumulative Distribution Function of the lth Order Statistic Yl is given by

0 nl+1 lk ( 1 F ¯ ρ ( y l ) F ¯ ρ ( y k ) )/ F ¯ ρ ( y l ) F ¯ ρ ( y k ) f lk,nl+1 (r)dr = P ρ ( Y l y l | Y k = y k ;n) = j=lk nk ( nk j ) [ 1 F ¯ ρ ( y l ) F ¯ ρ ( y k ) ] j [ F ¯ ρ ( y l ) F ¯ ρ ( y k ) ] nkj , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWdXb qaaiaadAgadaWgaaWcbaGaamiBaiabgkHiTiaadUgacaGGSaGaamOB aiabgkHiTiaadYgacqGHRaWkcaaIXaaabeaakiaacIcacaWGYbGaai ykaiaadsgacaWGYbaaleaacaaIWaaabaWaaSaaaeaacaWGUbGaeyOe I0IaamiBaiabgUcaRiaaigdaaeaacaWGSbGaeyOeI0Iaam4Aaaaada WcgaqaamaabmaabaGaaGymaiabgkHiTmaalaaabaGabmOrayaaraWa aSbaaWqaaiabeg8aYbqabaWccaGGOaGaamyEamaaBaaameaacaWGSb aabeaaliaacMcaaeaaceWGgbGbaebadaWgaaadbaGaeqyWdihabeaa liaacIcacaWG5bWaaSbaaWqaaiaadUgaaeqaaSGaaiykaaaaaiaawI cacaGLPaaaaeaadaWcaaqaaiqadAeagaqeamaaBaaameaacqaHbpGC aeqaaSGaaiikaiaadMhadaWgaaadbaGaamiBaaqabaWccaGGPaaaba GabmOrayaaraWaaSbaaWqaaiabeg8aYbqabaWccaGGOaGaamyEamaa BaaameaacaWGRbaabeaaliaacMcaaaaaaaqdcqGHRiI8aOGaeyypa0 JaamiuamaaBaaaleaacqaHbpGCaeqaaOGaaiikaiaadMfadaWgaaWc baGaamiBaaqabaGccqGHKjYOcaWG5bWaaSbaaSqaaiaadYgaaeqaaO GaaiiFaiaadMfadaWgaaWcbaGaam4AaaqabaGccqGH9aqpcaWG5bWa aSbaaSqaaiaadUgaaeqaaOGaai4oaiaad6gacaGGPaaabaGaeyypa0 ZaaabCaeaadaqadaqaauaabeqaceaaaeaacaWGUbGaeyOeI0Iaam4A aaqaaiaadQgaaaaacaGLOaGaayzkaaaaleaacaWGQbGaeyypa0Jaam iBaiabgkHiTiaadUgaaeaacaWGUbGaeyOeI0Iaam4AaaqdcqGHris5 aOWaamWaaeaacaaIXaGaeyOeI0YaaSaaaeaaceWGgbGbaebadaWgaa WcbaGaeqyWdihabeaakiaacIcacaWG5bWaaSbaaSqaaiaadYgaaeqa aOGaaiykaaqaaiqadAeagaqeamaaBaaaleaacqaHbpGCaeqaaOGaai ikaiaadMhadaWgaaWcbaGaam4AaaqabaGccaGGPaaaaaGaay5waiaa w2faamaaCaaaleqabaGaamOAaaaakmaadmaabaWaaSaaaeaaceWGgb GbaebadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWG5bWaaSbaaSqa aiaadYgaaeqaaOGaaiykaaqaaiqadAeagaqeamaaBaaaleaacqaHbp GCaeqaaOGaaiikaiaadMhadaWgaaWcbaGaam4AaaqabaGccaGGPaaa aaGaay5waiaaw2faamaaCaaaleqabaGaamOBaiabgkHiTiaadUgacq GHsislcaWGQbaaaOGaaiilaaaaaa@B356@  (37)

In the above case, a ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ upper, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit y l U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGSbaabaGaamyvaaaaaaa@38DD@  with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( 0 nl+1 lk ( 1 F ¯ ρ ( y l U ) F ¯ ρ ( y k ) )/ F ¯ ρ ( y l U ) F ¯ ρ ( y k ) f lk,nl+1 (r)drγ ) } =E{ Pr( P ρ ( Y l y l U | Y k = y k ;n)γ ) }=β, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGfb WaaiWaaeaaciGGqbGaaiOCamaabmaabaWaa8qCaeaacaWGMbWaaSba aSqaaiaadYgacqGHsislcaWGRbGaaiilaiaad6gacqGHsislcaWGSb Gaey4kaSIaaGymaaqabaGccaGGOaGaamOCaiaacMcacaWGKbGaamOC aiabgwMiZkabeo7aNbWcbaGaaGimaaqaamaalaaabaGaamOBaiabgk HiTiaadYgacqGHRaWkcaaIXaaabaGaamiBaiabgkHiTiaadUgaaaWa aSGbaeaadaqadaqaaiaaigdacqGHsisldaWcaaqaaiqadAeagaqeam aaBaaameaacqaHbpGCaeqaaSGaaiikaiaadMhadaqhaaadbaGaamiB aaqaaiaadwfaaaWccaGGPaaabaGabmOrayaaraWaaSbaaWqaaiabeg 8aYbqabaWccaGGOaGaamyEamaaBaaameaacaWGRbaabeaaliaacMca aaaacaGLOaGaayzkaaaabaWaaSaaaeaaceWGgbGbaebadaWgaaadba GaeqyWdihabeaaliaacIcacaWG5bWaa0baaWqaaiaadYgaaeaacaWG vbaaaSGaaiykaaqaaiqadAeagaqeamaaBaaameaacqaHbpGCaeqaaS GaaiikaiaadMhadaWgaaadbaGaam4AaaqabaWccaGGPaaaaaaaa0Ga ey4kIipaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiabg2da9i aadweadaGadaqaaiGaccfacaGGYbWaaeWaaeaacaWGqbWaaSbaaSqa aiabeg8aYbqabaGccaGGOaGaamywamaaBaaaleaacaWGSbaabeaaki abgsMiJkaadMhadaqhaaWcbaGaamiBaaqaaiaadwfaaaGccaGG8bGa amywamaaBaaaleaacaWGRbaabeaakiabg2da9iaadMhadaWgaaWcba Gaam4AaaqabaGccaGG7aGaamOBaiaacMcacqGHLjYScqaHZoWzaiaa wIcacaGLPaaaaiaawUhacaGL9baacqGH9aqpcqaHYoGycaGGSaaaaa a@96BF@  (38)

where F ¯ ρ (y)=1 F ρ (y), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaara WaaSbaaSqaaiabeg8aYbqabaGccaGGOaGaamyEaiaacMcacqGH9aqp caaIXaGaeyOeI0IaamOramaaBaaaleaacqaHbpGCaeqaaOGaaiikai aadMhacaGGPaGaaiilaaaa@438D@

f lk,nl+1 (r)= lk nl+1 Β(lk,nl+1) [ lk nl+1 r ] lk1 [ 1+ lk nl+1 r ] nk+1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGSbGaeyOeI0Iaam4AaiaacYcacaWGUbGaeyOeI0IaamiB aiabgUcaRiaaigdaaeqaaOGaaiikaiaadkhacaGGPaGaeyypa0ZaaS aaaeaadaWcaaqaaiaadYgacqGHsislcaWGRbaabaGaamOBaiabgkHi TiaadYgacqGHRaWkcaaIXaaaaaqaaiabfk5acjaacIcacaWGSbGaey OeI0Iaam4AaiaacYcacaWGUbGaeyOeI0IaamiBaiabgUcaRiaaigda caGGPaaaamaalaaabaWaamWaaeaadaWcaaqaaiaadYgacqGHsislca WGRbaabaGaamOBaiabgkHiTiaadYgacqGHRaWkcaaIXaaaaiaadkha aiaawUfacaGLDbaadaahaaWcbeqaaiaadYgacqGHsislcaWGRbGaey OeI0IaaGymaaaaaOqaamaadmaabaGaaGymaiabgUcaRmaalaaabaGa amiBaiabgkHiTiaadUgaaeaacaWGUbGaeyOeI0IaamiBaiabgUcaRi aaigdaaaGaamOCaaGaay5waiaaw2faamaaCaaaleqabaGaamOBaiab gkHiTiaadUgacqGHRaWkcaaIXaaaaaaakiaacYcaaaa@7465@ r(0,), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgI GiolaacIcacaaIWaGaaiilaiabg6HiLkaacMcacaGGSaaaaa@3D46@   (39)

is the probability density function (pdf) of the F distribution (F(lk,nl+1)) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadA eacaqGOaGaamiBaiabgkHiTiaadUgacaqGSaGaamOBaiabgkHiTiaa dYgacqGHRaWkcaaIXaGaaeykaiaabMcaaaa@413C@ with parameters lk and nl+1, which are positive integers known as the degrees of freedom for the numerator and the degrees of freedom for the denominator.

Proof: It follows from (36) that

d d y l 0 nl+1 lk ( 1 F ¯ ρ ( y l ) F ¯ ρ ( y k ) )/ F ¯ ρ ( y l ) F ¯ ρ ( y k ) f lk,nl+1 (r)dr = d d y l P ρ ( Y l y l | Y k = y k ;n). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbaabaGaamizaiaadMhadaWgaaWcbaGaamiBaaqabaaaaOWaa8qC aeaacaWGMbWaaSbaaSqaaiaadYgacqGHsislcaWGRbGaaiilaiaad6 gacqGHsislcaWGSbGaey4kaSIaaGymaaqabaGccaGGOaGaamOCaiaa cMcacaWGKbGaamOCaaWcbaGaaGimaaqaamaalaaabaGaamOBaiabgk HiTiaadYgacqGHRaWkcaaIXaaabaGaamiBaiabgkHiTiaadUgaaaWa aSGbaeaadaqadaqaaiaaigdacqGHsisldaWcaaqaaiqadAeagaqeam aaBaaameaacqaHbpGCaeqaaSGaaiikaiaadMhadaWgaaadbaGaamiB aaqabaWccaGGPaaabaGabmOrayaaraWaaSbaaWqaaiabeg8aYbqaba WccaGGOaGaamyEamaaBaaameaacaWGRbaabeaaliaacMcaaaaacaGL OaGaayzkaaaabaWaaSaaaeaaceWGgbGbaebadaWgaaadbaGaeqyWdi habeaaliaacIcacaWG5bWaaSbaaWqaaiaadYgaaeqaaSGaaiykaaqa aiqadAeagaqeamaaBaaameaacqaHbpGCaeqaaSGaaiikaiaadMhada WgaaadbaGaam4AaaqabaWccaGGPaaaaaaaa0Gaey4kIipakiabg2da 9maalaaabaGaamizaaqaaiaadsgacaWG5bWaaSbaaSqaaiaadYgaae qaaaaakiaadcfadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWGzbWa aSbaaSqaaiaadYgaaeqaaOGaeyizImQaamyEamaaBaaaleaacaWGSb aabeaakiaacYhacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0Ja amyEamaaBaaaleaacaWGRbaabeaakiaacUdacaWGUbGaaiykaiaac6 caaaa@8617@  (40)

This ends the proof.

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ lower, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( 1 0 nl+1 lk ( 1 F ¯ ρ ( y l L ) F ¯ ρ ( y k ) )/ F ¯ ρ ( y l L ) F ¯ ρ ( y k ) f lk,nl+1 (r)drγ ) } =E{ Pr( P ρ ( Y l > y l L | Y k = y k ;n)γ ) }=β. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGfb WaaiWaaeaaciGGqbGaaiOCamaabmaabaGaaGymaiabgkHiTmaapeha baGaamOzamaaBaaaleaacaWGSbGaeyOeI0Iaam4AaiaacYcacaWGUb GaeyOeI0IaamiBaiabgUcaRiaaigdaaeqaaOGaaiikaiaadkhacaGG PaGaamizaiaadkhacqGHLjYScqaHZoWzaSqaaiaaicdaaeaadaWcaa qaaiaad6gacqGHsislcaWGSbGaey4kaSIaaGymaaqaaiaadYgacqGH sislcaWGRbaaamaalyaabaWaaeWaaeaacaaIXaGaeyOeI0YaaSaaae aaceWGgbGbaebadaWgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWa a0baaWqaaiaadYgaaeaacaWGmbaaaSGaaiykaaqaaiqadAeagaqeam aaBaaameaacqaHbpGCaeqaaSGaaiikaiaadMhadaWgaaadbaGaam4A aaqabaWccaGGPaaaaaGaayjkaiaawMcaaaqaamaalaaabaGabmOray aaraWaaSbaaWqaaiabeg8aYbqabaWccaGGOaGaamyEamaaDaaameaa caWGSbaabaGaamitaaaaliaacMcaaeaaceWGgbGbaebadaWgaaadba GaeqyWdihabeaaliaacIcacaWG5bWaaSbaaWqaaiaadUgaaeqaaSGa aiykaaaaaaaaniabgUIiYdaakiaawIcacaGLPaaaaiaawUhacaGL9b aaaeaacqGH9aqpcaWGfbWaaiWaaeaaciGGqbGaaiOCamaabmaabaGa amiuamaaBaaaleaacqaHbpGCaeqaaOGaaiikaiaadMfadaWgaaWcba GaamiBaaqabaGccqGH+aGpcaWG5bWaa0baaSqaaiaadYgaaeaacaWG mbaaaOGaaiiFaiaadMfadaWgaaWcbaGaam4AaaqabaGccqGH9aqpca WG5bWaaSbaaSqaaiaadUgaaeqaaOGaai4oaiaad6gacaGGPaGaeyyz ImRaeq4SdCgacaGLOaGaayzkaaaacaGL7bGaayzFaaGaeyypa0Jaeq OSdiMaaiOlaaaaaa@97A1@  (41)

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@  two-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance interval with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

[ arg y l L ( E{ Pr( P ρ ( Y l > y l L | Y k = y k ;n)γ ) }=β ),   arg y l U ( E{ Pr( Pr( P ρ ( Y l y l U | Y k = y k ;n)γ ) ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaqaabe qaamaaxababaGaciyyaiaackhacaGGNbaaleaacaWG5bWaa0baaWqa aiaadYgaaeaacaWGmbaaaaWcbeaakmaabmaabaGaamyramaacmaaba GaciiuaiaackhadaqadaqaaiaadcfadaWgaaWcbaGaeqyWdihabeaa kiaacIcacaWGzbWaaSbaaSqaaiaadYgaaeqaaOGaeyOpa4JaamyEam aaDaaaleaacaWGSbaabaGaamitaaaakiaacYhacaWGzbWaaSbaaSqa aiaadUgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGRbaabeaaki aacUdacaWGUbGaaiykaiabgwMiZkabeo7aNbGaayjkaiaawMcaaaGa ay5Eaiaaw2haaiabg2da9iabek7aIbGaayjkaiaawMcaaiaacYcaae aacaqGGaWaaCbeaeaaciGGHbGaaiOCaiaacEgaaSqaaiaadMhadaqh aaadbaGaamiBaaqaaiaadwfaaaaaleqaaOWaaeWaaeaacaWGfbWaai WaaeaaciGGqbGaaiOCamaabmaabaGaciiuaiaackhadaqadaqaaiaa dcfadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWGzbWaaSbaaSqaai aadYgaaeqaaOGaeyizImQaamyEamaaDaaaleaacaWGSbaabaGaamyv aaaakiaacYhacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0Jaam yEamaaBaaaleaacaWGRbaabeaakiaacUdacaWGUbGaaiykaiabgwMi Zkabeo7aNbGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5Eaiaaw2 haaiabg2da9iabek7aIbGaayjkaiaawMcaaaaacaGLBbGaayzxaaaa aa@8938@
=[ arg y l L ( E{ Pr( 0 nl+1 lk ( 1 F ¯ ρ ( y l L ) F ¯ ρ ( y k ) )/ F ¯ ρ ( y l L ) F ¯ ρ ( y k ) f lk,nl+1 (r)dr 1γ ) }=β ), arg y k U ( E{ Pr( 0 nl+1 lk ( 1 F ¯ ρ ( y l U ) F ¯ ρ ( y k ) )/ F ¯ ρ ( y l U ) F ¯ ρ ( y k ) f lk,nl+1 (r)dr γ ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaqaabeqaamaaxababaGaciyyaiaackhacaGGNbaaleaacaWG5bWa a0baaWqaaiaadYgaaeaacaWGmbaaaaWcbeaakmaabmaabaGaamyram aacmaabaGaciiuaiaackhadaqadaqaamaapehabaGaamOzamaaBaaa leaacaWGSbGaeyOeI0Iaam4AaiaacYcacaWGUbGaeyOeI0IaamiBai abgUcaRiaaigdaaeqaaOGaaiikaiaadkhacaGGPaGaamizaiaadkha aSqaaiaaicdaaeaadaWcaaqaaiaad6gacqGHsislcaWGSbGaey4kaS IaaGymaaqaaiaadYgacqGHsislcaWGRbaaamaalyaabaWaaeWaaeaa caaIXaGaeyOeI0YaaSaaaeaaceWGgbGbaebadaWgaaadbaGaeqyWdi habeaaliaacIcacaWG5bWaa0baaWqaaiaadYgaaeaacaWGmbaaaSGa aiykaaqaaiqadAeagaqeamaaBaaameaacqaHbpGCaeqaaSGaaiikai aadMhadaWgaaadbaGaam4AaaqabaWccaGGPaaaaaGaayjkaiaawMca aaqaamaalaaabaGabmOrayaaraWaaSbaaWqaaiabeg8aYbqabaWcca GGOaGaamyEamaaDaaameaacaWGSbaabaGaamitaaaaliaacMcaaeaa ceWGgbGbaebadaWgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWaaS baaWqaaiaadUgaaeqaaSGaaiykaaaaaaaaniabgUIiYdGccqGHKjYO caaIXaGaeyOeI0Iaeq4SdCgacaGLOaGaayzkaaaacaGL7bGaayzFaa Gaeyypa0JaeqOSdigacaGLOaGaayzkaaGaaiilaaqaamaaxababaGa ciyyaiaackhacaGGNbaaleaacaWG5bWaa0baaWqaaiaadUgaaeaaca WGvbaaaaWcbeaakmaabmaabaGaamyramaacmaabaGaciiuaiaackha daqadaqaamaapehabaGaamOzamaaBaaaleaacaWGSbGaeyOeI0Iaam 4AaiaacYcacaWGUbGaeyOeI0IaamiBaiabgUcaRiaaigdaaeqaaOGa aiikaiaadkhacaGGPaGaamizaiaadkhaaSqaaiaaicdaaeaadaWcaa qaaiaad6gacqGHsislcaWGSbGaey4kaSIaaGymaaqaaiaadYgacqGH sislcaWGRbaaamaalyaabaWaaeWaaeaacaaIXaGaeyOeI0YaaSaaae aaceWGgbGbaebadaWgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWa a0baaWqaaiaadYgaaeaacaWGvbaaaSGaaiykaaqaaiqadAeagaqeam aaBaaameaacqaHbpGCaeqaaSGaaiikaiaadMhadaWgaaadbaGaam4A aaqabaWccaGGPaaaaaGaayjkaiaawMcaaaqaamaalaaabaGabmOray aaraWaaSbaaWqaaiabeg8aYbqabaWccaGGOaGaamyEamaaDaaameaa caWGSbaabaGaamyvaaaaliaacMcaaeaaceWGgbGbaebadaWgaaadba GaeqyWdihabeaaliaacIcacaWG5bWaaSbaaWqaaiaadUgaaeqaaSGa aiykaaaaaaaaniabgUIiYdGccqGHLjYScqaHZoWzaiaawIcacaGLPa aaaiaawUhacaGL9baacqGH9aqpcqaHYoGyaiaawIcacaGLPaaaaaGa ay5waiaaw2faaaaa@CF7E@ =[ y l L ,  y l U ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaeaacaWG5bWaa0baaSqaaiaadYgaaeaacaWGmbaaaOGaaiilaiaa bccacaWG5bWaa0baaSqaaiaadYgaaeaacaWGvbaaaaGccaGLBbGaay zxaaGaaiOlaaaa@40DA@  (42)

This ends the proof.

  1. Adequate Applied Mathematical Model 8 of a Conditional Cumulative Distribution Function of the lth Order Statistic Yl is given by

lk nl+1 F ¯ ρ ( y l ) F ¯ ρ ( y k ) / ( 1 F ¯ ρ ( y l ) F ¯ ρ ( y k ) ) f nl+1,lk, (r)dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca WGMbWaaSbaaSqaaiaad6gacqGHsislcaWGSbGaey4kaSIaaGymaiaa cYcacaWGSbGaeyOeI0Iaam4AaiaacYcaaeqaaOGaaiikaiaadkhaca GGPaGaamizaiaadkhaaSqaamaalaaabaGaamiBaiabgkHiTiaadUga aeaacaWGUbGaeyOeI0IaamiBaiabgUcaRiaaigdaaaWaaSGbaeaada WcaaqaaiqadAeagaqeamaaBaaameaacqaHbpGCaeqaaSGaaiikaiaa dMhadaWgaaadbaGaamiBaaqabaWccaGGPaaabaGabmOrayaaraWaaS baaWqaaiabeg8aYbqabaWccaGGOaGaamyEamaaBaaameaacaWGRbaa beaaliaacMcaaaaabaWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaace WGgbGbaebadaWgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWaaSba aWqaaiaadYgaaeqaaSGaaiykaaqaaiqadAeagaqeamaaBaaameaacq aHbpGCaeqaaSGaaiikaiaadMhadaWgaaadbaGaam4AaaqabaWccaGG PaaaaaGaayjkaiaawMcaaaaaaeaacqGHEisPa0Gaey4kIipaaaa@6BCA@ = P ρ ( Y l y l | Y k = y k ;n) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam iuamaaBaaaleaacqaHbpGCaeqaaOGaaiikaiaadMfadaWgaaWcbaGa amiBaaqabaGccqGHKjYOcaWG5bWaaSbaaSqaaiaadYgaaeqaaOGaai iFaiaadMfadaWgaaWcbaGaam4AaaqabaGccqGH9aqpcaWG5bWaaSba aSqaaiaadUgaaeqaaOGaai4oaiaad6gacaGGPaaaaa@48CF@
= j=lk nk ( nk j ) [ 1 F ¯ ρ ( y l ) F ¯ ρ ( y k ) ] j [ F ¯ ρ ( y l ) F ¯ ρ ( z k ) ] nkj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaaa bCaeaadaqadaqaauaabeqaceaaaeaacaWGUbGaeyOeI0Iaam4Aaaqa aiaadQgaaaaacaGLOaGaayzkaaaaleaacaWGQbGaeyypa0JaamiBai abgkHiTiaadUgaaeaacaWGUbGaeyOeI0Iaam4AaaqdcqGHris5aOWa amWaaeaacaaIXaGaeyOeI0YaaSaaaeaaceWGgbGbaebadaWgaaWcba GaeqyWdihabeaakiaacIcacaWG5bWaaSbaaSqaaiaadYgaaeqaaOGa aiykaaqaaiqadAeagaqeamaaBaaaleaacqaHbpGCaeqaaOGaaiikai aadMhadaWgaaWcbaGaam4AaaqabaGccaGGPaaaaaGaay5waiaaw2fa amaaCaaaleqabaGaamOAaaaakmaadmaabaWaaSaaaeaaceWGgbGbae badaWgaaWcbaGaeqyWdihabeaakiaacIcacaWG5bWaaSbaaSqaaiaa dYgaaeqaaOGaaiykaaqaaiqadAeagaqeamaaBaaaleaacqaHbpGCae qaaOGaaiikaiaadQhadaWgaaWcbaGaam4AaaqabaGccaGGPaaaaaGa ay5waiaaw2faamaaCaaaleqabaGaamOBaiabgkHiTiaadUgacqGHsi slcaWGQbaaaaaa@6B26@  (43)

In the above case, a ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ upper, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit y l U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGSbaabaGaamyvaaaaaaa@38DD@  with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( lk nl+1 F ¯ ρ ( y l U ) F ¯ ρ ( y k ) / ( 1 F ¯ ρ ( y l U ) F ¯ ρ ( y k ) ) f nl+1,lk, (r)dr γ ) } =E{ Pr( P ρ ( Y l y l U | Y k = y k ;n)γ ) }=β, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGfb WaaiWaaeaaciGGqbGaaiOCamaabmaabaWaa8qCaeaacaWGMbWaaSba aSqaaiaad6gacqGHsislcaWGSbGaey4kaSIaaGymaiaacYcacaWGSb GaeyOeI0Iaam4AaiaacYcaaeqaaOGaaiikaiaadkhacaGGPaGaamiz aiaadkhaaSqaamaalaaabaGaamiBaiabgkHiTiaadUgaaeaacaWGUb GaeyOeI0IaamiBaiabgUcaRiaaigdaaaWaaSGbaeaadaWcaaqaaiqa dAeagaqeamaaBaaameaacqaHbpGCaeqaaSGaaiikaiaadMhadaqhaa adbaGaamiBaaqaaiaadwfaaaWccaGGPaaabaGabmOrayaaraWaaSba aWqaaiabeg8aYbqabaWccaGGOaGaamyEamaaBaaameaacaWGRbaabe aaliaacMcaaaaabaWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaaceWG gbGbaebadaWgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWaa0baaW qaaiaadYgaaeaacaWGvbaaaSGaaiykaaqaaiqadAeagaqeamaaBaaa meaacqaHbpGCaeqaaSGaaiikaiaadMhadaWgaaadbaGaam4Aaaqaba WccaGGPaaaaaGaayjkaiaawMcaaaaaaeaacqGHEisPa0Gaey4kIipa kiabgwMiZkabeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaai abg2da9iaadweadaGadaqaaiGaccfacaGGYbWaaeWaaeaacaWGqbWa aSbaaSqaaiabeg8aYbqabaGccaGGOaGaamywamaaBaaaleaacaWGSb aabeaakiabgsMiJkaadMhadaqhaaWcbaGaamiBaaqaaiaadwfaaaGc caGG8bGaamywamaaBaaaleaacaWGRbaabeaakiabg2da9iaadMhada WgaaWcbaGaam4AaaqabaGccaGG7aGaamOBaiaacMcacqGHLjYScqaH ZoWzaiaawIcacaGLPaaaaiaawUhacaGL9baacqGH9aqpcqaHYoGyca GGSaaaaaa@9826@   (44)

where F ¯ ρ (y)=1 F ρ (y), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaara WaaSbaaSqaaiabeg8aYbqabaGccaGGOaGaamyEaiaacMcacqGH9aqp caaIXaGaeyOeI0IaamOramaaBaaaleaacqaHbpGCaeqaaOGaaiikai aadMhacaGGPaGaaiilaaaa@438D@

f nl+1,lk (r)= lk nl+1 Β(lk,nl+1) [ lk nl+1 r ] lk1 [ 1+ lk nl+1 r ] nk+1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGUbGaeyOeI0IaamiBaiabgUcaRiaaigdacaGGSaGaamiB aiabgkHiTiaadUgaaeqaaOGaaiikaiaadkhacaGGPaGaeyypa0ZaaS aaaeaadaWcaaqaaiaadYgacqGHsislcaWGRbaabaGaamOBaiabgkHi TiaadYgacqGHRaWkcaaIXaaaaaqaaiabfk5acjaacIcacaWGSbGaey OeI0Iaam4AaiaacYcacaWGUbGaeyOeI0IaamiBaiabgUcaRiaaigda caGGPaaaamaalaaabaWaamWaaeaadaWcaaqaaiaadYgacqGHsislca WGRbaabaGaamOBaiabgkHiTiaadYgacqGHRaWkcaaIXaaaaiaadkha aiaawUfacaGLDbaadaahaaWcbeqaaiaadYgacqGHsislcaWGRbGaey OeI0IaaGymaaaaaOqaamaadmaabaGaaGymaiabgUcaRmaalaaabaGa amiBaiabgkHiTiaadUgaaeaacaWGUbGaeyOeI0IaamiBaiabgUcaRi aaigdaaaGaamOCaaGaay5waiaaw2faamaaCaaaleqabaGaamOBaiab gkHiTiaadUgacqGHRaWkcaaIXaaaaaaakiaacYcaaaa@7465@ r(0,), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgI GiolaacIcacaaIWaGaaiilaiabg6HiLkaacMcacaGGSaaaaa@3D46@   (45)

is the probability density function (pdf) of the F distribution (F(nl+1,lk)) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadA eacaqGOaGaamOBaiabgkHiTiaadYgacqGHRaWkcaaIXaGaaiilaiaa dYgacqGHsislcaWGRbGaaeykaiaabMcaaaa@414D@ with parameters nl+1 and lk, which are positive integers known as the degrees of freedom for the numerator and the degrees of freedom for the denominator.

Proof: It follows from (36) that

d d y l lk nl+1 F ¯ ρ ( y l ) F ¯ ρ ( y k ) / ( 1 F ¯ ρ ( y l ) F ¯ ρ ( y k ) ) f nl+1,lk, (r)dr = d d y l P ρ ( Y l y l | Y k = y k ;n). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbaabaGaamizaiaadMhadaWgaaWcbaGaamiBaaqabaaaaOWaa8qC aeaacaWGMbWaaSbaaSqaaiaad6gacqGHsislcaWGSbGaey4kaSIaaG ymaiaacYcacaWGSbGaeyOeI0Iaam4AaiaacYcaaeqaaOGaaiikaiaa dkhacaGGPaGaamizaiaadkhaaSqaamaalaaabaGaamiBaiabgkHiTi aadUgaaeaacaWGUbGaeyOeI0IaamiBaiabgUcaRiaaigdaaaWaaSGb aeaadaWcaaqaaiqadAeagaqeamaaBaaameaacqaHbpGCaeqaaSGaai ikaiaadMhadaWgaaadbaGaamiBaaqabaWccaGGPaaabaGabmOrayaa raWaaSbaaWqaaiabeg8aYbqabaWccaGGOaGaamyEamaaBaaameaaca WGRbaabeaaliaacMcaaaaabaWaaeWaaeaacaaIXaGaeyOeI0YaaSaa aeaaceWGgbGbaebadaWgaaadbaGaeqyWdihabeaaliaacIcacaWG5b WaaSbaaWqaaiaadYgaaeqaaSGaaiykaaqaaiqadAeagaqeamaaBaaa meaacqaHbpGCaeqaaSGaaiikaiaadMhadaWgaaadbaGaam4Aaaqaba WccaGGPaaaaaGaayjkaiaawMcaaaaaaeaacqGHEisPa0Gaey4kIipa kiabg2da9maalaaabaGaamizaaqaaiaadsgacaWG5bWaaSbaaSqaai aadYgaaeqaaaaakiaadcfadaWgaaWcbaGaeqyWdihabeaakiaacIca caWGzbWaaSbaaSqaaiaadYgaaeqaaOGaeyizImQaamyEamaaBaaale aacaWGSbaabeaakiaacYhacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGa eyypa0JaamyEamaaBaaaleaacaWGRbaabeaakiaacUdacaWGUbGaai ykaiaac6caaaa@877E@  (46)

This ends the proof.

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ lower, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

E{ Pr( 1 lk nl+1 F ¯ ρ ( y l L ) F ¯ ρ ( y k ) / ( 1 F ¯ ρ ( y l L ) F ¯ ρ ( y k ) ) f nl+1,lk, (r)dr γ ) } =E{ Pr( P ρ ( Y l > y l L | Y k = y k ;n)γ ) }=β. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGfb WaaiWaaeaaciGGqbGaaiOCamaabmaabaGaaGymaiabgkHiTmaapeha baGaamOzamaaBaaaleaacaWGUbGaeyOeI0IaamiBaiabgUcaRiaaig dacaGGSaGaamiBaiabgkHiTiaadUgacaGGSaaabeaakiaacIcacaWG YbGaaiykaiaadsgacaWGYbaaleaadaWcaaqaaiaadYgacqGHsislca WGRbaabaGaamOBaiabgkHiTiaadYgacqGHRaWkcaaIXaaaamaalyaa baWaaSaaaeaaceWGgbGbaebadaWgaaadbaGaeqyWdihabeaaliaacI cacaWG5bWaa0baaWqaaiaadYgaaeaacaWGmbaaaSGaaiykaaqaaiqa dAeagaqeamaaBaaameaacqaHbpGCaeqaaSGaaiikaiaadMhadaWgaa adbaGaam4AaaqabaWccaGGPaaaaaqaamaabmaabaGaaGymaiabgkHi TmaalaaabaGabmOrayaaraWaaSbaaWqaaiabeg8aYbqabaWccaGGOa GaamyEamaaDaaameaacaWGSbaabaGaamitaaaaliaacMcaaeaaceWG gbGbaebadaWgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWaaSbaaW qaaiaadUgaaeqaaSGaaiykaaaaaiaawIcacaGLPaaaaaaabaGaeyOh IukaniabgUIiYdGccqGHLjYScqaHZoWzaiaawIcacaGLPaaaaiaawU hacaGL9baaaeaacqGH9aqpcaWGfbWaaiWaaeaaciGGqbGaaiOCamaa bmaabaGaamiuamaaBaaaleaacqaHbpGCaeqaaOGaaiikaiaadMfada WgaaWcbaGaamiBaaqabaGccqGH+aGpcaWG5bWaa0baaSqaaiaadYga aeaacaWGmbaaaOGaaiiFaiaadMfadaWgaaWcbaGaam4AaaqabaGccq GH9aqpcaWG5bWaaSbaaSqaaiaadUgaaeqaaOGaai4oaiaad6gacaGG PaGaeyyzImRaeq4SdCgacaGLOaGaayzkaaaacaGL7bGaayzFaaGaey ypa0JaeqOSdiMaaiOlaaaaaa@9908@  (47)

A ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@  two-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance interval with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using the following formula:

[ arg y l L ( E{ Pr( P ρ ( Y l > y l L | Y k = y k ;n)γ ) }=β ),   arg y l U ( E{ Pr( Pr( P ρ ( Y l y l U | Y k = y k ;n)γ ) ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaqaabe qaamaaxababaGaciyyaiaackhacaGGNbaaleaacaWG5bWaa0baaWqa aiaadYgaaeaacaWGmbaaaaWcbeaakmaabmaabaGaamyramaacmaaba GaciiuaiaackhadaqadaqaaiaadcfadaWgaaWcbaGaeqyWdihabeaa kiaacIcacaWGzbWaaSbaaSqaaiaadYgaaeqaaOGaeyOpa4JaamyEam aaDaaaleaacaWGSbaabaGaamitaaaakiaacYhacaWGzbWaaSbaaSqa aiaadUgaaeqaaOGaeyypa0JaamyEamaaBaaaleaacaWGRbaabeaaki aacUdacaWGUbGaaiykaiabgwMiZkabeo7aNbGaayjkaiaawMcaaaGa ay5Eaiaaw2haaiabg2da9iabek7aIbGaayjkaiaawMcaaiaacYcaae aacaqGGaWaaCbeaeaaciGGHbGaaiOCaiaacEgaaSqaaiaadMhadaqh aaadbaGaamiBaaqaaiaadwfaaaaaleqaaOWaaeWaaeaacaWGfbWaai WaaeaaciGGqbGaaiOCamaabmaabaGaciiuaiaackhadaqadaqaaiaa dcfadaWgaaWcbaGaeqyWdihabeaakiaacIcacaWGzbWaaSbaaSqaai aadYgaaeqaaOGaeyizImQaamyEamaaDaaaleaacaWGSbaabaGaamyv aaaakiaacYhacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyypa0Jaam yEamaaBaaaleaacaWGRbaabeaakiaacUdacaWGUbGaaiykaiabgwMi Zkabeo7aNbGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5Eaiaaw2 haaiabg2da9iabek7aIbGaayjkaiaawMcaaaaacaGLBbGaayzxaaaa aa@8938@
=[ arg y l L ( E{ Pr( lk nl+1 F ¯ ρ ( y l L ) F ¯ ρ ( y k ) / ( 1 F ¯ ρ ( y l L ) F ¯ ρ ( y k ) ) f nl+1,lk, (r)dr 1γ ) }=β ), arg y k U ( E{ Pr( lk nl+1 F ¯ ρ ( y l U ) F ¯ ρ ( y k ) / ( 1 F ¯ ρ ( y l U ) F ¯ ρ ( y k ) ) f nl+1,lk, (r)dr γ ) }=β ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaqaabeqaamaaxababaGaciyyaiaackhacaGGNbaaleaacaWG5bWa a0baaWqaaiaadYgaaeaacaWGmbaaaaWcbeaakmaabmaabaGaamyram aacmaabaGaciiuaiaackhadaqadaqaamaapehabaGaamOzamaaBaaa leaacaWGUbGaeyOeI0IaamiBaiabgUcaRiaaigdacaGGSaGaamiBai abgkHiTiaadUgacaGGSaaabeaakiaacIcacaWGYbGaaiykaiaadsga caWGYbaaleaadaWcaaqaaiaadYgacqGHsislcaWGRbaabaGaamOBai abgkHiTiaadYgacqGHRaWkcaaIXaaaamaalyaabaWaaSaaaeaaceWG gbGbaebadaWgaaadbaGaeqyWdihabeaaliaacIcacaWG5bWaa0baaW qaaiaadYgaaeaacaWGmbaaaSGaaiykaaqaaiqadAeagaqeamaaBaaa meaacqaHbpGCaeqaaSGaaiikaiaadMhadaWgaaadbaGaam4Aaaqaba WccaGGPaaaaaqaamaabmaabaGaaGymaiabgkHiTmaalaaabaGabmOr ayaaraWaaSbaaWqaaiabeg8aYbqabaWccaGGOaGaamyEamaaDaaame aacaWGSbaabaGaamitaaaaliaacMcaaeaaceWGgbGbaebadaWgaaad baGaeqyWdihabeaaliaacIcacaWG5bWaaSbaaWqaaiaadUgaaeqaaS GaaiykaaaaaiaawIcacaGLPaaaaaaabaGaeyOhIukaniabgUIiYdGc cqGHKjYOcaaIXaGaeyOeI0Iaeq4SdCgacaGLOaGaayzkaaaacaGL7b GaayzFaaGaeyypa0JaeqOSdigacaGLOaGaayzkaaGaaiilaaqaamaa xababaGaciyyaiaackhacaGGNbaaleaacaWG5bWaa0baaWqaaiaadU gaaeaacaWGvbaaaaWcbeaakmaabmaabaGaamyramaacmaabaGaciiu aiaackhadaqadaqaamaapehabaGaamOzamaaBaaaleaacaWGUbGaey OeI0IaamiBaiabgUcaRiaaigdacaGGSaGaamiBaiabgkHiTiaadUga caGGSaaabeaakiaacIcacaWGYbGaaiykaiaadsgacaWGYbaaleaada WcaaqaaiaadYgacqGHsislcaWGRbaabaGaamOBaiabgkHiTiaadYga cqGHRaWkcaaIXaaaamaalyaabaWaaSaaaeaaceWGgbGbaebadaWgaa adbaGaeqyWdihabeaaliaacIcacaWG5bWaa0baaWqaaiaadYgaaeaa caWGvbaaaSGaaiykaaqaaiqadAeagaqeamaaBaaameaacqaHbpGCae qaaSGaaiikaiaadMhadaWgaaadbaGaam4AaaqabaWccaGGPaaaaaqa amaabmaabaGaaGymaiabgkHiTmaalaaabaGabmOrayaaraWaaSbaaW qaaiabeg8aYbqabaWccaGGOaGaamyEamaaDaaameaacaWGSbaabaGa amyvaaaaliaacMcaaeaaceWGgbGbaebadaWgaaadbaGaeqyWdihabe aaliaacIcacaWG5bWaaSbaaWqaaiaadUgaaeqaaSGaaiykaaaaaiaa wIcacaGLPaaaaaaabaGaeyOhIukaniabgUIiYdGccqGHLjYScqaHZo WzaiaawIcacaGLPaaaaiaawUhacaGL9baacqGH9aqpcqaHYoGyaiaa wIcacaGLPaaaaaGaay5waiaaw2faaaaa@D24C@ =[ y l L ,  y l U ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaam WaaeaacaWG5bWaa0baaSqaaiaadYgaaeaacaWGmbaaaOGaaiilaiaa bccacaWG5bWaa0baaSqaaiaadYgaaeaacaWGvbaaaaGccaGLBbGaay zxaaGaaiOlaaaa@40DA@  (48)

This ends the proof.

  1. Two-parameter exponential distribution

Let Y = (Y1 £ ... £ Ym) be the first m ordered observations (order statistics) in a sample of size h from the two-parameter exponential distribution with the probability density function

f ρ (y)= ϑ 1 exp( yυ ϑ ),   ϑ>0, υ0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacqaHbpGCaeqaaOGaaiikaiaadMhacaGGPaGaeyypa0Jaeqy0 dO0aaWbaaSqabeaacqGHsislcaaIXaaaaOGaciyzaiaacIhacaGGWb WaaeWaaeaacqGHsisldaWcaaqaaiaadMhacqGHsislcqaHfpqDaeaa cqaHrpGsaaaacaGLOaGaayzkaaGaaiilaiaabccacaqGGaGaaeiiai abeg9akjabg6da+iaaicdacaGGSaGaaeiiaiabew8a1jabgwMiZkaa icdacaGGSaaaaa@56B4@  (49)

and the cumulative probability distribution function

F ρ (y)=1exp( yυ ϑ ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacqaHbpGCaeqaaOGaaiikaiaadMhacaGGPaGaeyypa0JaaGym aiabgkHiTiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaae aacaWG5bGaeyOeI0IaeqyXduhabaGaeqy0dOeaaaGaayjkaiaawMca aiaacYcaaaa@4918@ F ¯ ρ (y)=1 F ρ (y)=exp( yυ ϑ ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOrayaara WaaSbaaSqaaiabeg8aYbqabaGccaGGOaGaamyEaiaacMcacqGH9aqp caaIXaGaeyOeI0IaamOramaaBaaaleaacqaHbpGCaeqaaOGaaiikai aadMhacaGGPaGaeyypa0JaciyzaiaacIhacaGGWbWaaeWaaeaacqGH sisldaWcaaqaaiaadMhacqGHsislcqaHfpqDaeaacqaHrpGsaaaaca GLOaGaayzkaaGaaiilaaaa@4F4E@   (50)

where ρ=(υ,ϑ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaey ypa0Jaaiikaiabew8a1jaacYcacqaHrpGscaGGPaGaaiilaaaa@3EC5@ υ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXduhaaa@379E@ is the shift parameter and ϑ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy0dOeaaa@377F@ is the scale parameter. It is assumed that these parameters are unknown. In Type II censoring, which is of primary interest here, the number of survivors is fixed and Y is a random variable. In this case, the likelihood function is given by

L(υ,ϑ)= i=1 m f ρ ( y i ) ( F ¯ ρ ( y m ) ) hm MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaacI cacqaHfpqDcaGGSaGaeqy0dOKaaiykaiabg2da9maarahabaGaamOz amaaBaaaleaacqaHbpGCaeqaaaqaaiaadMgacqGH9aqpcaaIXaaaba GaamyBaaqdcqGHpis1aOGaaiikaiaadMhadaWgaaWcbaGaamyAaaqa baGccaGGPaWaaeWaaeaaceWGgbGbaebadaWgaaWcbaGaeqyWdihabe aakiaacIcacaWG5bWaaSbaaSqaaiaad2gaaeqaaOGaaiykaaGaayjk aiaawMcaamaaCaaaleqabaGaamiAaiabgkHiTiaad2gaaaaaaa@5433@ = 1 ϑ m exp( [ i=1 m ( y i υ )+(hm)( y m υ) ]/ϑ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS aaaeaacaaIXaaabaGaeqy0dO0aaWbaaSqabeaacaWGTbaaaaaakiGa cwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSGbaeaadaWadaqaam aaqahabaWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyOe I0IaeqyXduhacaGLOaGaayzkaaGaey4kaSIaaiikaiaadIgacqGHsi slcaWGTbGaaiykaiaacIcacaWG5bWaaSbaaSqaaiaad2gaaeqaaOGa eyOeI0IaeqyXduNaaiykaaWcbaGaamyAaiabg2da9iaaigdaaeaaca WGTbaaniabggHiLdaakiaawUfacaGLDbaaaeaacqaHrpGsaaaacaGL OaGaayzkaaaaaa@5B10@
= 1 ϑ m exp( [ i=1 m ( y i y 1 + y 1 υ )+(hm)( y m y 1 + y 1 υ) ]/ϑ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS aaaeaacaaIXaaabaGaeqy0dO0aaWbaaSqabeaacaWGTbaaaaaakiGa cwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSGbaeaadaWadaqaam aaqahabaWaaeWaaeaacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaeyOe I0IaamyEamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadMhadaWgaa WcbaGaaGymaaqabaGccqGHsislcqaHfpqDaiaawIcacaGLPaaacqGH RaWkcaGGOaGaamiAaiabgkHiTiaad2gacaGGPaGaaiikaiaadMhada WgaaWcbaGaamyBaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaigda aeqaaOGaey4kaSIaamyEamaaBaaaleaacaaIXaaabeaakiabgkHiTi abew8a1jaacMcaaSqaaiaadMgacqGH9aqpcaaIXaaabaGaamyBaaqd cqGHris5aaGccaGLBbGaayzxaaaabaGaeqy0dOeaaaGaayjkaiaawM caaaaa@666A@
= 1 ϑ m1 exp( [ i=1 m ( y i y 1 )+(hm)( y m y 1 ) ]/ϑ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS aaaeaacaaIXaaabaGaeqy0dO0aaWbaaSqabeaacaWGTbGaeyOeI0Ia aGymaaaaaaGcciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaaly aabaWaamWaaeaadaaeWbqaaiaacIcacaWG5bWaaSbaaSqaaiaadMga aeqaaOGaeyOeI0IaamyEamaaBaaaleaacaaIXaaabeaakiaacMcacq GHRaWkcaGGOaGaamiAaiabgkHiTiaad2gacaGGPaGaaiikaiaadMha daWgaaWcbaGaamyBaaqabaGccqGHsislcaWG5bWaaSbaaSqaaiaaig daaeqaaOGaaiykaaWcbaGaamyAaiabg2da9iaaigdaaeaacaWGTbaa niabggHiLdaakiaawUfacaGLDbaaaeaacqaHrpGsaaaacaGLOaGaay zkaaaaaa@5CD8@
× 1 ϑ exp( h( y 1 υ) ϑ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaS aaaeaacaaIXaaabaGaeqy0dOeaaiGacwgacaGG4bGaaiiCamaabmaa baGaeyOeI0YaaSaaaeaacaWGObGaaiikaiaadMhadaWgaaWcbaGaaG ymaaqabaGccqGHsislcqaHfpqDcaGGPaaabaGaeqy0dOeaaaGaayjk aiaawMcaaaaa@4863@ = 1 ϑ m1 exp( s m ϑ )× 1 ϑ exp( h( s 1 υ) ϑ ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS aaaeaacaaIXaaabaGaeqy0dO0aaWbaaSqabeaacaWGTbGaeyOeI0Ia aGymaaaaaaGcciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaala aabaGaam4CamaaBaaaleaacaWGTbaabeaaaOqaaiabeg9akbaaaiaa wIcacaGLPaaacqGHxdaTdaWcaaqaaiaaigdaaeaacqaHrpGsaaGaci yzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiaadIgacaGG OaGaam4CamaaBaaaleaacaaIXaaabeaakiabgkHiTiabew8a1jaacM caaeaacqaHrpGsaaaacaGLOaGaayzkaaGaaiilaaaa@5880@  (51)

where

S=( S 1 = Y 1 ,  S m = i=1 m ( Y i Y ) 1 +(hm)( Y m Y 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4uaiabg2 da9maabmaabaGaam4uamaaBaaaleaacaaIXaaabeaakiabg2da9iaa dMfadaWgaaWcbaGaaGymaaqabaGccaGGSaGaaeiiaiaadofadaWgaa WcbaGaamyBaaqabaGccqGH9aqpdaaeWbqaaiaacIcacaWGzbWaaSba aSqaaiaadMgaaeqaaOGaeyOeI0IaamywamaaBeaaleaacaaIXaaabe aakiaacMcacqGHRaWkcaGGOaGaamiAaiabgkHiTiaad2gacaGGPaGa aiikaiaadMfadaWgaaWcbaGaamyBaaqabaGccqGHsislcaWGzbWaaS baaSqaaiaaigdaaeqaaOGaaiykaaWcbaGaamyAaiabg2da9iaaigda aeaacaWGTbaaniabggHiLdaakiaawIcacaGLPaaaaaa@5970@  (52)

is the complete sufficient statistic for ρ. The probability density function of S = (S1, Sm) is given by

f ρ ( s 1 , s m ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacqaHbpGCaeqaaOGaaiikaiaadohadaWgaaWcbaGaaGymaaqa baGccaGGSaGaam4CamaaBaaaleaacaWGTbaabeaakiaacMcaaaa@3EDA@ = 1 ϑ m1 exp( s m ϑ )× 1 ϑ exp( h( s 1 υ) ϑ ) 1 s m m2 0 s m m2 ϑ m1 exp( s m ϑ )d s m × 1 q 0 h ϑ exp( h( s 1 υ) ϑ )d s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS aaaeaadaWcaaqaaiaaigdaaeaacqaHrpGsdaahaaWcbeqaaiaad2ga cqGHsislcaaIXaaaaaaakiGacwgacaGG4bGaaiiCamaabmaabaGaey OeI0YaaSaaaeaacaWGZbWaaSbaaSqaaiaad2gaaeqaaaGcbaGaeqy0 dOeaaaGaayjkaiaawMcaaiabgEna0oaalaaabaGaaGymaaqaaiabeg 9akbaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGa amiAaiaacIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq yXduNaaiykaaqaaiabeg9akbaaaiaawIcacaGLPaaaaeaadaWcaaqa aiaaigdaaeaacaWGZbWaa0baaSqaaiaad2gaaeaacaWGTbGaeyOeI0 IaaGOmaaaaaaGcdaWdXbqaamaalaaabaGaam4CamaaDaaaleaacaWG TbaabaGaamyBaiabgkHiTiaaikdaaaaakeaacqaHrpGsdaahaaWcbe qaaiaad2gacqGHsislcaaIXaaaaaaakiGacwgacaGG4bGaaiiCamaa bmaabaGaeyOeI0YaaSaaaeaacaWGZbWaaSbaaSqaaiaad2gaaeqaaa GcbaGaeqy0dOeaaaGaayjkaiaawMcaaiaadsgacaWGZbWaaSbaaSqa aiaad2gaaeqaaaqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiabgE na0oaalaaabaGaaGymaaqaaiaadghaaaWaa8qCaeaadaWcaaqaaiaa dIgaaeaacqaHrpGsaaGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsi sldaWcaaqaaiaadIgacaGGOaGaam4CamaaBaaaleaacaaIXaaabeaa kiabgkHiTiabew8a1jaacMcaaeaacqaHrpGsaaaacaGLOaGaayzkaa GaamizaiaadohadaWgaaWcbaGaaGymaaqabaaabaGaaGimaaqaaiab g6HiLcqdcqGHRiI8aaaaaaa@9321@
= 1 ϑ m1 exp( s m ϑ )× 1 ϑ exp( h( s 1 υ) ϑ ) Γ(m1) s m m2 × 1 h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS aaaeaadaWcaaqaaiaaigdaaeaacqaHrpGsdaahaaWcbeqaaiaad2ga cqGHsislcaaIXaaaaaaakiGacwgacaGG4bGaaiiCamaabmaabaGaey OeI0YaaSaaaeaacaWGZbWaaSbaaSqaaiaad2gaaeqaaaGcbaGaeqy0 dOeaaaGaayjkaiaawMcaaiabgEna0oaalaaabaGaaGymaaqaaiabeg 9akbaaciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGa amiAaiaacIcacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaeq yXduNaaiykaaqaaiabeg9akbaaaiaawIcacaGLPaaaaeaadaWcaaqa aiabfo5ahjaacIcacaWGTbGaeyOeI0IaaGymaiaacMcaaeaacaWGZb Waa0baaSqaaiaad2gaaeaacaWGTbGaeyOeI0IaaGOmaaaaaaGccqGH xdaTdaWcaaqaaiaaigdaaeaacaWGObaaaaaaaaa@65D6@
= 1 Γ(m1) ϑ m1 s m m2 exp( s m ϑ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS aaaeaacaaIXaaabaGaeu4KdCKaaiikaiaad2gacqGHsislcaaIXaGa aiykaiabeg9aknaaCaaaleqabaGaamyBaiabgkHiTiaaigdaaaaaaO Gaam4CamaaDaaaleaacaWGTbaabaGaamyBaiabgkHiTiaaikdaaaGc ciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGaam4Cam aaBaaaleaacaWGTbaabeaaaOqaaiabeg9akbaaaiaawIcacaGLPaaa aaa@4F71@ × h ϑ exp( h( s 1 υ) ϑ )= f ϑ ( s m ) f ρ ( s 1 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey41aq7aaS aaaeaacaWGObaabaGaeqy0dOeaaiGacwgacaGG4bGaaiiCamaabmaa baGaeyOeI0YaaSaaaeaacaWGObGaaiikaiaadohadaWgaaWcbaGaaG ymaaqabaGccqGHsislcqaHfpqDcaGGPaaabaGaeqy0dOeaaaGaayjk aiaawMcaaiabg2da9iaadAgadaWgaaWcbaGaeqy0dOeabeaakmaabm aabaGaam4CamaaBaaaleaacaWGTbaabeaaaOGaayjkaiaawMcaaiaa dAgadaWgaaWcbaGaeqyWdihabeaakmaabmaabaGaam4CamaaBaaale aacaaIXaaabeaaaOGaayjkaiaawMcaaiaacYcaaaa@570A@  (53)

where

f ρ ( s 1 )= h ϑ exp( h( s 1 υ) ϑ ),    s 1 υ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacqaHbpGCaeqaaOWaaeWaaeaacaWGZbWaaSbaaSqaaiaaigda aeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaWGObaabaGaeq y0dOeaaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaa caWGObGaaiikaiaadohadaWgaaWcbaGaaGymaaqabaGccqGHsislcq aHfpqDcaGGPaaabaGaeqy0dOeaaaGaayjkaiaawMcaaiaacYcacaqG GaGaaeiiaiaabccacaWGZbWaaSbaaSqaaiaaigdaaeqaaOGaeyyzIm RaeqyXduNaaiilaaaa@5690@  (54)

f ϑ ( s m )= 1 Γ(m1) ϑ m1 s m m2 exp( s m ϑ ),    s m 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacqaHrpGsaeqaaOWaaeWaaeaacaWGZbWaaSbaaSqaaiaad2ga aeqaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaeu 4KdCKaaiikaiaad2gacqGHsislcaaIXaGaaiykaiabeg9aknaaCaaa leqabaGaamyBaiabgkHiTiaaigdaaaaaaOGaam4CamaaDaaaleaaca WGTbaabaGaamyBaiabgkHiTiaaikdaaaGcciGGLbGaaiiEaiaaccha daqadaqaaiabgkHiTmaalaaabaGaam4CamaaBaaaleaacaWGTbaabe aaaOqaaiabeg9akbaaaiaawIcacaGLPaaacaGGSaGaaeiiaiaabcca caqGGaGaam4CamaaBaaaleaacaWGTbaabeaakiabgwMiZkaaicdaca GGUaaaaa@5DCE@  (55)

V 1 = S 1 υ ϑ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaaIXaaabeaakiabg2da9maalaaabaGaam4uamaaBaaaleaa caaIXaaabeaakiabgkHiTiabew8a1bqaaiabeg9akbaaaaa@3EEE@   (56)

is the pivotal quantity, the probability density function of which is given by

f 1 ( v 1 )=hexp( h v 1 ),    v 1 0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIXaaabeaakiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqa aOGaaiykaiabg2da9iaadIgaciGGLbGaaiiEaiaacchadaqadaqaai abgkHiTiaadIgacaWG2bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGa ayzkaaGaaiilaiaabccacaqGGaGaaeiiaiaadAhadaWgaaWcbaGaaG ymaaqabaGccqGHLjYScaaIWaGaaiilaaaa@4CDA@  (57)

V m = S m ϑ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa aaleaacaWGTbaabeaakiabg2da9maalaaabaGaam4uamaaBaaaleaa caWGTbaabeaaaOqaaiabeg9akbaaaaa@3C98@  (58)

is the pivotal quantity, the probability density function of which is given by

f m ( v m )= 1 Γ(m1) v m m2 exp( v m ),    v m 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaWGTbaabeaakmaabmaabaGaamODamaaBaaaleaacaWGTbaa beaaaOGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiabfo 5ahjaacIcacaWGTbGaeyOeI0IaaGymaiaacMcaaaGaamODamaaDaaa leaacaWGTbaabaGaamyBaiabgkHiTiaaikdaaaGcciGGLbGaaiiEai aacchadaqadaqaaiabgkHiTiaadAhadaWgaaWcbaGaamyBaaqabaaa kiaawIcacaGLPaaacaGGSaGaaeiiaiaabccacaqGGaGaamODamaaBa aaleaacaWGTbaabeaakiabgwMiZkaaicdacaGGUaaaaa@56F3@  (59)

  1. Constructing a ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ upper, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@ for the case of Model 1

Theorem 3: Let Y1£…£Ym be the first m ordered observations from the preliminary sample of size h from a two-parameter exponential distribution defined by the probability density function (49). Then the upper one-sided γ-content tolerance limit (with a confidence level β) y k U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaamyvaaaaaaa@38DC@  on the kth order statistic Yk from a set of n future ordered observations Y1£…£Yn also from the distribution (49), which satisfies

E{ Pr( P ρ ( Y k y k U |n)γ ) }=β, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaaiaadcfadaWgaaWcbaGaeqyWdiha beaakiaacIcacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyizImQaam yEamaaDaaaleaacaWGRbaabaGaamyvaaaakiaacYhacaWGUbGaaiyk aiabgwMiZkabeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2 da9iabek7aIjaacYcaaaa@4FC9@  (60)

is given by

y k U ={ S 1 + S m h [ 1 ( Ω γ h β ) 1 m1 ],   if    ( Ω γ h β ) 1 m1 1, S 1 + S m h [ ( Ω γ h β ) 1 m1 1 ],    if    ( Ω γ h β ) 1 m1 >1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaamyvaaaakiabg2da9maaceaaeaqabeaacaWG tbWaaSbaaSqaaiaaigdaaeqaaGqaaOGaa8hiaiabgUcaRiaa=bcada WcbaqaaiaadofadaWgaaWcbaGaamyBaaqabaaakeaacaWGObaaamaa dmaabaGaaGymaiabgkHiTmaabmaabaWaaSaaaeaacqqHPoWvdaqhaa WcbaGaeq4SdCgabaGaamiAaaaaaOqaaiabek7aIbaaaiaawIcacaGL PaaadaahaaWcbeqaamaalaaabaGaaGymaaqaaiaad2gacqGHsislca aIXaaaaaaaa4Gaay5waiaaw2faaOGaa8hlaiaabccacaqGGaGaaeii aiaabMgacaqGMbGaaeiiaiaabccacaqGGaWaaeWaaeaadaWcaaqaai abfM6axnaaDaaaleaacqaHZoWzaeaacaWGObaaaaGcbaGaeqOSdiga aaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaam yBaiabgkHiTiaaigdaaaaaaOGaeyizImQaaGymaiaacYcaaeaacaWG tbWaaSbaaSqaaiaaigdaaeqaaOGaa83kaiaa=bcadaWcbaqaaiaado fadaWgaaWcbaGaamyBaaqabaaakeaacaWGObaaamaadmaabaWaaeWa aeaadaWcaaqaaiabfM6axnaaDaaaleaacqaHZoWzaeaacaWGObaaaa GcbaGaeqOSdigaaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaa caaIXaaabaGaamyBaiabgkHiTiaaigdaaaaaaOGaeyOeI0IaaGymaa GdcaGLBbGaayzxaaGccaWFSaGaa8hiaiaabccacaqGGaGaaeiiaiaa bMgacaqGMbGaaeiiaiaabccacaqGGaWaaeWaaeaadaWcaaqaaiabfM 6axnaaDaaaleaacqaHZoWzaeaacaWGObaaaaGcbaGaeqOSdigaaaGa ayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamyBai abgkHiTiaaigdaaaaaaOGaeyOpa4JaaGymaiaa=XcacaWFGaaaaiaa wUhaaaaa@8FA5@  (61)

where

Ω γ =1 q ( k,nk+1 ),γ ( Beta(k,n-k+1), γ  quantile ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiabeo7aNbqabaGccqGH9aqpcaaIXaGaeyOeI0IaamyCamaa BaaaleaadaqadaqaaiaadUgacaGGSaGaamOBaiabgkHiTiaadUgacq GHRaWkcaaIXaaacaGLOaGaayzkaaGaaiilaiabeo7aNbqabaGcdaqa daqaaiaadkeacaWGLbGaamiDaiaadggacaqGOaGaam4AaiaacYcaca WGUbGaaiylaiaadUgacqGHRaWkcaaIXaGaaeykaiaabYcacaqGGaae aaaaaaaaa8qacqaHZoWzcaqGGaGaaeiiaiaabghacaqG1bGaaeyyai aab6gacaqG0bGaaeyAaiaabYgacaqGLbaapaGaayjkaiaawMcaaiaa c6caaaa@5FE4@  (62)

Proof: It follows from (2) and (3) that

E{ Pr( P ρ ( Y k y k U |n)γ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaaiaadcfadaWgaaWcbaGaeqyWdiha beaakiaacIcacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyizImQaam yEamaaDaaaleaacaWGRbaabaGaamyvaaaakiaacYhacaWGUbGaaiyk aiabgwMiZkabeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@4C72@
=E{ Pr( 0 F ρ ( y k U ) f k,nk+1 (r)drγ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaciiuaiaackhadaqadaqaamaapehabaGaamOzamaa BaaaleaacaWGRbGaaiilaiaad6gacqGHsislcaWGRbGaey4kaSIaaG ymaaqabaGccaGGOaGaamOCaiaacMcacaWGKbGaamOCaiabgwMiZkab eo7aNbWcbaGaaGimaaqaaiaadAeadaWgaaadbaGaeqyWdihabeaali aacIcacaWG5bWaa0baaWqaaiaadUgaaeaacaWGvbaaaSGaaiykaaqd cqGHRiI8aaGccaGLOaGaayzkaaaacaGL7bGaayzFaaaaaa@5651@ =E{ Pr( 1exp( y k U υ ϑ ) q k,nk+1;γ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaciiuaiaackhadaqadaqaaiaaigdacqGHsislciGG LbGaaiiEaiaacchadaqadaqaaiabgkHiTmaalaaabaGaamyEamaaDa aaleaacaWGRbaabaGaamyvaaaakiabgkHiTiabew8a1bqaaiabeg9a kbaaaiaawIcacaGLPaaacqGHLjYScaWGXbWaaSbaaSqaaiaadUgaca GGSaGaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXaGaai4oaiabeo7a NbqabaaakiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@5705@
=E{ Pr( exp( y k U υ ϑ )1 q k,nk+1;γ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaciiuaiaackhadaqadaqaaiGacwgacaGG4bGaaiiC amaabmaabaGaeyOeI0YaaSaaaeaacaWG5bWaa0baaSqaaiaadUgaae aacaWGvbaaaOGaeyOeI0IaeqyXduhabaGaeqy0dOeaaaGaayjkaiaa wMcaaiabgsMiJkaaigdacqGHsislcaWGXbWaaSbaaSqaaiaadUgaca GGSaGaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXaGaai4oaiabeo7a NbqabaaakiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@56F4@
=E{ Pr( y k U υ ϑ ln( 1 q k,nk+1;γ ) ) }=E{ Pr( y k U υ ϑ ln( 1 q k,nk+1;γ ) ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaciiuaiaackhadaqadaqaaiabgkHiTmaalaaabaGa amyEamaaDaaaleaacaWGRbaabaGaamyvaaaakiabgkHiTiabew8a1b qaaiabeg9akbaacqGHKjYOciGGSbGaaiOBamaabmaabaGaaGymaiab gkHiTiaadghadaWgaaWcbaGaam4AaiaacYcacaWGUbGaeyOeI0Iaam 4AaiabgUcaRiaaigdacaGG7aGaeq4SdCgabeaaaOGaayjkaiaawMca aaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2da9iaadweadaGada qaaiGaccfacaGGYbWaaeWaaeaadaWcaaqaaiaadMhadaqhaaWcbaGa am4AaaqaaiaadwfaaaGccqGHsislcqaHfpqDaeaacqaHrpGsaaGaey yzImRaeyOeI0IaciiBaiaac6gadaqadaqaaiaaigdacqGHsislcaWG XbWaaSbaaSqaaiaadUgacaGGSaGaamOBaiabgkHiTiaadUgacqGHRa WkcaaIXaGaai4oaiabeo7aNbqabaaakiaawIcacaGLPaaaaiaawIca caGLPaaaaiaawUhacaGL9baaaaa@7625@
=E{ Pr( y k U S 1 S m S m ϑ + S 1 υ ϑ ln( 1 q k,nk+1;γ ) ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaciiuaiaackhadaqadaqaamaalaaabaGaamyEamaa DaaaleaacaWGRbaabaGaamyvaaaakiabgkHiTiaadofadaWgaaWcba GaaGymaaqabaaakeaacaWGtbWaaSbaaSqaaiaad2gaaeqaaaaakmaa laaabaGaam4uamaaBaaaleaacaWGTbaabeaaaOqaaiabeg9akbaacq GHRaWkdaWcaaqaaiaadofadaWgaaWcbaGaaGymaaqabaGccqGHsisl cqaHfpqDaeaacqaHrpGsaaGaeyyzImRaeyOeI0IaciiBaiaac6gada qadaqaaiaaigdacqGHsislcaWGXbWaaSbaaSqaaiaadUgacaGGSaGa amOBaiabgkHiTiaadUgacqGHRaWkcaaIXaGaai4oaiabeo7aNbqaba aakiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@6137@
=E{ Pr( S 1 υ ϑ y k U S 1 S m S m ϑ ln( 1 q k,nk+1;γ ) ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaciiuaiaackhadaqadaqaamaalaaabaGaam4uamaa BaaaleaacaaIXaaabeaakiabgkHiTiabew8a1bqaaiabeg9akbaacq GHLjYScqGHsisldaWcaaqaaiaadMhadaqhaaWcbaGaam4Aaaqaaiaa dwfaaaGccqGHsislcaWGtbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaam 4uamaaBaaaleaacaWGTbaabeaaaaGcdaWcaaqaaiaadofadaWgaaWc baGaamyBaaqabaaakeaacqaHrpGsaaGaeyOeI0IaciiBaiaac6gada qadaqaaiaaigdacqGHsislcaWGXbWaaSbaaSqaaiaadUgacaGGSaGa amOBaiabgkHiTiaadUgacqGHRaWkcaaIXaGaai4oaiabeo7aNbqaba aakiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhacaGL9baaaaa@6142@
=E{ Pr( V 1 η k U V m ln Ω γ ) }=E{ 1Pr( V 1 η k U V m ln Ω γ ) } =E{ 1 0 η k U V m ln Ω γ f 1 ( v 1 ) d v 1 }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqGH9a qpcaWGfbWaaiWaaeaaciGGqbGaaiOCamaabmaabaGaamOvamaaBaaa leaacaaIXaaabeaakiabgwMiZkabgkHiTiabeE7aOnaaDaaaleaaca WGRbaabaGaamyvaaaakiaadAfadaWgaaWcbaGaamyBaaqabaGccqGH sislciGGSbGaaiOBaiabfM6axnaaBaaaleaacqaHZoWzaeqaaaGcca GLOaGaayzkaaaacaGL7bGaayzFaaGaeyypa0JaamyramaacmaabaGa aGymaiabgkHiTiGaccfacaGGYbWaaeWaaeaacaWGwbWaaSbaaSqaai aaigdaaeqaaOGaeyizImQaeyOeI0Iaeq4TdG2aa0baaSqaaiaadUga aeaacaWGvbaaaOGaamOvamaaBaaaleaacaWGTbaabeaakiabgkHiTi GacYgacaGGUbGaeuyQdC1aaSbaaSqaaiabeo7aNbqabaaakiaawIca caGLPaaaaiaawUhacaGL9baaaeaacqGH9aqpcaWGfbWaaiWaaeaaca aIXaGaeyOeI0Yaa8qCaeaacaWGMbWaaSbaaSqaaiaaigdaaeqaaOGa aiikaiaadAhadaWgaaWcbaGaaGymaaqabaGccaGGPaaaleaacaaIWa aabaGaeyOeI0Iaeq4TdG2aa0baaWqaaiaadUgaaeaacaWGvbaaaSGa amOvamaaBaaameaacaWGTbaabeaaliabgkHiTiGacYgacaGGUbGaeu yQdC1aaSbaaWqaaiabeo7aNbqabaaaniabgUIiYdGccaWGKbGaamOD amaaBaaaleaacaaIXaaabeaaaOGaay5Eaiaaw2haaiaacYcaaaaa@8556@  (63)

where

   η k U = y k U S 1 S m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiiaiaabc cacqaH3oaAdaqhaaWcbaGaam4AaaqaaiaadwfaaaGccqGH9aqpdaWc aaqaaiaadMhadaqhaaWcbaGaam4AaaqaaiaadwfaaaGccqGHsislca WGtbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaam4uamaaBaaaleaacaWG TbaabeaaaaGccaGGUaaaaa@4457@  (64)

It follows from (63) and (64) that

E{ 1 0 η k U V m ln Ω γ f 1 ( v 1 ) d v 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaaGymaiabgkHiTmaapehabaGaamOzamaaBaaaleaacaaIXaaa beaakiaacIcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaiykaaWcba GaaGimaaqaaiabgkHiTiabeE7aOnaaDaaameaacaWGRbaabaGaamyv aaaaliaadAfadaWgaaadbaGaamyBaaqabaWccqGHsislciGGSbGaai OBaiabfM6axnaaBaaameaacqaHZoWzaeqaaaqdcqGHRiI8aOGaamiz aiaadAhadaWgaaWcbaGaaGymaaqabaaakiaawUhacaGL9baaaaa@5280@ =E{ 1 0 η k U V m ln Ω γ hexp( h v 1 ) d v 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaaGymaiabgkHiTmaapehabaGaamiAaiGacwgacaGG 4bGaaiiCamaabmaabaGaeyOeI0IaamiAaiaadAhadaWgaaWcbaGaaG ymaaqabaaakiaawIcacaGLPaaaaSqaaiaaicdaaeaacqGHsislcqaH 3oaAdaqhaaadbaGaam4AaaqaaiaadwfaaaWccaWGwbWaaSbaaWqaai aad2gaaeqaaSGaeyOeI0IaciiBaiaac6gacqqHPoWvdaWgaaadbaGa eq4SdCgabeaaa0Gaey4kIipakiaadsgacaWG2bWaaSbaaSqaaiaaig daaeqaaaGccaGL7bGaayzFaaaaaa@577C@
=E{ 1[ 1exp( h[ η k U V m lnΩ γ ] ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaaGymaiabgkHiTmaadmaabaGaaGymaiabgkHiTiGa cwgacaGG4bGaaiiCamaabmaabaGaeyOeI0IaamiAamaadmaabaGaey OeI0Iaeq4TdG2aa0baaSqaaiaadUgaaeaacaWGvbaaaOGaamOvamaa BaaaleaacaWGTbaabeaakiabgkHiTiGacYgacaGGUbGaeuyQdC1aaS raaSqaaiabeo7aNbqabaaakiaawUfacaGLDbaaaiaawIcacaGLPaaa aiaawUfacaGLDbaaaiaawUhacaGL9baaaaa@5433@ =E{ exp( h η k U V m )exp( ln Ω γ h ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaciyzaiaacIhacaGGWbWaaeWaaeaacaWGObGaeq4T dG2aa0baaSqaaiaadUgaaeaacaWGvbaaaOGaamOvamaaBaaaleaaca WGTbaabeaaaOGaayjkaiaawMcaaiGacwgacaGG4bGaaiiCamaabmaa baGaciiBaiaac6gacqqHPoWvdaqhaaWcbaGaeq4SdCgabaGaamiAaa aaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@4F89@
=E{ Ω γ h exp( h η k U V m ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaeuyQdC1aa0baaSqaaiabeo7aNbqaaiaadIgaaaGc ciGGLbGaaiiEaiaacchadaqadaqaaiaadIgacqaH3oaAdaqhaaWcba Gaam4AaaqaaiaadwfaaaGccaWGwbWaaSbaaSqaaiaad2gaaeqaaaGc caGLOaGaayzkaaaacaGL7bGaayzFaaaaaa@4941@ = 0 ( Ω γ h exp( h η k U v m ) ) f m ( v m ) d v m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaa8 qCaeaadaqadaqaaiabfM6axnaaDaaaleaacqaHZoWzaeaacaWGObaa aOGaciyzaiaacIhacaGGWbWaaeWaaeaacaWGObGaeq4TdG2aa0baaS qaaiaadUgaaeaacaWGvbaaaOGaamODamaaBaaaleaacaWGTbaabeaa aOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaadAgadaWgaaWcbaGaam yBaaqabaGccaGGOaGaamODamaaBaaaleaacaWGTbaabeaakiaacMca aSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakiaadsgacaWG2bWaaS baaSqaaiaad2gaaeqaaaaa@551E@
= 0 ( Ω γ h exp( h η k U v m ) ) 1 Γ(m1) v m m2 exp( v m )d v m = Ω γ h 0 1 Γ(m1) v m m2 exp( v m [ 1h η k U ] )d v m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqGH9a qpdaWdXbqaamaabmaabaGaeuyQdC1aa0baaSqaaiabeo7aNbqaaiaa dIgaaaGcciGGLbGaaiiEaiaacchadaqadaqaaiaadIgacqaH3oaAda qhaaWcbaGaam4AaaqaaiaadwfaaaGccaWG2bWaaSbaaSqaaiaad2ga aeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaaleaacaaIWaaaba GaeyOhIukaniabgUIiYdGcdaWcaaqaaiaaigdaaeaacqqHtoWrcaGG OaGaamyBaiabgkHiTiaaigdacaGGPaaaaiaadAhadaqhaaWcbaGaam yBaaqaaiaad2gacqGHsislcaaIYaaaaOGaciyzaiaacIhacaGGWbWa aeWaaeaacqGHsislcaWG2bWaaSbaaSqaaiaad2gaaeqaaaGccaGLOa GaayzkaaGaamizaiaadAhadaWgaaWcbaGaamyBaaqabaaakeaacqGH 9aqpcqqHPoWvdaqhaaWcbaGaeq4SdCgabaGaamiAaaaakmaapehaba WaaSaaaeaacaaIXaaabaGaeu4KdCKaaiikaiaad2gacqGHsislcaaI XaGaaiykaaaacaWG2bWaa0baaSqaaiaad2gaaeaacaWGTbGaeyOeI0 IaaGOmaaaakiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0IaamOD amaaBaaaleaacaWGTbaabeaakmaadmaabaGaaGymaiabgkHiTiaadI gacqaH3oaAdaqhaaWcbaGaam4AaaqaaiaadwfaaaaakiaawUfacaGL DbaaaiaawIcacaGLPaaacaWGKbGaamODamaaBaaaleaacaWGTbaabe aaaeaacaaIWaaabaGaeyOhIukaniabgUIiYdaaaaa@8970@
= Ω γ h [ 1h η k U ] m1 =β. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS aaaeaacqqHPoWvdaqhaaWcbaGaeq4SdCgabaGaamiAaaaaaOqaamaa dmaabaGaaGymaiabgkHiTiaadIgacqaH3oaAdaqhaaWcbaGaam4Aaa qaaiaadwfaaaaakiaawUfacaGLDbaadaahaaWcbeqaaiaad2gacqGH sislcaaIXaaaaaaakiabg2da9iabek7aIjaac6caaaa@49B3@  (65)

It follows from (64) and (65) that

η k U = y k U S 1 S m = 1 h ( 1 [ Ω γ h β ] 1 m1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aa0 baaSqaaiaadUgaaeaacaWGvbaaaOGaeyypa0ZaaSaaaeaacaWG5bWa a0baaSqaaiaadUgaaeaacaWGvbaaaOGaeyOeI0Iaam4uamaaBaaale aacaaIXaaabeaaaOqaaiaadofadaWgaaWcbaGaamyBaaqabaaaaOGa eyypa0ZaaSaaaeaacaaIXaaabaGaamiAaaaadaqadaqaaiaaigdacq GHsisldaWadaqaamaalaaabaGaeuyQdC1aa0baaSqaaiabeo7aNbqa aiaadIgaaaaakeaacqaHYoGyaaaacaGLBbGaayzxaaWaaWbaaSqabe aadaWcaaqaaiaaigdaaeaacaWGTbGaeyOeI0IaaGymaaaaaaaakiaa wIcacaGLPaaacaGGUaaaaa@5497@  (66)

It follows from (66) that

y k U = S 1 + S m h ( 1 [ Ω γ h β ] 1 m1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaamyvaaaakiabg2da9iaadofadaWgaaWcbaGa aGymaaqabaGccqGHRaWkdaWcaaqaaiaadofadaWgaaWcbaGaamyBaa qabaaakeaacaWGObaaamaabmaabaGaaGymaiabgkHiTmaadmaabaWa aSaaaeaacqqHPoWvdaqhaaWcbaGaeq4SdCgabaGaamiAaaaaaOqaai abek7aIbaaaiaawUfacaGLDbaadaahaaWcbeqaamaalaaabaGaaGym aaqaaiaad2gacqGHsislcaaIXaaaaaaaaOGaayjkaiaawMcaaiaac6 caaaa@4F0E@  (67)

Then (61) follows from (67), this ends the proof.

  1. Constructing a ( γ,β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcaGGSaGaeqOSdigacaGLOaGaayzkaaaaaa@3B58@ lower, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@ for the case of Model 1

Theorem 4: Let Y1£…£Ym be the first m ordered observations from the preliminary sample of size h from a two-parameter exponential distribution defined by the probability density function (49). Then the lower one-sided γ-content tolerance limit (with a confidence level β) y k L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaamitaaaaaaa@38D3@ on the kth order statistic Yk from a set of n future ordered observations Y1£…£Yn also from the distribution (49)), which satisfies

E{ Pr( P μ ( Y k > y k L |n)γ ) }=β, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaaiaadcfadaWgaaWcbaGaeqiVd0ga beaakiaacIcacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4Jaam yEamaaDaaaleaacaWGRbaabaGaamitaaaakiaacYhacaWGUbGaaiyk aiabgwMiZkabeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2 da9iabek7aIjaacYcaaaa@4F09@  (68)

is given by

y k L ={ S 1 + S m h [ 1 ( Ω 1γ h 1β ) 1 m1 ],   if    ( Ω 1γ h 1β ) 1 m1 1, S 1 + S m h [ ( Ω 1γ h 1β ) 1 m1 1 ],    if    ( Ω 1γ h 1β ) 1 m1 >1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaamitaaaakiabg2da9maaceaaeaqabeaacaWG tbWaaSbaaSqaaiaaigdaaeqaaGqaaOGaa8hiaiabgUcaRiaa=bcada WcbaqaaiaadofadaWgaaWcbaGaamyBaaqabaaakeaacaWGObaaamaa dmaabaGaaGymaiabgkHiTmaabmaabaWaaSaaaeaacqqHPoWvdaqhaa WcbaGaaGymaiabgkHiTiabeo7aNbqaaiaadIgaaaaakeaacaaIXaGa eyOeI0IaeqOSdigaaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaae aacaaIXaaabaGaamyBaiabgkHiTiaaigdaaaaaaaGdcaGLBbGaayzx aaGccaWFSaGaaeiiaiaabccacaqGGaGaaeyAaiaabAgacaqGGaGaae iiaiaabccadaqadaqaamaalaaabaGaeuyQdC1aa0baaSqaaiaaigda cqGHsislcqaHZoWzaeaacaWGObaaaaGcbaGaaGymaiabgkHiTiabek 7aIbaaaiaawIcacaGLPaaadaahaaWcbeqaamaalaaabaGaaGymaaqa aiaad2gacqGHsislcaaIXaaaaaaakiabgsMiJkaaigdacaGGSaaaba Gaam4uamaaBaaaleaacaaIXaaabeaakiaa=TcacaWFGaWaaSqaaeaa caWGtbWaaSbaaSqaaiaad2gaaeqaaaGcbaGaamiAaaaadaWadaqaam aabmaabaWaaSaaaeaacqqHPoWvdaqhaaWcbaGaaGymaiabgkHiTiab eo7aNbqaaiaadIgaaaaakeaacaaIXaGaeyOeI0IaeqOSdigaaaGaay jkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamyBaiab gkHiTiaaigdaaaaaaOGaeyOeI0IaaGymaaGdcaGLBbGaayzxaaGcca WFSaGaa8hiaiaabccacaqGGaGaaeiiaiaabMgacaqGMbGaaeiiaiaa bccacaqGGaWaaeWaaeaadaWcaaqaaiabfM6axnaaDaaaleaacaaIXa GaeyOeI0Iaeq4SdCgabaGaamiAaaaaaOqaaiaaigdacqGHsislcqaH YoGyaaaacaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaae aacaWGTbGaeyOeI0IaaGymaaaaaaGccqGH+aGpcaaIXaGaa8hlaiaa =bcaaaGaay5Eaaaaaa@9CDC@  (69)

where

Ω 1γ =1  q ( k,nk+1 ),1γ ( Beta(k,n-k+1), 1γ  quantile ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaaigdacqGHsislcqaHZoWzaeqaaOGaeyypa0JaaGymaiab gkHiTiaabccacaWGXbWaaSbaaSqaamaabmaabaGaam4AaiaacYcaca WGUbGaeyOeI0Iaam4AaiabgUcaRiaaigdaaiaawIcacaGLPaaacaGG SaGaaGymaiabgkHiTiabeo7aNbqabaGcdaqadaqaaiaadkeacaWGLb GaamiDaiaadggacaqGOaGaam4AaiaacYcacaWGUbGaaiylaiaadUga cqGHRaWkcaaIXaGaaeykaiaabYcacaqGGaaeaaaaaaaaa8qacaaIXa GaeyOeI0Iaeq4SdCMaaeiiaiaabccacaqGXbGaaeyDaiaabggacaqG UbGaaeiDaiaabMgacaqGSbGaaeyzaaWdaiaawIcacaGLPaaacaGGUa aaaa@658F@  (70)

Proof: It follows from (3) and (5) that

E{ Pr( P ρ ( Y k > y k L |n)γ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaGaciiuaiaackhadaqadaqaaiaadcfadaWgaaWcbaGaeqyWdiha beaakiaacIcacaWGzbWaaSbaaSqaaiaadUgaaeqaaOGaeyOpa4Jaam yEamaaDaaaleaacaWGRbaabaGaamitaaaakiaacYhacaWGUbGaaiyk aiabgwMiZkabeo7aNbGaayjkaiaawMcaaaGaay5Eaiaaw2haaaaa@4BBC@ =E{ Pr( 0 F ρ ( y k L ) f k,nk+1 (r)dr1γ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaciiuaiaackhadaqadaqaamaapehabaGaamOzamaa BaaaleaacaWGRbGaaiilaiaad6gacqGHsislcaWGRbGaey4kaSIaaG ymaaqabaGccaGGOaGaamOCaiaacMcacaWGKbGaamOCaiabgsMiJkaa igdacqGHsislcqaHZoWzaSqaaiaaicdaaeaacaWGgbWaaSbaaWqaai abeg8aYbqabaWccaGGOaGaamyEamaaDaaameaacaWGRbaabaGaamit aaaaliaacMcaa0Gaey4kIipaaOGaayjkaiaawMcaaaGaay5Eaiaaw2 haaaaa@57DF@
=E{ Pr( exp( y k L υ ϑ )1 q k,nk+1;1γ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaciiuaiaackhadaqadaqaaiGacwgacaGG4bGaaiiC amaabmaabaGaeyOeI0YaaSaaaeaacaWG5bWaa0baaSqaaiaadUgaae aacaWGmbaaaOGaeyOeI0IaeqyXduhabaGaeqy0dOeaaaGaayjkaiaa wMcaaiabgwMiZkaaigdacqGHsislcaWGXbWaaSbaaSqaaiaadUgaca GGSaGaamOBaiabgkHiTiaadUgacqGHRaWkcaaIXaGaai4oaiaaigda cqGHsislcqaHZoWzaeqaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaa aaaa@58A4@
=E{ Pr( y k L S 1 S m S m ϑ + S 1 υ ϑ ln( 1 q k,nk+1;1γ ) ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaciiuaiaackhadaqadaqaamaalaaabaGaamyEamaa DaaaleaacaWGRbaabaGaamitaaaakiabgkHiTiaadofadaWgaaWcba GaaGymaaqabaaakeaacaWGtbWaaSbaaSqaaiaad2gaaeqaaaaakmaa laaabaGaam4uamaaBaaaleaacaWGTbaabeaaaOqaaiabeg9akbaacq GHRaWkdaWcaaqaaiaadofadaWgaaWcbaGaaGymaaqabaGccqGHsisl cqaHfpqDaeaacqaHrpGsaaGaeyizImQaeyOeI0IaciiBaiaac6gada qadaqaaiaaigdacqGHsislcaWGXbWaaSbaaSqaaiaadUgacaGGSaGa amOBaiabgkHiTiaadUgacqGHRaWkcaaIXaGaai4oaiaaigdacqGHsi slcqaHZoWzaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGL 7bGaayzFaaaaaa@62C5@
=E{ Pr( S 1 υ ϑ y k L S 1 S m S m ϑ ln( 1 q k,nk+1;1γ ) ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaciiuaiaackhadaqadaqaamaalaaabaGaam4uamaa BaaaleaacaaIXaaabeaakiabgkHiTiabew8a1bqaaiabeg9akbaacq GHKjYOcqGHsisldaWcaaqaaiaadMhadaqhaaWcbaGaam4Aaaqaaiaa dYeaaaGccqGHsislcaWGtbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaam 4uamaaBaaaleaacaWGTbaabeaaaaGcdaWcaaqaaiaadofadaWgaaWc baGaamyBaaqabaaakeaacqaHrpGsaaGaeyOeI0IaciiBaiaac6gada qadaqaaiaaigdacqGHsislcaWGXbWaaSbaaSqaaiaadUgacaGGSaGa amOBaiabgkHiTiaadUgacqGHRaWkcaaIXaGaai4oaiaaigdacqGHsi slcqaHZoWzaeqaaaGccaGLOaGaayzkaaaacaGLOaGaayzkaaaacaGL 7bGaayzFaaaaaa@62D0@
=E{ Pr( V 1 η k L V m ln Ω 1γ ) }=E{ 0 η k L V m ln Ω 1γ f 1 ( v 1 ) d v 1 }, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaciiuaiaackhadaqadaqaaiaadAfadaWgaaWcbaGa aGymaaqabaGccqGHKjYOcqGHsislcqaH3oaAdaqhaaWcbaGaam4Aaa qaaiaadYeaaaGccaWGwbWaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0Ia ciiBaiaac6gacqqHPoWvdaWgaaWcbaGaaGymaiabgkHiTiabeo7aNb qabaaakiaawIcacaGLPaaaaiaawUhacaGL9baacqGH9aqpcaWGfbWa aiWaaeaadaWdXbqaaiaadAgadaWgaaWcbaGaaGymaaqabaGccaGGOa GaamODamaaBaaaleaacaaIXaaabeaakiaacMcaaSqaaiaaicdaaeaa cqGHsislcqaH3oaAdaqhaaadbaGaam4AaaqaaiaadYeaaaWccaWGwb WaaSbaaWqaaiaad2gaaeqaaSGaeyOeI0IaciiBaiaac6gacqqHPoWv daWgaaadbaGaaGymaiabgkHiTiabeo7aNbqabaaaniabgUIiYdGcca WGKbGaamODamaaBaaaleaacaaIXaaabeaaaOGaay5Eaiaaw2haaiaa cYcaaaa@6D7C@  (71)

where

   η k L = y k L S 1 S m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiiaiaabc cacqaH3oaAdaqhaaWcbaGaam4AaaqaaiaadYeaaaGccqGH9aqpdaWc aaqaaiaadMhadaqhaaWcbaGaam4AaaqaaiaadYeaaaGccqGHsislca WGtbWaaSbaaSqaaiaaigdaaeqaaaGcbaGaam4uamaaBaaaleaacaWG TbaabeaaaaGccaGGUaaaaa@4445@  (72)

It follows from (57) and (71) that

E{ 0 η k L V m ln Ω 1γ f 1 ( v 1 ) d v 1 }=E{ 0 η k L V m ln Ω 1γ hexp( h v 1 ) d v 1 } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaacm aabaWaa8qCaeaacaWGMbWaaSbaaSqaaiaaigdaaeqaaOGaaiikaiaa dAhadaWgaaWcbaGaaGymaaqabaGccaGGPaaaleaacaaIWaaabaGaey OeI0Iaeq4TdG2aa0baaWqaaiaadUgaaeaacaWGmbaaaSGaamOvamaa BaaameaacaWGTbaabeaaliabgkHiTiGacYgacaGGUbGaeuyQdC1aaS baaWqaaiaaigdacqGHsislcqaHZoWzaeqaaaqdcqGHRiI8aOGaamiz aiaadAhadaWgaaWcbaGaaGymaaqabaaakiaawUhacaGL9baacqGH9a qpcaWGfbWaaiWaaeaadaWdXbqaaiaadIgaciGGLbGaaiiEaiaaccha daqadaqaaiabgkHiTiaadIgacaWG2bWaaSbaaSqaaiaaigdaaeqaaa GccaGLOaGaayzkaaaaleaacaaIWaaabaGaeyOeI0Iaeq4TdG2aa0ba aWqaaiaadUgaaeaacaWGmbaaaSGaamOvamaaBaaameaacaWGTbaabe aaliabgkHiTiGacYgacaGGUbGaeuyQdC1aaSbaaWqaaiaaigdacqGH sislcqaHZoWzaeqaaaqdcqGHRiI8aOGaamizaiaadAhadaWgaaWcba GaaGymaaqabaaakiaawUhacaGL9baaaaa@7404@
=E{ 1exp( h[ η k L V m lnΩ 1γ ] ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaaGymaiabgkHiTiGacwgacaGG4bGaaiiCamaabmaa baGaeyOeI0IaamiAamaadmaabaGaeyOeI0Iaeq4TdG2aa0baaSqaai aadUgaaeaacaWGmbaaaOGaamOvamaaBaaaleaacaWGTbaabeaakiab gkHiTiGacYgacaGGUbGaeuyQdC1aaSraaSqaaiaaigdacqGHsislcq aHZoWzaeqaaaGccaGLBbGaayzxaaaacaGLOaGaayzkaaaacaGL7bGa ayzFaaaaaa@5238@ =E{ 1exp( h η k L V m )exp( qln Ω 1γ ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaaGymaiabgkHiTiGacwgacaGG4bGaaiiCamaabmaa baGaamiAaiabeE7aOnaaDaaaleaacaWGRbaabaGaamitaaaakiaadA fadaWgaaWcbaGaamyBaaqabaaakiaawIcacaGLPaaaciGGLbGaaiiE aiaacchadaqadaqaaiaadghaciGGSbGaaiOBaiabfM6axnaaBaaale aacaaIXaGaeyOeI0Iaeq4SdCgabeaaaOGaayjkaiaawMcaaaGaay5E aiaaw2haaaaa@52D8@
=E{ 1 Ω 1γ h exp( h η k L V m ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam yramaacmaabaGaaGymaiabgkHiTiabfM6axnaaDaaaleaacaaIXaGa eyOeI0Iaeq4SdCgabaGaamiAaaaakiGacwgacaGG4bGaaiiCamaabm aabaGaamiAaiabeE7aOnaaDaaaleaacaWGRbaabaGaamitaaaakiaa dAfadaWgaaWcbaGaamyBaaqabaaakiaawIcacaGLPaaaaiaawUhaca GL9baaaaa@4C88@ = 0 ( 1 Ω 1γ h exp( h η k L v m ) ) f m ( v m ) d v m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaa8 qCaeaadaqadaqaaiaaigdacqGHsislcqqHPoWvdaqhaaWcbaGaaGym aiabgkHiTiabeo7aNbqaaiaadIgaaaGcciGGLbGaaiiEaiaacchada qadaqaaiaadIgacqaH3oaAdaqhaaWcbaGaam4AaaqaaiaadYeaaaGc caWG2bWaaSbaaSqaaiaad2gaaeqaaaGccaGLOaGaayzkaaaacaGLOa GaayzkaaGaamOzamaaBaaaleaacaWGTbaabeaakiaacIcacaWG2bWa aSbaaSqaaiaad2gaaeqaaOGaaiykaaWcbaGaaGimaaqaaiabg6HiLc qdcqGHRiI8aOGaamizaiaadAhadaWgaaWcbaGaamyBaaqabaaaaa@5865@
= 0 ( 1 Ω 1γ h exp( h η k L v m ) ) 1 Γ(m1) v m m2 exp( v m )d v m =1 Ω 1γ h 0 1 Γ(m1) v m m2 exp( v m [ 1h η k L ] )d v m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqGH9a qpdaWdXbqaamaabmaabaGaaGymaiabgkHiTiabfM6axnaaDaaaleaa caaIXaGaeyOeI0Iaeq4SdCgabaGaamiAaaaakiGacwgacaGG4bGaai iCamaabmaabaGaamiAaiabeE7aOnaaDaaaleaacaWGRbaabaGaamit aaaakiaadAhadaWgaaWcbaGaamyBaaqabaaakiaawIcacaGLPaaaai aawIcacaGLPaaaaSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakmaa laaabaGaaGymaaqaaiabfo5ahjaacIcacaWGTbGaeyOeI0IaaGymai aacMcaaaGaamODamaaDaaaleaacaWGTbaabaGaamyBaiabgkHiTiaa ikdaaaGcciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTiaadAhada WgaaWcbaGaamyBaaqabaaakiaawIcacaGLPaaacaWGKbGaamODamaa BaaaleaacaWGTbaabeaaaOqaaiabg2da9iaaigdacqGHsislcqqHPo WvdaqhaaWcbaGaaGymaiabgkHiTiabeo7aNbqaaiaadIgaaaGcdaWd XbqaamaalaaabaGaaGymaaqaaiabfo5ahjaacIcacaWGTbGaeyOeI0 IaaGymaiaacMcaaaGaamODamaaDaaaleaacaWGTbaabaGaamyBaiab gkHiTiaaikdaaaGcciGGLbGaaiiEaiaacchadaqadaqaaiabgkHiTi aadAhadaWgaaWcbaGaamyBaaqabaGcdaWadaqaaiaaigdacqGHsisl caWGObGaeq4TdG2aa0baaSqaaiaadUgaaeaacaWGmbaaaaGccaGLBb GaayzxaaaacaGLOaGaayzkaaGaamizaiaadAhadaWgaaWcbaGaamyB aaqabaaabaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aaaaaa@8FFE@
=1 Ω 1γ h [ 1h η k L ] m1 =β. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0JaaG ymaiabgkHiTmaalaaabaGaeuyQdC1aa0baaSqaaiaaigdacqGHsisl cqaHZoWzaeaacaWGObaaaaGcbaWaamWaaeaacaaIXaGaeyOeI0Iaam iAaiabeE7aOnaaDaaaleaacaWGRbaabaGaamitaaaaaOGaay5waiaa w2faamaaCaaaleqabaGaamyBaiabgkHiTiaaigdaaaaaaOGaeyypa0 JaeqOSdiMaaiOlaaaa@4CFA@  (73)

It follows from (72) and (73) that

η L k = y k L S 1 S m = 1 h ( 1 [ Ω 1γ h 1β ] 1 m1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaS baaSqaaiaadYeadaWgaaadbaGaam4AaaqabaaaleqaaOGaeyypa0Za aSaaaeaacaWG5bWaa0baaSqaaiaadUgaaeaacaWGmbaaaOGaeyOeI0 Iaam4uamaaBaaaleaacaaIXaaabeaaaOqaaiaadofadaWgaaWcbaGa amyBaaqabaaaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaamiAaaaada qadaqaaiaaigdacqGHsisldaWadaqaamaalaaabaGaeuyQdC1aa0ba aSqaaiaaigdacqGHsislcqaHZoWzaeaacaWGObaaaaGcbaGaaGymai abgkHiTiabek7aIbaaaiaawUfacaGLDbaadaahaaWcbeqaamaalaaa baGaaGymaaqaaiaad2gacqGHsislcaaIXaaaaaaaaOGaayjkaiaawM caaiaac6caaaa@580C@  (74)

It follows from (74) that

y k L = S 1 + S m h ( 1 [ Ω 1γ h 1β ] 1 m1 ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaamitaaaakiabg2da9iaadofadaWgaaWcbaGa aGymaaqabaGccqGHRaWkdaWcaaqaaiaadofadaWgaaWcbaGaamyBaa qabaaakeaacaWGObaaamaabmaabaGaaGymaiabgkHiTmaadmaabaWa aSaaaeaacqqHPoWvdaqhaaWcbaGaaGymaiabgkHiTiabeo7aNbqaai aadIgaaaaakeaacaaIXaGaeyOeI0IaeqOSdigaaaGaay5waiaaw2fa amaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaamyBaiabgkHiTiaaig daaaaaaaGccaGLOaGaayzkaaGaaiOlaaaa@5255@  (75)

Then (69) follows from (75), this ends the proof.

  1. Numerical Practical Example

Let us assume that k =5, m =8, h =10, n=12, γ = β = 0.95,

S=( S 1 = Y 1 =9,  S m = i=1 m ( Y i Y ) 1 +(hm)( Y m Y 1 ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaC4uaiabg2 da9maabmaabaGaam4uamaaBaaaleaacaaIXaaabeaakiabg2da9iaa dMfadaWgaaWcbaGaaGymaaqabaGccqGH9aqpcaaI5aGaaiilaiaabc cacaWGtbWaaSbaaSqaaiaad2gaaeqaaOGaeyypa0ZaaabCaeaacaGG OaGaamywamaaBaaaleaacaWGPbaabeaakiabgkHiTiaadMfadaWgba WcbaGaaGymaaqabaGccaGGPaGaey4kaSIaaiikaiaadIgacqGHsisl caWGTbGaaiykaiaacIcacaWGzbWaaSbaaSqaaiaad2gaaeqaaOGaey OeI0IaamywamaaBaaaleaacaaIXaaabeaakiaacMcaaSqaaiaadMga cqGH9aqpcaaIXaaabaGaamyBaaqdcqGHris5aaGccaGLOaGaayzkaa aaaa@5B39@  

=( S 1 =9,  S m =0+1+2+4+6+10+15+23+(108)23=107 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaae WaaeaacaWGtbWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0JaaGyoaiaa cYcacaqGGaGaam4uamaaBaaaleaacaWGTbaabeaakiabg2da9iaaic dacqGHRaWkcaaIXaGaey4kaSIaaGOmaiabgUcaRiaaisdacqGHRaWk caaI2aGaey4kaSIaaGymaiaaicdacqGHRaWkcaaIXaGaaGynaiabgU caRiaaikdacaaIZaGaey4kaSIaaiikaiaaigdacaaIWaGaeyOeI0Ia aGioaiaacMcacaaIYaGaaG4maiabg2da9iaaigdacaaIWaGaaG4naa GaayjkaiaawMcaaiaacYcaaaa@596A@  (76)

Then , the ( γ=0.95,β=0.95 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcqGH9aqpcaaIWaGaaiOlaiaaiMdacaaI1aGaaiilaiabek7a Ijabg2da9iaaicdacaGGUaGaaGyoaiaaiwdaaiaawIcacaGLPaaaaa a@4340@ upper, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit y k U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaamyvaaaaaaa@38DC@  with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained from (61), where the quantile of Beta(k,n-k+1),γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaadw gacaWG0bGaamyyaiaabIcacaWGRbGaaiilaiaad6gacaGGTaGaam4A aiabgUcaRiaaigdacaqGPaGaaeilaabaaaaaaaaapeGaeq4SdCgaaa@4315@  is given by

q ( k,nk+1 ),γ =0.609138, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaadaqadaqaaiaadUgacaGGSaGaamOBaiabgkHiTiaadUgacqGH RaWkcaaIXaaacaGLOaGaayzkaaGaaiilaiabeo7aNbqabaGccqGH9a qpqaaaaaaaaaWdbiaaicdacaGGUaGaaGOnaiaaicdacaaI5aGaaGym aiaaiodacaaI4aWdaiaacYcaaaa@48C7@  (77)

Ω 1γ =1 q ( k,nk+1 ),1γ =10.609138=0.390862. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaaigdacqGHsislcqaHZoWzaeqaaOGaeyypa0JaaGymaiab gkHiTiaadghadaWgaaWcbaWaaeWaaeaacaWGRbGaaiilaiaad6gacq GHsislcaWGRbGaey4kaSIaaGymaaGaayjkaiaawMcaaiaacYcacaaI XaGaeyOeI0Iaeq4SdCgabeaakiabg2da9iaaigdacqGHsislqaaaaa aaaaWdbiaaicdacaGGUaGaaGOnaiaaicdacaaI5aGaaGymaiaaioda caaI4aGaeyypa0JaaGimaiaac6cacaaIZaGaaGyoaiaaicdacaaI4a GaaGOnaiaaikdacaGGUaaaaa@5AB6@  (78)

It follows from (61), (76) and (78) that

y k U = S 1 + S m h [ 1 ( Ω γ h β ) 1 m1 ]=9+ 107 10 [ ( 1 [ 0.390862 ] 10 0.95 ) 1 81 ]=9+7.883285=16.883285. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaamyvaaaakiabg2da9iaadofadaWgaaWcbaGa aGymaaqabaacbaGccaWFRaGaa8hiamaaleaabaGaam4uamaaBaaale aacaWGTbaabeaaaOqaaiaadIgaaaWaamWaaeaacaaIXaGaeyOeI0Ya aeWaaeaadaWcaaqaaiabfM6axnaaDaaaleaacqaHZoWzaeaacaWGOb aaaaGcbaGaeqOSdigaaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaa aeaacaaIXaaabaGaamyBaiabgkHiTiaaigdaaaaaaaGdcaGLBbGaay zxaaGccqGH9aqpcaaI5aGaey4kaSYaaSaaaeaacaaIXaGaaGimaiaa iEdaaeaacaaIXaGaaGimaaaadaWadaqaamaabmaabaGaaGymaiabgk HiTmaalaaabaaeaaaaaaaaa8qadaWadaqaaiaaicdacaGGUaGaaG4m aiaaiMdacaaIWaGaaGioaiaaiAdacaaIYaaacaGLBbGaayzxaaWaaW baaSqabeaacaaIXaGaaGimaaaaaOWdaeaacaaIWaGaaiOlaiaaiMda caaI1aaaaaGaayjkaiaawMcaamaaCaaaleqabaWaaSaaaeaacaaIXa aabaGaaGioaiabgkHiTiaaigdaaaaaaaGdcaGLBbGaayzxaaGcpeGa eyypa0JaaGyoaiabgUcaRiaaiEdacaGGUaGaaGioaiaaiIdacaaIZa GaaGOmaiaaiIdacaaI1aGaeyypa0JaaGymaiaaiAdacaGGUaGaaGio aiaaiIdacaaIZaGaaGOmaiaaiIdapaGaaGynaiaac6caaaa@7BB0@  (79)

The ( γ=0.95,β=0.95 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcqGH9aqpcaaIWaGaaiOlaiaaiMdacaaI1aGaaiilaiabek7a Ijabg2da9iaaicdacaGGUaGaaGyoaiaaiwdaaiaawIcacaGLPaaaaa a@4340@ lower, one-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance limit y k U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaDa aaleaacaWGRbaabaGaamyvaaaaaaa@38DC@  with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained from (69), where the quantile of Beta(k,n-k+1),1γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaadw gacaWG0bGaamyyaiaabIcacaWGRbGaaiilaiaad6gacaGGTaGaam4A aiabgUcaRiaaigdacaqGPaGaaeilaabaaaaaaaaapeGaaGymaiabgk HiTiabeo7aNbaa@44BD@  is given by

q ( k,nk+1 ),1γ =0.181025, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaadaqadaqaaiaadUgacaGGSaGaamOBaiabgkHiTiaadUgacqGH RaWkcaaIXaaacaGLOaGaayzkaaGaaiilaiaaigdacqGHsislcqaHZo WzaeqaaOGaeyypa0deaaaaaaaaa8qacaaIWaGaaiOlaiaaigdacaaI 4aGaaGymaiaaicdacaaIYaGaaGyna8aacaGGSaaaaa@4A65@  (80)

Ω 1γ =1 q ( k,nk+1 ),1γ =10.181025=0.818975. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuyQdC1aaS baaSqaaiaaigdacqGHsislcqaHZoWzaeqaaOGaeyypa0JaaGymaiab gkHiTiaadghadaWgaaWcbaWaaeWaaeaacaWGRbGaaiilaiaad6gacq GHsislcaWGRbGaey4kaSIaaGymaaGaayjkaiaawMcaaiaacYcacaaI XaGaeyOeI0Iaeq4SdCgabeaakiabg2da9iaaigdacqGHsislqaaaaa aaaaWdbiaaicdacaGGUaGaaGymaiaaiIdacaaIXaGaaGimaiaaikda caaI1aGaeyypa0JaaGimaiaac6cacaaI4aGaaGymaiaaiIdacaaI5a GaaG4naiaaiwdacaGGUaaaaa@5AB6@  (81)

It follows from (69), (76) and (81) that

y k L = S 1 + S m h [ ( Ω γ h 1β ) 1 m1 1 ]=9+ 107 10 [ ( [ 0.818975 ] 10 10.95 ) 1 81 1 ] =9+ 107 10 [ 1.153353261 ]=10.64088. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG5b Waa0baaSqaaiaadUgaaeaacaWGmbaaaOGaeyypa0Jaam4uamaaBaaa leaacaaIXaaabeaaieaakiaa=TcacaWFGaWaaSqaaeaacaWGtbWaaS baaSqaaiaad2gaaeqaaaGcbaGaamiAaaaadaWadaqaamaabmaabaWa aSaaaeaacqqHPoWvdaqhaaWcbaGaeq4SdCgabaGaamiAaaaaaOqaai aaigdacqGHsislcqaHYoGyaaaacaGLOaGaayzkaaWaaWbaaSqabeaa daWcaaqaaiaaigdaaeaacaWGTbGaeyOeI0IaaGymaaaaaaGccqGHsi slcaaIXaaaoiaawUfacaGLDbaakiabg2da9iaaiMdacqGHRaWkdaWc aaqaaiaaigdacaaIWaGaaG4naaqaaiaaigdacaaIWaaaamaadmaaba WaaeWaaeaadaWcaaqaaabaaaaaaaaapeWaamWaaeaacaaIWaGaaiOl aiaaiIdacaaIXaGaaGioaiaaiMdacaaI3aGaaGynaaGaay5waiaaw2 faamaaCaaaleqabaGaaGymaiaaicdaaaaak8aabaGaaGymaiabgkHi TiaaicdacaGGUaGaaGyoaiaaiwdaaaaacaGLOaGaayzkaaWaaWbaaS qabeaadaWcaaqaaiaaigdaaeaacaaI4aGaeyOeI0IaaGymaaaaaaGc cqGHsislcaaIXaaaoiaawUfacaGLDbaaaOqaa8qacqGH9aqppaGaaG yoaiabgUcaRmaalaaabaGaaGymaiaaicdacaaI3aaabaGaaGymaiaa icdaaaWaamWaaeaapeGaaGymaiaac6cacaaIXaGaaGynaiaaiodaca aIZaGaaGynaiaaiodacaaIYaGaaGOna8aacqGHsislcaaIXaaacaGL BbGaayzxaaGaeyypa0ZdbiaaigdacaaIWaGaaiOlaiaaiAdacaaI0a GaaGimaiaaiIdacaaI4aWdaiaac6caaaaa@874F@  (82)

The ( γ=0.95,β=0.95 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aHZoWzcqGH9aqpcaaIWaGaaiOlaiaaiMdacaaI1aGaaiilaiabek7a Ijabg2da9iaaicdacaGGUaGaaGyoaiaaiwdaaiaawIcacaGLPaaaaa a@4340@  two-sided γ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdCMaey OeI0caaa@386B@ content tolerance interval with confidence level β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdigaaa@3778@  can be obtained by using (6), (79) and (82):

[ y k L ,  y k U ]=[ 10.64088, 16.883285 ]. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WG5bWaa0baaSqaaiaadUgaaeaacaWGmbaaaOGaaiilaiaabccacaWG 5bWaa0baaSqaaiaadUgaaeaacaWGvbaaaaGccaGLBbGaayzxaaGaey ypa0ZaamWaaeaaqaaaaaaaaaWdbiaaigdacaaIWaGaaiOlaiaaiAda caaI0aGaaGimaiaaiIdacaaI4aWdaiaacYcacaqGGaWdbiaaigdaca aI2aGaaiOlaiaaiIdacaaI4aGaaG4maiaaikdacaaI4aWdaiaaiwda aiaawUfacaGLDbaacaGGUaaaaa@50F9@  (83)

  1. New intelligent transformation technique for derivation of the density function of the student’s T distribution

Theorem 5: If  W 1 N(0,1) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaaIXaaabeaakiabgIGiolaad6eacaGGOaGaaGimaiaacYca caaIXaGaaiykaaaa@3D79@  and W 2 χ 2 (υ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOGaeyicI4Saeq4X dm2aaWbaaSqabeaacaaIYaaaaOGaaiikaiabew8a1jaacMcaaaa@3F41@  are independent random variables, then

W 1 / W 2 /υ =T(υ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbWdamaaBaaaleaapeGaaGymaaWdaeqaaOGaai4lamaakaaa baGaam4vamaaBaaaleaacaaIYaaabeaakiaac+cacqaHfpqDaSqaba GccqGH9aqpcaWGubGaaiikaiabew8a1jaacMcacaGGSaaaaa@42D1@  (84)

where t(υ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaacI cacqaHfpqDcaGGPaaaaa@39F0@   follows the student’s t distribution with υ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyXduhaaa@379E@  degrees of freedom,

t(υ)f(t)= Γ( ( υ+1)/ 2) ) πυ  Γ( υ/2 ) [ 1+ t 2 υ ] (υ+1)/2 ,  <t<. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDaiaacI cacqaHfpqDcaGGPaGaeSipIOJaamOzaiaacIcacaWG0bGaaiykaiab g2da9maalaaabaGaeu4KdC0aaeWaaeaacaGGOaWaaSGbaeaacqaHfp qDcqGHRaWkcaaIXaGaaiykaaqaaiaaikdacaGGPaaaaaGaayjkaiaa wMcaaaqaamaakaaabaGaeqiWdaNaeqyXduhaleqaaOGaaeiiaiabfo 5ahnaabmaabaGaeqyXduNaai4laiaaikdaaiaawIcacaGLPaaaaaWa amWaaeaacaaIXaGaey4kaSYaaSaaaeaacaWG0bWaaWbaaSqabeaaca aIYaaaaaGcbaGaeqyXduhaaaGaay5waiaaw2faamaaCaaaleqabaGa eyOeI0Iaaiikaiabew8a1jabgUcaRiaaigdacaGGPaGaai4laiaaik daaaGccaGGSaGaaeiiaiaabccacqGHsislcqGHEisPcqGH8aapcaWG 0bGaeyipaWJaeyOhIuQaaiOlaaaa@6B36@  (85)

Proof.

w 1 f 1 ( w 1 )= 1 2π exp( w 1 2 2 ),   < w 1 <, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaaabeaakiablYJi6iaadAgadaWgaaWcbaGaaGymaaqa baGccaGGOaGaam4DamaaBaaaleaacaaIXaaabeaakiaacMcacqGH9a qpdaWcaaqaaiaaigdaaeaadaGcaaqaaiaaikdacqaHapaCaSqabaaa aOGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaaiaadE hadaqhaaWcbaGaaGymaaqaaiaaikdaaaaakeaacaaIYaaaaaGaayjk aiaawMcaaiaacYcacaqGGaGaaeiiaiaabccacqGHsislcqGHEisPcq GH8aapcaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaeyipaWJaeyOhIuQa aiilaaaa@5662@   (86)

where

w 1 =t [ w 2 υ ] 1/2 ,   d w 1 = [ w 2 υ ] 1/2 dt. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaaabeaakiabg2da9iaadshadaWadaqaamaalaaabaGa am4DamaaBaaaleaacaaIYaaabeaaaOqaaiabew8a1baaaiaawUfaca GLDbaadaahaaWcbeqaaiaaigdacaGGVaGaaGOmaaaakiaacYcacaqG GaGaaeiiaiaabccacaWGKbGaam4DamaaBaaaleaacaaIXaaabeaaki abg2da9maadmaabaWaaSaaaeaacaWG3bWaaSbaaSqaaiaaikdaaeqa aaGcbaGaeqyXduhaaaGaay5waiaaw2faamaaCaaaleqabaGaaGymai aac+cacaaIYaaaaOGaamizaiaadshacaGGUaaaaa@530C@  (87)

It follows from (86) and (87) that

f 1 ( w 1 )d w 1 = 1 2π exp( w 1 2 2 )d w 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaaBa aaleaacaaIXaaabeaakiaacIcacaWG3bWaaSbaaSqaaiaaigdaaeqa aOGaaiykaiaadsgacaWG3bWaaSbaaSqaaiaaigdaaeqaaOGaeyypa0 ZaaSaaaeaacaaIXaaabaWaaOaaaeaacaaIYaGaeqiWdahaleqaaaaa kiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaWG3b Waa0baaSqaaiaaigdaaeaacaaIYaaaaaGcbaGaaGOmaaaaaiaawIca caGLPaaacaWGKbGaam4DamaaBaaaleaacaaIXaaabeaaaaa@4DE1@
= 1 2π exp( t 2 [ w 2 /υ ] 2 ) [ w 2 υ ] 1/2 dt=f( t| w 2 )dt,  <t<.   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS aaaeaacaaIXaaabaWaaOaaaeaacaaIYaGaeqiWdahaleqaaaaakiGa cwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaWG0bWaaW baaSqabeaacaaIYaaaaOWaamWaaeaacaWG3bWaaSbaaSqaaiaaikda aeqaaOGaai4laiabew8a1bGaay5waiaaw2faaaqaaiaaikdaaaaaca GLOaGaayzkaaWaamWaaeaadaWcaaqaaiaadEhadaWgaaWcbaGaaGOm aaqabaaakeaacqaHfpqDaaaacaGLBbGaayzxaaWaaWbaaSqabeaaca aIXaGaai4laiaaikdaaaGccaWGKbGaamiDaiabg2da9iaadAgadaqa daqaaiaadshacaGG8bGaam4DamaaBaaaleaacaaIYaaabeaaaOGaay jkaiaawMcaaiaadsgacaWG0bGaaiilaiaabccacaqGGaGaeyOeI0Ia eyOhIuQaeyipaWJaamiDaiabgYda8iabg6HiLkaac6cacaqGGaGaae iiaaaa@66B4@  (88)

w 2 f 2 ( w 2 )= 1 Γ( υ/2 ) 2 υ/2 w 2 (υ/2)1 exp( w 2 2 ),   0< w 2 <. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIYaaabeaakiablYJi6iaadAgadaWgaaWcbaGaaGOmaaqa baGccaGGOaGaam4DamaaBaaaleaacaaIYaaabeaakiaacMcacqGH9a qpdaWcaaqaaiaaigdaaeaacqqHtoWrdaqadaqaaiabew8a1jaac+ca caaIYaaacaGLOaGaayzkaaGaaGOmamaaCaaaleqabaGaeqyXduNaai 4laiaaikdaaaaaaOGaam4DamaaDaaaleaacaaIYaaabaGaaiikaiab ew8a1jaac+cacaaIYaGaaiykaiabgkHiTiaaigdaaaGcciGGLbGaai iEaiaacchadaqadaqaaiabgkHiTmaalaaabaGaam4DamaaBaaaleaa caaIYaaabeaaaOqaaiaaikdaaaaacaGLOaGaayzkaaGaaiilaiaabc cacaqGGaGaaeiiaiaabcdacqGH8aapcaWG3bWaaSbaaSqaaiaaikda aeqaaOGaeyipaWJaeyOhIuQaaiOlaaaa@63D9@  (89)

It follows from (88) and (89) that

f(t)= 0 f( t| w 2 ) f 2 ( w 2 )d w 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG0bGaaiykaiabg2da9maapehabaGaamOzamaabmaabaGaamiD aiaacYhacaWG3bWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaa GaamOzamaaBaaaleaacaaIYaaabeaakiaacIcacaWG3bWaaSbaaSqa aiaaikdaaeqaaOGaaiykaiaadsgacaWG3bWaaSbaaSqaaiaaikdaae qaaaqaaiaaicdaaeaacqGHEisPa0Gaey4kIipaaaa@4CFF@
= 0 1 2π exp( t 2 [ w 2 /υ ] 2 ) [ w 2 υ ] 1/2 1 Γ( υ/2 ) 2 υ/2 w 2 (υ/2)1 exp( w 2 2 )d w 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaa8 qCaeaadaWcaaqaaiaaigdaaeaadaGcaaqaaiaaikdacqaHapaCaSqa baaaaOGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqaai aadshadaahaaWcbeqaaiaaikdaaaGcdaWadaqaaiaadEhadaWgaaWc baGaaGOmaaqabaGccaGGVaGaeqyXduhacaGLBbGaayzxaaaabaGaaG OmaaaaaiaawIcacaGLPaaadaWadaqaamaalaaabaGaam4DamaaBaaa leaacaaIYaaabeaaaOqaaiabew8a1baaaiaawUfacaGLDbaadaahaa WcbeqaaiaaigdacaGGVaGaaGOmaaaakmaalaaabaGaaGymaaqaaiab fo5ahnaabmaabaGaeqyXduNaai4laiaaikdaaiaawIcacaGLPaaaca aIYaWaaWbaaSqabeaacqaHfpqDcaGGVaGaaGOmaaaaaaGccaWG3bWa a0baaSqaaiaaikdaaeaacaGGOaGaeqyXduNaai4laiaaikdacaGGPa GaeyOeI0IaaGymaaaakiGacwgacaGG4bGaaiiCamaabmaabaGaeyOe I0YaaSaaaeaacaWG3bWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGOmaa aaaiaawIcacaGLPaaacaWGKbGaam4DamaaBaaaleaacaaIYaaabeaa aeaacaaIWaaabaGaeyOhIukaniabgUIiYdaaaa@7373@
= 0 1 πυ Γ( υ/2 ) 2 (υ+1)/2 w 2 (υ+1)/2)1 exp( w 2 2 [ 1+ t 2 υ ] )d w 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaa8 qCaeaadaWcaaqaaiaaigdaaeaadaGcaaqaaiabec8aWjabew8a1bWc beaakiabfo5ahnaabmaabaGaeqyXduNaai4laiaaikdaaiaawIcaca GLPaaacaaIYaWaaWbaaSqabeaacaGGOaGaeqyXduNaey4kaSIaaGym aiaacMcacaGGVaGaaGOmaaaaaaGccaWG3bWaa0baaSqaaiaaikdaae aacaGGOaGaeqyXduNaey4kaSIaaGymaiaacMcacaGGVaGaaGOmaiaa cMcacqGHsislcaaIXaaaaOGaciyzaiaacIhacaGGWbWaaeWaaeaacq GHsisldaWcaaqaaiaadEhadaWgaaWcbaGaaGOmaaqabaaakeaacaaI YaaaamaadmaabaGaaGymaiabgUcaRmaalaaabaGaamiDamaaCaaale qabaGaaGOmaaaaaOqaaiabew8a1baaaiaawUfacaGLDbaaaiaawIca caGLPaaacaWGKbGaam4DamaaBaaaleaacaaIYaaabeaaaeaacaaIWa aabaGaeyOhIukaniabgUIiYdaaaa@69CA@
= Γ( ( υ+1)/ 2) ) πυ  Γ( υ/2 ) [ 1+ t 2 υ ] (υ+1)/2 ,  <t<. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS aaaeaacqqHtoWrdaqadaqaaiaacIcadaWcgaqaaiabew8a1jabgUca RiaaigdacaGGPaaabaGaaGOmaiaacMcaaaaacaGLOaGaayzkaaaaba WaaOaaaeaacqaHapaCcqaHfpqDaSqabaGccaqGGaGaeu4KdC0aaeWa aeaacqaHfpqDcaGGVaGaaGOmaaGaayjkaiaawMcaaaaadaWadaqaai aaigdacqGHRaWkdaWcaaqaaiaadshadaahaaWcbeqaaiaaikdaaaaa keaacqaHfpqDaaaacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislca GGOaGaeqyXduNaey4kaSIaaGymaiaacMcacaGGVaGaaGOmaaaakiaa cYcacaqGGaGaaeiiaiabgkHiTiabg6HiLkabgYda8iaadshacqGH8a apcqGHEisPcaGGUaaaaa@62B7@  (90)

This ends the proof.

  1. Confidence interval for the difference of means of two different normal populations

In most applications, two populations are compared using the difference in the means. Let U1, U2, ..., Um be a sample of size m from a normal population having mean μ m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaad2gaaeqaaaaa@38AB@  and variance σ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaad2gaaeaacaaIYaaaaaaa@3975@  and let Z1, ..., Zn be a sample of size n from a different normal population having mean μ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaad6gaaeqaaaaa@38AC@  and variance σ n 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaad6gaaeaacaaIYaaaaaaa@3976@  and suppose that the two samples are independent of each other. We are interested in constructing a confidence interval for μ m μ n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaad2gaaeqaaOGaeyOeI0IaeqiVd02aaSbaaSqaaiaad6ga aeqaaOGaaiOlaaaa@3D33@  To obtain this confidence interval, we need the distribution of U ¯ m Z ¯ n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IabmOwayaaraWaaSbaaSqa aiaad6gaaeqaaOGaaiilaaaa@3BAE@ where

U ¯ m = i=1 m U i / m N( μ m , σ m 2 /m ),    Z ¯ n = i=1 m Z i / n N( μ n , σ n 2 /n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyypa0ZaaSGbaeaadaaeWbqaaiaa dwfadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaae aacaWGTbaaniabggHiLdaakeaacaWGTbGaeSipIOdaaiaad6eadaqa daqaaabaaaaaaaaapeGaeqiVd02aaSbaaSqaaiaad2gaaeqaaOGaai ilaiabeo8aZnaaDaaaleaacaWGTbaabaGaaGOmaaaakiaab+cacaWG TbaapaGaayjkaiaawMcaaiaacYcacaqGGaGaaeiiaiaabccaceWGAb GbaebadaWgaaWcbaGaamOBaaqabaGccqGH9aqpdaWcgaqaamaaqaha baGaamOwamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaG ymaaqaaiaad2gaa0GaeyyeIuoaaOqaaiaad6gacqWI8iIoaaGaamOt amaabmaabaWdbiabeY7aTnaaBaaaleaacaWGUbaabeaakiaacYcacq aHdpWCdaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaqGVaGaamOBaaWd aiaawIcacaGLPaaacaqGUaGaaeiiaaaa@6AEB@  (91)

It follows from (91) that

U ¯ m Z ¯ n N( μ m μ n , σ m 2 m + σ n 2 n ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IabmOwayaaraWaaSbaaSqa aiaad6gaaeqaaOGaeSipIOJaamOtamaabmaabaGaeqiVd02aaSbaaS qaaiaad2gaaeqaaOGaeyOeI0IaeqiVd02aaSbaaSqaaiaad6gaaeqa aOGaaiilamaalaaabaGaeq4Wdm3aa0baaSqaaiaad2gaaeaacaaIYa aaaaGcbaGaamyBaaaacqGHRaWkdaWcaaqaaiabeo8aZnaaDaaaleaa caWGUbaabaGaaGOmaaaaaOqaaiaad6gaaaaacaGLOaGaayzkaaGaai Olaaaa@50D7@  (92)

It follows from (92) that

U ¯ m Z ¯ n ( μ m μ n ) σ m 2 /m+ σ n 2 /n = W 1 N(0,1). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaace WGvbGbaebadaWgaaWcbaGaamyBaaqabaGccqGHsislceWGAbGbaeba daWgaaWcbaGaamOBaaqabaGccqGHsisldaqadaqaaiabeY7aTnaaBa aaleaacaWGTbaabeaakiabgkHiTiabeY7aTnaaBaaaleaacaWGUbaa beaaaOGaayjkaiaawMcaaaqaaiabeo8aZnaaDaaaleaacaWGTbaaba GaaGOmaaaakiaac+cacaWGTbGaey4kaSIaeq4Wdm3aa0baaSqaaiaa d6gaaeaacaaIYaaaaOGaai4laiaad6gaaaGaeyypa0Jaam4vamaaBa aaleaacaaIXaaabeaakiablYJi6iaad6eacaGGOaGaaGimaiaacYca caaIXaGaaiykaiaac6caaaa@58BB@   (93)

This is independent of

i=1 m ( U i U ¯ m ) 2 / σ m 2 = (m1) σ m 2 i=1 m ( U i U ¯ m ) 2 (m1) = (m1) S m 2 σ m 2 χ m1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaada WcgaqaamaabmaabaGaamyvamaaBaaaleaacaWGPbaabeaakiabgkHi TiqadwfagaqeamaaBaaaleaacaWGTbaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaOqaaiabeo8aZnaaDaaaleaacaWGTbaa baGaaGOmaaaaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGTbaani abggHiLdGccqGH9aqpdaWcaaqaaiaacIcacaWGTbGaeyOeI0IaaGym aiaacMcaaeaacqaHdpWCdaqhaaWcbaGaamyBaaqaaiaaikdaaaaaaO WaaSaaaeaadaaeWbqaamaabmaabaGaamyvamaaBaaaleaacaWGPbaa beaakiabgkHiTiqadwfagaqeamaaBaaaleaacaWGTbaabeaaaOGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeaacaWGPbGaeyypa0Ja aGymaaqaaiaad2gaa0GaeyyeIuoaaOqaaiaacIcacaWGTbGaeyOeI0 IaaGymaiaacMcaaaGaeyypa0ZaaSaaaeaacaGGOaGaamyBaiabgkHi TiaaigdacaGGPaGaam4uamaaDaaaleaacaWGTbaabaGaaGOmaaaaaO qaaiabeo8aZnaaDaaaleaacaWGTbaabaGaaGOmaaaaaaGccqWI8iIo cqaHhpWydaqhaaWcbaGaamyBaiabgkHiTiaaigdaaeaacaaIYaaaaa aa@72CC@  (94)

and

i=1 n ( Z i Z ¯ n ) 2 / σ n 2 = (n1) σ n 2 i=1 n ( Z i Z n ) 2 (n1) = (n1) S n 2 σ n 2 χ n1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaada WcgaqaamaabmaabaGaamOwamaaBaaaleaacaWGPbaabeaakiabgkHi TiqadQfagaqeamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaOqaaiabeo8aZnaaDaaaleaacaWGUbaa baGaaGOmaaaaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGUbaani abggHiLdGccqGH9aqpdaWcaaqaaiaacIcacaWGUbGaeyOeI0IaaGym aiaacMcaaeaacqaHdpWCdaqhaaWcbaGaamOBaaqaaiaaikdaaaaaaO WaaSaaaeaadaaeWbqaamaabmaabaGaamOwamaaBaaaleaacaWGPbaa beaakiabgkHiTiaadQfadaWgaaWcbaGaamOBaaqabaaakiaawIcaca GLPaaadaahaaWcbeqaaiaaikdaaaaabaGaamyAaiabg2da9iaaigda aeaacaWGUbaaniabggHiLdaakeaacaGGOaGaamOBaiabgkHiTiaaig dacaGGPaaaaiabg2da9maalaaabaGaaiikaiaad6gacqGHsislcaaI XaGaaiykaiaadofadaqhaaWcbaGaamOBaaqaaiaaikdaaaaakeaacq aHdpWCdaqhaaWcbaGaamOBaaqaaiaaikdaaaaaaOGaeSipIOJaeq4X dm2aa0baaSqaaiaad6gacqGHsislcaaIXaaabaGaaGOmaaaakiaacY caaaa@738E@  (95)

where

(m1) S m 2 σ m 2 + (n1) S n 2 σ n 2 = W 2 χ 2 (m+n2). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca GGOaGaamyBaiabgkHiTiaaigdacaGGPaGaam4uamaaDaaaleaacaWG TbaabaGaaGOmaaaaaOqaaiabeo8aZnaaDaaaleaacaWGTbaabaGaaG OmaaaaaaGccqGHRaWkdaWcaaqaaiaacIcacaWGUbGaeyOeI0IaaGym aiaacMcacaWGtbWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaeq 4Wdm3aa0baaSqaaiaad6gaaeaacaaIYaaaaaaakiabg2da9abaaaaa aaaapeGaam4va8aadaWgaaWcbaWdbiaaikdaa8aabeaakiablYJi6i abeE8aJnaaCaaaleqabaGaaGOmaaaakiaacIcacaWGTbGaey4kaSIa amOBaiabgkHiTiaaikdacaGGPaGaaiOlaaaa@58FC@  (96)

Taking (84), (93) and (96) into account, we have that

W 1 W 2 /(m+n2) = U ¯ m Z ¯ n ( μ m μ n ) σ m 2 /m+ σ n 2 /n [ (m1) S m 2 σ m 2 + (n1) S n 2 σ n 2 ]/ (m+n2) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaqaaiaadEfadaWgaaWcbaGaaGymaaqabaaakeaapaWaaOaa aeaacaWGxbWaaSbaaSqaaiaaikdaaeqaaOGaai4laiaacIcacaWGTb Gaey4kaSIaamOBaiabgkHiTiaaikdacaGGPaaaleqaaaaakiabg2da 9maalaaabaWaaSaaaeaaceWGvbGbaebadaWgaaWcbaGaamyBaaqaba GccqGHsislceWGAbGbaebadaWgaaWcbaGaamOBaaqabaGccqGHsisl daqadaqaaiabeY7aTnaaBaaaleaacaWGTbaabeaakiabgkHiTiabeY 7aTnaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaqaaiabeo8a ZnaaDaaaleaacaWGTbaabaGaaGOmaaaakiaac+cacaWGTbGaey4kaS Iaeq4Wdm3aa0baaSqaaiaad6gaaeaacaaIYaaaaOGaai4laiaad6ga aaaabaWaaOaaaeaadaWcgaqaamaadmaabaWaaSaaaeaacaGGOaGaam yBaiabgkHiTiaaigdacaGGPaGaam4uamaaDaaaleaacaWGTbaabaGa aGOmaaaaaOqaaiabeo8aZnaaDaaaleaacaWGTbaabaGaaGOmaaaaaa GccqGHRaWkdaWcaaqaaiaacIcacaWGUbGaeyOeI0IaaGymaiaacMca caWGtbWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaeq4Wdm3aa0 baaSqaaiaad6gaaeaacaaIYaaaaaaaaOGaay5waiaaw2faaaqaaiaa cIcacaWGTbGaey4kaSIaamOBaiabgkHiTiaaikdacaGGPaaaaaWcbe aaaaaaaa@78DE@
= U ¯ m Z ¯ n ( μ m μ n ) (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 σ m 2 /m+ σ n 2 /n =T(m+n2)f(t), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS aaaeaaceWGvbGbaebadaWgaaWcbaGaamyBaaqabaGccqGHsislceWG AbGbaebadaWgaaWcbaGaamOBaaqabaGccqGHsisldaqadaqaaiabeY 7aTnaaBaaaleaacaWGTbaabeaakiabgkHiTiabeY7aTnaaBaaaleaa caWGUbaabeaaaOGaayjkaiaawMcaaaqaamaakaaabaGaaiikaiaad2 gacqGHsislcaaIXaGaaiykaiaadofadaqhaaWcbaGaamyBaaqaaiaa ikdaaaGccaGGVaGaeq4Wdm3aa0baaSqaaiaad2gaaeaacaaIYaaaaO Gaey4kaSIaaiikaiaad6gacqGHsislcaaIXaGaaiykaiaadofadaqh aaWcbaGaamOBaaqaaiaaikdaaaGccaGGVaGaeq4Wdm3aa0baaSqaai aad6gaaeaacaaIYaaaaaqabaaaaOWaaOaaaeaadaWcaaqaaiaad2ga cqGHRaWkcaWGUbGaeyOeI0IaaGOmaaqaaiabeo8aZnaaDaaaleaaca WGTbaabaGaaGOmaaaakiaac+cacaWGTbGaey4kaSIaeq4Wdm3aa0ba aSqaaiaad6gaaeaacaaIYaaaaOGaai4laiaad6gaaaaaleqaaOGaey ypa0deaaaaaaaaa8qacaWGubGaaiikaiaad2gacqGHRaWkcaWGUbGa eyOeI0IaaGOmaiaacMcapaGaeSipIOJaamOzaiaacIcacaWG0bGaai ykaiaacYcaaaa@794F@  (97)

where T(m+n-2) is a t-random variable with m + n – 2 degrees of freedom,

f(t)= Γ( ( m+n1 )/2 ) π(m+n2)  Γ( (m+n2)/2 ) [ 1+ t 2 m+n2 ] ( m+n1 )/2 ,  <t<. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG0bGaaiykaiabg2da9maalaaabaGaeu4KdC0aaeWaaeaadaWc gaqaamaabmaabaGaamyBaiabgUcaRiaad6gacqGHsislcaaIXaaaca GLOaGaayzkaaaabaGaaGOmaaaaaiaawIcacaGLPaaaaeaadaGcaaqa aiabec8aWjaacIcacaWGTbGaey4kaSIaamOBaiabgkHiTiaaikdaca GGPaaaleqaaOGaaeiiaiabfo5ahnaabmaabaGaaiikaiaad2gacqGH RaWkcaWGUbGaeyOeI0IaaGOmaiaacMcacaGGVaGaaGOmaaGaayjkai aawMcaaaaadaWadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadshadaah aaWcbeqaaiaaikdaaaaakeaacaWGTbGaey4kaSIaamOBaiabgkHiTi aaikdaaaaacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsisldaqadaqa aiaad2gacqGHRaWkcaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaai aac+cacaaIYaaaaOGaaiilaiaabccacaqGGaGaeyOeI0IaeyOhIuQa eyipaWJaamiDaiabgYda8iabg6HiLkaac6caaaa@726A@  (98)

Using (97) and (98), it can be obtained a 100(1-a)% confidence interval for U ¯ m Z ¯ n ( μ m μ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IabmOwayaaraWaaSbaaSqa aiaad6gaaeqaaOGaeyOeI0YaaeWaaeaacqaH8oqBdaWgaaWcbaGaam yBaaqabaGccqGHsislcqaH8oqBdaWgaaWcbaGaamOBaaqabaaakiaa wIcacaGLPaaaaaa@441E@  from

P( t 1 T( m+n2 ) t 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaabm aabaGaamiDamaaBaaaleaacaaIXaaabeaakiabgsMiJkaadsfadaqa daqaaiaad2gacqGHRaWkcaWGUbGaeyOeI0IaaGOmaaGaayjkaiaawM caaiabgsMiJkaadshadaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGL Paaaaaa@4656@
=P( t 1 U ¯ m Z ¯ n ( μ m μ n ) (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 σ m 2 /m+ σ n 2 /n t 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam iuamaabmaabaGaamiDamaaBaaaleaacaaIXaaabeaakiabgsMiJoaa laaabaGabmyvayaaraWaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0Iabm OwayaaraWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0YaaeWaaeaacqaH 8oqBdaWgaaWcbaGaamyBaaqabaGccqGHsislcqaH8oqBdaWgaaWcba GaamOBaaqabaaakiaawIcacaGLPaaaaeaadaGcaaqaaiaacIcacaWG TbGaeyOeI0IaaGymaiaacMcacaWGtbWaa0baaSqaaiaad2gaaeaaca aIYaaaaOGaai4laiabeo8aZnaaDaaaleaacaWGTbaabaGaaGOmaaaa kiabgUcaRiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcacaWGtbWaa0 baaSqaaiaad6gaaeaacaaIYaaaaOGaai4laiabeo8aZnaaDaaaleaa caWGUbaabaGaaGOmaaaaaeqaaaaakmaalaaabaWaaOaaaeaacaWGTb Gaey4kaSIaamOBaiabgkHiTiaaikdaaSqabaaakeaadaGcaaqaaiab eo8aZnaaDaaaleaacaWGTbaabaGaaGOmaaaakiaac+cacaWGTbGaey 4kaSIaeq4Wdm3aa0baaSqaaiaad6gaaeaacaaIYaaaaOGaai4laiaa d6gaaSqabaaaaOGaeyizImQaamiDamaaBaaaleaacaaIYaaabeaaaO GaayjkaiaawMcaaaaa@7634@
=P( t 1 (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 σ m 2 /m+ σ n 2 /n U ¯ m Z ¯ n ( μ m μ n )                  t 2 (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 σ m 2 /m+ σ n 2 /n )=1α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam iuamaabmaaeaqabeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaOWaaOaa aeaadaWcaaqaaiaacIcacaWGTbGaeyOeI0IaaGymaiaacMcacaWGtb Waa0baaSqaaiaad2gaaeaacaaIYaaaaOGaai4laiabeo8aZnaaDaaa leaacaWGTbaabaGaaGOmaaaakiabgUcaRiaacIcacaWGUbGaeyOeI0 IaaGymaiaacMcacaWGtbWaa0baaSqaaiaad6gaaeaacaaIYaaaaOGa ai4laiabeo8aZnaaDaaaleaacaWGUbaabaGaaGOmaaaaaOqaaiaad2 gacqGHRaWkcaWGUbGaeyOeI0IaaGOmaaaaaSqabaGcdaGcaaqaaiab eo8aZnaaDaaaleaacaWGTbaabaGaaGOmaaaakiaac+cacaWGTbGaey 4kaSIaeq4Wdm3aa0baaSqaaiaad6gaaeaacaaIYaaaaOGaai4laiaa d6gaaSqabaGccqGHKjYOceWGvbGbaebadaWgaaWcbaGaamyBaaqaba GccqGHsislceWGAbGbaebadaWgaaWcbaGaamOBaaqabaGccqGHsisl daqadaqaaiabeY7aTnaaBaaaleaacaWGTbaabeaakiabgkHiTiabeY 7aTnaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaaqaaiaabcca caqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacqGHKjYO caWG0bWaaSbaaSqaaiaaikdaaeqaaOWaaOaaaeaadaWcaaqaaiaacI cacaWGTbGaeyOeI0IaaGymaiaacMcacaWGtbWaa0baaSqaaiaad2ga aeaacaaIYaaaaOGaai4laiabeo8aZnaaDaaaleaacaWGTbaabaGaaG OmaaaakiabgUcaRiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcacaWG tbWaa0baaSqaaiaad6gaaeaacaaIYaaaaOGaai4laiabeo8aZnaaDa aaleaacaWGUbaabaGaaGOmaaaaaOqaaiaad2gacqGHRaWkcaWGUbGa eyOeI0IaaGOmaaaaaSqabaGcdaGcaaqaaiabeo8aZnaaDaaaleaaca WGTbaabaGaaGOmaaaakiaac+cacaWGTbGaey4kaSIaeq4Wdm3aa0ba aSqaaiaad6gaaeaacaaIYaaaaOGaai4laiaad6gaaSqabaaaaOGaay jkaiaawMcaaiabg2da9iaaigdacqGHsislcqaHXoqyaaa@ABDB@  (99)

by suitably choosing the decision variables t1 and t2. Hence, the statistical confidence interval for U ¯ m Z ¯ n ( μ m μ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IabmOwayaaraWaaSbaaSqa aiaad6gaaeqaaOGaeyOeI0YaaeWaaeaacqaH8oqBdaWgaaWcbaGaam yBaaqabaGccqGHsislcqaH8oqBdaWgaaWcbaGaamOBaaqabaaakiaa wIcacaGLPaaaaaa@441E@  is given by

[ t 1 (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 1 σ m 2 /m+ σ n 2 /n ,  t 2 (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 1 σ m 2 /m+ σ n 2 /n ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WG0bWaaSbaaSqaaiaaigdaaeqaaOWaaSaaaeaadaGcaaqaamaalaaa baGaaiikaiaad2gacqGHsislcaaIXaGaaiykaiaadofadaqhaaWcba GaamyBaaqaaiaaikdaaaGccaGGVaGaeq4Wdm3aa0baaSqaaiaad2ga aeaacaaIYaaaaOGaey4kaSIaaiikaiaad6gacqGHsislcaaIXaGaai ykaiaadofadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaGGVaGaeq4W dm3aa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamyBaiabgUcaRi aad6gacqGHsislcaaIYaaaaaWcbeaaaOqaamaalaaabaGaaGymaaqa amaakaaabaGaeq4Wdm3aa0baaSqaaiaad2gaaeaacaaIYaaaaOGaai 4laiaad2gacqGHRaWkcqaHdpWCdaqhaaWcbaGaamOBaaqaaiaaikda aaGccaGGVaGaamOBaaWcbeaaaaaaaOGaaiilaiaabccacaWG0bWaaS baaSqaaiaaikdaaeqaaOWaaSaaaeaadaGcaaqaamaalaaabaGaaiik aiaad2gacqGHsislcaaIXaGaaiykaiaadofadaqhaaWcbaGaamyBaa qaaiaaikdaaaGccaGGVaGaeq4Wdm3aa0baaSqaaiaad2gaaeaacaaI YaaaaOGaey4kaSIaaiikaiaad6gacqGHsislcaaIXaGaaiykaiaado fadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaGGVaGaeq4Wdm3aa0ba aSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamyBaiabgUcaRiaad6gacq GHsislcaaIYaaaaaWcbeaaaOqaamaalaaabaGaaGymaaqaamaakaaa baGaeq4Wdm3aa0baaSqaaiaad2gaaeaacaaIYaaaaOGaai4laiaad2 gacqGHRaWkcqaHdpWCdaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaGG VaGaamOBaaWcbeaaaaaaaaGccaGLBbGaayzxaaGaaiOlaaaa@8DEF@  (100)

The length of the statistical confidence interval for U ¯ m Z ¯ n ( μ m μ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IabmOwayaaraWaaSbaaSqa aiaad6gaaeqaaOGaeyOeI0YaaeWaaeaacqaH8oqBdaWgaaWcbaGaam yBaaqabaGccqGHsislcqaH8oqBdaWgaaWcbaGaamOBaaqabaaakiaa wIcacaGLPaaaaaa@441E@  is given by

L( t 1 , t 2 | (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 σ m 2 /m+ σ n 2 /n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaabm aabaGaamiDamaaBaaaleaacaaIXaaabeaakiaacYcacaWG0bWaaSba aSqaaiaaikdaaeqaaOGaaiiFamaakaaabaWaaSaaaeaacaGGOaGaam yBaiabgkHiTiaaigdacaGGPaGaam4uamaaDaaaleaacaWGTbaabaGa aGOmaaaakiaac+cacqaHdpWCdaqhaaWcbaGaamyBaaqaaiaaikdaaa GccqGHRaWkcaGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaam4uamaa DaaaleaacaWGUbaabaGaaGOmaaaakiaac+cacqaHdpWCdaqhaaWcba GaamOBaaqaaiaaikdaaaaakeaacaWGTbGaey4kaSIaamOBaiabgkHi TiaaikdaaaaaleqaaOWaaOaaaeaacqaHdpWCdaqhaaWcbaGaamyBaa qaaiaaikdaaaGccaGGVaGaamyBaiabgUcaRiabeo8aZnaaDaaaleaa caWGUbaabaGaaGOmaaaakiaac+cacaWGUbaaleqaaaGccaGLOaGaay zkaaaaaa@6509@
=( t 2 t 1 ) (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 σ m 2 /m+ σ n 2 /n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaae WaaeaacaWG0bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiDamaa BaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaamaakaaabaWaaSaaae aacaGGOaGaamyBaiabgkHiTiaaigdacaGGPaGaam4uamaaDaaaleaa caWGTbaabaGaaGOmaaaakiaac+cacqaHdpWCdaqhaaWcbaGaamyBaa qaaiaaikdaaaGccqGHRaWkcaGGOaGaamOBaiabgkHiTiaaigdacaGG PaGaam4uamaaDaaaleaacaWGUbaabaGaaGOmaaaakiaac+cacqaHdp WCdaqhaaWcbaGaamOBaaqaaiaaikdaaaaakeaacaWGTbGaey4kaSIa amOBaiabgkHiTiaaikdaaaaaleqaaOWaaOaaaeaacqaHdpWCdaqhaa WcbaGaamyBaaqaaiaaikdaaaGccaGGVaGaamyBaiabgUcaRiabeo8a ZnaaDaaaleaacaWGUbaabaGaaGOmaaaakiaac+cacaWGUbaaleqaaO GaaiOlaaaa@652D@  (101)

In order to find the confidence interval of shortest-length for U ¯ m Z ¯ n ( μ m μ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IabmOwayaaraWaaSbaaSqa aiaad6gaaeqaaOGaeyOeI0YaaeWaaeaacqaH8oqBdaWgaaWcbaGaam yBaaqabaGccqGHsislcqaH8oqBdaWgaaWcbaGaamOBaaqabaaakiaa wIcacaGLPaaaaaa@441E@ , we should find a pair of decision variables t1 and t2 such that (101) is minimum.

It follows from (98) and (99) that

t 1 t 2 f(t)dt = 0 t 2 f(t)dt 0 t 1 f(t)dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca WGMbGaaiikaiaadshacaGGPaGaamizaiaadshaaSqaaiaadshadaWg aaadbaGaaGymaaqabaaaleaacaWG0bWaaSbaaWqaaiaaikdaaeqaaa qdcqGHRiI8aOGaeyypa0Zaa8qCaeaacaWGMbGaaiikaiaadshacaGG PaGaamizaiaadshaaSqaaiaaicdaaeaacaWG0bWaaSbaaWqaaiaaik daaeqaaaqdcqGHRiI8aOGaeyOeI0Yaa8qCaeaacaWGMbGaaiikaiaa dshacaGGPaGaamizaiaadshaaSqaaiaaicdaaeaacaWG0bWaaSbaaW qaaiaaigdaaeqaaaqdcqGHRiI8aaaa@578B@ =( 1α+p )p=1α, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaae WaaeaacaaIXaGaeyOeI0IaeqySdeMaey4kaSIaamiCaaGaayjkaiaa wMcaaiabgkHiTiaadchacqGH9aqpcaaIXaGaeyOeI0IaeqySdeMaai ilaaaa@4473@  (102)

where p (0pα) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaic dacqGHKjYOcaWGWbGaeyizImQaeqySdeMaaiykaaaa@3DE8@  is a decision variable,

0 t 2 f(t)dt =1α+p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca WGMbGaaiikaiaadshacaGGPaGaamizaiaadshaaSqaaiaaicdaaeaa caWG0bWaaSbaaWqaaiaaikdaaeqaaaqdcqGHRiI8aOGaeyypa0JaaG ymaiabgkHiTiabeg7aHjabgUcaRiaadchaaaa@4639@  (103)

and

0 t 1 f(t)dt =p. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca WGMbGaaiikaiaadshacaGGPaGaamizaiaadshaaSqaaiaaicdaaeaa caWG0bWaaSbaaWqaaiaaigdaaeqaaaqdcqGHRiI8aOGaeyypa0Jaam iCaiaac6caaaa@42C1@  (104)

Then t2 represents the ( 1α+p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaeyOeI0IaeqySdeMaey4kaSIaamiCaaGaayjkaiaawMcaaaaa @3C7E@ - quantile, which is given by

t 2 = q 1α+p;(t(m+n2)) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIYaaabeaakiabg2da9iaadghadaWgaaWcbaGaaGymaiab gkHiTiabeg7aHjabgUcaRiaadchacaGG7aGaaiikaiaadshacaGGOa GaamyBaiabgUcaRiaad6gacqGHsislcaaIYaGaaiykaiaacMcaaeqa aOGaaiilaaaa@48AC@  (105)

t1represents the p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36CC@ - quantile, which is given by

t 1 = q p;(t(m+n2)) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIXaaabeaakiabg2da9iaadghadaWgaaWcbaGaamiCaiaa cUdacaGGOaGaamiDaiaacIcacaWGTbGaey4kaSIaamOBaiabgkHiTi aaikdacaGGPaGaaiykaaqabaGccaGGUaaaaa@4484@  (106)

The shortest length confidence interval for U ¯ m Z ¯ n ( μ m μ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IabmOwayaaraWaaSbaaSqa aiaad6gaaeqaaOGaeyOeI0YaaeWaaeaacqaH8oqBdaWgaaWcbaGaam yBaaqabaGccqGHsislcqaH8oqBdaWgaaWcbaGaamOBaaqabaaakiaa wIcacaGLPaaaaaa@441E@  can be found as follows:

Minimize

( t 2 t 1 ) 2 = ( q 1α+p;(t(m+n2)) q p;(t(m+n2)) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG0bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiDamaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaki abg2da9maabmaabaGaamyCamaaBaaaleaacaaIXaGaeyOeI0IaeqyS deMaey4kaSIaamiCaiaacUdacaGGOaGaamiDaiaacIcacaWGTbGaey 4kaSIaamOBaiabgkHiTiaaikdacaGGPaGaaiykaaqabaGccqGHsisl caWGXbWaaSbaaSqaaiaadchacaGG7aGaaiikaiaadshacaGGOaGaam yBaiabgUcaRiaad6gacqGHsislcaaIYaGaaiykaiaacMcaaeqaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@5BA9@   (107)

subject to

0pα, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadchacqGHKjYOcqaHXoqycaGGSaaaaa@3D4F@  (108)

The optimal numerical solution minimizing ( t 2 t 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG0bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiDamaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaa a@3D0B@ can be obtained using the standard computer software "Solver" of Excel 2016. If σ m 2 = σ n 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaad2gaaeaacaaIYaaaaOGaeyypa0Jaeq4Wdm3aa0baaSqa aiaad6gaaeaacaaIYaaaaOGaaiilaaaa@3EDE@  it follows from (101) that

L( t 1 , t 2 | (m1) S m 2 +(n1) S n 2 m+n2 m+n mn )=( t 2 t 1 ) (m1) S m 2 +(n1) S n 2 m+n2 m+n mn . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaabm aabaGaamiDamaaBaaaleaacaaIXaaabeaakiaacYcacaWG0bWaaSba aSqaaiaaikdaaeqaaOGaaiiFamaakaaabaWaaSaaaeaacaGGOaGaam yBaiabgkHiTiaaigdacaGGPaGaam4uamaaDaaaleaacaWGTbaabaGa aGOmaaaakiabgUcaRiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcaca WGtbWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamyBaiabgUca Riaad6gacqGHsislcaaIYaaaaaWcbeaakmaakaaabaWaaSaaaeaaca WGTbGaey4kaSIaamOBaaqaaiaad2gacaWGUbaaaaWcbeaaaOGaayjk aiaawMcaaiabg2da9maabmaabaGaamiDamaaBaaaleaacaaIYaaabe aakiabgkHiTiaadshadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGL PaaadaGcaaqaamaalaaabaGaaiikaiaad2gacqGHsislcaaIXaGaai ykaiaadofadaqhaaWcbaGaamyBaaqaaiaaikdaaaGccqGHRaWkcaGG OaGaamOBaiabgkHiTiaaigdacaGGPaGaam4uamaaDaaaleaacaWGUb aabaGaaGOmaaaaaOqaaiaad2gacqGHRaWkcaWGUbGaeyOeI0IaaGOm aaaaaSqabaGcdaGcaaqaamaalaaabaGaamyBaiabgUcaRiaad6gaae aacaWGTbGaamOBaaaaaSqabaGccaGGUaaaaa@755D@  (109)

If, for example, m=58, n=27, a = 0.05, U ¯ m =70.7,    Z ¯ n =76.13,    S m 2 = (1.8) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyypa0JaaG4naiaaicdacaGGUaGa aG4naiaacYcacaqGGaGaaeiiaiaabccaceWGAbGbaebadaWgaaWcba GaamOBaaqabaGccqGH9aqpcaaI3aGaaGOnaiaac6cacaaIXaGaaG4m aiaacYcacaqGGaGaaeiiaiaabccacaWGtbWaa0baaSqaaiaad2gaae aacaaIYaaaaOGaeyypa0JaaiikaiaaigdacaGGUaGaaGioaiaacMca daahaaWcbeqaaiaaikdaaaGccaGGSaaaaa@50D6@ S n 2 = (2.42) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGUbaabaGaaGOmaaaakiabg2da9iaacIcacaaIYaGaaiOl aiaaisdacaaIYaGaaiykamaaCaaaleqabaGaaGOmaaaakiaacYcaaa a@3F7F@ then the optimal numerical solution of (107) is given by

p=0.025,    t 1 = q p;(t(m+n2)) =1.98896, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2 da9abaaaaaaaaapeGaaGimaiaac6cacaaIWaGaaGOmaiaaiwdapaGa aiilaiaabccacaqGGaGaaeiiaiaadshadaWgaaWcbaGaaGymaaqaba GccqGH9aqpcaWGXbWaaSbaaSqaaiaadchacaGG7aGaaiikaiaadsha caGGOaGaamyBaiabgUcaRiaad6gacqGHsislcaaIYaGaaiykaiaacM caaeqaaOGaeyypa0JaeyOeI0IaaGymaiaac6cacaaI5aGaaGioaiaa iIdacaaI5aGaaGOna8qacaGGSaaaaa@5420@ t 2 = q 1α+p;(t(m+n2)) =1.98896 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIYaaabeaakiabg2da9iaadghadaWgaaWcbaGaaGymaiab gkHiTiabeg7aHjabgUcaRiaadchacaGG7aGaaiikaiaadshacaGGOa GaamyBaiabgUcaRiaad6gacqGHsislcaaIYaGaaiykaiaacMcaaeqa aOGaeyypa0JaaGymaiaac6cacaaI5aGaaGioaiaaiIdacaaI5aGaaG Onaaaa@4E39@   (110)

and it follows from (99) and (109) that the 100(1-a)% confidence interval of shortest-length (or equal tails) for μ 1 μ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaeqiVd02aaSbaaSqaaiaaikda aeqaaaaa@3C09@ is given by

( μ m μ n )( ( U ¯ m Z ¯ n ) t 2 (m1) S m 2 +(n1) S n 2 m+n2 m+n mn , ( U ¯ m Z ¯ n ) t 1 (m1) S m 2 +(n1) S n 2 m+n2 m+n mn )=( 6.330947,4.52905 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aH8oqBdaWgaaWcbaGaamyBaaqabaGccqGHsislcqaH8oqBdaWgaaWc baGaamOBaaqabaaakiaawIcacaGLPaaacqGHiiIZdaqadaabaeqaba WaaeWaaeaaceWGvbGbaebadaWgaaWcbaGaamyBaaqabaGccqGHsisl ceWGAbGbaebadaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacq GHsislcaWG0bWaaSbaaSqaaiaaikdaaeqaaOWaaOaaaeaadaWcaaqa aiaacIcacaWGTbGaeyOeI0IaaGymaiaacMcacaWGtbWaa0baaSqaai aad2gaaeaacaaIYaaaaOGaey4kaSIaaiikaiaad6gacqGHsislcaaI XaGaaiykaiaadofadaqhaaWcbaGaamOBaaqaaiaaikdaaaaakeaaca WGTbGaey4kaSIaamOBaiabgkHiTiaaikdaaaaaleqaaOWaaOaaaeaa daWcaaqaaiaad2gacqGHRaWkcaWGUbaabaGaamyBaiaad6gaaaGaai ilaaWcbeaaaOqaamaabmaabaGabmyvayaaraWaaSbaaSqaaiaad2ga aeqaaOGaeyOeI0IabmOwayaaraWaaSbaaSqaaiaad6gaaeqaaaGcca GLOaGaayzkaaGaeyOeI0IaamiDamaaBaaaleaacaaIXaaabeaakmaa kaaabaWaaSaaaeaacaGGOaGaamyBaiabgkHiTiaaigdacaGGPaGaam 4uamaaDaaaleaacaWGTbaabaGaaGOmaaaakiabgUcaRiaacIcacaWG UbGaeyOeI0IaaGymaiaacMcacaWGtbWaa0baaSqaaiaad6gaaeaaca aIYaaaaaGcbaGaamyBaiabgUcaRiaad6gacqGHsislcaaIYaaaaaWc beaakmaakaaabaWaaSaaaeaacaWGTbGaey4kaSIaamOBaaqaaiaad2 gacaWGUbaaaaWcbeaaaaGccaGLOaGaayzkaaGaeyypa0ZaaeWaaeaa cqGHsislcaaI2aGaaiOlaiaaiodacaaIZaGaaGimaiaaiMdacaaI0a GaaG4naiaacYcacqGHsislcaaI0aGaaiOlaiaaiwdacaaIYaGaaGyo aiaaicdacaaI1aaacaGLOaGaayzkaaaaaa@94A9@   (111)

or

6.330947  μ m μ n 4.52905. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG Onaiaac6cacaaIZaGaaG4maiaaicdacaaI5aGaaGinaiaaiEdacaqG GaGaeyizImQaaeiiaiabeY7aTnaaBeaaleaacaWGTbaabeaakiabgk HiTiabeY7aTnaaBaaaleaacaWGUbaabeaakiabgsMiJkabgkHiTiaa isdacaGGUaGaaGynaiaaikdacaaI5aGaaGimaiaaiwdacaGGUaaaaa@4EDD@  (112)

  1. Confidence interval for the ratio of means of two different normal populations

Ratio in the means is used to compare two populations of positive data. Let U1, U2, ..., Um be a sample of size m from a normal population having mean μ m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaad2gaaeqaaaaa@38AB@  and variance σ m 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaad2gaaeaacaaIYaaaaaaa@3975@  and let U1, ..., Un be a sample of size n from a different normal population having mean μ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaad6gaaeqaaaaa@38AC@  and variance σ n 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaad6gaaeaacaaIYaaaaaaa@3976@  and suppose that the two samples are independent of each other. We are interested in constructing a confidence interval for the ratio of means ( μ m , μ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabeY 7aTnaaBaaaleaacaWGTbaabeaakiaacYcacqaH8oqBdaWgaaWcbaGa amOBaaqabaGccaGGPaaaaa@3D9D@ of two different normal populations To obtain this confidence interval, we need the distribution of U ¯ m κ U ¯ n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOUdSMabmyvayaaraWa aSbaaSqaaiaad6gaaeqaaOGaaiilaaaa@3D5B@ where

U ¯ m = i=1 m U i / m N( μ m , σ m 2 /m ),    U ¯ n = i=1 n U i / n N( μ n , σ n 2 /n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyypa0ZaaSGbaeaadaaeWbqaaiaa dwfadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigdaae aacaWGTbaaniabggHiLdaakeaacaWGTbGaeSipIOdaaiaad6eadaqa daqaaabaaaaaaaaapeGaeqiVd02aaSbaaSqaaiaad2gaaeqaaOGaai ilaiabeo8aZnaaDaaaleaacaWGTbaabaGaaGOmaaaakiaab+cacaWG TbaapaGaayjkaiaawMcaaiaacYcacaqGGaGaaeiiaiaabccaceWGvb GbaebadaWgaaWcbaGaamOBaaqabaGccqGH9aqpdaWcgaqaamaaqaha baGaamyvamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaG ymaaqaaiaad6gaa0GaeyyeIuoaaOqaaiaad6gacqWI8iIoaaGaamOt amaabmaabaWdbiabeY7aTnaaBaaaleaacaWGUbaabeaakiaacYcacq aHdpWCdaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaqGVaGaamOBaaWd aiaawIcacaGLPaaacaqGUaGaaeiiaaaa@6AE2@  (113)

It can be shown that

U ¯ m κ U ¯ n N( μ m κ μ n , σ m 2 m + κ 2 σ n 2 n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOUdSMabmyvayaaraWa aSbaaSqaaiaad6gaaeqaaOGaeSipIOJaamOtamaabmaabaGaeqiVd0 2aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOUdSMaeqiVd02aaSba aSqaaiaad6gaaeqaaOGaaiilamaalaaabaGaeq4Wdm3aa0baaSqaai aad2gaaeaacaaIYaaaaaGcbaGaamyBaaaacqGHRaWkdaWcaaqaaiab eQ7aRnaaCaaaleqabaGaaGOmaaaakiabeo8aZnaaDaaaleaacaWGUb aabaGaaGOmaaaaaOqaaiaad6gaaaaacaGLOaGaayzkaaaaaa@5619@  (114)

or

U ¯ m κ U ¯ n ( μ m κ μ n ) σ m 2 m + κ 2 σ n 2 n = W 1 N( 0,1 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaace WGvbGbaebadaWgaaWcbaGaamyBaaqabaGccqGHsislcqaH6oWAceWG vbGbaebadaWgaaWcbaGaamOBaaqabaGccqGHsislcaGGOaGaeqiVd0 2aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOUdSMaeqiVd02aaSba aSqaaiaad6gaaeqaaOGaaiykaaqaamaakaaabaWaaSaaaeaacqaHdp WCdaqhaaWcbaGaamyBaaqaaiaaikdaaaaakeaacaWGTbaaaiabgUca RmaalaaabaGaeqOUdS2aaWbaaSqabeaacaaIYaaaaOGaeq4Wdm3aa0 baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamOBaaaaaSqabaaaaOGa eyypa0Jaam4vamaaBaaaleaacaaIXaaabeaakiablYJi6iaad6eada qadaqaaiaaicdacaGGSaGaaGymaaGaayjkaiaawMcaaiaac6caaaa@5D8E@  (115)

This is independent of

i=1 m ( U i U ¯ m ) 2 / σ m 2 = (m1) σ m 2 i=1 m ( U i U ¯ m ) 2 (m1) = (m1) S m 2 σ m 2 χ m1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaada WcgaqaamaabmaabaGaamyvamaaBaaaleaacaWGPbaabeaakiabgkHi TiqadwfagaqeamaaBaaaleaacaWGTbaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaOqaaiabeo8aZnaaDaaaleaacaWGTbaa baGaaGOmaaaaaaaabaGaamyAaiabg2da9iaaigdaaeaacaWGTbaani abggHiLdGccqGH9aqpdaWcaaqaaiaacIcacaWGTbGaeyOeI0IaaGym aiaacMcaaeaacqaHdpWCdaqhaaWcbaGaamyBaaqaaiaaikdaaaaaaO WaaSaaaeaadaaeWbqaamaabmaabaGaamyvamaaBaaaleaacaWGPbaa beaakiabgkHiTiqadwfagaqeamaaBaaaleaacaWGTbaabeaaaOGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeaacaWGPbGaeyypa0Ja aGymaaqaaiaad2gaa0GaeyyeIuoaaOqaaiaacIcacaWGTbGaeyOeI0 IaaGymaiaacMcaaaGaeyypa0ZaaSaaaeaacaGGOaGaamyBaiabgkHi TiaaigdacaGGPaGaam4uamaaDaaaleaacaWGTbaabaGaaGOmaaaaaO qaaiabeo8aZnaaDaaaleaacaWGTbaabaGaaGOmaaaaaaGccqWI8iIo cqaHhpWydaqhaaWcbaGaamyBaiabgkHiTiaaigdaaeaacaaIYaaaaa aa@72DC@  (116)

and

j=1 n ( U j U ¯ n ) 2 / σ n 2 = (n1) σ n 2 j=1 n ( U j U ¯ n ) 2 (n1) = (n1) S n 2 σ n 2 χ n1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeaada WcgaqaamaabmaabaGaamyvamaaBaaaleaacaWGQbaabeaakiabgkHi TiqadwfagaqeamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGaaGOmaaaaaOqaaiabeo8aZnaaDaaaleaacaWGUbaa baGaaGOmaaaaaaaabaGaamOAaiabg2da9iaaigdaaeaacaWGUbaani abggHiLdGccqGH9aqpdaWcaaqaaiaacIcacaWGUbGaeyOeI0IaaGym aiaacMcaaeaacqaHdpWCdaqhaaWcbaGaamOBaaqaaiaaikdaaaaaaO WaaSaaaeaadaaeWbqaamaabmaabaGaamyvamaaBaaaleaacaWGQbaa beaakiabgkHiTiqadwfagaqeamaaBaaaleaacaWGUbaabeaaaOGaay jkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaeaacaWGQbGaeyypa0Ja aGymaaqaaiaad6gaa0GaeyyeIuoaaOqaaiaacIcacaWGUbGaeyOeI0 IaaGymaiaacMcaaaGaeyypa0ZaaSaaaeaacaGGOaGaamOBaiabgkHi TiaaigdacaGGPaGaam4uamaaDaaaleaacaWGUbaabaGaaGOmaaaaaO qaaiabeo8aZnaaDaaaleaacaWGUbaabaGaaGOmaaaaaaGccqWI8iIo cqaHhpWydaqhaaWcbaGaamOBaiabgkHiTiaaigdaaeaacaaIYaaaaO Gaaiilaaaa@73A6@  (117)

where

(m1) S m 2 σ m 2 + (n1) S n 2 σ n 2 = W 2 χ 2 (m+n2). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca GGOaGaamyBaiabgkHiTiaaigdacaGGPaGaam4uamaaDaaaleaacaWG TbaabaGaaGOmaaaaaOqaaiabeo8aZnaaDaaaleaacaWGTbaabaGaaG OmaaaaaaGccqGHRaWkdaWcaaqaaiaacIcacaWGUbGaeyOeI0IaaGym aiaacMcacaWGtbWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaeq 4Wdm3aa0baaSqaaiaad6gaaeaacaaIYaaaaaaakiabg2da9abaaaaa aaaapeGaam4va8aadaWgaaWcbaWdbiaaikdaa8aabeaakiablYJi6i abeE8aJnaaCaaaleqabaGaaGOmaaaakiaacIcacaWGTbGaey4kaSIa amOBaiabgkHiTiaaikdacaGGPaGaaiOlaaaa@590C@  (118)

It follows from (84), (115) and (118) that

W 1 W 2 /(m+n2) = U ¯ m κ U ¯ n ( μ m κ μ n ) σ m 2 m + κ 2 σ n 2 n 1 [ (m1) S m 2 σ m 2 + (n1) S n 2 σ n 2 ]/ (m+n2) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaqaaiaadEfadaWgaaWcbaGaaGymaaqabaaakeaapaWaaOaa aeaacaWGxbWaaSbaaSqaaiaaikdaaeqaaOGaai4laiaacIcacaWGTb Gaey4kaSIaamOBaiabgkHiTiaaikdacaGGPaaaleqaaaaakiabg2da 9maalaaabaGabmyvayaaraWaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0 IaeqOUdSMabmyvayaaraWaaSbaaSqaaiaad6gaaeqaaOGaeyOeI0Ia aiikaiabeY7aTnaaBaaaleaacaWGTbaabeaakiabgkHiTiabeQ7aRj abeY7aTnaaBaaaleaacaWGUbaabeaakiaacMcaaeaadaGcaaqaamaa laaabaGaeq4Wdm3aa0baaSqaaiaad2gaaeaacaaIYaaaaaGcbaGaam yBaaaacqGHRaWkdaWcaaqaaiabeQ7aRnaaCaaaleqabaGaaGOmaaaa kiabeo8aZnaaDaaaleaacaWGUbaabaGaaGOmaaaaaOqaaiaad6gaaa aaleqaaaaakmaalaaabaGaaGymaaqaamaakaaabaWaaSGbaeaadaWa daqaamaalaaabaGaaiikaiaad2gacqGHsislcaaIXaGaaiykaiaado fadaqhaaWcbaGaamyBaaqaaiaaikdaaaaakeaacqaHdpWCdaqhaaWc baGaamyBaaqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaGGOaGaam OBaiabgkHiTiaaigdacaGGPaGaam4uamaaDaaaleaacaWGUbaabaGa aGOmaaaaaOqaaiabeo8aZnaaDaaaleaacaWGUbaabaGaaGOmaaaaaa aakiaawUfacaGLDbaaaeaacaGGOaGaamyBaiabgUcaRiaad6gacqGH sislcaaIYaGaaiykaaaaaSqabaaaaaaa@7E5C@  

= U ¯ m κ U ¯ n ( μ m κ μ n ) (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 σ m 2 /m+ κ 2 σ n 2 /n =T(m+n2)f(t), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0ZaaS aaaeaaceWGvbGbaebadaWgaaWcbaGaamyBaaqabaGccqGHsislcqaH 6oWAceWGvbGbaebadaWgaaWcbaGaamOBaaqabaGccqGHsislcaGGOa GaeqiVd02aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOUdSMaeqiV d02aaSbaaSqaaiaad6gaaeqaaOGaaiykaaqaamaakaaabaGaaiikai aad2gacqGHsislcaaIXaGaaiykaiaadofadaqhaaWcbaGaamyBaaqa aiaaikdaaaGccaGGVaGaeq4Wdm3aa0baaSqaaiaad2gaaeaacaaIYa aaaOGaey4kaSIaaiikaiaad6gacqGHsislcaaIXaGaaiykaiaadofa daqhaaWcbaGaamOBaaqaaiaaikdaaaGccaGGVaGaeq4Wdm3aa0baaS qaaiaad6gaaeaacaaIYaaaaaqabaaaaOWaaOaaaeaadaWcaaqaaiaa d2gacqGHRaWkcaWGUbGaeyOeI0IaaGOmaaqaaiabeo8aZnaaDaaale aacaWGTbaabaGaaGOmaaaakiaac+cacaWGTbGaey4kaSIaeqOUdS2a aWbaaSqabeaacaaIYaaaaOGaeq4Wdm3aa0baaSqaaiaad6gaaeaaca aIYaaaaOGaai4laiaad6gaaaaaleqaaOGaeyypa0deaaaaaaaaa8qa caWGubGaaiikaiaad2gacqGHRaWkcaWGUbGaeyOeI0IaaGOmaiaacM capaGaeSipIOJaamOzaiaacIcacaWG0bGaaiykaiaacYcaaaa@7F33@  (119)

where T(m+n-2) is a t-random variable with m + n – 2 degrees of freedom. Taking Theorem 5 into account, we have that

f(t)= Γ( ( m+n1 )/2 ) π(m+n2)  Γ( (m+n2)/2 ) [ 1+ t 2 m+n2 ] ( m+n1 )/2 ,  <t<. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacI cacaWG0bGaaiykaiabg2da9maalaaabaGaeu4KdC0aaeWaaeaadaWc gaqaamaabmaabaGaamyBaiabgUcaRiaad6gacqGHsislcaaIXaaaca GLOaGaayzkaaaabaGaaGOmaaaaaiaawIcacaGLPaaaaeaadaGcaaqa aiabec8aWjaacIcacaWGTbGaey4kaSIaamOBaiabgkHiTiaaikdaca GGPaaaleqaaOGaaeiiaiabfo5ahnaabmaabaGaaiikaiaad2gacqGH RaWkcaWGUbGaeyOeI0IaaGOmaiaacMcacaGGVaGaaGOmaaGaayjkai aawMcaaaaadaWadaqaaiaaigdacqGHRaWkdaWcaaqaaiaadshadaah aaWcbeqaaiaaikdaaaaakeaacaWGTbGaey4kaSIaamOBaiabgkHiTi aaikdaaaaacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsisldaqadaqa aiaad2gacqGHRaWkcaWGUbGaeyOeI0IaaGymaaGaayjkaiaawMcaai aac+cacaaIYaaaaOGaaiilaiaabccacaqGGaGaeyOeI0IaeyOhIuQa eyipaWJaamiDaiabgYda8iabg6HiLkaac6caaaa@726A@  (120)

Using (119) and (120), it can be obtained a 100(1-a)% confidence interval for U ¯ m κ U ¯ n ( μ m κ μ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOUdSMabmyvayaaraWa aSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaaiikaiabeY7aTnaaBaaale aacaWGTbaabeaakiabgkHiTiabeQ7aRjabeY7aTnaaBaaaleaacaWG UbaabeaakiaacMcaaaa@474D@  from

P( t 1 T( m+n2| U ¯ m κ U ¯ n ( μ m κ μ n ) ) t 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaabm aabaGaamiDamaaBaaaleaacaaIXaaabeaakiabgsMiJkaadsfadaqa daqaaiaad2gacqGHRaWkcaWGUbGaeyOeI0IaaGOmaiaacYhaceWGvb GbaebadaWgaaWcbaGaamyBaaqabaGccqGHsislcqaH6oWAceWGvbGb aebadaWgaaWcbaGaamOBaaqabaGccqGHsislcaGGOaGaeqiVd02aaS baaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOUdSMaeqiVd02aaSbaaSqa aiaad6gaaeqaaOGaaiykaaGaayjkaiaawMcaaiabgsMiJkaadshada WgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaaaaa@58CC@
=P( t 1 (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 σ m 2 /m+ κ 2 σ n 2 /n U ¯ m κ U ¯ n ( μ m κ μ n )                    t 2 (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 σ m 2 /m+ κ 2 σ n 2 /n )=1α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jaam iuamaabmaaeaqabeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaOWaaOaa aeaadaWcaaqaaiaacIcacaWGTbGaeyOeI0IaaGymaiaacMcacaWGtb Waa0baaSqaaiaad2gaaeaacaaIYaaaaOGaai4laiabeo8aZnaaDaaa leaacaWGTbaabaGaaGOmaaaakiabgUcaRiaacIcacaWGUbGaeyOeI0 IaaGymaiaacMcacaWGtbWaa0baaSqaaiaad6gaaeaacaaIYaaaaOGa ai4laiabeo8aZnaaDaaaleaacaWGUbaabaGaaGOmaaaaaOqaaiaad2 gacqGHRaWkcaWGUbGaeyOeI0IaaGOmaaaaaSqabaGcdaGcaaqaaiab eo8aZnaaDaaaleaacaWGTbaabaGaaGOmaaaakiaac+cacaWGTbGaey 4kaSIaeqOUdS2aaWbaaSqabeaacaaIYaaaaOGaeq4Wdm3aa0baaSqa aiaad6gaaeaacaaIYaaaaOGaai4laiaad6gaaSqabaGccqGHKjYOce WGvbGbaebadaWgaaWcbaGaamyBaaqabaGccqGHsislcqaH6oWAceWG vbGbaebadaWgaaWcbaGaamOBaaqabaGccqGHsislcaGGOaGaeqiVd0 2aaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOUdSMaeqiVd02aaSba aSqaaiaad6gaaeqaaOGaaiykaaqaaaqaaiaabccacaqGGaGaaeiiai aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa aeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiabgsMiJk aadshadaWgaaWcbaGaaGOmaaqabaGcdaGcaaqaamaalaaabaGaaiik aiaad2gacqGHsislcaaIXaGaaiykaiaadofadaqhaaWcbaGaamyBaa qaaiaaikdaaaGccaGGVaGaeq4Wdm3aa0baaSqaaiaad2gaaeaacaaI YaaaaOGaey4kaSIaaiikaiaad6gacqGHsislcaaIXaGaaiykaiaado fadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaGGVaGaeq4Wdm3aa0ba aSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamyBaiabgUcaRiaad6gacq GHsislcaaIYaaaaaWcbeaakmaakaaabaGaeq4Wdm3aa0baaSqaaiaa d2gaaeaacaaIYaaaaOGaai4laiaad2gacqGHRaWkcqaH6oWAdaahaa WcbeqaaiaaikdaaaGccqaHdpWCdaqhaaWcbaGaamOBaaqaaiaaikda aaGccaGGVaGaamOBaaWcbeaaaaGccaGLOaGaayzkaaGaeyypa0JaaG ymaiabgkHiTiabeg7aHbaa@B59B@  (121)

By suitably choosing the decision variables t1 and t2. Hence, the statistical confidence interval for U ¯ m κ U ¯ n ( μ m κ μ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOUdSMabmyvayaaraWa aSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaaiikaiabeY7aTnaaBaaale aacaWGTbaabeaakiabgkHiTiabeQ7aRjabeY7aTnaaBaaaleaacaWG UbaabeaakiaacMcaaaa@474D@  is given by

[ t 1 (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 1 σ m 2 /m+ κ 2 σ n 2 /n ,  t 2 (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 1 σ m 2 /m+ κ 2 σ n 2 /n ]. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WG0bWaaSbaaSqaaiaaigdaaeqaaOWaaSaaaeaadaGcaaqaamaalaaa baGaaiikaiaad2gacqGHsislcaaIXaGaaiykaiaadofadaqhaaWcba GaamyBaaqaaiaaikdaaaGccaGGVaGaeq4Wdm3aa0baaSqaaiaad2ga aeaacaaIYaaaaOGaey4kaSIaaiikaiaad6gacqGHsislcaaIXaGaai ykaiaadofadaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaGGVaGaeq4W dm3aa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamyBaiabgUcaRi aad6gacqGHsislcaaIYaaaaaWcbeaaaOqaamaalaaabaGaaGymaaqa amaakaaabaGaeq4Wdm3aa0baaSqaaiaad2gaaeaacaaIYaaaaOGaai 4laiaad2gacqGHRaWkcqaH6oWAdaahaaWcbeqaaiaaikdaaaGccqaH dpWCdaqhaaWcbaGaamOBaaqaaiaaikdaaaGccaGGVaGaamOBaaWcbe aaaaaaaOGaaiilaiaabccacaWG0bWaaSbaaSqaaiaaikdaaeqaaOWa aSaaaeaadaGcaaqaamaalaaabaGaaiikaiaad2gacqGHsislcaaIXa GaaiykaiaadofadaqhaaWcbaGaamyBaaqaaiaaikdaaaGccaGGVaGa eq4Wdm3aa0baaSqaaiaad2gaaeaacaaIYaaaaOGaey4kaSIaaiikai aad6gacqGHsislcaaIXaGaaiykaiaadofadaqhaaWcbaGaamOBaaqa aiaaikdaaaGccaGGVaGaeq4Wdm3aa0baaSqaaiaad6gaaeaacaaIYa aaaaGcbaGaamyBaiabgUcaRiaad6gacqGHsislcaaIYaaaaaWcbeaa aOqaamaalaaabaGaaGymaaqaamaakaaabaGaeq4Wdm3aa0baaSqaai aad2gaaeaacaaIYaaaaOGaai4laiaad2gacqGHRaWkcqaH6oWAdaah aaWcbeqaaiaaikdaaaGccqaHdpWCdaqhaaWcbaGaamOBaaqaaiaaik daaaGccaGGVaGaamOBaaWcbeaaaaaaaaGccaGLBbGaayzxaaGaaiOl aaaa@9339@  (122)

The length of the statistical confidence interval for U ¯ m κ U ¯ n ( μ m κ μ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOUdSMabmyvayaaraWa aSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaaiikaiabeY7aTnaaBaaale aacaWGTbaabeaakiabgkHiTiabeQ7aRjabeY7aTnaaBaaaleaacaWG UbaabeaakiaacMcaaaa@474D@  is given by

L( t 1 , t 2 | (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 σ m 2 /m+ κ 2 σ n 2 /n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaabm aabaGaamiDamaaBaaaleaacaaIXaaabeaakiaacYcacaWG0bWaaSba aSqaaiaaikdaaeqaaOGaaiiFamaakaaabaWaaSaaaeaacaGGOaGaam yBaiabgkHiTiaaigdacaGGPaGaam4uamaaDaaaleaacaWGTbaabaGa aGOmaaaakiaac+cacqaHdpWCdaqhaaWcbaGaamyBaaqaaiaaikdaaa GccqGHRaWkcaGGOaGaamOBaiabgkHiTiaaigdacaGGPaGaam4uamaa DaaaleaacaWGUbaabaGaaGOmaaaakiaac+cacqaHdpWCdaqhaaWcba GaamOBaaqaaiaaikdaaaaakeaacaWGTbGaey4kaSIaamOBaiabgkHi TiaaikdaaaaaleqaaOWaaOaaaeaacqaHdpWCdaqhaaWcbaGaamyBaa qaaiaaikdaaaGccaGGVaGaamyBaiabgUcaRiabeQ7aRnaaCaaaleqa baGaaGOmaaaakiabeo8aZnaaDaaaleaacaWGUbaabaGaaGOmaaaaki aac+cacaWGUbaaleqaaaGccaGLOaGaayzkaaaaaa@67AE@ =( t 2 t 1 ) (m1) S m 2 / σ m 2 +(n1) S n 2 / σ n 2 m+n2 σ m 2 /m+ κ 2 σ n 2 /n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaae WaaeaacaWG0bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiDamaa BaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaamaakaaabaWaaSaaae aacaGGOaGaamyBaiabgkHiTiaaigdacaGGPaGaam4uamaaDaaaleaa caWGTbaabaGaaGOmaaaakiaac+cacqaHdpWCdaqhaaWcbaGaamyBaa qaaiaaikdaaaGccqGHRaWkcaGGOaGaamOBaiabgkHiTiaaigdacaGG PaGaam4uamaaDaaaleaacaWGUbaabaGaaGOmaaaakiaac+cacqaHdp WCdaqhaaWcbaGaamOBaaqaaiaaikdaaaaakeaacaWGTbGaey4kaSIa amOBaiabgkHiTiaaikdaaaaaleqaaOWaaOaaaeaacqaHdpWCdaqhaa WcbaGaamyBaaqaaiaaikdaaaGccaGGVaGaamyBaiabgUcaRiabeQ7a RnaaCaaaleqabaGaaGOmaaaakiabeo8aZnaaDaaaleaacaWGUbaaba GaaGOmaaaakiaac+cacaWGUbaaleqaaOGaaiOlaaaa@67D2@  (123)

In order to find the confidence interval of shortest-length for U ¯ m κ U ¯ n ( μ m κ μ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOUdSMabmyvayaaraWa aSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaaiikaiabeY7aTnaaBaaale aacaWGTbaabeaakiabgkHiTiabeQ7aRjabeY7aTnaaBaaaleaacaWG UbaabeaakiaacMcaaaa@474D@ , we should find a pair of decision variables t1 and t2 such that (123) is minimum. It follows from (121) and (123) that

t 1 t 2 f(t)dt = 0 t 2 f(t)dt 0 t 1 f(t)dt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca WGMbGaaiikaiaadshacaGGPaGaamizaiaadshaaSqaaiaadshadaWg aaadbaGaaGymaaqabaaaleaacaWG0bWaaSbaaWqaaiaaikdaaeqaaa qdcqGHRiI8aOGaeyypa0Zaa8qCaeaacaWGMbGaaiikaiaadshacaGG PaGaamizaiaadshaaSqaaiaaicdaaeaacaWG0bWaaSbaaWqaaiaaik daaeqaaaqdcqGHRiI8aOGaeyOeI0Yaa8qCaeaacaWGMbGaaiikaiaa dshacaGGPaGaamizaiaadshaaSqaaiaaicdaaeaacaWG0bWaaSbaaW qaaiaaigdaaeqaaaqdcqGHRiI8aaaa@578B@ =( 1α+p )p=1α, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaae WaaeaacaaIXaGaeyOeI0IaeqySdeMaey4kaSIaamiCaaGaayjkaiaa wMcaaiabgkHiTiaadchacqGH9aqpcaaIXaGaeyOeI0IaeqySdeMaai ilaaaa@4473@  (124)

where p (0pα) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaic dacqGHKjYOcaWGWbGaeyizImQaeqySdeMaaiykaaaa@3DE8@  is a decision variable,

0 t 2 f(t)dt =1α+p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca WGMbGaaiikaiaadshacaGGPaGaamizaiaadshaaSqaaiaaicdaaeaa caWG0bWaaSbaaWqaaiaaikdaaeqaaaqdcqGHRiI8aOGaeyypa0JaaG ymaiabgkHiTiabeg7aHjabgUcaRiaadchaaaa@4639@  (125)

and

0 t 1 f(t)dt =p. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeaaca WGMbGaaiikaiaadshacaGGPaGaamizaiaadshaaSqaaiaaicdaaeaa caWG0bWaaSbaaWqaaiaaigdaaeqaaaqdcqGHRiI8aOGaeyypa0Jaam iCaiaac6caaaa@42C1@  (126)

Then t2 represents the ( 1α+p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca aIXaGaeyOeI0IaeqySdeMaey4kaSIaamiCaaGaayjkaiaawMcaaaaa @3C7E@ - quantile, which is given by

t 2 = q 1α+p;(t(m+n2)) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIYaaabeaakiabg2da9iaadghadaWgaaWcbaGaaGymaiab gkHiTiabeg7aHjabgUcaRiaadchacaGG7aGaaiikaiaadshacaGGOa GaamyBaiabgUcaRiaad6gacqGHsislcaaIYaGaaiykaiaacMcaaeqa aOGaaiilaaaa@48AC@  (127)

t1 represents the p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaaaa@36CC@  - quantile, which is given by

t 1 = q p;(t(m+n2)) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiDamaaBa aaleaacaaIXaaabeaakiabg2da9iaadghadaWgaaWcbaGaamiCaiaa cUdacaGGOaGaamiDaiaacIcacaWGTbGaey4kaSIaamOBaiabgkHiTi aaikdacaGGPaGaaiykaaqabaGccaGGUaaaaa@4474@  (128)

The shortest length confidence interval for U ¯ m κ U ¯ n ( μ m κ μ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyOeI0IaeqOUdSMabmyvayaaraWa aSbaaSqaaiaad6gaaeqaaOGaeyOeI0IaaiikaiabeY7aTnaaBaaale aacaWGTbaabeaakiabgkHiTiabeQ7aRjabeY7aTnaaBaaaleaacaWG UbaabeaakiaacMcaaaa@474D@  can be found as follows:

Minimize

( t 2 t 1 ) 2 = ( q 1α+p;(t(m+n2)) q p;(t(m+n2)) ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG0bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiDamaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaki abg2da9maabmaabaGaamyCamaaBaaaleaacaaIXaGaeyOeI0IaeqyS deMaey4kaSIaamiCaiaacUdacaGGOaGaamiDaiaacIcacaWGTbGaey 4kaSIaamOBaiabgkHiTiaaikdacaGGPaGaaiykaaqabaGccqGHsisl caWGXbWaaSbaaSqaaiaadchacaGG7aGaaiikaiaadshacaGGOaGaam yBaiabgUcaRiaad6gacqGHsislcaaIYaGaaiykaiaacMcaaeqaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaaa@5BA9@   (129)

subject to

0pα, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiabgs MiJkaadchacqGHKjYOcqaHXoqycaGGSaaaaa@3D4F@  (130)

The optimal numerical solution minimizing ( t 2 t 1 ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG0bWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaamiDamaaBaaaleaa caaIXaaabeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaa a@3D0B@ can be obtained using the standard computer software "Solver" of Excel 2016. If σ m 2 = σ n 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaad2gaaeaacaaIYaaaaOGaeyypa0Jaeq4Wdm3aa0baaSqa aiaad6gaaeaacaaIYaaaaOGaaiilaaaa@3EDE@  it follows from (123) that

L( t 1 , t 2 | (m1) S m 2 +(n1) S n 2 m+n2 1 m + κ 2 n ) =( t 2 t 1 ) (m1) S m 2 +(n1) S n 2 m+n2 1 m + κ 2 n . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGmb WaaeWaaeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaadsha daWgaaWcbaGaaGOmaaqabaGccaGG8bWaaOaaaeaadaWcaaqaaiaacI cacaWGTbGaeyOeI0IaaGymaiaacMcacaWGtbWaa0baaSqaaiaad2ga aeaacaaIYaaaaOGaey4kaSIaaiikaiaad6gacqGHsislcaaIXaGaai ykaiaadofadaqhaaWcbaGaamOBaaqaaiaaikdaaaaakeaacaWGTbGa ey4kaSIaamOBaiabgkHiTiaaikdaaaaaleqaaOWaaOaaaeaadaWcaa qaaiaaigdaaeaacaWGTbaaaiabgUcaRmaalaaabaGaeqOUdS2aaWba aSqabeaacaaIYaaaaaGcbaGaamOBaaaaaSqabaaakiaawIcacaGLPa aaaeaacqGH9aqpdaqadaqaaiaadshadaWgaaWcbaGaaGOmaaqabaGc cqGHsislcaWG0bWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzkaa WaaOaaaeaadaWcaaqaaiaacIcacaWGTbGaeyOeI0IaaGymaiaacMca caWGtbWaa0baaSqaaiaad2gaaeaacaaIYaaaaOGaey4kaSIaaiikai aad6gacqGHsislcaaIXaGaaiykaiaadofadaqhaaWcbaGaamOBaaqa aiaaikdaaaaakeaacaWGTbGaey4kaSIaamOBaiabgkHiTiaaikdaaa aaleqaaOWaaOaaaeaadaWcaaqaaiaaigdaaeaacaWGTbaaaiabgUca RmaalaaabaGaeqOUdS2aaWbaaSqabeaacaaIYaaaaaGcbaGaamOBaa aaaSqabaGccaGGUaaaaaa@787A@  (131)

If, for example, m=6, n=4, a = 0.05, U ¯ m =117.5,    U ¯ n =126.8,    S m 2 = (9.7) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaara WaaSbaaSqaaiaad2gaaeqaaOGaeyypa0JaaGymaiaaigdacaaI3aGa aiOlaiaaiwdacaGGSaGaaeiiaiaabccacaqGGaGabmyvayaaraWaaS baaSqaaiaad6gaaeqaaOGaeyypa0JaaGymaiaaikdacaaI2aGaaiOl aiaaiIdacaGGSaGaaeiiaiaabccacaqGGaGaam4uamaaDaaaleaaca WGTbaabaGaaGOmaaaakiabg2da9iaacIcacaaI5aGaaiOlaiaaiEda caGGPaWaaWbaaSqabeaacaaIYaaaaOGaaiilaaaa@5192@ S n 2 = (12) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaDa aaleaacaWGUbaabaGaaGOmaaaakiabg2da9iaacIcacaaIXaGaaGOm aiaacMcadaahaaWcbeqaaiaaikdaaaGccaGGSaaaaa@3E0E@ then the optimal numerical solution of (129) is given by

p=0.025,    t 1 = q p;(t(m+n2)) =2.306,    t 2 = q 1α+p;(t(m+n2)) =2.306 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaiabg2 da9abaaaaaaaaapeGaaGimaiaac6cacaaIWaGaaGOmaiaaiwdapaGa aiilaiaabccacaqGGaGaaeiiaiaadshadaWgaaWcbaGaaGymaaqaba GccqGH9aqpcaWGXbWaaSbaaSqaaiaadchacaGG7aGaaiikaiaadsha caGGOaGaamyBaiabgUcaRiaad6gacqGHsislcaaIYaGaaiykaiaacM caaeqaaOGaeyypa0JaeyOeI0IaaGOmaiaac6cacaaIZaGaaGimaiaa iAdapeGaaiilaiaabccacaqGGaGaaeiia8aacaWG0bWaaSbaaSqaai aaikdaaeqaaOGaeyypa0JaamyCamaaBaaaleaacaaIXaGaeyOeI0Ia eqySdeMaey4kaSIaamiCaiaacUdacaGGOaGaamiDaiaacIcacaWGTb Gaey4kaSIaamOBaiabgkHiTiaaikdacaGGPaGaaiykaaqabaGccqGH 9aqpcaaIYaGaaiOlaiaaiodacaaIWaGaaGOnaaaa@6B46@  (132)

and it follows from (121) and (131) that the 100(1-a)% confidence interval of shortest-length (or equal tails) for μ 1 κ μ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaeqOUdSMaeqiVd02aaSbaaSqa aiaaikdaaeqaaaaa@3DBB@  is given by

( U ¯ m κ U ¯ n ( μ m κ μ n ) t 1 (m1) S m 2 +(n1) S n 2 m+n2 1 m + κ 2 n , U ¯ m κ U ¯ n ( μ m κ μ n ) t 2 (m1) S m 2 +(n1) S n 2 m+n2 1 m + κ 2 n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaqaabe qaaiqadwfagaqeamaaBaaaleaacaWGTbaabeaakiabgkHiTiabeQ7a RjqadwfagaqeamaaBaaaleaacaWGUbaabeaakiabgkHiTiaacIcacq aH8oqBdaWgaaWcbaGaamyBaaqabaGccqGHsislcqaH6oWAcqaH8oqB daWgaaWcbaGaamOBaaqabaGccaGGPaGaeyyzImRaamiDamaaBaaale aacaaIXaaabeaakmaakaaabaWaaSaaaeaacaGGOaGaamyBaiabgkHi TiaaigdacaGGPaGaam4uamaaDaaaleaacaWGTbaabaGaaGOmaaaaki abgUcaRiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcacaWGtbWaa0ba aSqaaiaad6gaaeaacaaIYaaaaaGcbaGaamyBaiabgUcaRiaad6gacq GHsislcaaIYaaaaaWcbeaakmaakaaabaWaaSaaaeaacaaIXaaabaGa amyBaaaacqGHRaWkdaWcaaqaaiabeQ7aRnaaCaaaleqabaGaaGOmaa aaaOqaaiaad6gaaaaaleqaaOGaaiilaaqaaiqadwfagaqeamaaBaaa leaacaWGTbaabeaakiabgkHiTiabeQ7aRjqadwfagaqeamaaBaaale aacaWGUbaabeaakiabgkHiTiaacIcacqaH8oqBdaWgaaWcbaGaamyB aaqabaGccqGHsislcqaH6oWAcqaH8oqBdaWgaaWcbaGaamOBaaqaba GccaGGPaGaeyizImQaamiDamaaBaaaleaacaaIYaaabeaakmaakaaa baWaaSaaaeaacaGGOaGaamyBaiabgkHiTiaaigdacaGGPaGaam4uam aaDaaaleaacaWGTbaabaGaaGOmaaaakiabgUcaRiaacIcacaWGUbGa eyOeI0IaaGymaiaacMcacaWGtbWaa0baaSqaaiaad6gaaeaacaaIYa aaaaGcbaGaamyBaiabgUcaRiaad6gacqGHsislcaaIYaaaaaWcbeaa kmaakaaabaWaaSaaaeaacaaIXaaabaGaamyBaaaacqGHRaWkdaWcaa qaaiabeQ7aRnaaCaaaleqabaGaaGOmaaaaaOqaaiaad6gaaaaaleqa aaaakiaawIcacaGLPaaaaaa@950D@  (133)

If  it follows from (133) that

( μ m μ n )( ( U ¯ m U ¯ n ) t 2 (m1) S m 2 +(n1) S n 2 m+n2 1 m + 1 n , ( U ¯ m U ¯ n ) t 1 (m1) S m 2 +(n1) S n 2 m+n2 1 m + 1 n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aH8oqBdaWgaaWcbaGaamyBaaqabaGccqGHsislcqaH8oqBdaWgaaWc baGaamOBaaqabaaakiaawIcacaGLPaaacqGHiiIZdaqadaabaeqaba WaaeWaaeaaceWGvbGbaebadaWgaaWcbaGaamyBaaqabaGccqGHsisl ceWGvbGbaebadaWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacq GHsislcaWG0bWaaSbaaSqaaiaaikdaaeqaaOWaaOaaaeaadaWcaaqa aiaacIcacaWGTbGaeyOeI0IaaGymaiaacMcacaWGtbWaa0baaSqaai aad2gaaeaacaaIYaaaaOGaey4kaSIaaiikaiaad6gacqGHsislcaaI XaGaaiykaiaadofadaqhaaWcbaGaamOBaaqaaiaaikdaaaaakeaaca WGTbGaey4kaSIaamOBaiabgkHiTiaaikdaaaaaleqaaOWaaOaaaeaa daWcaaqaaiaaigdaaeaacaWGTbaaaiabgUcaRmaalaaabaGaaGymaa qaaiaad6gaaaaaleqaaOGaaiilaaqaamaabmaabaGabmyvayaaraWa aSbaaSqaaiaad2gaaeqaaOGaeyOeI0IabmyvayaaraWaaSbaaSqaai aad6gaaeqaaaGccaGLOaGaayzkaaGaeyOeI0IaamiDamaaBaaaleaa caaIXaaabeaakmaakaaabaWaaSaaaeaacaGGOaGaamyBaiabgkHiTi aaigdacaGGPaGaam4uamaaDaaaleaacaWGTbaabaGaaGOmaaaakiab gUcaRiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcacaWGtbWaa0baaS qaaiaad6gaaeaacaaIYaaaaaGcbaGaamyBaiabgUcaRiaad6gacqGH sislcaaIYaaaaaWcbeaakmaakaaabaWaaSaaaeaacaaIXaaabaGaam yBaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGUbaaaaWcbeaaaaGc caGLOaGaayzkaaaaaa@83B9@
=( ( 117.5126.8 )2.306×10.6 1 6 + 1 4 , ( 117.5126.8 )+2.306×10.6 1 6 + 1 4 )=( 25.07, 6.47 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaae WaaqaabeqaamaabmaabaGaaGymaiaaigdacaaI3aGaaiOlaiaaiwda cqGHsislcaaIXaGaaGOmaiaaiAdacaGGUaGaaGioaaGaayjkaiaawM caaiabgkHiTiaaikdacaGGUaGaaG4maiaaicdacaaI2aGaey41aqRa aGymaiaaicdacaGGUaGaaGOnamaakaaabaWaaSaaaeaacaaIXaaaba GaaGOnaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI0aaaaaWcbeaa kiaacYcaaeaadaqadaqaaiaaigdacaaIXaGaaG4naiaac6cacaaI1a GaeyOeI0IaaGymaiaaikdacaaI2aGaaiOlaiaaiIdaaiaawIcacaGL PaaacqGHRaWkcaaIYaGaaiOlaiaaiodacaaIWaGaaGOnaiabgEna0k aaigdacaaIWaGaaiOlaiaaiAdadaGcaaqaamaalaaabaGaaGymaaqa aiaaiAdaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGinaaaaaSqaba aaaOGaayjkaiaawMcaaiabg2da9maabmaabaGaeyOeI0IaaGOmaiaa iwdacaGGUaGaaGimaiaaiEdacaGGSaGaaeiiaiaabAdacaqGUaGaae inaiaabEdaaiaawIcacaGLPaaaaaa@735C@  (134)

or

25.07 < μ m μ n <6.47. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG OmaiaaiwdacaGGUaGaaGimaiaaiEdacaqGGaGaaeipaiaabccacqaH 8oqBdaWgbaWcbaGaamyBaaqabaGccqGHsislcqaH8oqBdaWgaaWcba GaamOBaaqabaGccqGH8aapcaaI2aGaaiOlaiaaisdacaaI3aGaaiOl aaaa@47D3@  (135)

An analytical expression for determining the optimal value of κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdSgaaa@3789@  (the ratio in means of two different normal populations) can be obtained from (121), where it is assumed that σ m 2 = σ n 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaad2gaaeaacaaIYaaaaOGaeyypa0Jaeq4Wdm3aa0baaSqa aiaad6gaaeaacaaIYaaaaaaa@3E24@  and ( μ m κ μ n )=0: MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq aH8oqBdaWgaaWcbaGaamyBaaqabaGccqGHsislcqaH6oWAcqaH8oqB daWgaaWcbaGaamOBaaqabaaakiaawIcacaGLPaaacqGH9aqpcaaIWa GaaiOoaaaa@423A@  

( t 1 (m1) S m 2 +(n1) S n 2 m+n2 1/m+ κ 2 /n U ¯ m κ U ¯ n t 2 (m1) S m 2 +(n1) S n 2 m+n2 1/m+ κ 2 /n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaqaabe qaaiaadshadaWgaaWcbaGaaGymaaqabaGcdaGcaaqaamaalaaabaGa aiikaiaad2gacqGHsislcaaIXaGaaiykaiaadofadaqhaaWcbaGaam yBaaqaaiaaikdaaaGccqGHRaWkcaGGOaGaamOBaiabgkHiTiaaigda caGGPaGaam4uamaaDaaaleaacaWGUbaabaGaaGOmaaaaaOqaaiaad2 gacqGHRaWkcaWGUbGaeyOeI0IaaGOmaaaaaSqabaGcdaGcaaqaaiaa igdacaGGVaGaamyBaiabgUcaRiabeQ7aRnaaCaaaleqabaGaaGOmaa aakiaac+cacaWGUbaaleqaaaGcbaGaeyizImQabmyvayaaraWaaSba aSqaaiaad2gaaeqaaOGaeyOeI0IaeqOUdSMabmyvayaaraWaaSbaaS qaaiaad6gaaeqaaaGcbaGaeyizImQaamiDamaaBaaaleaacaaIYaaa beaakmaakaaabaWaaSaaaeaacaGGOaGaamyBaiabgkHiTiaaigdaca GGPaGaam4uamaaDaaaleaacaWGTbaabaGaaGOmaaaakiabgUcaRiaa cIcacaWGUbGaeyOeI0IaaGymaiaacMcacaWGtbWaa0baaSqaaiaad6 gaaeaacaaIYaaaaaGcbaGaamyBaiabgUcaRiaad6gacqGHsislcaaI YaaaaaWcbeaakmaakaaabaGaaGymaiaac+cacaWGTbGaey4kaSIaeq OUdS2aaWbaaSqabeaacaaIYaaaaOGaai4laiaad6gaaSqabaaaaOGa ayjkaiaawMcaaaaa@7AC1@
=( κ U ¯ n + t 1 (m1) S m 2 +(n1) S n 2 m+n2 1/m+ κ 2 /n U ¯ m , U ¯ m κ U ¯ n + t 2 (m1) S m 2 +(n1) S n 2 m+n2 1/m+ κ 2 /n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaae WaaqaabeqaaiabeQ7aRjqadwfagaqeamaaBaaaleaacaWGUbaabeaa kiabgUcaRiaadshadaWgaaWcbaGaaGymaaqabaGcdaGcaaqaamaala aabaGaaiikaiaad2gacqGHsislcaaIXaGaaiykaiaadofadaqhaaWc baGaamyBaaqaaiaaikdaaaGccqGHRaWkcaGGOaGaamOBaiabgkHiTi aaigdacaGGPaGaam4uamaaDaaaleaacaWGUbaabaGaaGOmaaaaaOqa aiaad2gacqGHRaWkcaWGUbGaeyOeI0IaaGOmaaaaaSqabaGcdaGcaa qaaiaaigdacaGGVaGaamyBaiabgUcaRiabeQ7aRnaaCaaaleqabaGa aGOmaaaakiaac+cacaWGUbaaleqaaOGaeyizImQabmyvayaaraWaaS baaSqaaiaad2gaaeqaaOGaaiilaaqaaiqadwfagaqeamaaBaaaleaa caWGTbaabeaakiabgsMiJkabeQ7aRjqadwfagaqeamaaBaaaleaaca WGUbaabeaakiabgUcaRiaadshadaWgaaWcbaGaaGOmaaqabaGcdaGc aaqaamaalaaabaGaaiikaiaad2gacqGHsislcaaIXaGaaiykaiaado fadaqhaaWcbaGaamyBaaqaaiaaikdaaaGccqGHRaWkcaGGOaGaamOB aiabgkHiTiaaigdacaGGPaGaam4uamaaDaaaleaacaWGUbaabaGaaG OmaaaaaOqaaiaad2gacqGHRaWkcaWGUbGaeyOeI0IaaGOmaaaaaSqa baGcdaGcaaqaaiaaigdacaGGVaGaamyBaiabgUcaRiabeQ7aRnaaCa aaleqabaGaaGOmaaaakiaac+cacaWGUbaaleqaaaaakiaawIcacaGL Paaaaaa@8334@
=( κ+ t 1 (m1) S m 2 +(n1) S n 2 m+n2 U ¯ n 1/m+ κ 2 /n U ¯ m U ¯ n , U ¯ m U ¯ n κ+ t 2 (m1) S m 2 +(n1) S n 2 m+n2 1/m+ κ 2 /n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaae WaaqaabeqaaiabeQ7aRjabgUcaRiaadshadaWgaaWcbaGaaGymaaqa baGcdaWcaaqaamaakaaabaWaaSaaaeaacaGGOaGaamyBaiabgkHiTi aaigdacaGGPaGaam4uamaaDaaaleaacaWGTbaabaGaaGOmaaaakiab gUcaRiaacIcacaWGUbGaeyOeI0IaaGymaiaacMcacaWGtbWaa0baaS qaaiaad6gaaeaacaaIYaaaaaGcbaGaamyBaiabgUcaRiaad6gacqGH sislcaaIYaaaaaWcbeaaaOqaaiqadwfagaqeamaaBaaaleaacaWGUb aabeaaaaGcdaGcaaqaaiaaigdacaGGVaGaamyBaiabgUcaRiabeQ7a RnaaCaaaleqabaGaaGOmaaaakiaac+cacaWGUbaaleqaaOGaeyizIm 6aaSaaaeaaceWGvbGbaebadaWgaaWcbaGaamyBaaqabaaakeaaceWG vbGbaebadaWgaaWcbaGaamOBaaqabaaaaOGaaiilaaqaamaalaaaba GabmyvayaaraWaaSbaaSqaaiaad2gaaeqaaaGcbaGabmyvayaaraWa aSbaaSqaaiaad6gaaeqaaaaakiabgsMiJkabeQ7aRjabgUcaRiaads hadaWgaaWcbaGaaGOmaaqabaGcdaGcaaqaamaalaaabaGaaiikaiaa d2gacqGHsislcaaIXaGaaiykaiaadofadaqhaaWcbaGaamyBaaqaai aaikdaaaGccqGHRaWkcaGGOaGaamOBaiabgkHiTiaaigdacaGGPaGa am4uamaaDaaaleaacaWGUbaabaGaaGOmaaaaaOqaaiaad2gacqGHRa WkcaWGUbGaeyOeI0IaaGOmaaaaaSqabaGcdaGcaaqaaiaaigdacaGG VaGaamyBaiabgUcaRiabeQ7aRnaaCaaaleqabaGaaGOmaaaakiaac+ cacaWGUbaaleqaaaaakiaawIcacaGLPaaaaaa@857F@
=( κ U ¯ m U ¯ n t 1 (m1) S m 2 +(n1) S n 2 m+n2 U ¯ n 1/m+ κ 2 /n , κ U ¯ m U ¯ n t 2 (m1) S m 2 +(n1) S n 2 m+n2 U ¯ n 1/m+ κ 2 /n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaae WaaqaabeqaaiabeQ7aRjabgsMiJoaalaaabaGabmyvayaaraWaaSba aSqaaiaad2gaaeqaaaGcbaGabmyvayaaraWaaSbaaSqaaiaad6gaae qaaaaakiabgkHiTiaadshadaWgaaWcbaGaaGymaaqabaGcdaWcaaqa amaakaaabaWaaSaaaeaacaGGOaGaamyBaiabgkHiTiaaigdacaGGPa Gaam4uamaaDaaaleaacaWGTbaabaGaaGOmaaaakiabgUcaRiaacIca caWGUbGaeyOeI0IaaGymaiaacMcacaWGtbWaa0baaSqaaiaad6gaae aacaaIYaaaaaGcbaGaamyBaiabgUcaRiaad6gacqGHsislcaaIYaaa aaWcbeaaaOqaaiqadwfagaqeamaaBaaaleaacaWGUbaabeaaaaGcda GcaaqaaiaaigdacaGGVaGaamyBaiabgUcaRiabeQ7aRnaaCaaaleqa baGaaGOmaaaakiaac+cacaWGUbaaleqaaOGaaiilaaqaaiabeQ7aRj abgwMiZoaalaaabaGabmyvayaaraWaaSbaaSqaaiaad2gaaeqaaaGc baGabmyvayaaraWaaSbaaSqaaiaad6gaaeqaaaaakiabgkHiTiaads hadaWgaaWcbaGaaGOmaaqabaGcdaWcaaqaamaakaaabaWaaSaaaeaa caGGOaGaamyBaiabgkHiTiaaigdacaGGPaGaam4uamaaDaaaleaaca WGTbaabaGaaGOmaaaakiabgUcaRiaacIcacaWGUbGaeyOeI0IaaGym aiaacMcacaWGtbWaa0baaSqaaiaad6gaaeaacaaIYaaaaaGcbaGaam yBaiabgUcaRiaad6gacqGHsislcaaIYaaaaaWcbeaaaOqaaiqadwfa gaqeamaaBaaaleaacaWGUbaabeaaaaGcdaGcaaqaaiaaigdacaGGVa GaamyBaiabgUcaRiabeQ7aRnaaCaaaleqabaGaaGOmaaaakiaac+ca caWGUbaaleqaaaaakiaawIcacaGLPaaaaaa@87D1@
=( κ0.926656+2.306 10.6 126.8 1/6+ κ 2 /4 , κ0.9266562.306 10.6 126.8 1/6+ κ 2 /4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaae WaaqaabeqaaiabeQ7aRjabgsMiJcbaaaaaaaaapeGaaGimaiaac6ca caaI5aGaaGOmaiaaiAdacaaI2aGaaGynaiaaiAdacqGHRaWkpaGaaG Omaiaac6cacaaIZaGaaGimaiaaiAdadaWcaaqaaiaaigdacaaIWaGa aiOlaiaaiAdaaeaacaaIXaGaaGOmaiaaiAdacaGGUaGaaGioaaaada GcaaqaaiaaigdacaGGVaGaaGOnaiabgUcaRiabeQ7aRnaaCaaaleqa baGaaGOmaaaakiaac+cacaaI0aaaleqaaOGaaiilaaqaaiabeQ7aRj abgwMiZ+qacaaIWaGaaiOlaiaaiMdacaaIYaGaaGOnaiaaiAdacaaI 1aGaaGOna8aacqGHsislcaaIYaGaaiOlaiaaiodacaaIWaGaaGOnam aalaaabaGaaGymaiaaicdacaGGUaGaaGOnaaqaaiaaigdacaaIYaGa aGOnaiaac6cacaaI4aaaamaakaaabaGaaGymaiaac+cacaaI2aGaey 4kaSIaeqOUdS2aaWbaaSqabeaacaaIYaaaaOGaai4laiaaisdaaSqa baaaaOGaayjkaiaawMcaaaaa@7121@
=( κ0.926656+0.192773 0.166667+0.25 κ 2 , κ0.9266560.192773 0.166667+0.25 κ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaae WaaqaabeqaaiabeQ7aRjabgsMiJcbaaaaaaaaapeGaaGimaiaac6ca caaI5aGaaGOmaiaaiAdacaaI2aGaaGynaiaaiAdacqGHRaWkcaaIWa GaaiOlaiaaigdacaaI5aGaaGOmaiaaiEdacaaI3aGaaG4ma8aadaGc aaqaa8qacaaIWaGaaiOlaiaaigdacaaI2aGaaGOnaiaaiAdacaaI2a GaaG4na8aacqGHRaWkpeGaaGimaiaac6cacaaIYaGaaGyna8aacqaH 6oWAdaahaaWcbeqaaiaaikdaaaaabeaakiaacYcaaeaacqaH6oWAcq GHLjYSpeGaaGimaiaac6cacaaI5aGaaGOmaiaaiAdacaaI2aGaaGyn aiaaiAdapaGaeyOeI0YdbiaaicdacaGGUaGaaGymaiaaiMdacaaIYa GaaG4naiaaiEdacaaIZaWdamaakaaabaWdbiaaicdacaGGUaGaaGym aiaaiAdacaaI2aGaaGOnaiaaiAdacaaI3aWdaiabgUcaR8qacaaIWa GaaiOlaiaaikdacaaI1aWdaiabeQ7aRnaaCaaaleqabaGaaGOmaaaa aeqaaaaakiaawIcacaGLPaaaaaa@732E@
(                                 minimize: ( κ0.9266560.192773 0.166667+0.25 κ 2 ) 2 , ( κ0.926656+0.192773 0.166667+0.25 κ 2 ) 2 ,                            subject to: κ0. )=( κ1.05526, κ0.815431 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H49aae WaaqaabeqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae iiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG GaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabc cacaqGGaGaaeyBaiaabMgacaqGUbGaaeyAaiaab2gacaqGPbGaaeOE aiaabwgacaqG6aaabaWaaeWaaeaacqaH6oWAcqGHsislqaaaaaaaaa WdbiaaicdacaGGUaGaaGyoaiaaikdacaaI2aGaaGOnaiaaiwdacaaI 2aGaeyOeI0IaaGimaiaac6cacaaIXaGaaGyoaiaaikdacaaI3aGaaG 4naiaaiodapaWaaOaaaeaapeGaaGimaiaac6cacaaIXaGaaGOnaiaa iAdacaaI2aGaaGOnaiaaiEdapaGaey4kaSYdbiaaicdacaGGUaGaaG OmaiaaiwdapaGaeqOUdS2aaWbaaSqabeaacaaIYaaaaaqabaaakiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaGccaGGSaaabaWdbmaabm aabaWdaiabeQ7aRjabgkHiT8qacaaIWaGaaiOlaiaaiMdacaaIYaGa aGOnaiaaiAdacaaI1aGaaGOnaiabgUcaRiaaicdacaGGUaGaaGymai aaiMdacaaIYaGaaG4naiaaiEdacaaIZaWdamaakaaabaWdbiaaicda caGGUaGaaGymaiaaiAdacaaI2aGaaGOnaiaaiAdacaaI3aWdaiabgU caR8qacaaIWaGaaiOlaiaaikdacaaI1aWdaiabeQ7aRnaaCaaaleqa baGaaGOmaaaaaeqaaaGcpeGaayjkaiaawMcaamaaCaaaleqabaGaaG OmaaaakiaacYcaaeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaa bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae iiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG GaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGZbGaaeyDaiaabk gacaqGQbGaaeyzaiaabogacaqG0bGaaeiiaiaabshacaqGVbGaaeOo aiaabccacqaH6oWAcqGHLjYScaaIWaGaaiOlaaaapaGaayjkaiaawM caaiabg2da9maabmaaeaqabeaacqaH6oWAcqGHKjYOpeGaaGymaiaa c6cacaaIWaGaaGynaiaaiwdacaaIYaGaaGOna8aacaGGSaaabaGaeq OUdSMaeyyzImRaaGimaiaac6cacaaI4aGaaGymaiaaiwdacaaI0aGa aG4maiaaigdaaaGaayjkaiaawMcaaiaac6caaaa@CBBF@  (136)

Thus, it follows from (136) that

κ( 0.815431, 1.05526 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOUdSMaey icI48aaeWaaeaacaaIWaGaaiOlaiaaiIdacaaIXaGaaGynaiaaisda caaIZaGaaGymaiaacYcacaqGGaGaaGymaiaac6cacaaIWaGaaGynai aaiwdacaaIYaGaaGOnaaGaayjkaiaawMcaaiaac6caaaa@47AA@  (137)

Conclusion

The new intelligent computational models proposed in this paper are conceptually simple, efficient, and useful for constructing accurate statistical tolerance or prediction limits and shortest-length or equal-tailed confidence intervals under the parametric uncertainty of applied stochastic models. The methods listed above are based on adequate computational models of the cumulative distribution function of order statistics and constructive use of the invariance principle in mathematical statistics. These methods can be used to solve real-life problems in all areas including engineering, science, industry, automation & robotics, machine learning, business & finance, medicine and biomedicine, optimization, planning and scheduling.

Acknowledgments

None.

Conflicts of interest

The authors declare that there is no conflict of interest.

References

  1. Nechval NA, Vasermanis EK. Improved decisions in statistics. Riga: Izglitibas soli; 2004.
  2. Nechval NA, Berzins G, Purgailis M, et al. Improved estimation of state of stochastic systems via invariant embedding technique. WSEAS Transactions on Mathematics. 2008;7:141–159.
  3. Nechval NA, Nechval KN, Danovich V, et al. Optimization of new-sample and within-sample prediction intervals for order statistics. Proceedings of the 2011 World Congress in Computer Science, Computer Engineering, and Applied Computing, WORLDCOMP'11; 2011 July 18-21; Las Vegas Nevada, USA: CSREA Press; 2011. p. 91–97.
  4. Nechval NA, Nechval KN, Berzins G. A new technique for intelligent constructing exact g-content tolerance limits with expected (1 − a)-confidence on future outcomes in the Weibull case using complete or Type II censored data. AC&CS. 2018;52:476–488.
  5. Nechval NA, Berzins G, Nechval KN. Intelligent technique of constructing exact statistical tolerance limits to predict future outcomes under parametric uncertainty for prognostics and health management of complex systems. IJCSIA. 2019;9:30–47.
  6. Nechval NA, Berzins G, Nechval KN, et al. A new technique of intelligent constructing unbiased prediction limits on future order statistics coming from an inverse Gaussian distribution under parametric uncertainty. AC&CS. 2019;53:223–235.
  7. Nechval NA, Berzins G, Nechval KN. A novel intelligent technique for product acceptance process optimization on the basis of misclassification probability in the case of log-location-scale distributions. In: Wotawa F, editors. Advances and Trends in Artificial Intelligence From Theory to Practice IEA/AIE 2019: Lecture Notes in Computer Science; Switzerland: Springer Nature; 2019;11606:801–818.
  8. Nechval NA, Berzins G, Nechval KN. A novel intelligent technique of invariant statistical embedding and averaging via pivotal quantities for optimization or improvement of statistical decision rules under parametric uncertainty. WSEAS Transactions on Mathematics. 2020;19:17–38.
  9. Nechval NA, Berzins G, Nechval KN, et al. A novel technique for optimization of statistical decisions under parametric uncertainty through invariant statistical embedding and averaging in terms of pivotal quantities. Journal of Physics: Conference Series. 2020;1603:012022.
  10. Nechval NA, Berzins G, Nechval KN, et al. Intelligent constructing optimal airline seat protection levels for multiple nested fare classes of single-leg flights. Journal of Physics: Conference Series. 2020;1603:012023.
  11. Nechval NA, Berzins G, Nechval KN. A new technique of invariant statistical embedding and averaging via pivotal quantities for intelligent constructing efficient statistical decisions under parametric uncertainty. AC&CS. 2020:54:191–206.
  12. Nechval NA, Berzins G, Nechval KN, et al. A new unified computational approach to intelligent constructing shortest-length or equal tails confidence intervals under parametric uncertainty. Journal of Applied Mathematics and Computation. 2020:206–223.
  13. Nechval NA, Berzins G, Nechval KN. Cost-effective planning reliability-based inspections of fatigued structures in the case of log-location-scale distributions of lifetime under parametric uncertainty. In: Piero Baraldi, Francesco Di Maio, Enrico Zio, editors. ESREL2020-PSAM15: Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference; 2020 November 1-6; Venice, Italy: 2020. p. 455–462.
  14. Nechval NA. Intelligent constructing exact tolerance limits for prediction of future outcomes under parametric uncertainty. In: Encyclopedia of Information Science and Technology. 5th ed. USA: IGI Global; 2020;701–729.
  15. Nechval NA, Berzins G, Nechval KN, et al. A novel unified computational approach to constructing shortest-length or equal tails confidence intervals in terms of pivotal quantities and quantile functions. AC&CS. 2021;55:66–84.
  16. Nechval NA, Berzins G, Nechval KN. A new technique of invariant statistical embedding and averaging in terms of pivots for improvement of statistical decisions under parametric uncertainty. In: Arabnia HR, editor. Advances in Parallel & Distributed Processing, and Applications, Transactions on Computational Science and Computational Intelligence; CSCE'20-The 2020 World Congress in Computer Science, Computer Engineering, & Applied Computing; 2020 July 27-30; Las Vegas, USA, Switzerland AG: Springer Nature; 2021. p. 257–274.
  17. Nechval NA, Berzins G, Nechval KN. A new pivot-based approach to constructing prediction limits and shortest-length or equal tails confidence intervals for future outcomes under parametric uncertainty. In: Bruno Castanier, Marko Cepin, David Bigaud, editors. Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021); 2021 September 19-23; Angers, France: Research Publishing; 2021. p. 2886–2893.
  18. Nechval NA, Berzins G, Nechval KN, et al. Intelligent constructing efficient statistical decisions via pivot-based elimination of unknown (nuisance) parameters from underlying models. AC&CS. 2021;55:469–489.
  19. Nechval NA, Berzins G, Nechval KN, et al. Innovative technique for computing shortest length and/or equal tails confidence intervals in reliability and safety under parametric uncertainty. Pattern Recognition and Information Processing (PRIP'2021): Proceedings of the 15th International Conference; 2021 Sept 21–24; Minsk, Belarus: 2021. p. 206–210.
  20. Nechval NA, Nechval KN, Berzins G. A new unified computational method for finding confidence intervals of shortest length and/or equal tails under parametric uncertainty. Proceedings of the 2021 International Conference on Computational Science and Computational Intelligence (CSCI); 2021 December 15-17; Las Vegas, NV, USA: IEEE; 2021.p. 533 – 539.
  21. Nechval NA, Berzins G, Nechval KN. A new simple computational method of simultaneous constructing and comparing confidence intervals of shortest length and equal tails for making efficient decisions under parametric uncertainty. In: Yang XS, Sherratt S, Dey N, editors. Lecture Notes in Network and Systems (LNNS): Proceedings of Sixth International Congress on Information and Communication Technology–ICICT 2021; 2021 February 25-26; London, United Kingdom: Springer Nature; 2022. p. 473–482.
  22. Nechval NA, Berzins G, Nechval KN, et al. A new intelligent method for eliminating unknown (nuisance) parameters from underlying models as an alternative to the Bayesian approach. Journal of Applied Mathematics and Computation. 2022;1:53–65.
  23. Nechval NA, Berzins G, Nechval KN. Intelligent computational approach to constructing adequate statistical decisions under parametric uncertainty of applied stochastic models. Proceedings of the 2022 International Conference on Computational Science and Computational Intelligence; 2022 December 14-16; Las Vegas, United States: IEEE; 2023. p. 522–529.
  24. Nechval NA, Berzins G, Nechval KN. Adequate mathematical models of the cumulative distribution function of order statistics to construct accurate tolerance limits and confidence intervals of the shortest length or equal tails. WSEAS Transactions on Mathematics. 2023;20:154–166.
  25. Nechval NA, Berzins G, Nechval KN. Optimal statistical estimation and dynamic adaptive control of airline seat protection levels for several nested fare classes under parametric uncertainty of customer demand models. WSEAS Transactions on Mathematics. 2023;22:395–408.
  26. Nechval NA, Berzins G, Nechval KN. A unified technique for prediction and optimization of future outcomes under parametric uncertainty via pivotal quantities and ancillary statistics. AC&CS. 2023:57(3):234–257.
  27. Nechval NA, Berzins G, Nechval KN. A novel computational intelligence approach to making efficient decisions under parametric uncertainty of practical models and its applications to industry 4.0. In: Advanced Signal Processing for Industry 4.0. IOP Publishing Ltd; 2023;1(7):1–40.
  28. Nechval NA, Berzins G, Nechval KN. New applications of computational intelligence for constructing predictive or optimal statistical decisions under parametric uncertainty. AC&CS. 2023;57(5):473–489.
  29. Nechval NA, Berzins G, Nechval KN, et al. Adequate intelligent constructing predictive or optimal statistical decisions under parametric uncertainty of applied stochastic models. International Journal of Applied Mathematics and Machine Learning. 2023:17(1):43–81.
Creative Commons Attribution License

©2024 Nechval, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.