Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Forum Article Volume 5 Issue 1

Rotational velocity of a relativistic heat conducting fluid configuration in non-circular axisymmetric stationary spacetime

Gunraj Prasad

Department of Mathematics, Kamla Nehru Institute of Physical and Social Sciences, India

Correspondence: Gunraj Prasad, Department of Mathematics, Kamla Nehru Institute of Physical and Social Sciences, India, Tel 9452328706

Received: April 23, 2021 | Published: May 19, 2021

Citation: Prasad G. Rotational velocity of a relativistic heat conducting fluid configuration in non-circular axisymmetric stationary spacetime. Phys Astron Int J. 2021;5(1):11-23. DOI: 10.15406/paij.2021.05.00229

Download PDF

Abstract

The present work is focused to study the rotational velocity of a heat conducting fluid configuration based on Carter’s model and related consequences under the assumption that the background space time is non-circular stationary and axi symmetric. The level surfaces of constant angular velocity about rotation axis do not coincide with level surfaces of constant effective angular momentum per baryon corresponding to the matter part of fluid because of the variation of Killing twist scalars coupled with thermodynamic quantities in meridional planes. The rotation of matter part of fluid bears an intrinsic relationship with heat flow, injection energy per baryon, chemical potential of matter part of fluid, and rotational potential created by dynamic space time as an outcome of interaction between the motion of the entropy fluid and of the matter part of fluid. The meridional circulation velocity plays a key role in the creation of the entropy production besides the contributions made by other thermodynamic quantities. The entropy fluid is not co rotating with the matter part of fluid in the presence of dissipation caused by the heat flow. It is found that a linear combination of the injection energy gradient and the gradient of rotational velocity about rotation axis is constant along the matter part of fluid flow lines.

Keywords: rotational velocity, Carter’s model, constant angular velocity, heat flow, injection energy per baryon, injection energy gradient, gradient of rotational velocity

Introduction

Relativistic dissipative fluid dynamics is important to understand the irreversible thermodynamic processes of hot dense nuclear matter that is created in supernovae explosions1-3 leading to the formation of stellar compact objects like neutron stars4 as well as needed to explain physical phenomenon found in laboratory experiments involving relativistic heavy-ion collision.5 A relativistic theory of dissipative fluid based on irreversible thermodynamic processes has first been formulated by Eckart.6 But this theory encountered a difficulty in the sense that the occurrence of causality violation and instability7,8 is inevitable due to the absence of relaxation timescales corresponding to dissipative quantities such as bulk viscous pressure, shear stress tensor, and heat flow within the theory. In order to circumvent the problems of a causality and instability in a relativistic framework Israel and Stewart (IS)9 formulated a new theory of relativistic dissipative fluid dynamics by invoking Grad’s 14-moment approximation10 coupled with Boltzmann equations incorporating relaxation timescales corresponding to dissipative quantities. But this theory also encountered the problem of instability11-12 and is unsatisfactory to some extent in the case of heavy-ion collision experiment.13 IS theory9 based on Grad’s moment approximation leads to undesirable features like infinite number of equations with different transport coefficients describing dissipations.14 Despite considerable efforts,15-16 consequences related to the onset of dissipation are not well known.

A new direction of investigating dissipative phenomenon originating due to heat flow stems from the ground-breaking work of Carte17 in which the entropy element is thought of as a fluid. The entropy entrainment is a basic element from which an analysis of causal property of thermal propagation is built up.18 This idea is exploited in18 that led to the formulation of relativistic version of Cattaneo equation describing causality preserving heat conduction. The crucial fact of Carter’s model to realize is that the existence of a pair of particle vorticity 2-form and thermal vorticity 2-form builds up a pair of source-free Maxwell’s like equations which describe the evolution of a heat conducting fluid.17 The matter part of fluid’s 4-velocity and the heat flow vector bear an intrinsic relationship of mutual interdependence. Consequently, prior choice of components of both fluid’s 4-velocity and heat flow vector without solving them from Maxwell’s like equations may not be physically consistent with the evolution equations of a heat conducting fluid.19 The existence of meridional circulation is an inherent consequence19 of Carter’s model of a heat conducting fluid.17 At this point, it is worth to recall the remark made by Priou20 that IS theory9 and Carter’s variational model of heat conducting fluid17  ceases to be equivalent in non-equilibrium situations. The reason seems to lie in the fact that the entropy fluid contribute its energy (i.e., product of entropy density and local temperature) per baryon to the  matter part of fluid’s energy per baryon which results in the enhancement of total energy per baryon in a Carter’s model during the evolution of a heat conducting fluid. The variation of this total energy along the matter part of fluid’s 4-velocity exchanges with the heat flux coupled to the effective energy per entropic associated with the entropy fluid per unit of local temperature measured in the matter part of fluid’s rest frame under the assumption that the space time representing the gravitational field of such fluid configuration is non-circular stationary and axisymmetric.21 Similar exchange law for the variation of total angular momentum per baryon of matter part of fluid with the heat flux coupled to the effective angular momentum per entropon of the entropy fluid per unit of local temperature holds under the same spacetime symmetry conditions.21 Such physical process is not obtainable in IS theory.9 Carter’s model17 seems to be more capable to describe the interaction between the gravitational field and the motion of a heat conducting fluid because of the existence of a pair of Maxwell’s like equations and the energy-momentum tensor built up with a unique term expressing thermal stress coupled with a thermodynamic variable encoding the entropy entrainment. This stress term relates the Ricci curvature tensor via Einstein field equations in the spacelike 3-space orthogonal to the matter part of fluid’s 4-velocity and therefore connects gravitational potentials characterized by the metric tensor.

As is known from the work of Lindblom22 that the thermodynamic equilibrium of a self- gravitating dissipative fluid requires the vanishing of entropy production which in turn implies the vanishing of both the heat flow and the shear tensor associated with the fluid flow lines in Eckart’s Theory.6 Since by definition such equilibrium state of stellar object composed of a heat conducting fluid is axisymmetric and stationary,22 it amounts to the vanishing of differential rotation and hence the stellar object rotates uniformly and the heat flow dies out. But in this conclusion, the missing link is fluid’s vorticity that exists even in the case of uniform rotation.23 The vorticity of fluid flow lines due to gravitomagnetic effect generates the coriolis force24 that couples to heat flow.25 Its effect is recognized in.26 The term of coriolis force enters in the equilibrium equation if constructed from Euler’s equations of motion and vortex lines are twisting.27 Because of the presence of non-zero magnitude of fluid’s vorticity, by virtue of timelike convergence condition,28 this squared magnitude of fluid’s vorticity has a strong bearing on continuous variation of temperature via Raychaudhuri equation.28 This means that there is continuous thermal dissipation due to internal motion of the fluid under the action of coriolis force. Such situation is still not clear in the evolutionary scenario of a heat conducting fluid but expected to halt if the vorticity magnitude is bounded above.

The dissipative processes that occur in the formation and evolution of compact stellar objects involve on the one hand strong gravitational effects and on the other hand microscopic properties of hot dense matter. Some recent theoretical and numerical investigations29,30  indicate that the study of thermal evolution of a newly born neutron star is important for understanding physical processes of observed thermal radiation from such stars on the basis of cooling theory.31 But the way the energy-balance equation is formulated for the study of rotational effects on thermal evolution of a newly born neutron star violates the causality principle because the formulation involves Fourier’s law for the description of heat conduction and an analogous construction of energy-momentum tensor that resembles with that of Eckart’s relativistic version of dissipative fluids.6 It is known that Fourier’s law of heat conduction violates causality. Such construction of theoretical basis used for prediction of rotational effect suffers from causality violation and therefore seems to be inconsistent in a relativistic framework. Effort32 towards better formulation for the description of thermal evolution in the case of a rotating star is still ongoing.

If the spacetime configuration representing the gravitational field of a self- gravitating heat conducting fluid is assumed to be axisymmetric and stationary, it must be non-circular in a Carter’s model17 because the heat flow is strongly coupled to meridional circulations.19 The existence of meridional circulation is intrinsically related to the Killing twist scalars which build up dynamic character of the space time. This in turn says that the notion of thermal equilibrium based on Eckart’s model,6 which requires the vanishing of heat flow, ceases to hold in a Carter’s model.17 The reason is that the contribution of heat flow to momentum covector associated with both the matter part of fluid and the entropy fluid cannot be excluded until meridional circulation ceases.19 The question that arises from asking how meridional circulation ceases at the onset of dissipation caused by the heat flow in an irreversible thermodynamic process. The thermodynamic processes that can thrust out meridional circulation during thermal evolution is yet unknown. Furthermore, it is extremely difficult to solve thermal relaxation time from relativistic version of Cattaneo equation18 without the knowledge of components of heat flow vector and the acceleration of fluid’s motion that couples to shear and rotation tensors associated with the fluid flow lines in a non-circular stationary axisymmetric spacetime. The determination of the components of heat flow vector and the matter part of fluid’s 4-velocity requires the solution of a pair of Maxwell’s like equations governing the evolution of a heat conducting fluid. Thus as a first step, we find solutions of a pair of Maxwell’s like equations by exploiting an electrodynamic analog of the approach developed in33 for the case of relativistic magnetohydrodynamics (RMHD) under the same spacetime symmetry assumptions and use these solutions to study the consequences related to the rotational evolution of both the matter part of fluid and the entropy fluid.

The present work is focused on the study of rotational evolution of a heat conducting fluid based on Carter’s model17 under the assumption that its background spacetime representing the gravitational field is non-circular stationary and axisymmetric. The plan of the paper is as follows. In Sec.2 we find solution of Maxwell’s like equations associated with the evolution of the matter part of fluid by exploiting an electrodynamic analog of the approach developed in the case of relativistic magnetohydrodynamics (RMHD)33 and derive the relation between differential rotation of matter part of fluid and a combination of Killing twist scalars and thermodynamic variables. Sec.3 is concerned with the rotation of matter part of fluid composed of an extra rotation caused by meridional circulation in the meridional plane in addition to the usual rotation about the rotation axis. Its connection with thermodynamic quantities is described by using the solution of Maxwell’s like equations associated with the evolution of the entropy fluid. Sec.4 describes the rotational evolution of the entropy fluid and related consequences. Sec.5 is devoted to the description of the creation of injection energy. Sec.6 is focused on the differential rotation of the matter part of fluid along the thermal-fluid vorticity.

Convention: The spacetime metric is of signature . Small case Latin indices run from  to . Caiptal Latin indices are used to indicate poloidal coordinates which take values and .Semi-colon and comma are used, respectively, to denote the covariant and partial derivatives. Constituent indices  and  are used to indicate matter and entropy part of fluid, respectively, throughout the text and not to be confused with tensor indices. Square and round bracket around indices represent, respectively, skew-symmetrization and symmetrization.

Evolution of the Matter Part of Fluid

In this section we study the evolution of matter part of fluid described by Maxwell’s like equations associated with the thermal-fluid vorticity 2-form W ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@391A@  and investigate various consequences related to dissipation caused by heat flow under the assumption that the space time representing the gravitational field of a self-gravitating heat conducting fluid is non-circular stationary and axi symmetric. The idea to find solutions of Maxwell’s like equations is based on an analogous approach developed in33 for the study of relativistic magneto hydrodynamics (RMHD) under the same space time symmetry assumption. This assumption implies the existence of pair of two linearly independent Killing vectors of which one is time like Killing vector ξ ( t ) a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIca caGLPaaaa8aabaWdbiaadggaaaaaaa@3E00@ generating a translational symmetry with open time like lines as orbits and the other one is a space like Killing vector ξ ( φ ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaayjk aiaawMcaaaWdaeaapeGaamyyaaaaaaa@3EC5@ generating rotations about a symmetry axis.34 There exists a family of invariant time /like 2-surfaces, called surfaces of transitivity, generated by this pair of Killing vectors that correspond to ignorable coordinates x 0 =t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaahaaWcbeqaa8qacaaIWaaaaOGaeyypa0JaamiDaaaa @3C58@ and x 3 =φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaahaaWcbeqaa8qacaaIZaaaaOGaeyypa0JaeqOXdOga aa@3D1F@ ( i.e., ξ ( t ) a = δ t a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIca caGLPaaaa8aabaWdbiaadggaaaGccqGH9aqpcqaH0oazpaWaa0baaS qaa8qacaWG0baapaqaa8qacaWGHbaaaaaa@4300@  and ξ ( φ ) a = δ φ a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaayjk aiaawMcaaaWdaeaapeGaamyyaaaakiabg2da9iabes7aK9aadaqhaa WcbaWdbiabeA8aQbWdaeaapeGaamyyaaaaaaa@4488@   34 The ignorable coordinates t and φ are called toroidal coordinates. This pair of Killing vectors constitutes the basis of tangent plane tangential to surface of transitivity. Its dual basis is of the following form:33

( t )a = 1 K ( g φφ ξ ( t )a + g tφ ξ ( φ )a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaBaaaleaaqa aaaaaaaaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaamyy aaWdaeqaaOWdbiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qaca WGlbaaamaabmaapaqaa8qacqGHsislcaWGNbWdamaaBaaaleaapeGa eqOXdOMaeqOXdOgapaqabaGcpeGaeqOVdG3damaaBaaaleaapeWaae Waa8aabaWdbiaadshaaiaawIcacaGLPaaacaWGHbaapaqabaGcpeGa ey4kaSIaam4za8aadaWgaaWcbaWdbiaadshacqaHgpGAa8aabeaak8 qacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGL OaGaayzkaaGaamyyaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@57AE@ ,  (2.1a)

( φ )a = 1 K ( g tφ ξ ( t )a g tt ξ ( φ )a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaBaaaleaaqa aaaaaaaaWdbmaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPaaacaWG HbaapaqabaGcpeGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWdbi aadUeaaaWaaeWaa8aabaWdbiaadEgapaWaaSbaaSqaa8qacaWG0bGa eqOXdOgapaqabaGcpeGaeqOVdG3damaaBaaaleaapeWaaeWaa8aaba WdbiaadshaaiaawIcacaGLPaaacaWGHbaapaqabaGcpeGaeyOeI0Ia am4za8aadaWgaaWcbaWdbiaadshacaWG0baapaqabaGcpeGaeqOVdG 3damaaBaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaayjkaiaawMca aiaadggaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@5608@ ,  (2.1b)

with the properties

( t )a ξ ( t ) a =1 = ( φ )a ξ ( φ ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaBaaaleaaqa aaaaaaaaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaamyy aaWdaeqaaOWdbiabe67a49aadaqhaaWcbaWdbmaabmaapaqaa8qaca WG0baacaGLOaGaayzkaaaapaqaa8qacaWGHbaaaOGaeyypa0JaaGym aiabg2da98aadaWgaaWcbaWdbmaabmaapaqaa8qacqaHgpGAaiaawI cacaGLPaaacaWGHbaapaqabaGcpeGaeqOVdG3damaaDaaaleaapeWa aeWaa8aabaWdbiabeA8aQbGaayjkaiaawMcaaaWdaeaapeGaamyyaa aaaaa@4FE6@    and  ( t )a ξ ( φ ) a =0 = ( φ )a ξ ( t ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaBaaaleaaqa aaaaaaaaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaamyy aaWdaeqaaOWdbiabe67a49aadaqhaaWcbaWdbmaabmaapaqaa8qacq aHgpGAaiaawIcacaGLPaaaa8aabaWdbiaadggaaaGccqGH9aqpcaaI WaGaeyypa0ZdamaaBaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaay jkaiaawMcaaiaadggaa8aabeaak8qacqaH+oaEpaWaa0baaSqaa8qa daqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeaapeGaamyyaa aaaaa@4FE5@ ,   (2.1c)

where

K= g tφ 2 g tt g φφ >0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4saiabg2da9iaadEgapaWaa0baaSqaa8qacaWG0bGaeqOXdOga paqaa8qacaaIYaaaaOGaeyOeI0Iaam4za8aadaWgaaWcbaWdbiaads hacaWG0baapaqabaGcpeGaam4za8aadaWgaaWcbaWdbiabeA8aQjab eA8aQbWdaeqaaOWdbiabg6da+iaaicdaaaa@49D0@ .   (2.1d)

At every point of spacetime there is a 2-dimensional spacelike tangent plane orthogonal to the timelike 2-plane but due to non-circularity assumption a family of such spacelike 2-planes do not mesh together to form a family of spacelike 2-surfaces. Such non-integrable 2-planes are called poloidal planes (or meridional planes ). We choose the poloidal coordinates x 1 =r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaahaaWcbeqaa8qacaaIXaaaaOGaeyypa0JaamOCaaaa @3C57@ and x 2 =z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaeyypa0JaamOEaaaa @3C60@   in cylindrical polar coordinates. Thus every vector of spacetime is decomposable into toroidal and poloidal components.

The matter part of fluid’s 4-velocity u a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A78@   can be decomposed as33

u a =λ( ξ ( t ) a +Ω ξ ( φ ) a )+ w a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWGHbaaaOGaeyypa0Jaeq4UdW2a aeWaa8aabaWdbiabe67a49aadaqhaaWcbaWdbmaabmaapaqaa8qaca WG0baacaGLOaGaayzkaaaapaqaa8qacaWGHbaaaOGaey4kaSIaeuyQ dCLaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaay jkaiaawMcaaaWdaeaapeGaamyyaaaaaOGaayjkaiaawMcaaiabgUca RiaadEhapaWaaWbaaSqabeaapeGaamyyaaaaaaa@50A6@ ,  (2.2)

where w a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bWdamaaCaaaleqabaWdbiaadggaaaaaaa@3845@  denotes the meridional circulation velocity orthogonal to both ξ ( t ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIca caGLPaaaa8aabaWdbiaadggaaaaaaa@3E01@   and ξ ( φ ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaayjk aiaawMcaaaWdaeaapeGaamyyaaaaaaa@3EC5@   .The 4-velocity u a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A78@  obeys the normalization condition u a u a =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWGHbaaaOGaamyDa8aadaWgaaWc baWdbiaadggaa8aabeaak8qacqGH9aqpcqGHsislcaaIXaaaaa@3F84@ . When this condition is invoked, we find from (2.2) that

λ 2 = 1+ w 2 G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4UdW2damaaCaaaleqabaWdbiaaikdaaaGccqGH9aqpdaWcaaWd aeaapeGaaGymaiabgUcaRiaadEhapaWaaWbaaSqabeaapeGaaGOmaa aaaOWdaeaapeGaam4raaaaaaa@40DD@ ,   (2.3)

where G=( g tt +2Ω g tφ + Ω 2 g φφ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4raiabg2da9iabgkHiTmaabmaapaqaa8qacaWGNbWdamaaBaaa leaapeGaamiDaiaadshaa8aabeaak8qacqGHRaWkcaaIYaGaeuyQdC Laam4za8aadaWgaaWcbaWdbiaadshacqaHgpGAa8aabeaak8qacqGH RaWkcqqHPoWvpaWaaWbaaSqabeaapeGaaGOmaaaakiaadEgapaWaaS baaSqaa8qacqaHgpGAcqaHgpGAa8aabeaaaOWdbiaawIcacaGLPaaa aaa@4FA3@   and w 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Da8aadaahaaWcbeqaa8qacaaIYaaaaaaa@3A50@  is the squared magnitude of meridional circulation velocity.

A unit spacelike vector m a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A70@  orthogonal to u a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A78@   may be constructed such as

m a =ζ( ξ ( φ ) a +l ξ ( t ) a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaahaaWcbeqaa8qacaWGHbaaaOGaeyypa0JaeqOTdO3a aeWaa8aabaWdbiabe67a49aadaqhaaWcbaWdbmaabmaapaqaa8qacq aHgpGAaiaawIcacaGLPaaaa8aabaWdbiaadggaaaGccqGHRaWkcaWG SbGaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawI cacaGLPaaaa8aabaWdbiaadggaaaaakiaawIcacaGLPaaaaaa@4CFA@ ,  (2.4)

 It follows from (2.2) and (2.4), because of the orthogonality condition   u a m a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWGHbaaaOGaamyBa8aadaWgaaWc baWdbiaadggaa8aabeaak8qacqGH9aqpcaaIWaaaaa@3E8E@ , that

l= u φ u t = ( g tφ +Ω g φφ ) ( g tt +Ω g tφ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiabg2da9iabgkHiTmaalaaapaqaa8qacaWG1bWdamaaBaaa leaapeGaeqOXdOgapaqabaaakeaapeGaamyDa8aadaWgaaWcbaWdbi aadshaa8aabeaaaaGcpeGaeyypa0JaeyOeI0YaaSaaa8aabaWdbmaa bmaapaqaa8qacaWGNbWdamaaBaaaleaapeGaamiDaiabeA8aQbWdae qaaOWdbiabgUcaRiabfM6axjaadEgapaWaaSbaaSqaa8qacqaHgpGA cqaHgpGAa8aabeaaaOWdbiaawIcacaGLPaaaa8aabaWdbmaabmaapa qaa8qacaWGNbWdamaaBaaaleaapeGaamiDaiaadshaa8aabeaak8qa cqGHRaWkcqqHPoWvcaWGNbWdamaaBaaaleaapeGaamiDaiabeA8aQb WdaeqaaaGcpeGaayjkaiaawMcaaaaaaaa@5BBA@ .   (2.5)

Substituting (2.4) into the normalization condition m a m a =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaahaaWcbeqaa8qacaWGHbaaaOGaamyBa8aadaWgaaWc baWdbiaadggaa8aabeaak8qacqGH9aqpcaaIXaaaaa@3E87@  and making use of (2.3), we find that

ζ 2 = u t 2 K( 1+ w 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOTdO3damaaCaaaleqabaWdbiaaikdaaaGccqGH9aqpdaWcaaWd aeaapeGaamyDa8aadaWgaaWcbaWdbiaadshaa8aabeaakmaaCaaale qabaWdbiaaikdaaaaak8aabaWdbiaadUeadaqadaWdaeaapeGaaGym aiabgUcaRiaadEhapaWaaWbaaSqabeaapeGaaGOmaaaaaOGaayjkai aawMcaaaaaaaa@45EC@ .  (2.6)

The source-free Maxwell’s like equations associated with the thermal-fluid vorticity 2-form W ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadggacaWGIbaapaqabaaaaa@3B4F@ of the following form:17

W ab u b = a Ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacaWG 1bWdamaaCaaaleqabaWdbiaadkgaaaGccqGH9aqpcqGHsislpaWaaS baaSqaa8qacaWGHbaapaqabaGccqqHvoqraaa@4010@ ,  (2.7)

where

W ab =2 μ [ b;a ] , μ a = u a +α q a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4va8aadaWgaaWcbaWdbiaadggacaWGIbaapaqabaGcpeGaeyyp a0JaaGOmaiabeY7aT9aadaWgaaWcbaWdbmaadmaapaqaa8qacaWGIb Gaai4oaiaadggaaiaawUfacaGLDbaaa8aabeaakiaacYcapeGaeqiV d02damaaBaaaleaapeGaamyyaaWdaeqaaOWdbiabg2da9iaadwhapa WaaSbaaSqaa8qacaWGHbaapaqabaGcpeGaey4kaSIaeqySdeMaamyC a8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@4FC3@ and  a = R n ( β q 2 2 ) q a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaBaaaleaaqa aaaaaaaaWdbiaadggaa8aabeaak8qacqGH9aqpdaWcaaWdaeaapeGa amOuaaWdaeaapeGaamOBaaaadaqadaWdaeaapeGaeyOeI0YaaSaaa8 aabaWdbiabek7aIjaadghapaWaaWbaaSqabeaapeGaaGOmaaaaaOWd aeaadaahaaWcbeqaa8qacaaIYaaaaaaaaOGaayjkaiaawMcaaiaadg hapaWaaSbaaSqaa8qacaWGHbaapaqabaaaaa@465A@ .  (2.8)

Here μ a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqiVd02damaaBaaaleaapeGaamyyaaWdaeqaaaaa@3B42@  is the conjugate momentum convector associated with the matter part of fluid corresponding to the matter current n a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A71@   and q a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@3A82@  is the heat flow vector. The chemical potential, entropy per baryon, and temperature measured in the matter part of fluid’s rest frame u a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A78@  are, respectively, denoted by   μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabe aacqGHxiIkaaGccqaH8oqBaaa@38D3@ , s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabe aacqGHxiIkaaGccaWGZbaaaa@3815@ , and  θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabe aacqGHxiIkaaGccqaH4oqCaaa@38D3@ . The thermodynamic variables α and β  are related by the relations β=( 1 * S n A ns * S * θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOSdiMaeyypa0ZaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaaa paqaamaaCaaaleqabaGaaiOkaaaakiaadofaaaWdbiabgkHiTmaala aapaqaa8qacaWGUbGaamyqa8aadaahaaWcbeqaa8qacaWGUbGaam4C aaaaaOWdaeaadaahaaWcbeqaaiaacQcaaaGccaWGtbWaaWbaaSqabe aacaGGQaaaaOGaeqiUdehaaaWdbiaawIcacaGLPaaaaaa@48EE@   and α= A ns θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqySdeMaeyypa0ZaaSaaa8aabaWdbiaadgeapaWaaWbaaSqabeaa peGaamOBaiaadohaaaaak8aabaWaaWbaaSqabeaacqaH4oqCaaaaaa aa@4018@    which encode the entropy entrainment effect via A ns MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGbbWdamaaCaaaleqabaWdbiaad6gacaWGZbaaaaaa@3914@ .18 The conservation of particle current is described by n ;a a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbWdamaaDaaaleaapeGaai4oaiaadggaa8aabaWdbiaadgga aaGccqGH9aqpcaaIWaaaaa@3BCA@  which is equivalent to the baryon conservation law, i.e., ( n u a ) = ;a 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaapeGaamOBaiaadwhapaWaaWbaaSqabeaapeGaamyy aaaaaOGaayjkaiaawMcaa8aadaqhbaWcbaWdbiaacUdacaWGHbaapa qaaaaak8qacqGH9aqpcaaIWaaaaa@3EC3@ .

The electric part of W ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@391A@  is computed in the following form:19

E a = λ ,a λΩ j ,a ( ,b w b ) ( t )a + ( j ,b w b ) ( φ )a I K η abcd w b ξ ( t ) c ξ ( φ ) d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadweadaWgaa Wcbaaeaaaaaaaaa8qacaWGHbaapaqabaGcpeGaeyypa0Jaeq4UdW2d amaaBaaaleaapeGaaiilaiaadggaa8aabeaak8qacqGHsislcqaH7o aBcqqHPoWvcaWGQbWdamaaBaaaleaapeGaaiilaiaadggaa8aabeaa k8qacqGHsisldaqadaWdaeaadaWgaaWcbaWdbiaacYcacaWGIbaapa qabaGcpeGaam4Da8aadaahaaWcbeqaa8qacaWGIbaaaaGccaGLOaGa ayzkaaWdamaaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcaca GLPaaacaWGHbaapaqabaGcpeGaey4kaSYaaeWaa8aabaWdbiaadQga paWaaSbaaSqaa8qacaGGSaGaamOyaaWdaeqaaOWdbiaadEhapaWaaW baaSqabeaapeGaamOyaaaaaOGaayjkaiaawMcaa8aadaWgaaWcbaWd bmaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPaaacaWGHbaapaqaba GcpeGaeyOeI0YaaSaaa8aabaWdbiaadMeaa8aabaWdbiaadUeaaaGa eq4TdG2damaaBaaaleaapeGaamyyaiaadkgacaWGJbGaamizaaWdae qaaOWdbiaadEhapaWaaWbaaSqabeaapeGaamOyaaaakiabe67a49aa daqhaaWcbaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaapa qaa8qacaWGJbaaaOGaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWd biabeA8aQbGaayjkaiaawMcaaaWdaeaapeGaamizaaaaaaa@747B@ ,  (2.9)

where ε MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@379D@  and j denote, respectively, the effective energy per particle and the effective angular momentum per particle and are expressible as ε= μ u t +α q t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0Ydaiabew7aL9qacqGH9aqppaWaaWraaSqabeaacqGHxiIk aaGccqaH8oqBpeGaamyDa8aadaWgaaWcbaWdbiaadshaa8aabeaak8 qacqGHRaWkcqaHXoqycaWGXbWdamaaBaaaleaapeGaamiDaaWdaeqa aaaa@4631@   and j= μ u φ +α q φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOAaiabg2da98aadaahbaWcbeqaaiabgEHiQaaakiabeY7aT9qa caWG1bWdamaaBaaaleaapeGaeqOXdOgapaqabaGcpeGaey4kaSIaeq ySdeMaamyCa8aadaWgaaWcbaWdbiabeA8aQbWdaeqaaaaa@45F6@ . The symbol η abcd MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4TdG2damaaBaaaleaapeGaamyyaiaadkgacaWGJbGaamizaaWd aeqaaaaa@3DF0@  is the Levi-Civita skew-symmetric tensor and  I= W ab ξ ( t ) a ξ ( φ ) b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysaiabg2da98aadaahbaWcbeqaaiabgEHiQaaakiaadEfadaWg aaWcbaWdbiaadggacaWGIbaapaqabaGcpeGaeqOVdG3damaaDaaale aapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabaWdbiaa dggaaaGccqaH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaeqOXdO gacaGLOaGaayzkaaaapaqaa8qacaWGIbaaaaaa@4A9C@   which can be explicitly determined by solving the corresponding Maxwell’s like equations. Its explicit form will be derived later on in the subsequent discussions. The Hodge dual of W ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@391A@   is indicated by an overhead star. Contraction of (2.9) with ξ ( t ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIca caGLPaaaa8aabaWdbiaadggaaaaaaa@3E01@   and ξ ( φ ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaayjk aiaawMcaaaWdaeaapeGaamyyaaaaaaa@3EC5@  in turn gives that

Ε t = ε ,b w b MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfw5afnaaBa aaleaaqaaaaaaaaaWdbiaadshaa8aabeaak8qacqGH9aqpcqGHsisl paGaeqyTdu2aaSbaaSqaa8qacaGGSaGaamOyaaWdaeqaaOWdbiaadE hapaWaaWbaaSqabeaapeGaamOyaaaaaaa@42D5@    and    Ε φ = j ,b w b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfw5afnaaBa aaleaaqaaaaaaaaaWdbiabeA8aQbWdaeqaaOWdbiabg2da9iaadQga paWaaSbaaSqaa8qacaGGSaGaamOyaaWdaeqaaOWdbiaadEhapaWaaW baaSqabeaapeGaamOyaaaaaaa@41F5@ .  (2.10)

On account of (2.1a,b) and (2.10), one can reduce (2.9) to take the form

Ε a = λ ,a λΩ j ,a + A 1 ξ ( t )a A 2 ξ ( φ )a I K η abcd w b ξ ( t ) c ξ ( φ ) d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfw5afnaaBa aaleaaqaaaaaaaaaWdbiaadggaa8aabeaak8qacqGH9aqpcqaH7oaB paWaaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaOWdbiabgkHiTiabeU 7aSjabfM6axjaadQgapaWaaSbaaSqaa8qacaGGSaGaamyyaaWdaeqa aOWdbiabgUcaRiaadgeapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpe GaeqOVdG3damaaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIca caGLPaaacaWGHbaapaqabaGcpeGaeyOeI0Iaamyqa8aadaWgaaWcba Wdbiaaikdaa8aabeaak8qacqaH+oaEpaWaaSbaaSqaa8qadaqadaWd aeaapeGaeqOXdOgacaGLOaGaayzkaaGaamyyaaWdaeqaaOWdbiabgk HiTmaalaaapaqaa8qacaWGjbaapaqaa8qacaWGlbaaaiabeE7aO9aa daWgaaWcbaWdbiaadggacaWGIbGaam4yaiaadsgaa8aabeaak8qaca WG3bWdamaaCaaaleqabaWdbiaadkgaaaGccqaH+oaEpaWaa0baaSqa a8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeaapeGaam 4yaaaakiabe67a49aadaqhaaWcbaWdbmaabmaapaqaa8qacqaHgpGA aiaawIcacaGLPaaaa8aabaWdbiaadsgaaaaaaa@6FE2@ ,  (2.11)

where

A 1 = 1 K ( g φφ Ε t + g tφ Ε φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaaWdaeaapeGaam4saaaadaqadaWdaeaapeGaey OeI0Iaam4za8aadaWgaaWcbaWdbiabeA8aQjabeA8aQbWdaeqaaOGa euyLdu0aaSbaaSqaa8qacaWG0baapaqabaGcpeGaey4kaSIaam4za8 aadaWgaaWcbaWdbiaadshacqaHgpGAa8aabeaakiabfw5afnaaBaaa leaapeGaeqOXdOgapaqabaaak8qacaGLOaGaayzkaaaaaa@4FB7@   and    A 2 = 1 K ( g tφ Ε t + g tt Ε φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaaGymaaWdaeaapeGaam4saaaadaqadaWdaeaapeGaey OeI0Iaam4za8aadaWgaaWcbaWdbiaadshacqaHgpGAa8aabeaakiab fw5afnaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabgUcaRiaadEgapa WaaSbaaSqaa8qacaWG0bGaamiDaaWdaeqaaOGaeuyLdu0aaSbaaSqa a8qacqaHgpGAa8aabeaaaOWdbiaawIcacaGLPaaaaaa@4E30@ .   (2.12)

Setting   Ε a =A q a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfw5afnaaBa aaleaaqaaaaaaaaaWdbiaadggaa8aabeaak8qacqGH9aqpcaWGbbGa amyCa8aadaWgaaWcbaWdbiaadggaa8aabeaaaaa@3EF1@ , where A= R n ( s β q 2 θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqaiabg2da9maalaaapaqaa8qacaWGsbaapaqaa8qacaWGUbaa amaabmaapaqaamaaCeaaleqabaGaey4fIOcaaOGaam4Ca8qacqGHsi sldaWcaaWdaeaapeGaeqOSdiMaamyCa8aadaahaaWcbeqaa8qacaaI YaaaaaGcpaqaamaaCeaaleqabaGaey4fIOcaaOGaeqiUde3aaWbaaS qabeaapeGaaGOmaaaaaaaakiaawIcacaGLPaaaaaa@48AA@   and choosing q a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A74@   directed along m a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A70@  which is orthogonal to u a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A78@ , we can expres Ε a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfw5afnaaBa aaleaaqaaaaaaaaaWdbiaadggaa8aabeaaaaa@3AD5@   as follows

Ε a =A q a =Aqζ( ξ ( φ )a +l ξ ( t )a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfw5afnaaBa aaleaaqaaaaaaaaaWdbiaadggaa8aabeaak8qacqGH9aqpcaWGbbGa amyCa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGH9aqpcaWGbb GaamyCaiabeA7a6naabmaapaqaa8qacqaH+oaEpaWaaSbaaSqaa8qa daqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaGaamyyaaWdaeqaaO WdbiabgUcaRiaadYgacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaiaadggaa8aabeaaaOWdbiaawIcaca GLPaaaaaa@5345@ .   (2.13)

At this point, It is important to underline that the choice for the contra variant components of the heat flow vector q a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A74@   directed along m a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyBa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A70@  imposes restriction to the vanishing of contra variant poloidal components of q a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A74@  but its none of covariant components is zero. This choice is necessary for obtaining covariant solutions of Maxwell’s like equations under the spacetime symmetry assumption. Replacing left hand side of (2.11) by (2.13) and contracting the resulting equation with ξ ( t ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaCeaaleqaba Gaey4fIOcaaOGaeqOVdG3aa0baaSqaaabaaaaaaaaapeWaaeWaa8aa baWdbiaadshaaiaawIcacaGLPaaaa8aabaWdbiaadggaaaaaaa@3F09@   and ξ ( φ ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaCeaaleqaba Gaey4fIOcaaOGaeqOVdG3aa0baaSqaaabaaaaaaaaapeWaaeWaa8aa baWdbiabeA8aQbGaayjkaiaawMcaaaWdaeaapeGaamyyaaaaaaa@3FCD@  in turn, we find that

Aqζl= A 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyqaiaadghacqaH2oGEcaWGSbGaeyypa0Jaamyqa8aadaWgaaWc baWdbiaaigdaa8aabeaaaaa@3F97@   and  Aqζ= A 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyqaiaadghacqaH2oGEcqGH9aqpcqGHsislcaWGbbWdamaaBaaa leaapeGaaGOmaaWdaeqaaaaa@3F94@ .  (2.14)

It follows from (2.5) and (2.14) that

q t =Ω q φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGH9aqpcqGH sislcqqHPoWvcaWGXbWdamaaBaaaleaapeGaeqOXdOgapaqabaaaaa@413D@ .  (2.15)

Making use of (2.13) with the aid of (2.14) in (2.11), we get

ε ,a Ω j ,a = I λK η abcd w b ξ ( t ) c ξ ( φ ) d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaabaaaaaaaaapeGaaiilaiaadggaa8aabeaak8qacqGHsisl cqqHPoWvcaWGQbWdamaaBaaaleaapeGaaiilaiaadggaa8aabeaak8 qacqGH9aqpdaWcaaWdaeaapeGaamysaaWdaeaapeGaeq4UdWMaam4s aaaacqaH3oaApaWaaSbaaSqaa8qacaWGHbGaamOyaiaadogacaWGKb aapaqabaGcpeGaam4Da8aadaahaaWcbeqaa8qacaWGIbaaaOGaeqOV dG3damaaDaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPa aaa8aabaWdbiaadogaaaGccqaH+oaEpaWaa0baaSqaa8qadaqadaWd aeaapeGaeqOXdOgacaGLOaGaayzkaaaapaqaa8qacaWGKbaaaaaa@57F7@ .  (2.16)

The injection energy per baryon is defined by35

Φ=εΩj MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyeeaa aaaaaaa8qacqGH9aqppaGaeqyTdu2dbiabgkHiTiabfM6axjaadQga aaa@3DC6@ .  (2.17)

Using (2.17) in (2.16) and inverting the resulting equation, we obtain that

w a = λ I η abcd ( ,b +j Ω ,b ) ξ ( t )c ξ ( φ )d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Da8aadaahaaWcbeqaa8qacaWGHbaaaOGaeyypa0JaeyOeI0Ya aSaaa8aabaWdbiabeU7aSbWdaeaapeGaamysaaaacqaH3oaApaWaaW baaSqabeaapeGaamyyaiaadkgacaWGJbGaamizaaaakmaabmaapaqa amaaBaaaleaapeGaaiilaiaadkgaa8aabeaak8qacqGHRaWkcaWGQb GaeuyQdC1damaaBaaaleaapeGaaiilaiaadkgaa8aabeaaaOWdbiaa wIcacaGLPaaacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaam iDaaGaayjkaiaawMcaaiaadogaa8aabeaak8qacqaH+oaEpaWaaSba aSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaGaamizaa Wdaeqaaaaa@5A10@ ,  (2.18)

A result from the baryon conservation law derived in33 is of the following form:

w a = 1 nK η abcd ξ ( t )b ξ ( φ )c f ,d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4Da8aadaahaaWcbeqaa8qacaWGHbaaaOGaeyypa0ZaaSaaa8aa baWdbiaaigdaa8aabaWdbiaad6gacaWGlbaaaiabeE7aO9aadaahaa Wcbeqaa8qacaWGHbGaamOyaiaadogacaWGKbaaaOGaeqOVdG3damaa BaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacaWGIb aapaqabaGcpeGaeqOVdG3damaaBaaaleaapeWaaeWaa8aabaWdbiab eA8aQbGaayjkaiaawMcaaiaadogaa8aabeaak8qacaWGMbWdamaaBa aaleaapeGaaiilaiaadsgaa8aabeaaaaa@5317@ ,  (2.19)

where  denotes Stokes stream function.33 It follows from (2.18) and (2.19) that

f ,a = λnK I ( Φ ,a +j Ω ,a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaacYcacaWGHbaapaqabaGcpeGaeyyp a0JaeyOeI0YaaSaaa8aabaWdbiabeU7aSjaad6gacaWGlbaapaqaa8 qacaWGjbaaamaabmaapaqaaiabfA6agnaaBaaaleaapeGaaiilaiaa dggaa8aabeaak8qacqGHRaWkcaWGQbGaeuyQdC1damaaBaaaleaape Gaaiilaiaadggaa8aabeaaaOWdbiaawIcacaGLPaaaaaa@4C3D@ ,  (2.20)

which asserts that the Stokes stream function varies in accordance with the linear combination of injection energy gradient and gradient of the rotation of matter part of fluid about the rotation axis that couples the effective angular momentum per baryon. By inverting (2.19), it can be shown that f ,a u a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOza8aadaWgaaWcbaWdbiaacYcacaWGHbaapaqabaGcpeGaamyD a8aadaahaaWcbeqaa8qacaWGHbaaaOGaeyypa0JaaGimaaaa@3F37@ . When this result is used in (2.20), we find that

( Φ ,a +j Ω ,a ) u a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaGaeuOPdy0aaSbaaSqaa8qacaGGSaGaamyyaaWdaeqa aOWdbiabgUcaRiaadQgacqqHPoWvpaWaaSbaaSqaa8qacaGGSaGaam yyaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadwhapaWaaWbaaSqabeaa peGaamyyaaaakiabg2da9iaaicdaaaa@46B8@ ,  (2.21)

which exhibits the relation between the variation of the injection energy and differential rotation due to rotation about the axis of rotation along the matter part of fluid’s 4-velocity. On account of (2.15), we find that

μ ( u t +Ω u φ )=( εΩj )=Φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaCeaaleqaba Gaey4fIOcaaOGaeqiVd0geaaaaaaaaa8qadaqadaWdaeaapeGaamyD a8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGHRaWkcqqHPoWvca WG1bWdamaaBaaaleaapeGaeqOXdOgapaqabaaak8qacaGLOaGaayzk aaGaeyypa0JaeyOeI0YaaeWaa8aabaGaeqyTdu2dbiabgkHiTiabfM 6axjaadQgaaiaawIcacaGLPaaacqGH9aqpcqGHsislpaGaeuOPdyea aa@50FB@ .  (2.22)

Inserting (2.22) in the first term of (2.21), we get

[ { μ ( u t +Ω u φ ) } + ,a j Ω ,a ] u a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiabgkHiTmaacmaapaqaamaaCeaaleqabaGaey4f IOcaaOGaeqiVd02dbmaabmaapaqaa8qacaWG1bWdamaaBaaaleaape GaamiDaaWdaeqaaOWdbiabgUcaRiabfM6axjaadwhapaWaaSbaaSqa a8qacqaHgpGAa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUhacaGL9b aapaWaa0raaSqaa8qacaGGSaGaamyyaaWdaeaaaaGcpeGaey4kaSIa amOAaiabfM6ax9aadaWgaaWcbaWdbiaacYcacaWGHbaapaqabaaak8 qacaGLBbGaayzxaaGaamyDa8aadaahaaWcbeqaa8qacaWGHbaaaOGa eyypa0JaaGimaaaa@558C@ .  (2.23)

The quantity l  which has appeared in (2.9) needs to be determined explicitly. In order to derive its explicit expression we now use the notion of differential form and exterior calculus and employ the technical machinery developed in33 for computational convenience. We rewrite (2.7) in the following form

u.d μ _ = Ε _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaiaac6capaGaamizaiqbeY7aTzaaDaWdbiabg2da98aacuqH voqrgaqhaaaa@3F7B@ ,   (2.24)

Since is a one-form, it can be expressed as

u.d μ _ =a ξ ( t ) +b ξ ( φ ) + X _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDaiaac6capaGaamizaiqbeY7aTzaaDaWdbiabg2da9iaadgga paWaaWraaSqabeaacqGHxiIkaaGccqaH+oaEdaWgaaWcbaWdbmaabm aapaqaa8qacaWG0baacaGLOaGaayzkaaaapaqabaGcpeGaey4kaSIa amOya8aadaahbaWcbeqaaiabgEHiQaaakiabe67a4naaBaaaleaape WaaeWaa8aabaWdbiabeA8aQbGaayjkaiaawMcaaaWdaeqaaOWdbiab gUcaR8aaceWGybGba0baaaa@4F43@ .  (2.25)

where a  and b  are unspecified functions. Contracting (2.25) with ξ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIca caGLPaaaa8aabeaaaaa@3D09@   and ξ ( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaBaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaayjk aiaawMcaaaWdaeqaaaaa@3DCE@  in turn and making use of symmetry condition,i.e. £ ξ ( t ) μ _ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4Oa8aadaWgaaWcbaWdbiabe67a49aadaWgaaadbaWdbmaabmaa paqaa8qacaWG0baacaGLOaGaayzkaaaapaqabaaaleqaaOGafqiVd0 Mba0bapeGaeyypa0JaaGimaaaa@423C@ ,  and £ ξ ( φ ) μ _ =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaai4Oa8aadaWgaaWcbaWdbiabe67a49aadaWgaaadbaWdbmaabmaa paqaa8qacqaHgpGAaiaawIcacaGLPaaaa8aabeaaaSqabaGccuaH8o qBgaqha8qacqGH9aqpcaaIWaaaaa@4300@  with the aid of Cartan identity, one can get

a=w.d( μ _ . ξ ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyyaiabg2da9iaadEhacaGGUaGaamizamaabmaapaqaaiqbeY7a TzaaDaWdbiaac6cacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa @45DB@ ,  (2.26a)

b=w.d( μ _ . ξ ( φ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOyaiabg2da9iaadEhacaGGUaGaamizamaabmaapaqaaiqbeY7a TzaaDaWdbiaac6cacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaape GaeqOXdOgacaGLOaGaayzkaaaapaqabaaak8qacaGLOaGaayzkaaaa aa@46A0@ .  (2.26b)

An explicit expression of μ _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0Mba0 baaaa@37D0@  is given by

μ _ = μ u _ +α q _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0Mba0 baqaaaaaaaaaWdbiabg2da98aadaahbaWcbeqaaiabgEHiQaaakiab eY7aTjqadwhagaqha8qacqGHRaWkcqaHXoqypaGabmyCayaaDaaaaa@40BB@   (2.27)

which, on account of (2.2) and (2.4), can be cast in the following form

μ _ = r _ + s _ + μ w _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0Mba0 baqaaaaaaaaaWdbiabg2da98aaceWGYbGba0bapeGaey4kaSYdaiqa dohagaqha8qacqGHRaWkpaWaaWraaSqabeaacqGHxiIkaaGccqaH8o qBceWG3bGba0baaaa@413C@   (2.28)

where

r _ = μ ( λ ξ _ ( t ) +λΩ ξ _ ( φ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOCayaaDa aeaaaaaaaaa8qacqGH9aqppaWaaWraaSqabeaacqGHxiIkaaGccqaH 8oqBpeWaaeWaa8aabaWdbiabeU7aS9aacuaH+oaEgaqhamaaBaaale aapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabeaak8qa cqGHRaWkcqaH7oaBcqqHPoWvpaGafqOVdGNba0badaWgaaWcbaWdbm aabmaapaqaa8qacqaHgpGAaiaawIcacaGLPaaaa8aabeaaaOWdbiaa wIcacaGLPaaaaaa@4D70@   (2.29a)

s _ =αqζ( ξ _ ( φ ) +l ξ _ ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4CayaaDa aeaaaaaaaaa8qacqGH9aqpcqaHXoqycaWGXbGaeqOTdO3aaeWaa8aa baGafqOVdGNba0badaWgaaWcbaWdbmaabmaapaqaa8qacqaHgpGAai aawIcacaGLPaaaa8aabeaak8qacqGHRaWkcaWGSbWdaiqbe67a4zaa DaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaa WdaeqaaaGcpeGaayjkaiaawMcaaaaa@4AA3@   (2.29b)

From (2.27), we have

u.d μ _ =u.d r _ +u.d s _ +u.d( μ w _ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bGaaiOla8aacaWGKbGafqiVd0Mba0bapeGaeyypa0JaamyD aiaac6capaGaamizaiqadkhagaqha8qacqGHRaWkcaWG1bGaaiOla8 aacaWGKbGabm4CayaaDaWdbiabgUcaRiaadwhacaGGUaWdaiaadsga daqadaqaamaaCeaaleqabaGaey4fIOcaaOGaeqiVd0Mabm4DayaaDa aacaGLOaGaayzkaaaaaa@4D38@   (2.30)

In view of (2.29a,b), following computational steps given in33, one can find that

u.d r _ =λ[ d( r _ . ξ ( t ) )+Ω d( r _ . ξ ( φ ) ) ]+w.d r _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bGaaiOla8aacaWGKbGabmOCayaaDaWdbiabg2da9iabgkHi TiabeU7aSnaadmaapaqaa8qacaWGKbWaaeWaa8aabaGabmOCayaaDa Wdbiaac6cacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiD aaGaayjkaiaawMcaaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgUcaRi abfM6axjaabccacaWGKbWaaeWaa8aabaGabmOCayaaDaWdbiaac6ca cqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOa Gaayzkaaaapaqabaaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaGa ey4kaSIaam4Daiaac6cacaWGKbWdaiqadkhagaqhaaaa@5A84@ ,   (2.31a)

u.d s _ =λ[ d( s _ . ξ ( t ) )+Ω d( s _ . ξ ( φ ) ) ]+w.d s _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bGaaiOlaiaadsgapaGabm4CayaaDaWdbiabg2da9iabgkHi TiabeU7aSnaadmaapaqaa8qacaWGKbWaaeWaa8aabaGabm4CayaaDa Wdbiaac6cacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiD aaGaayjkaiaawMcaaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgUcaRi abfM6axjaabccacaWGKbWaaeWaa8aabaGabm4CayaaDaWdbiaac6ca cqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOa Gaayzkaaaapaqabaaak8qacaGLOaGaayzkaaaacaGLBbGaayzxaaGa ey4kaSIaam4Daiaac6cacaWGKbWdaiqadohagaqhaaaa@5A88@ ,  (2.31b)

and

w.d( μ w )= C 1 n df MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bGaaiOlaiaadsgadaqadaWdaeaadaahbaWcbeqaaiabgEHi QaaakiabeY7aT9qacaWG3baacaGLOaGaayzkaaGaeyypa0ZaaSaaa8 aabaWdbiaadoeapaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGa amOBaaaacaWGKbGaamOzaaaa@4422@ ,  (2.31c)

where C 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaaGymaaWdaeqaaaaa@37F4@  is a function which, following,33 can be expressed as C 1 =( μ Kn f ,a ) ;a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iab gkHiTmaabmaapaqaa8qadaWcaaWdaeaadaahbaWcbeqaaiabgEHiQa aakiabeY7aTbqaa8qacaWGlbGaamOBaaaacaWGMbWdamaaBaaaleaa peGaaiilaiaadggaa8aabeaaaOWdbiaawIcacaGLPaaapaWaa0raaS qaaaqaamaaDeaameaaaeaapeGaai4oaiaadggaaaaaaaaa@458E@ .  Substitution of (2.31a-c) into (2.30) gives that

u.d μ _ =λ[ d( r _ + s _ ). ξ ( t ) ]λΩ[ d( r _ + s _ ). ξ ( φ ) ]+ C 1 n df+w.d r _ +w.d s _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bGaaiOlaiaadsgapaGafqiVd0Mba0bapeGaeyypa0JaeyOe I0Iaeq4UdW2aamWaa8aabaWdbiaadsgadaqadaWdaeaaceWGYbGba0 bapeGaey4kaSYdaiqadohagaqhaaWdbiaawIcacaGLPaaacaGGUaGa eqOVdG3damaaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcaca GLPaaaa8aabeaaaOWdbiaawUfacaGLDbaacqGHsislcqaH7oaBcqqH PoWvdaWadaWdaeaapeGaamizamaabmaapaqaaiqadkhagaqha8qacq GHRaWkpaGabm4CayaaDaaapeGaayjkaiaawMcaaiaac6cacqaH+oaE paWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaa aapaqabaaak8qacaGLBbGaayzxaaGaey4kaSYaaSaaa8aabaWdbiaa doeapaWaaSbaaSqaa8qacaaIXaaapaqabaaakeaapeGaamOBaaaaca WGKbGaamOzaiabgUcaRiaadEhacaGGUaGaamiza8aaceWGYbGba0ba peGaey4kaSIaam4Daiaac6cacaWGKbWdaiqadohagaqhaaaa@6D2C@ .  (2.32)

Replacing the left hand side of (2.25) by the right hand side of (2.32) and contracting the resulting equation with an arbitrary vector lying in meridional plane orthogonal to both ξ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjk aiaawMcaaaWdaeqaaaaa@3AD5@  and  ξ ( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGL OaGaayzkaaaapaqabaaaaa@3B99@ , one may obtain

X _ .v=λv.[ d( r _ + s _ ). ξ ( t ) ]λΩv.[ d( r _ + s _ ). ξ ( φ ) ]+ C 1 n v.df+w.d r _ .v+w.d s _ .v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaaDa aeaaaaaaaaa8qacaGGUaGaamODaiabg2da9iabgkHiTiabeU7aSjaa dAhacaGGUaWaamWaa8aabaWdbiaadsgadaqadaWdaeaaceWGYbGba0 bapeGaey4kaSYdaiqadohagaqhaaWdbiaawIcacaGLPaaacaGGUaGa eqOVdG3damaaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcaca GLPaaaa8aabeaaaOWdbiaawUfacaGLDbaacqGHsislcqaH7oaBcqqH PoWvcaWG2bGaaiOlamaadmaapaqaa8qacaWGKbWaaeWaa8aabaGabm OCayaaDaWdbiabgUcaR8aaceWGZbGba0baa8qacaGLOaGaayzkaaGa aiOlaiabe67a49aadaWgaaWcbaWdbmaabmaapaqaa8qacqaHgpGAai aawIcacaGLPaaaa8aabeaaaOWdbiaawUfacaGLDbaacqGHRaWkdaWc aaWdaeaapeGaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOqaa8 qacaWGUbaaaiaadAhacaGGUaGaamizaiaadAgacqGHRaWkcaWG3bGa aiOlaiaadsgapaGabmOCayaaDaWdbiaac6cacaWG2bGaey4kaSIaam 4Daiaac6cacaWGKbWdaiqadohagaqha8qacaGGUaGaamODaaaa@73BE@ .  (2.33)

The last two terms on right hand side of (2.33), by using the results derived in,33 can be put in the following form:

w,d r _ .v=d r _ ( w,v )=λ μ ( τ ( t ) +Ω τ ( φ ) ) 1 Kn df.v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bGaaiilaiaadsgapaGabmOCayaaDaWdbiaac6cacaWG2bGa eyypa0Jaamiza8aaceWGYbGba0bapeWaaeWaa8aabaWdbiaadEhaca GGSaGaamODaaGaayjkaiaawMcaaiabg2da9iabeU7aS9aadaahbaWc beqaaiabgEHiQaaakiabeY7aT9qadaqadaWdaeaapeGaeqiXdq3dam aaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aa beaak8qacqGHRaWkcqqHPoWvcqaHepaDpaWaaSbaaSqaa8qadaqada WdaeaapeGaeqOXdOgacaGLOaGaayzkaaaapaqabaaak8qacaGLOaGa ayzkaaWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadUeacaWGUbaaai aadsgacaWGMbGaaiOlaiaadAhaaaa@5D9E@ ,  (2.34a)

and

w.d s _ .v=d s _ ( w,v )=αqζ( τ ( φ ) +l τ ( t ) ) 1 Kn df.v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bGaaiOlaiaadsgapaGabm4CayaaDaWdbiaac6cacaWG2bGa eyypa0Jaamiza8aaceWGZbGba0bapeWaaeWaa8aabaWdbiaadEhaca GGSaGaamODaaGaayjkaiaawMcaaiabg2da9iabeg7aHjaadghacqaH 2oGEdaqadaWdaeaapeGaeqiXdq3damaaBaaaleaapeWaaeWaa8aaba WdbiabeA8aQbGaayjkaiaawMcaaaWdaeqaaOWdbiabgUcaRiaadYga cqaHepaDpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkai aawMcaaaWdaeqaaaGcpeGaayjkaiaawMcaamaalaaapaqaa8qacaaI Xaaapaqaa8qacaWGlbGaamOBaaaacaWGKbGaamOzaiaac6cacaWG2b aaaa@5CA7@ ,  (2.34b)

where Killing twist scalars34 corresponding to ξ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjk aiaawMcaaaWdaeqaaaaa@3AD5@   and ξ ( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGL OaGaayzkaaaapaqabaaaaa@3B99@   are, respectively, denoted by τ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHepaDpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjk aiaawMcaaaWdaeqaaaaa@3AD7@  and τ ( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHepaDpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGL OaGaayzkaaaapaqabaaaaa@3B9B@  which are defined as follows :

τ ( t ) = η abcd ξ ( φ )a ξ ( t )b ξ ( t )c;d , τ ( φ ) = η abcd ξ ( t )a ξ ( φ )b ξ ( φ )d;c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHepaDpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjk aiaawMcaaaWdaeqaaOWdbiabg2da9iabeE7aO9aadaahaaWcbeqaa8 qacaWGHbGaamOyaiaadogacaWGKbaaaOGaeqOVdG3damaaBaaaleaa peWaaeWaa8aabaWdbiabeA8aQbGaayjkaiaawMcaaiaadggaa8aabe aak8qacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiDaaGa ayjkaiaawMcaaiaadkgaa8aabeaak8qacqaH+oaEpaWaaSbaaSqaa8 qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaadogacaGG7aGa amizaaWdaeqaaOGaaiila8qacqaHepaDpaWaaSbaaSqaa8qadaqada WdaeaapeGaeqOXdOgacaGLOaGaayzkaaaapaqabaGcpeGaeyypa0Ja eq4TdG2damaaCaaaleqabaWdbiaadggacaWGIbGaam4yaiaadsgaaa GccqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjk aiaawMcaaiaadggaa8aabeaak8qacqaH+oaEpaWaaSbaaSqaa8qada qadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaGaamOyaaWdaeqaaOWd biabe67a49aadaWgaaWcbaWdbmaabmaapaqaa8qacqaHgpGAaiaawI cacaGLPaaacaWGKbGaai4oaiaadogaa8aabeaaaaa@7687@ .  (2.34c);

Substituting (2.34a-b) in the last two terms of (2.33) and simplifying, we find that

X _ =λd[ ( r _ + s _ ). ξ ( t ) ]λΩd[ ( r _ + s _ ). ξ ( φ ) ]+ 1 Kn [ K C 1 +( λ μ +αqζl ) τ ( t ) +( λΩ μ +αqζ ) τ ( φ ) ]df MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiwayaaDa aeaaaaaaaaa8qacqGH9aqpcqGHsislcqaH7oaBcaWGKbWaamWaa8aa baWdbmaabmaapaqaaiqadkhagaqha8qacqGHRaWkpaGabm4CayaaDa aapeGaayjkaiaawMcaaiaac6cacqaH+oaEpaWaaSbaaSqaa8qadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeqaaaGcpeGaay5wai aaw2faaiabgkHiTiabeU7aSjabfM6axjaadsgadaWadaWdaeaapeWa aeWaa8aabaGabmOCayaaDaWdbiabgUcaR8aaceWGZbGba0baa8qaca GLOaGaayzkaaGaaiOlaiabe67a49aadaWgaaWcbaWdbmaabmaapaqa a8qacqaHgpGAaiaawIcacaGLPaaaa8aabeaaaOWdbiaawUfacaGLDb aacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGaam4saiaad6ga aaWaamWaa8aabaWdbiaadUeacaWGdbWdamaaBaaaleaapeGaaGymaa WdaeqaaOWdbiabgUcaRmaabmaapaqaa8qacqaH7oaBpaWaaWraaSqa beaacqGHxiIkaaGccqaH8oqBpeGaey4kaSIaeqySdeMaamyCaiabeA 7a6jaadYgaaiaawIcacaGLPaaacqaHepaDpaWaaSbaaSqaa8qadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeqaaOWdbiabgUcaRm aabmaapaqaa8qacqaH7oaBcqqHPoWvpaWaaWraaSqabeaacqGHxiIk aaGccqaH8oqBpeGaey4kaSIaeqySdeMaamyCaiabeA7a6bGaayjkai aawMcaaiabes8a09aadaWgaaWcbaWdbmaabmaapaqaa8qacqaHgpGA aiaawIcacaGLPaaaa8aabeaaaOWdbiaawUfacaGLDbaacaWGKbGaam Ozaaaa@8AA7@ .  (2.35)

It follows from (2.25), (2.26a-b) and (2.35) that

u.d μ _ =[ w.d( μ _ . ξ ( t ) ) ] ξ ( t ) +[ w,d( μ _ . ξ ( φ ) ) ] ξ ( φ ) λd[ ( r _ + s _ ). ξ ( t ) ]λΩd[ ( r _ + s _ ). ξ ( φ ) ]+ 1 Kn [ C 1 K+( λ μ +αqζl ) τ ( t ) +( λΩ μ +αqζ ) τ ( φ ) ]df MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bGaaiOlaiaadsgapaGafqiVd0Mba0bapeGaeyypa0ZaamWa a8aabaWdbiaadEhacaGGUaGaamizamaabmaapaqaaiqbeY7aTzaaDa Wdbiaac6cacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiD aaGaayjkaiaawMcaaaWdaeqaaaGcpeGaayjkaiaawMcaaaGaay5wai aaw2faa8aadaahbaWcbeqaaiabgEHiQaaakiabe67a4naaBaaaleaa peWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabeaak8qacq GHRaWkdaWadaWdaeaapeGaam4DaiaacYcacaWGKbWaaeWaa8aabaGa fqiVd0Mba0bapeGaaiOlaiabe67a49aadaWgaaWcbaWdbmaabmaapa qaa8qacqaHgpGAaiaawIcacaGLPaaaa8aabeaaaOWdbiaawIcacaGL PaaaaiaawUfacaGLDbaapaWaaWraaSqabeaacqGHxiIkaaGccqaH+o aEdaWgaaWcbaWdbmaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPaaa a8aabeaak8qacqGHsislcqaH7oaBcaWGKbWaamWaa8aabaWdbmaabm aapaqaaiqadkhagaqha8qacqGHRaWkpaGabm4CayaaDaaapeGaayjk aiaawMcaaiaac6cacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaaaWdaeqaaaGcpeGaay5waiaaw2faaiab gkHiTiabeU7aSjabfM6axjaadsgadaWadaWdaeaapeWaaeWaa8aaba GabmOCayaaDaWdbiabgUcaR8aaceWGZbGba0baa8qacaGLOaGaayzk aaGaaiOlaiabe67a49aadaWgaaWcbaWdbmaabmaapaqaa8qacqaHgp GAaiaawIcacaGLPaaaa8aabeaaaOWdbiaawUfacaGLDbaacqGHRaWk daWcaaWdaeaapeGaaGymaaWdaeaapeGaam4saiaad6gaaaWaamWaa8 aabaWdbiaadoeapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaam4s aiabgUcaRmaabmaapaqaa8qacqaH7oaBpaWaaWraaSqabeaacqGHxi IkaaGccqaH8oqBpeGaey4kaSIaeqySdeMaamyCaiabeA7a6jaadYga aiaawIcacaGLPaaacqaHepaDpaWaaSbaaSqaa8qadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaaaWdaeqaaOWdbiabgUcaRmaabmaapaqa a8qacqaH7oaBcqqHPoWvpaWaaWraaSqabeaacqGHxiIkaaGccqaH8o qBpeGaey4kaSIaeqySdeMaamyCaiabeA7a6bGaayjkaiaawMcaaiab es8a09aadaWgaaWcbaWdbmaabmaapaqaa8qacqaHgpGAaiaawIcaca GLPaaaa8aabeaaaOWdbiaawUfacaGLDbaacaWGKbGaamOzaaaa@B802@ .  (2.36)

For further simplification of (2.36) we now proceed as follows.

μ _ . ξ ( t ) = μ _ u t +α q t =ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0Mba0 baqaaaaaaaaaWdbiaac6cacqaH+oaEpaWaaSbaaSqaa8qadaqadaWd aeaapeGaamiDaaGaayjkaiaawMcaaaWdaeqaaOWdbiabg2da98aacu aH8oqBgaqha8qacaWG1bWdamaaBaaaleaapeGaamiDaaWdaeqaaOWd biabgUcaRiabeg7aHjaadghapaWaaSbaaSqaa8qacaWG0baapaqaba GcpeGaeyypa0JaeyOeI0Ydaiabew7aLbaa@4B6E@   (2.37a)

μ _ . ξ ( φ ) = μ _ u φ +α q φ =j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiVd0Mba0 baqaaaaaaaaaWdbiaac6cacqaH+oaEpaWaaSbaaSqaa8qadaqadaWd aeaapeGaeqOXdOgacaGLOaGaayzkaaaapaqabaGcpeGaeyypa0Zdai qbeY7aTzaaDaWdbiaadwhapaWaaSbaaSqaa8qacqaHgpGAa8aabeaa k8qacqGHRaWkcqaHXoqycaWGXbWdamaaBaaaleaapeGaeqOXdOgapa qabaGcpeGaeyypa0JaamOAaaaa@4C05@   (2.37b)

( r _ + s _ ). ξ ( t ) =λ μ ( g tt +Ω g tφ )+αqζ( g tφ +l g tt )= μ u t +α q t =ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaaceWGYbGba0bapeGaey4kaSYdaiqadohagaqhaaWd biaawIcacaGLPaaacaGGUaGaeqOVdG3damaaBaaaleaapeWaaeWaa8 aabaWdbiaadshaaiaawIcacaGLPaaaa8aabeaak8qacqGH9aqpcqaH 7oaBpaWaaWraaSqabeaacqGHxiIkaaGccqaH8oqBpeWaaeWaa8aaba WdbiaadEgapaWaaSbaaSqaa8qacaWG0bGaamiDaaWdaeqaaOWdbiab gUcaRiabfM6axjaadEgapaWaaSbaaSqaa8qacaWG0bGaeqOXdOgapa qabaaak8qacaGLOaGaayzkaaGaey4kaSIaeqySdeMaamyCaiabeA7a 6naabmaapaqaa8qacaWGNbWdamaaBaaaleaapeGaamiDaiabeA8aQb WdaeqaaOWdbiabgUcaRiaadYgacaWGNbWdamaaBaaaleaapeGaamiD aiaadshaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqppaWaaWraaS qabeaacqGHxiIkaaGccqaH8oqBpeGaamyDa8aadaWgaaWcbaWdbiaa dshaa8aabeaak8qacqGHRaWkcqaHXoqycaWGXbWdamaaBaaaleaape GaamiDaaWdaeqaaOWdbiabg2da9iabgkHiT8aacqaH1oqzaaa@70C4@   (2.37c)

Similarly,

( r _ + s _ ). ξ ( φ ) = μ u φ +α q φ =j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaaceWGYbGba0bapeGaey4kaSYdaiqadohagaqhaaWd biaawIcacaGLPaaacaGGUaGaeqOVdG3damaaBaaaleaapeWaaeWaa8 aabaWdbiabeA8aQbGaayjkaiaawMcaaaWdaeqaaOWdbiabg2da98aa daahbaWcbeqaaiabgEHiQaaakiabeY7aT9qacaWG1bWdamaaBaaale aapeGaeqOXdOgapaqabaGcpeGaey4kaSIaeqySdeMaamyCa8aadaWg aaWcbaWdbiabeA8aQbWdaeqaaOWdbiabg2da9iaadQgaaaa@500F@   (2.37d)

Substituting (2.37a-d) into (2.36) and taking (2.24) into account, we get

Ε _ =( w.dε ) ξ ( t ) +( w.dj ) ξ ( φ ) +λdελΩdj+ 1 Kn [ C 1 K+( λ μ +αqζ l ) τ ( t ) +( λ μ Ω+αqζ ) τ ( φ ) ]df MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyLduKba0 baqaaaaaaaaaWdbiabg2da9iabgkHiTmaabmaapaqaa8qacaWG3bGa aiOla8aacaWGKbGaeqyTdugapeGaayjkaiaawMcaa8aadaahbaWcbe qaaiabgEHiQaaakiabe67a4naaBaaaleaapeWaaeWaa8aabaWdbiaa dshaaiaawIcacaGLPaaaa8aabeaak8qacqGHRaWkdaqadaWdaeaape Gaam4Daiaac6cacaWGKbGaamOAaaGaayjkaiaawMcaa8aadaahbaWc beqaaiabgEHiQaaakiabe67a4naaBaaaleaapeWaaeWaa8aabaWdbi abeA8aQbGaayjkaiaawMcaaaWdaeqaaOWdbiabgUcaRiabeU7aS9aa caWGKbGaeqyTdu2dbiabgkHiTiabeU7aSjabfM6axjaadsgacaWGQb Gaey4kaSYaaSaaa8aabaWdbiaaigdaa8aabaWdbiaadUeacaWGUbaa amaadmaapaqaa8qacaWGdbWdamaaBaaaleaapeGaaGymaaWdaeqaaO WdbiaadUeacqGHRaWkdaqadaWdaeaapeGaeq4UdW2damaaCeaaleqa baGaey4fIOcaaOGaeqiVd02dbiabgUcaRiabeg7aHjaadghacqaH2o GEcaqGGaGaamiBaaGaayjkaiaawMcaaiabes8a09aadaWgaaWcbaWd bmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaapaqabaGcpeGaey 4kaSYaaeWaa8aabaWdbiabeU7aS9aadaahbaWcbeqaaiabgEHiQaaa kiabeY7aT9qacqqHPoWvcqGHRaWkcqaHXoqycaWGXbGaeqOTdOhaca GLOaGaayzkaaGaeqiXdq3damaaBaaaleaapeWaaeWaa8aabaWdbiab eA8aQbGaayjkaiaawMcaaaWdaeqaaaGcpeGaay5waiaaw2faaiaads gacaWGMbaaaa@8E89@    (2.38)

Equating the poloidal components of   from (2.9) and (2.38), we find that

I=[ K C 1 +( λ μ +αqζ l ) τ ( t ) +( λ μ Ω+αqζ ) τ ( φ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysaiabg2da9maadmaapaqaa8qacaWGlbGaam4qa8aadaWgaaWc baWdbiaaigdaa8aabeaak8qacqGHRaWkdaqadaWdaeaapeGaeq4UdW 2damaaCeaaleqabaGaey4fIOcaaOGaeqiVd02dbiabgUcaRiabeg7a HjaadghacqaH2oGEcaqGGaGaamiBaaGaayjkaiaawMcaaiabes8a09 aadaWgaaWcbaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaa paqabaGcpeGaey4kaSYaaeWaa8aabaWdbiabeU7aS9aadaahbaWcbe qaaiabgEHiQaaakiabeY7aT9qacqqHPoWvcqGHRaWkcqaHXoqycaWG XbGaeqOTdOhacaGLOaGaayzkaaGaeqiXdq3damaaBaaaleaapeWaae Waa8aabaWdbiabeA8aQbGaayjkaiaawMcaaaWdaeqaaaGcpeGaay5w aiaaw2faaaaa@656E@ ,  (2.39)

This is the required expression for which is constituted by Killing twist scalars coupled with the chemical potential, magnitude of heat flow vector, geometrical angular momentum and rotation of the matter part of fluid about the rotation axis. The quantity that enters in the determination of covariant poloidal components of heat flow vector illustrates the role of Killing twist scalars and their relationship with the heat flow in the meridional plane. Substituting (2.39) into (2.20), we get

[ K C 1 +( λ μ +αqζ l ) τ ( t ) +( λ μ Ω+αqζ ) τ ( φ ) ] f ,a +λKn ( Φ ,a +j Ω ,a ) =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaamWaa8aabaWdbiaadUeacaWGdbWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiabgUcaRmaabmaapaqaa8qacqaH7oaBpaWaaWraaSqabe aacqGHxiIkaaGccqaH8oqBpeGaey4kaSIaeqySdeMaamyCaiabeA7a 6jaabccacaWGSbaacaGLOaGaayzkaaGaeqiXdq3damaaBaaaleaape WaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabeaak8qacqGH RaWkdaqadaWdaeaapeGaeq4UdW2damaaCeaaleqabaGaey4fIOcaaO GaeqiVd02dbiabfM6axjabgUcaRiabeg7aHjaadghacqaH2oGEaiaa wIcacaGLPaaacqaHepaDpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeq OXdOgacaGLOaGaayzkaaaapaqabaaak8qacaGLBbGaayzxaaGaamOz a8aadaWgaaWcbaWdbiaacYcacaWGHbaapaqabaGcpeGaey4kaSIaeq 4UdWMaam4saiaad6gapaWaa0raaSqaaaqaaaaak8qadaqadaWdaeaa cqqHMoGrdaWgaaWcbaWdbiaacYcacaWGHbaapaqabaGcpeGaey4kaS IaamOAaiabfM6ax9aadaWgaaWcbaWdbiaacYcacaWGHbaapaqabaaa k8qacaGLOaGaayzkaaGaeyypa0JaaGimaaaa@7775@ ,   (2.40)

which describes the evolution of the matter part of fluid in the meridional plane in terms of thermodynamic variables coupled to Killing twist scalars, the Stokes stream function, injection energy gradient, and differential rotation due to rotation about the rotation axis. Taking curl of (2.40), we find that

F ,[A f ,B] = Ω ,[A j ,B] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaacYcacaGGBbGaamyqaaWdaeqaaOWd biaadAgapaWaaSbaaSqaa8qacaGGSaGaamOqaiaac2faa8aabeaak8 qacqGH9aqpcqqHPoWvpaWaaSbaaSqaa8qacaGGSaGaai4waiaadgea a8aabeaak8qacaWGQbWdamaaBaaaleaapeGaaiilaiaadkeacaGGDb aapaqabaaaaa@4895@ ,  (2.41)

where  F= 1 λKn [ K C 1 +( λ μ +αqζl ) τ ( t ) +( λ μ Ω+αqζ ) τ ( φ ) ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacqaH7oaB caWGlbGaamOBaaaadaWadaWdaeaapeGaam4saiaadoeapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaey4kaSYaaeWaa8aabaWdbiabeU7a S9aadaahbaWcbeqaaiabgEHiQaaakiabeY7aT9qacqGHRaWkcqaHXo qycaWGXbGaeqOTdONaamiBaaGaayjkaiaawMcaaiabes8a09aadaWg aaWcbaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaapaqaba GcpeGaey4kaSYaaeWaa8aabaWdbiabeU7aS9aadaahbaWcbeqaaiab gEHiQaaakiabeY7aT9qacqqHPoWvcqGHRaWkcqaHXoqycaWGXbGaeq OTdOhacaGLOaGaayzkaaGaeqiXdq3damaaBaaaleaapeWaaeWaa8aa baWdbiabeA8aQbGaayjkaiaawMcaaaWdaeqaaaGcpeGaay5waiaaw2 faaaaa@6948@ . The expression of scalar function F= I λKn MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOraiabg2da9maalaaapaqaa8qacaWGjbaapaqaa8qacqaH7oaB caWGlbGaamOBaaaaaaa@3EB0@ is composed of a combination of thermodynamic variables, Killing twist scalars and indicates the importance of Killing twist scalars for the dynamics of differential rotation which is usually thought to be related with thermodynamic variables that constitute the equation of state (EOS) of a hot matter. Alternatively, it suggest that the role of Killing twist scalars is inevitable in the description of differential rotation. It is evident from (2.41) that the level surfaces of constant Ω and j do not coincide because of alignment of level surfaces of constant F and f in the poloidal plane, in other words, Killing twist scalars representing the twist of dynamical spacetime endowed with meridional circulation contribute to the differential rotation at the onset of dissipation caused by the heat flow. The variation of Stokes stream function in the poloidal plane is caused by the variation of both and along the meridional circulation velocity. Thus dynamics of differential rotation seems to be complicated in the presence of meridional circulation because of its link with the Killing twist scalars. Thus we confine our attention to understand the role of meridional circulation in inducing extra rotation in addition to the usual rotation about the rotation axis and examine the relationship between the rotational velocity of the matter part of fluid and the thermodynamic variables in the following section.

Rotational velocity of matter part of fluid

This section is focused on the description of dynamic interaction between the matter part of fluid and the entropy fluid in order to understand the link between the rotational velocity of matter part of fluid and thermodynamic quantities contributed by both the matter part of fluid and the entropy fluid. Thus we need to find covariant solution of Maxwell’s like equations that govern the evolution of the entropy fluid under spacetime symmetry assumption. In a non-circular stationary axisymmetric spacetime, motion of matter part of fluid is composed of rotation around the rotation axis and meridional circulation occurring in meridional plane. This gives rise to the effect that meridional circulation causes an extra rotational velocity in addition to the usual rotation Ω about the rotation axis, as is well known in a circular spacetime. The rotation of matter part of fluid is linked with the  4-velocity of the entropy fluid because of two reasons as follows. First, it is measured in the matter part of fluid’s rest frame and bears a direct relation with the 4-velocity of the matter part of fluid,and second,  the 4-velocity of the matter part of fluid enters in the electric part of Maxwell’s like equations corresponding to the thermal vorticity 2-form Z ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwa8aadaWgaaWcbaWdbiaadggacaWGIbaapaqabaaaaa@3B52@ . The 4-velocity of the entropy fluid u s a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaqhaaWcbaWdbiaadohaa8aabaWdbiaadggaaaaaaa@3B8F@   measured in the matter part of fluid’s frame  is expressible as:18

u s a =?( u a + v s a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaqhaaWcbaWdbiaadohaa8aabaWdbiaadggaaaGccqGH 9aqpcaGG=aGaaiikaiaadwhapaWaaWbaaSqabeaapeGaamyyaaaaki abgUcaRiaadAhapaWaa0baaSqaa8qacaWGZbaapaqaa8qacaWGHbaa aOGaaiykaaaa@4521@ ,  (3.1)

where γ=( 1 v s 2 ) 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaeq4SdCMaeyypa0ZaaeWaa8aabaWdbiaaigdacqGHsislcaWG2bWd amaaDaaaleaapeGaam4CaaWdaeaapeGaaGOmaaaaaOGaayjkaiaawM caa8aadaqhbaWcbaaabaWdbiabgkHiTmaalaaapaqaa8qacaaIXaaa paqaa8qacaaIYaaaaaaaaaa@446C@   and    u a v s a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacaWG2bWdamaa DaaaleaapeGaam4CaaWdaeaapeGaamyyaaaakiabg2da9iaaicdaaa a@3FAE@ . The relative flow of entropy measured in the matter part of fluid’s rest frame is represented by v s a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaqhaaWcbaWdbiaadohaa8aabaWdbiaadggaaaaaaa@3B90@   which describes the heat flow vector q a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A74@  and is given by v s a = q a s θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaqhaaWcbaWdbiaadohaa8aabaWdbiaadggaaaGccqGH 9aqpdaWcaaWdaeaapeGaamyCa8aadaahaaWcbeqaa8qacaWGHbaaaa GcpaqaamaaCeaaleqabaGaey4fIOcaaOGaam4CamaaCeaaleqabaGa ey4fIOcaaOGaeqiUdehaaaaa@440C@   . Making use of (2.2) in (3.1), we get

u s a =γ( λ ξ ( t ) a +λΩ ξ ( φ ) a + v a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaqhaaWcbaWdbiaadohaa8aabaWdbiaadggaaaGccqGH 9aqpcqaHZoWzdaqadaWdaeaapeGaeq4UdWMaeqOVdG3damaaDaaale aapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabaWdbiaa dggaaaGccqGHRaWkcqaH7oaBcqqHPoWvcqaH+oaEpaWaa0baaSqaa8 qadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaaapaqaa8qacaWG HbaaaOGaey4kaSIaamODa8aadaahaaWcbeqaa8qacaWGHbaaaaGcca GLOaGaayzkaaaaaa@5521@ ,  (3.2)

where

v a = w a + q a s θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaahaaWcbeqaa8qacaWGHbaaaOGaeyypa0Jaam4Da8aa daahaaWcbeqaa8qacaWGHbaaaOGaey4kaSYaaSaaa8aabaWdbiaadg hapaWaaWbaaSqabeaapeGaamyyaaaaaOWdaeaadaahbaWcbeqaaiab gEHiQaaakiaadohadaahbaWcbeqaaiabgEHiQaaakiabeI7aXbaaaa a@460F@ .  (3.3)

Substituting the expression for q a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaahaaWcbeqaa8qacaWGHbaaaaaa@3A74@      obtainable by setting q a =q m a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaahaaWcbeqaa8qacaWGHbaaaOGaeyypa0JaamyCaiaa d2gapaWaaWbaaSqabeaapeGaamyyaaaaaaa@3E9E@  and using (2.4) into (3.3), we obtain

v a = a 1 ξ ( t ) a + a 2 ξ ( φ ) a + w a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamODa8aadaahaaWcbeqaa8qacaWGHbaaaOGaeyypa0Jaamyya8aa daWgaaWcbaWdbiaaigdaa8aabeaak8qacqaH+oaEpaWaa0baaSqaa8 qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeaapeGaamyy aaaakiabgUcaRiaadggapaWaaSbaaSqaa8qacaaIYaaapaqabaGcpe GaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaayjk aiaawMcaaaWdaeaapeGaamyyaaaakiabgUcaRiaadEhapaWaaWbaaS qabeaapeGaamyyaaaaaaa@4FE8@ ,  (3.4)

where a 1 = qζl s θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaamyCaiabeA7a6jaadYgaa8aabaWaaWraaSqabeaacq GHxiIkaaGccaWGZbWaaWraaSqabeaacqGHxiIkaaGccqaH4oqCaaaa aa@4445@   and  a 2 = qζ s θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyya8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaamyCaiabeA7a6bWdaeaadaahbaWcbeqaaiabgEHiQa aakiaadohadaahbaWcbeqaaiabgEHiQaaakiabeI7aXbaaaaa@4355@ .

From (3.2) and (3.4), we find that

u s a =γ[ ( λ+ a 1 ) ξ ( t ) a +( λΩ+ a 2 ) ξ ( φ ) a + w a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaqhaaWcbaWdbiaadohaa8aabaWdbiaadggaaaGccqGH 9aqpcqaHZoWzdaWadaWdaeaapeWaaeWaa8aabaWdbiabeU7aSjabgU caRiaadggapaWaaSbaaSqaa8qacaaIXaaapaqabaaak8qacaGLOaGa ayzkaaGaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiaadshaai aawIcacaGLPaaaa8aabaWdbiaadggaaaGccqGHRaWkdaqadaWdaeaa peGaeq4UdWMaeuyQdCLaey4kaSIaamyya8aadaWgaaWcbaWdbiaaik daa8aabeaaaOWdbiaawIcacaGLPaaacqaH+oaEpaWaa0baaSqaa8qa daqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaaapaqaa8qacaWGHb aaaOGaey4kaSIaam4Da8aadaahaaWcbeqaa8qacaWGHbaaaaGccaGL BbGaayzxaaaaaa@5ECA@ .  (3.5)

Maxwell’s like equations associated with the thermal vorticity 2-form Z ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwa8aadaWgaaWcbaWdbiaadggacaWGIbaapaqabaaaaa@3B52@    are of the following form27

Z ab u s b = Ε ˜ a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwa8aadaWgaaWcbaWdbiaadggacaWGIbaapaqabaGcpeGaamyD a8aadaqhaaWcbaWdbiaadohaa8aabaWdbiaadkgaaaGccqGH9aqppa GafuyLduKbaGaadaWgaaWcbaWdbiaadggaa8aabeaaaaa@4276@ ,  (3.6a)

where

Z ab =2 ϑ {b;a] , ϑ a = θ u a +β q a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwa8aadaWgaaWcbaWdbiaadggacaWGIbaapaqabaGcpeGaeyyp a0JaaGOmaiabeg9ak9aadaWgaaWcbaWdbiaacUhacaWGIbGaai4oai aadggacaGGDbaapaqabaGccaGGSaWdbiabeg9ak9aadaWgaaWcbaWd biaadggaa8aabeaak8qacqGH9aqppaWaaWraaSqabeaacqGHxiIkaa GccqaH4oqCpeGaamyDa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qa cqGHRaWkcqaHYoGycaWGXbWdamaaBaaaleaapeGaamyyaaWdaeqaaa aa@5277@ , and  Ε ˜ a =γR( q a + q 2 s θ u a ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbfw5afzaaia WaaSbaaSqaaabaaaaaaaaapeGaamyyaaWdaeqaaOWdbiabg2da9iab eo7aNjaadkfadaqadaWdaeaapeGaamyCa8aadaWgaaWcbaWdbiaadg gaa8aabeaak8qacqGHRaWkdaWcaaWdaeaapeGaamyCa8aadaahaaWc beqaa8qacaaIYaaaaaGcpaqaamaaCeaaleqabaGaey4fIOcaaOGaam 4CamaaCeaaleqabaGaey4fIOcaaOGaeqiUdehaa8qacaWG1bWdamaa BaaaleaapeGaamyyaaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@4D01@ .   (3.6b)

Following Gourgoulhon et al,33 one may obtain

Z ab =2 ε ¯ ,[a ξ ( t )b] +2 j ¯ ,[a ξ ( φ )b] + I ¯ K η abcd ξ ( t ) c ξ ( φ ) d MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwa8aadaWgaaWcbaWdbiaadggacaWGIbaapaqabaGcpeGaeyyp a0JaeyOeI0IaaGOma8aacuaH1oqzgaqeamaaBaaaleaapeGaaiilai aacUfacaWGHbaapaqabaGcdaahbaWcbeqaaiabgEHiQaaakiabe67a 4naaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaca WGIbGaaiyxaaWdaeqaaOWdbiabgUcaRiaaikdapaGabmOAayaaraWa aSbaaSqaa8qacaGGSaGaai4waiaadggaa8aabeaakmaaCeaaleqaba Gaey4fIOcaaOGaeqOVdG3aaSbaaSqaa8qadaqadaWdaeaapeGaeqOX dOgacaGLOaGaayzkaaGaamOyaiaac2faa8aabeaak8qacqGHRaWkda WcaaWdaeaaceWGjbGbaebaaeaapeGaam4saaaacqaH3oaApaWaaSba aSqaa8qacaWGHbGaamOyaiaadogacaWGKbaapaqabaGcpeGaeqOVdG 3damaaDaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa a8aabaWdbiaadogaaaGccqaH+oaEpaWaa0baaSqaa8qadaqadaWdae aapeGaeqOXdOgacaGLOaGaayzkaaaapaqaa8qacaWGKbaaaaaa@6D26@ .  (3.7)

where I ¯ = Z ab ξ ( t ) a ξ ( φ ) b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadMeagaqeaa baaaaaaaaapeGaeyypa0ZdamaaCeaaleqabaGaey4fIOcaaOGaamOw amaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacqaH+oaEpaWaa0 baaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeaa peGaamyyaaaakiabe67a49aadaqhaaWcbaWdbmaabmaapaqaa8qacq aHgpGAaiaawIcacaGLPaaaa8aabaWdbiaadkgaaaaaaa@4AB8@ , θ u t +β q t = ε ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaCeaaleqaba Gaey4fIOcaaOGaeqiUdeheaaaaaaaaa8qacaWG1bWdamaaBaaaleaa peGaamiDaaWdaeqaaOWdbiabgUcaRiabek7aIjaadghapaWaaSbaaS qaa8qacaWG0baapaqabaGcpeGaeyypa0JaeyOeI0Ydaiqbew7aLzaa raaaaa@4637@ , and   θ u φ +β q φ = j ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaCeaaleqaba Gaey4fIOcaaOGaeqiUdeheaaaaaaaaa8qacaWG1bWdamaaBaaaleaa peGaeqOXdOgapaqabaGcpeGaey4kaSIaeqOSdiMaamyCa8aadaWgaa WcbaWdbiabeA8aQbWdaeqaaOWdbiabg2da98aaceWGQbGbaebaaaa@461A@ . Here ε ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae baaaa@37B5@   and j ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOAayaara aaaa@36FD@   represents, respectively, the effective energy per entropon and effective angular momentum per entropy in the sense of Carter.37The explicit expression for I ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmysayaara aaaa@36DC@  will be obtained later on in the subsequent discussions.

On account of (3.5) and (3.7), we find from (3.6) that

Ε ˜ a =γ( ε ¯ ,b w b ) ξ ( t )a γ( j ¯ ,b w b ) ξ ( φ )a γ( λ+ a 1 ) ε ¯ ,a +γ( λΩ+ a 2 ) j ¯ ,a +γ I ¯ K η abcd w b ξ ( t ) c ξ ( φ ) d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyLduKbaG aadaWgaaWcbaaeaaaaaaaaa8qacaWGHbaapaqabaGcpeGaeyypa0Ja eq4SdC2aaeWaa8aabaGafqyTduMbaebadaWgaaWcbaWdbiaacYcaca WGIbaapaqabaGcpeGaam4Da8aadaahaaWcbeqaa8qacaWGIbaaaaGc caGLOaGaayzkaaWdamaaCeaaleqabaGaey4fIOcaaOGaeqOVdG3aaS baaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaadgga a8aabeaak8qacqGHsislcqaHZoWzdaqadaWdaeaaceWGQbGbaebada WgaaWcbaWdbiaacYcacaWGIbaapaqabaGcpeGaam4Da8aadaahaaWc beqaa8qacaWGIbaaaaGccaGLOaGaayzkaaWdamaaCeaaleqabaGaey 4fIOcaaOGaeqOVdG3aaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOga caGLOaGaayzkaaGaamyyaaWdaeqaaOWdbiabgkHiTiabeo7aNnaabm aapaqaa8qacqaH7oaBcqGHRaWkcaWGHbWdamaaBaaaleaapeGaaGym aaWdaeqaaaGcpeGaayjkaiaawMcaa8aacuaH1oqzgaqeamaaBaaale aapeGaaiilaiaadggaa8aabeaak8qacqGHRaWkcqaHZoWzdaqadaWd aeaapeGaeq4UdWMaeuyQdCLaey4kaSIaamyya8aadaWgaaWcbaWdbi aaikdaa8aabeaaaOWdbiaawIcacaGLPaaapaGabmOAayaaraWaaSba aSqaa8qacaGGSaGaamyyaaWdaeqaaOWdbiabgUcaRiabeo7aNnaala aapaqaaiqadMeagaqeaaqaa8qacaWGlbaaaiabeE7aO9aadaWgaaWc baWdbiaadggacaWGIbGaam4yaiaadsgaa8aabeaak8qacaWG3bWdam aaCaaaleqabaWdbiaadkgaaaGccqaH+oaEpaWaa0baaSqaa8qadaqa daWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeaapeGaam4yaaaaki abe67a49aadaqhaaWcbaWdbmaabmaapaqaa8qacqaHgpGAaiaawIca caGLPaaaa8aabaWdbiaadsgaaaaaaa@8DC6@ .  (3.8)

Contracting (3.8) with ξ ( t ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjk aiaawMcaaaWdaeaapeGaamyyaaaaaaa@3BCC@   and   ξ ( φ ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGL OaGaayzkaaaapaqaa8qacaWGHbaaaaaa@3C90@  in turn and using the defining expression of Ε ˜ a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyLduKbaG aadaWgaaWcbaaeaaaaaaaaa8qacaWGHbaapaqabaaaaa@38AF@ , we get

R( q t + q 2 s θ u t )= ε ¯ ,a w a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbWaaeWaa8aabaWdbiaadghapaWaaSbaaSqaa8qacaWG0baa paqabaGcpeGaey4kaSYaaSaaa8aabaWdbiaadghapaWaaWbaaSqabe aapeGaaGOmaaaaaOWdaeaadaahbaWcbeqaaiabgEHiQaaakiaadoha daahbaWcbeqaaiabgEHiQaaakiabeI7aXbaapeGaamyDa8aadaWgaa WcbaWdbiaadshaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqppaGa fqyTduMbaebadaWgaaWcbaWdbiaacYcacaWGHbaapaqabaGcpeGaam 4Da8aadaahaaWcbeqaa8qacaWGHbaaaaaa@4C91@ ,  (3.9a)

R( q φ + q 2 s θ u φ )= j ¯ ,a w a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGsbWaaeWaa8aabaWdbiaadghapaWaaSbaaSqaa8qacqaHgpGA a8aabeaak8qacqGHRaWkdaWcaaWdaeaapeGaamyCa8aadaahaaWcbe qaa8qacaaIYaaaaaGcpaqaamaaCeaaleqabaGaey4fIOcaaOGaam4C amaaCeaaleqabaGaey4fIOcaaOGaeqiUdehaa8qacaWG1bWdamaaBa aaleaapeGaeqOXdOgapaqabaaak8qacaGLOaGaayzkaaGaeyypa0Ja eyOeI0YdaiqadQgagaqeamaaBaaaleaapeGaaiilaiaadggaa8aabe aak8qacaWG3bWdamaaCaaaleqabaWdbiaadggaaaaaaa@4E4E@ .  (3.9b)

Multiplying (3.9b) by Ω and adding to (3.9a) and using (2.15), we get

u t +Ω u φ = s θ R q 2 ( ε ¯ ,a Ω j ¯ ,a ) w a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiabgUcaRiab fM6axjaadwhapaWaaSbaaSqaa8qacqaHgpGAa8aabeaak8qacqGH9a qpdaWcaaWdaeaadaahbaWcbeqaaiabgEHiQaaakiaadohadaahbaWc beqaaiabgEHiQaaakiabeI7aXbqaa8qacaWGsbGaamyCa8aadaahaa Wcbeqaa8qacaaIYaaaaaaakmaabmaapaqaaiqbew7aLzaaraWaaSba aSqaa8qacaGGSaGaamyyaaWdaeqaaOWdbiabgkHiTiabfM6ax9aace WGQbGbaebadaWgaaWcbaWdbiaacYcacaWGHbaapaqabaaak8qacaGL OaGaayzkaaGaam4Da8aadaahaaWcbeqaa8qacaWGHbaaaaaa@5435@ .  (3.10)

On account (2.22), we reduce (3.10) to take form

Φ= μ s θ R q 2 ( ε ¯ ,a Ω j ¯ ,a ) w a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuOPdyeeaa aaaaaaa8qacqGH9aqpcqGHsisldaWcaaWdaeaadaahbaWcbeqaaiab gEHiQaaakiabeY7aTnaaCeaaleqabaGaey4fIOcaaOGaam4CamaaCe aaleqabaGaey4fIOcaaOGaeqiUdehabaWdbiaadkfacaWGXbWdamaa CaaaleqabaWdbiaaikdaaaaaaOWaaeWaa8aabaGafqyTduMbaebada WgaaWcbaWdbiaacYcacaWGHbaapaqabaGcpeGaeyOeI0IaeuyQdC1d aiqadQgagaqeamaaBaaaleaapeGaaiilaiaadggaa8aabeaaaOWdbi aawIcacaGLPaaacaWG3bWdamaaCaaaleqabaWdbiaadggaaaaaaa@5176@ ,  (3.11)

which describes the injection energy of the matter part of fluid in terms of the effective energy per entropon and effective angular momentum per entropy associated with the entropy fluid that couples the rotation of matter part of fluid about the rotation axis.

Making use of (2.1a,b) in (3.8), we find contra variant toroidal  components of Ε ˜ a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyLduKbaG aadaWgaaWcbaaeaaaaaaaaa8qacaWGHbaapaqabaaaaa@38AF@  as follows :

Ε ˜ t = γ K [ g φφ ( ε ¯ ,a w a )+ g tφ ( j ¯ ,a w a ) ]+ γR q 2 s θ w t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyLduKbaG aadaahaaWcbeqaaabaaaaaaaaapeGaamiDaaaakiabg2da9iabgkHi Tmaalaaapaqaa8qacqaHZoWza8aabaWdbiaadUeaaaWaamWaa8aaba WdbiaadEgapaWaaSbaaSqaa8qacqaHgpGAcqaHgpGAa8aabeaak8qa daqadaWdaeaacuaH1oqzgaqeamaaBaaaleaapeGaaiilaiaadggaa8 aabeaak8qacaWG3bWdamaaCaaaleqabaWdbiaadggaaaaakiaawIca caGLPaaacqGHRaWkcaWGNbWdamaaBaaaleaapeGaamiDaiabeA8aQb WdaeqaaOWdbmaabmaapaqaaiqadQgagaqeamaaBaaaleaapeGaaiil aiaadggaa8aabeaak8qacaWG3bWdamaaCaaaleqabaWdbiaadggaaa aakiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHRaWkdaWcaaWdaeaa peGaeq4SdCMaamOuaiaadghapaWaaWbaaSqabeaapeGaaGOmaaaaaO WdaeaadaahbaWcbeqaaiabgEHiQaaakiaadohadaahbaWcbeqaaiab gEHiQaaakiabeI7aXbaapeGaam4Da8aadaahaaWcbeqaa8qacaWG0b aaaaaa@64A8@   (3.12a)

Ε ˜ φ = γ K [ g tφ ( ε ¯ ,a w a )+ g tt ( j ¯ ,a w a ) ]+ γR q 2 s θ w φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyLduKbaG aadaahaaWcbeqaaabaaaaaaaaapeGaeqOXdOgaaOGaeyypa0ZaaSaa a8aabaWdbiabeo7aNbWdaeaapeGaam4saaaadaWadaWdaeaapeGaam 4za8aadaWgaaWcbaWdbiaadshacqaHgpGAa8aabeaak8qadaqadaWd aeaacuaH1oqzgaqeamaaBaaaleaapeGaaiilaiaadggaa8aabeaak8 qacaWG3bWdamaaCaaaleqabaWdbiaadggaaaaakiaawIcacaGLPaaa cqGHRaWkcaWGNbWdamaaBaaaleaapeGaamiDaiaadshaa8aabeaak8 qadaqadaWdaeaaceWGQbGbaebadaWgaaWcbaWdbiaacYcacaWGHbaa paqabaGcpeGaam4Da8aadaahaaWcbeqaa8qacaWGHbaaaaGccaGLOa GaayzkaaaacaGLBbGaayzxaaGaey4kaSYaaSaaa8aabaWdbiabeo7a NjaadkfacaWGXbWdamaaCaaaleqabaWdbiaaikdaaaaak8aabaWaaW raaSqabeaacqGHxiIkaaGccaWGZbWaaWraaSqabeaacqGHxiIkaaGc cqaH4oqCaaWdbiaadEhapaWaaWbaaSqabeaapeGaeqOXdOgaaaaa@63BB@   (3.12b)

where third relation of (3.6b) along with (2.4) and u a q a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiaadghapaWa aWbaaSqabeaapeGaamyyaaaakiabg2da9iaaicdaaaa@3C5D@  are used. Making use of the third relation of (3.6b), we find that

Ω ˜ = 1 l + s θ u t γRU q 2 ( Ε ˜ t l Ε ˜ φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaG aaqaaaaaaaaaWdbiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qa caWGSbaaaiabgUcaRmaalaaapaqaamaaCeaaleqabaGaey4fIOcaaO Gaam4CamaaCeaaleqabaGaey4fIOcaaOGaeqiUde3dbiaadwhapaWa aSbaaSqaa8qacaWG0baapaqabaaakeaapeGaeq4SdCMaamOuaiaadw facaWGXbWdamaaCaaaleqabaWdbiaaikdaaaaaaOWaaeWaa8aabaGa fuyLduKbaGaadaahaaWcbeqaa8qacaWG0baaaOGaeyOeI0IaamiBa8 aacuqHvoqrgaacamaaCaaaleqabaWdbiabeA8aQbaaaOGaayjkaiaa wMcaaaaa@523F@   (3.13)

where Ω ˜ = u φ u t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaG aaqaaaaaaaaaWdbiabg2da9maalaaapaqaa8qacaWG1bWdamaaCaaa leqabaWdbiabeA8aQbaaaOWdaeaapeGaamyDa8aadaahaaWcbeqaa8 qacaWG0baaaaaaaaa@3E54@   represents the rotational velocity of the matter part of fluid and U= u t u φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGvbGaeyypa0JaamyDa8aadaahaaWcbeqaa8qacaWG0baaaOGa amyDa8aadaWgaaWcbaWdbiabeA8aQbWdaeqaaaaa@3D51@ is the rotational potential [37].  On account of (3.12a,b),  we obtain

Ε ˜ t l Ε ˜ φ = γ( g φφ +l g tφ ) K ( ε ¯ ,a Ω ,a ) w a + 1 U ( u t w t + u φ w φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyLduKbaG aadaahaaWcbeqaaabaaaaaaaaapeGaamiDaaaakiabgkHiTiaadYga paGafuyLduKbaGaadaahaaWcbeqaa8qacqaHgpGAaaGccqGH9aqpcq GHsisldaWcaaWdaeaapeGaeq4SdC2aaeWaa8aabaWdbiaadEgapaWa aSbaaSqaa8qacqaHgpGAcqaHgpGAa8aabeaak8qacqGHRaWkcaWGSb Gaam4za8aadaWgaaWcbaWdbiaadshacqaHgpGAa8aabeaaaOWdbiaa wIcacaGLPaaaa8aabaWdbiaadUeaaaWaaeWaa8aabaGafqyTduMbae badaWgaaWcbaWdbiaacYcacaWGHbaapaqabaGcpeGaeyOeI0IaeuyQ dC1damaaBaaaleaapeGaaiilaiaadggaa8aabeaaaOWdbiaawIcaca GLPaaacaWG3bWdamaaCaaaleqabaWdbiaadggaaaGccqGHRaWkdaWc aaWdaeaapeGaaGymaaWdaeaapeGaamyvaaaadaqadaWdaeaapeGaam yDa8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacaWG3bWdamaaCaaa leqabaWdbiaadshaaaGccqGHRaWkcaWG1bWdamaaBaaaleaapeGaeq OXdOgapaqabaGcpeGaam4Da8aadaahaaWcbeqaa8qacqaHgpGAaaaa kiaawIcacaGLPaaaaaa@6B93@   (3.14)

It follows from (2.18) that

u t w t + u φ w φ = λK u t g AB ( Φ ,A +j Ω ,A )( ξ ( t )B l ξ ( φ )B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bWdamaaBaaaleaapeGaamiDaaWdaeqaaOWdbiaadEhapaWa aWbaaSqabeaapeGaamiDaaaakiabgUcaRiaadwhapaWaaSbaaSqaa8 qacqaHgpGAa8aabeaak8qacaWG3bWdamaaCaaaleqabaWdbiabeA8a Qbaakiabg2da9iabgkHiTmaalaaapaqaa8qacqaH7oaBcaWGlbGaam yDa8aadaWgaaWcbaWdbiaadshaa8aabeaaaOqaa8qadaGcaaWdaeaa peGaeyOeI0Iaam4zaaWcbeaaaaGccaGGScYdamaaCaaaleqabaWdbi aadgeacaWGcbaaaOWaaeWaa8aabaGaeuOPdy0aaSbaaSqaa8qacaGG SaGaamyqaaWdaeqaaOWdbiabgUcaRiaadQgacqqHPoWvpaWaaSbaaS qaa8qacaGGSaGaamyqaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaa paqaamaaCeaaleqabaGaey4fIOcaaOGaeqOVdG3aaSbaaSqaa8qada qadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaadkeaa8aabeaak8qa cqGHsislcaWGSbWdamaaCeaaleqabaGaey4fIOcaaOGaeqOVdG3aaS baaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaGaamOq aaWdaeqaaaGcpeGaayjkaiaawMcaaaaa@6A2F@    (3.15)

where AB MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGScYdamaaCaaaleqabaWdbiaadgeacaWGcbaaaaaa@3940@  denotes an alternating symbol taking values 1 or .  

It follows from (3.13), (3.14),and (3.15) that

Ω ˜ = q φ q t + s θ u t ( g φφ +l g tφ ) Φ ¯ RKU q 2 ( ln s n ) w ,a a λK u t U g AB ( Φ ,A +j Ω ,A )( ξ ( t )B l ξ ( φ )B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaG aaqaaaaaaaaaWdbiabg2da9maalaaapaqaa8qacaWGXbWdamaaCaaa leqabaWdbiabeA8aQbaaaOWdaeaapeGaamyCa8aadaahaaWcbeqaa8 qacaWG0baaaaaakiabgUcaRmaalaaapaqaamaaCeaaleqabaGaey4f IOcaaOGaam4CamaaCeaaleqabaGaey4fIOcaaOGaeqiUde3dbiaadw hapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeWaaeWaa8aabaWdbiaa dEgapaWaaSbaaSqaa8qacqaHgpGAcqaHgpGAa8aabeaak8qacqGHRa WkcaWGSbGaam4za8aadaWgaaWcbaWdbiaadshacqaHgpGAa8aabeaa aOWdbiaawIcacaGLPaaapaGafuOPdyKbaebaaeaapeGaamOuaiaadU eacaWGvbGaamyCa8aadaahaaWcbeqaa8qacaaIYaaaaaaakmaabmaa paqaaiGacYgacaGGUbWdbmaalaaapaqaamaaCeaaleqabaGaey4fIO caaOGaam4Caaqaa8qacaWGUbaaaaGaayjkaiaawMcaa8aadaqhbaWc baWdbiaacYcacaWGHbaapaqaaaaak8qacaWG3bWdamaaCaaaleqaba WdbiaadggaaaGccqGHsisldaWcaaWdaeaapeGaeq4UdWMaam4saiaa dwhapaWaaSbaaSqaa8qacaWG0baapaqabaaakeaapeGaamyvamaaka aapaqaa8qacqGHsislcaWGNbaaleqaaaaakiaacYkipaWaaWbaaSqa beaapeGaamyqaiaadkeaaaGcdaqadaWdaeaacqqHMoGrdaWgaaWcba WdbiaacYcacaWGbbaapaqabaGcpeGaey4kaSIaamOAaiabfM6ax9aa daWgaaWcbaWdbiaacYcacaWGbbaapaqabaaak8qacaGLOaGaayzkaa WaaeWaa8aabaWaaWraaSqabeaacqGHxiIkaaGccqaH+oaEdaWgaaWc baWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaamOqaaWdae qaaOWdbiabgkHiTiaadYgapaWaaWraaSqabeaacqGHxiIkaaGccqaH +oaEdaWgaaWcbaWdbmaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPa aacaWGcbaapaqabaaak8qacaGLOaGaayzkaaaaaa@8C9D@ ,  (3.16)

where the relations q t =l q φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGXbWdamaaCaaaleqabaWdbiaadshaaaGccqGH9aqpcaWGSbGa amyCa8aadaahaaWcbeqaa8qacqaHgpGAaaaaaa@3D52@    and  ( ε ¯ ,a Ω j ¯ ,a ) w a = Φ ¯ ( ln s n ) w ,a a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaacuaH1oqzgaqeamaaBaaaleaapeGaaiilaiaadgga a8aabeaak8qacqGHsislcqqHPoWvpaGabmOAayaaraWaaSbaaSqaa8 qacaGGSaGaamyyaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadEhapaWa aWbaaSqabeaapeGaamyyaaaakiabg2da9iabgkHiT8aacuqHMoGrga qea8qadaqadaWdaeaaciGGSbGaaiOBa8qadaWcaaWdaeaadaahbaWc beqaaiabgEHiQaaakiaadohaaeaapeGaamOBaaaaaiaawIcacaGLPa aapaWaa0raaSqaa8qacaGGSaGaamyyaaWdaeaaaaGcpeGaam4Da8aa daahaaWcbeqaa8qacaWGHbaaaaaa@51D8@   are used. This second relation will be derived later on and is given in Sec.5. The symbol Φ ¯ =( ε ¯ Ω j ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuOPdyKbae baqaaaaaaaaaWdbiabg2da9maabmaapaqaaiqbew7aLzaaraWdbiab gkHiTiabfM6ax9aaceWGQbGbaebaa8qacaGLOaGaayzkaaaaaa@3FB7@  represents the injection energy per entropon corresponding to the entropy fluid. It is observed from (3.16) that the rotational velocity of the matter part of fluid is composed of the sum of three terms of which (i) the first term is the ratio of the toroidal components of the heat flow vector, (ii) the second term is the variation of the entropy per baryon along the meridional circulation velocity and is coupled to thermodynamic variables and metric components, and (iii) third term is the rotation contributed by the linear combination of the gradient of the injection energy corresponding to the matter part of the fluid and the differential rotation arising due to the rotation about the rotation axis and the rotational potential.

In order to understand the interpretation of (3.16) as the rotational velocity of the matter part of the fluid we turn back to (2.2) which tells us that

Ω ˜ = Ω+ w φ λ 1+ w t λ Ω+ 1 λ ( w φ Ω w t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaG aaqaaaaaaaaaWdbiabg2da9maalaaapaqaa8qacqqHPoWvcqGHRaWk daWcaaWdaeaapeGaam4Da8aadaahaaWcbeqaa8qacqaHgpGAaaaak8 aabaWdbiabeU7aSbaaa8aabaWdbiaaigdacqGHRaWkdaWcaaWdaeaa peGaam4Da8aadaahaaWcbeqaa8qacaWG0baaaaGcpaqaa8qacqaH7o aBaaaaaiabgIKi7kabfM6axjabgUcaRmaalaaapaqaa8qacaaIXaaa paqaa8qacqaH7oaBaaWaaeWaa8aabaWdbiaadEhapaWaaWbaaSqabe aapeGaeqOXdOgaaOGaeyOeI0IaeuyQdCLaam4Da8aadaahaaWcbeqa a8qacaWG0baaaaGccaGLOaGaayzkaaaaaa@56CE@ ,  (3.17)

where in the expansion second and higher orders are ignored. The second term on the right hand side of (3.17) may be regarded as the rotational velocity of the matter part of fluid arising due to the meridional circulation velocity and will now be denoted by the symbol Ω ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbae baaaa@379C@   for further discussion. The first term Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHPoWvaaa@37A5@ on the right hand side of (3.17) represents the rotational velocity of the matter part of fluid about the rotation axis. Making use of w φ = 1 K ( g tφ g tA g tt g φA ) u A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bWdamaaCaaaleqabaWdbiabeA8aQbaakiabg2da9iabgkHi Tmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGlbaaamaabmaapaqaa8 qacaWGNbWdamaaBaaaleaapeGaamiDaiabeA8aQbWdaeqaaOWdbiaa dEgapaWaaSbaaSqaa8qacaWG0bGaamyqaaWdaeqaaOWdbiabgkHiTi aadEgapaWaaSbaaSqaa8qacaWG0bGaamiDaaWdaeqaaOWdbiaadEga paWaaSbaaSqaa8qacqaHgpGAcaWGbbaapaqabaaak8qacaGLOaGaay zkaaGaamyDa8aadaahaaWcbeqaa8qacaWGbbaaaaaa@4FFC@   and  w t = 1 K ( g φφ g tA g tφ g φA ) u A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bWdamaaCaaaleqabaWdbiaadshaaaGccqGH9aqpdaWcaaWd aeaapeGaaGymaaWdaeaapeGaam4saaaadaqadaWdaeaapeGaam4za8 aadaWgaaWcbaWdbiabeA8aQjabeA8aQbWdaeqaaOWdbiaadEgapaWa aSbaaSqaa8qacaWG0bGaamyqaaWdaeqaaOWdbiabgkHiTiaadEgapa WaaSbaaSqaa8qacaWG0bGaeqOXdOgapaqabaGcpeGaam4za8aadaWg aaWcbaWdbiabeA8aQjaadgeaa8aabeaaaOWdbiaawIcacaGLPaaaca WG1bWdamaaCaaaleqabaWdbiaadgeaaaaaaa@4FD4@    obtainable from (2.2) and simplifying, one may obtain

Ω ¯ = 1 λK [ ( ω ˜ Ω ) g φφ g tA u A +( g tt Ω ω ˜ g φφ ) g φA u A ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbae baqaaaaaaaaaWdbiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qa cqaH7oaBcaWGlbaaamaadmaapaqaa8qadaqadaWdaeaacuaHjpWDga aca8qacqGHsislcqqHPoWvaiaawIcacaGLPaaacaWGNbWdamaaBaaa leaapeGaeqOXdOMaeqOXdOgapaqabaGcpeGaam4za8aadaWgaaWcba WdbiaadshacaWGbbaapaqabaGcpeGaamyDa8aadaahaaWcbeqaa8qa caWGbbaaaOGaey4kaSYaaeWaa8aabaWdbiaadEgapaWaaSbaaSqaa8 qacaWG0bGaamiDaaWdaeqaaOWdbiabgkHiTiabfM6ax9aacuaHjpWD gaaca8qacaWGNbWdamaaBaaaleaapeGaeqOXdOMaeqOXdOgapaqaba aak8qacaGLOaGaayzkaaGaam4za8aadaWgaaWcbaWdbiabeA8aQjaa dgeaa8aabeaak8qacaWG1bWdamaaCaaaleqabaWdbiaadgeaaaaaki aawUfacaGLDbaaaaa@6394@ ,  (3.18)

where ω ˜ = g tφ g φφ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyYdCNbaG aaqaaaaaaaaaWdbiabg2da9iabgkHiTmaalaaapaqaa8qacaWGNbWd amaaBaaaleaapeGaamiDaiabeA8aQbWdaeqaaaGcbaWdbiaadEgapa WaaSbaaSqaa8qacqaHgpGAcqaHgpGAa8aabeaaaaaaaa@42EB@    represents the frame dragging effect [35]. Thus (3.17) may be rewritten as

Ω ˜ =Ω+ Ω ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaG aaqaaaaaaaaaWdbiabg2da9iabfM6axjabgUcaR8aacuqHPoWvgaqe aaaa@3CDF@ .  (3.19)

It is evident from (3.16) and (3.17) that these two versions of rotational velocity of the matter part of fluid are different in the sense that (3.16) describes the rotation in terms of the geometrical angular momentum while (3.17) split the rotation into two parts composed of rotation about the rotation axis and the rotation caused by the meridional circulations. As is known that the geometric angular momentum l  is expressible as a function of rotational velocity about the rotation axis in the case of circular spacetime but due to non-circularity assumption such explicit functional relation does not seem possible because of the presence of meridional circulation velocity. Thus we need to deduce an expression for the rotational velocity of the matter part of fluid which may resemble with (3.17).We now confine our attention to derivation of such expression by invoking Maxwell’s like equations describing the motion of the entropy fluid and to obtain the relation between the rotation of both the matter part and the entropy fluids in following section.

Rotational velocity of the entropy fluid

This section is devoted to study the rotation of the entropy fluid induced by the rotation of the matter part of fluid that may arise because of dynamic coupling between the matter part of fluid and the entropy fluid and to explore various consequences related with the poloidal components of the matter part of fluid’s 4-velocity and the entropy production rate. The presence of Killing twist scalars due to meridional circulation of the matter part of fluid is expected to contribute to the dynamic evolution of the entropy fluid. This requires to find a covariant solution to Maxwell’s like equations associated with the thermal vorticity 2-form  Z ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGAbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@391D@ . For computational convenience, we use the exterior calculus and results developed in.33 In the language of differential forms, (3.6) is expressible as

u s .d ϑ _ = Ε ˜ _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiaac6cacaWG KbWdaiqbeg9akzaaDaWdbiabg2da9iabgkHiT8aacuqHvoqrgaacga qhaaaa@3F9F@   (4.1)

Since u s .d ϑ _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiaac6cacaWG KbWdaiqbeg9akzaaDaaaaa@3BF3@  is a 1-form, it can be decomposed as

u s .d ϑ _ = b 1 ξ ( t ) + b 2 ξ ( φ ) + Y _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiaac6cacaWG KbWdaiqbeg9akzaaDaWdbiabg2da9iaadkgapaWaaSbaaSqaa8qaca aIXaaapaqabaGcdaahbaWcbeqaaiabgEHiQaaakiabe67a4naaBaaa leaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabeaak8 qacqGHRaWkcaWGIbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWaaWra aSqabeaacqGHxiIkaaGccqaH+oaEdaWgaaWcbaWdbmaabmaapaqaa8 qacqaHgpGAaiaawIcacaGLPaaaa8aabeaak8qacqGHRaWkpaGabmyw ayaaDaaaaa@508F@   (4.2)

where 1-form Y _ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaDa aaaa@36F8@  lies in the meridional plane orthogonal to both ξ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjk aiaawMcaaaWdaeqaaaaa@3AD5@  and ξ ( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGL OaGaayzkaaaapaqabaaaaa@3B99@ . Contraction of (4.2) with ξ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiDaaGaayjk aiaawMcaaaWdaeqaaaaa@3AD5@  and ξ ( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGL OaGaayzkaaaapaqabaaaaa@3B99@  in turn gives that

u s .d ϑ _ . ξ ( t ) = b 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiaac6cacaWG KbWdaiqbeg9akzaaDaWdbiaac6cacqaH+oaEpaWaaSbaaSqaa8qada qadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaWdaeqaaOWdbiabg2da 9iaadkgapaWaaSbaaSqaa8qacaaIXaaapaqabaaaaa@448F@ ,   (4.3a)

u s .d ϑ _ . ξ ( φ ) = b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiaac6cacaWG KbWdaiqbeg9akzaaDaWdbiaac6cacqaH+oaEpaWaaSbaaSqaa8qada qadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaaapaqabaGcpeGaeyyp a0JaamOya8aadaWgaaWcbaWdbiaaikdaa8aabeaaaaa@4554@ .  (4.3b)

Making use of the symmetry conditions £ ξ ( t ) ϑ _ =0= £ ξ ( φ ) ϑ _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGJcWdamaaBaaaleaapeGaeqOVdG3damaaBaaameaapeWaaeWa a8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabeaaaSqabaGccuaHrp Gsgaqha8qacqGH9aqpcaaIWaGaeyypa0Jaai4Oa8aadaWgaaWcbaWd biabe67a49aadaWgaaadbaWdbmaabmaapaqaa8qacqaHgpGAaiaawI cacaGLPaaaa8aabeaaaSqabaGccuaHrpGsgaqhaaaa@49D5@  in the left hand side of (4.3a) and (4.3b), respectively, with the aid of (3.5), we get

b 1 =γw.d( ϑ _ . ξ ( t ) ), b 2 =γw.d( ϑ _ . ξ ( φ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGIbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabg2da9iab eo7aNjaadEhacaGGUaGaamizamaabmaapaqaaiqbeg9akzaaDaWdbi aac6cacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiDaaGa ayjkaiaawMcaaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacYcacaWGIb WdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabg2da9iabeo7aNjaa dEhacaGGUaGaamizamaabmaapaqaaiqbeg9akzaaDaWdbiaac6cacq aH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGa ayzkaaaapaqabaaak8qacaGLOaGaayzkaaaaaa@583C@ .  (4.4)

Substitution of (4.4) in (4.2) yields that

u s .d ϑ _ =γ[ w.d( ϑ _ . ξ ( t ) ) ] ξ ( t ) +γ[ w.d( ϑ _ . ξ ( φ ) ) ] ξ ( φ ) + Y _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiaac6cacaWG KbWdaiqbeg9akzaaDaWdbiabg2da9iabeo7aNnaadmaapaqaa8qaca WG3bGaaiOlaiaadsgadaqadaWdaeaacuaHrpGsgaqha8qacaGGUaGa eqOVdG3damaaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcaca GLPaaaa8aabeaaaOWdbiaawIcacaGLPaaaaiaawUfacaGLDbaapaWa aWraaSqabeaacqGHxiIkaaGccqaH+oaEdaWgaaWcbaWdbmaabmaapa qaa8qacaWG0baacaGLOaGaayzkaaaapaqabaGcpeGaey4kaSIaeq4S dC2aamWaa8aabaWdbiaadEhacaGGUaGaamizamaabmaapaqaaiqbeg 9akzaaDaWdbiaac6cacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaa peGaeqOXdOgacaGLOaGaayzkaaaapaqabaaak8qacaGLOaGaayzkaa aacaGLBbGaayzxaaWdamaaCeaaleqabaGaey4fIOcaaOGaeqOVdG3a aSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaaapa qabaGcpeGaey4kaSYdaiqadMfagaqhaaaa@6BFE@ .  (4.5)

In order to compute , we proceed with the following construction

u s .d ϑ _ = u s .d x _ + u s .d y _ + u s .d( θ w _ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiaac6cacaWG KbWdaiqbeg9akzaaDaWdbiabg2da9iaadwhapaWaaSbaaSqaa8qaca WGZbaapaqabaGcpeGaaiOlaiaadsgapaGabmiEayaaDaWdbiabgUca RiaadwhapaWaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaaiOlaiaads gapaGabmyEayaaDaWdbiabgUcaRiaadwhapaWaaSbaaSqaa8qacaWG ZbaapaqabaGcpeGaaiOlaiaadsgadaqadaWdaeaadaahbaWcbeqaai abgEHiQaaakiabeI7aXjqadEhagaqhaaWdbiaawIcacaGLPaaaaaa@52F6@ ,  (4.6)

Where

x _ =λ θ ξ _ ( t ) +λΩ θ ξ _ ( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiEayaaDa aeaaaaaaaaa8qacqGH9aqpcqaH7oaBpaWaaWraaSqabeaacqGHxiIk aaGccqaH4oqCcuaH+oaEgaqhamaaBaaaleaapeWaaeWaa8aabaWdbi aadshaaiaawIcacaGLPaaaa8aabeaak8qacqGHRaWkcqaH7oaBcqqH PoWvpaWaaWraaSqabeaacqGHxiIkaaGccqaH4oqCcuaH+oaEgaqham aaBaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaayjkaiaawMcaaaWd aeqaaaaa@4E72@   and  y _ =βqζl ξ _ ( t ) +βqζ ξ _ ( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaDa aeaaaaaaaaa8qacqGH9aqpcqaHYoGycaWGXbGaeqOTdONaamiBa8aa cuaH+oaEgaqhamaaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawI cacaGLPaaaa8aabeaak8qacqGHRaWkcqaHYoGycaWGXbGaeqOTdO3d aiqbe67a4zaaDaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOgaca GLOaGaayzkaaaapaqabaaaaa@4D5C@ .  (4.7)

Performing similar calculations as are done in Sec.3 in the case of particle vorticity 2-form, we find that

u s .d ϑ _ =γ( λ+ a 1 )d[ ( x _ + y _ ). ξ ( t ) ]γ( λΩ+ a 2 )d[ ( x _ + y _ ). ξ ( φ ) ]+ γ C 2 n df+γw.d x _ +γw.d y _ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bWdamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiaac6cacaWG KbWdaiqbeg9akzaaDaWdbiabg2da9iabgkHiTiabeo7aNnaabmaapa qaa8qacqaH7oaBcqGHRaWkcaWGHbWdamaaBaaaleaapeGaaGymaaWd aeqaaaGcpeGaayjkaiaawMcaaiaadsgadaWadaWdaeaapeWaaeWaa8 aabaGabmiEayaaDaWdbiabgUcaR8aaceWG5bGba0baa8qacaGLOaGa ayzkaaGaaiOlaiabe67a49aadaWgaaWcbaWdbmaabmaapaqaa8qaca WG0baacaGLOaGaayzkaaaapaqabaaak8qacaGLBbGaayzxaaGaeyOe I0Iaeq4SdC2aaeWaa8aabaWdbiabeU7aSjabfM6axjabgUcaRiaadg gapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaayzkaaGa amizamaadmaapaqaa8qadaqadaWdaeaaceWG4bGba0bapeGaey4kaS YdaiqadMhagaqhaaWdbiaawIcacaGLPaaacaGGUaGaeqOVdG3damaa BaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaayjkaiaawMcaaaWdae qaaaGcpeGaay5waiaaw2faaiabgUcaRmaalaaapaqaa8qacqaHZoWz caWGdbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaWdbiaad6gaaa GaamizaiaadAgacqGHRaWkcqaHZoWzcaWG3bGaaiOlaiaadsgapaGa bmiEayaaDaWdbiabgUcaRiabeo7aNjaadEhacaGGUaGaamiza8aace WG5bGba0baaaa@8032@ .  (4.8)

Replacing the left hand side of (4.5) by (4.8) and contracting the resulting equation with an arbitrary vector  lying in the meridional plane, we get

Y _ .v= u s .d ϑ _ .v=γ( λ+ a 1 )v.d[ ( x _ + y _ ). ξ ( t ) ]γ( λΩ+ a 2 )v.d[ ( x _ + y _ ). ξ ( φ ) ]+ γ C 2 n v.df+γw.d x _ .v+γw.d y _ .v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaDa aeaaaaaaaaa8qacaGGUaGaamODaiabg2da9iaadwhapaWaaSbaaSqa a8qacaWGZbaapaqabaGcpeGaaiOlaiaadsgapaGafqy0dOKba0bape GaaiOlaiaadAhacqGH9aqpcqGHsislcqaHZoWzdaqadaWdaeaapeGa eq4UdWMaey4kaSIaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaaaO WdbiaawIcacaGLPaaacaWG2bGaaiOlaiaadsgadaWadaWdaeaapeWa aeWaa8aabaGabmiEayaaDaWdbiabgUcaR8aaceWG5bGba0baa8qaca GLOaGaayzkaaGaaiOlaiabe67a49aadaWgaaWcbaWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaapaqabaaak8qacaGLBbGaayzxaa GaeyOeI0Iaeq4SdC2aaeWaa8aabaWdbiabeU7aSjabfM6axjabgUca RiaadggapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qacaGLOaGaay zkaaGaamODaiaac6cacaWGKbWaamWaa8aabaWdbmaabmaapaqaaiqa dIhagaqha8qacqGHRaWkpaGabmyEayaaDaaapeGaayjkaiaawMcaai aac6cacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdOga caGLOaGaayzkaaaapaqabaaak8qacaGLBbGaayzxaaGaey4kaSYaaS aaa8aabaWdbiabeo7aNjaadoeapaWaaSbaaSqaa8qacaaIYaaapaqa baaakeaapeGaamOBaaaacaWG2bGaaiOlaiaadsgacaWGMbGaey4kaS Iaeq4SdCMaam4Daiaac6cacaWGKbWdaiqadIhagaqha8qacaGGUaGa amODaiabgUcaRiabeo7aNjaadEhacaGGUaGaamiza8aaceWG5bGba0 bapeGaaiOlaiaadAhaaaa@8E05@   (4.9)

Making use of the results w.d x _ .v= λ θ Kn ( τ ( t ) +Ω τ ( φ ) )df.v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bGaaiOlaiaadsgapaGabmiEayaaDaWdbiaac6cacaWG2bGa eyypa0ZaaSaaa8aabaWdbiabeU7aS9aadaahbaWcbeqaaiabgEHiQa aakiabeI7aXbqaa8qacaWGlbGaamOBaaaadaqadaWdaeaapeGaeqiX dq3damaaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPa aaa8aabeaak8qacqGHRaWkcqqHPoWvcqaHepaDpaWaaSbaaSqaa8qa daqadaWdaeaapeGaeqOXdOgacaGLOaGaayzkaaaapaqabaaak8qaca GLOaGaayzkaaGaamizaiaadAgacaGGUaGaamODaaaa@5554@   and w.d y _ .v= βqζ Kn ( l τ ( t ) + τ ( φ ) )df.v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bGaaiOlaiaadsgapaGabmyEayaaDaWdbiaac6cacaWG2bGa eyypa0ZaaSaaa8aabaWdbiabek7aIjaadghacqaH2oGEa8aabaWdbi aadUeacaWGUbaaamaabmaapaqaa8qacaWGSbGaeqiXdq3damaaBaaa leaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabeaak8 qacqGHRaWkcqaHepaDpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOX dOgacaGLOaGaayzkaaaapaqabaaak8qacaGLOaGaayzkaaGaamizai aadAgacaGGUaGaamODaaaa@547B@

In the last two terms of (4.9) and simplifying, we find that

Y _ =γ( λ+ a 1 )d[ ( x _ + y _ ). ξ ( t ) ]γ( λΩ+ a 2 )d[ ( x _ + y _ ). ξ ( φ ) ]+ γ Kn [ K C 2 +( λ θ +βqζl ) τ ( t ) +( λΩ θ +βqζ ) τ ( φ ) ]df MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaDa aeaaaaaaaaa8qacqGH9aqpcqGHsislcqaHZoWzdaqadaWdaeaapeGa eq4UdWMaey4kaSIaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaaaO WdbiaawIcacaGLPaaacaWGKbWaamWaa8aabaWdbmaabmaapaqaaiqa dIhagaqha8qacqGHRaWkpaGabmyEayaaDaaapeGaayjkaiaawMcaai aac6cacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaamiDaaGa ayjkaiaawMcaaaWdaeqaaaGcpeGaay5waiaaw2faaiabgkHiTiabeo 7aNnaabmaapaqaa8qacqaH7oaBcqqHPoWvcqGHRaWkcaWGHbWdamaa BaaaleaapeGaaGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadsgada WadaWdaeaapeWaaeWaa8aabaGabmiEayaaDaWdbiabgUcaR8aaceWG 5bGba0baa8qacaGLOaGaayzkaaGaaiOlaiabe67a49aadaWgaaWcba Wdbmaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPaaaa8aabeaaaOWd biaawUfacaGLDbaacqGHRaWkdaWcaaWdaeaapeGaeq4SdCgapaqaa8 qacaWGlbGaamOBaaaadaWadaWdaeaapeGaam4saiaadoeapaWaaSba aSqaa8qacaaIYaaapaqabaGcpeGaey4kaSYaaeWaa8aabaWdbiabeU 7aS9aadaahbaWcbeqaaiabgEHiQaaakiabeI7aX9qacqGHRaWkcqaH YoGycaWGXbGaeqOTdONaamiBaaGaayjkaiaawMcaaiabes8a09aada WgaaWcbaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaapaqa baGcpeGaey4kaSYaaeWaa8aabaWdbiabeU7aSjabfM6ax9aadaahba WcbeqaaiabgEHiQaaakiabeI7aX9qacqGHRaWkcqaHYoGycaWGXbGa eqOTdOhacaGLOaGaayzkaaGaeqiXdq3damaaBaaaleaapeWaaeWaa8 aabaWdbiabeA8aQbGaayjkaiaawMcaaaWdaeqaaaGcpeGaay5waiaa w2faaiaadsgacaWGMbaaaa@983E@   (4.10)

Using ( x _ + y _ ). ξ ( t ) = ε ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaGabmiEayaaDaWdbiabgUcaR8aaceWG5bGba0baa8qa caGLOaGaayzkaaGaaiOlaiabe67a49aadaWgaaWcbaWdbmaabmaapa qaa8qacaWG0baacaGLOaGaayzkaaaapaqabaGcpeGaeyypa0JaeyOe I0Ydaiqbew7aLzaaraaaaa@4682@   and ( x _ + y _ ). ξ ( φ ) = j ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaGabmiEayaaDaWdbiabgUcaR8aaceWG5bGba0baa8qa caGLOaGaayzkaaGaaiOlaiabe67a49aadaWgaaWcbaWdbmaabmaapa qaa8qacqaHgpGAaiaawIcacaGLPaaaa8aabeaak8qacqGH9aqppaGa bmOAayaaraaaaa@45A2@  in (4.10) and   ϑ _ . ξ ( t ) = ε ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg9akzaaDa aeaaaaaaaaa8qacaGGUaGaeqOVdG3damaaBaaaleaapeWaaeWaa8aa baWdbiaadshaaiaawIcacaGLPaaaa8aabeaak8qacqGH9aqpcqGHsi slpaGafqyTduMbaebaaaa@4363@ ϑ ¯ . ξ ( φ ) = j ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbeg9akzaara aeaaaaaaaaa8qacaGGUaGaeqOVdG3damaaBaaaleaapeWaaeWaa8aa baWdbiabeA8aQbGaayjkaiaawMcaaaWdaeqaaOWdbiabg2da98aace WGQbGbaebaaaa@4276@ in (4.5), respectively, and substituting the resulting expressions in (4.1), we obtain

Ε ˜ _ =γ( w.d ε ¯ ) ξ ( t ) γ( w.d j ¯ ) ξ ( φ ) γ( λ+ a 1 )d ε ¯ +γ( λΩ+ a 2 )d j ¯ γ Kn [ K C 2 +( λ θ +βqζl ) τ ( t ) +( λΩ θ +βqζ ) τ ( φ ) ]df MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbfw5afzaaiy aaDaaeaaaaaaaaa8qacqGH9aqpcqaHZoWzdaqadaWdaeaapeGaam4D aiaac6cacaWGKbWdaiqbew7aLzaaraaapeGaayjkaiaawMcaa8aada ahbaWcbeqaaiabgEHiQaaakiabe67a4naaBaaaleaapeWaaeWaa8aa baWdbiaadshaaiaawIcacaGLPaaaa8aabeaak8qacqGHsislcqaHZo WzdaqadaWdaeaapeGaam4Daiaac6cacaWGKbWdaiqadQgagaqeaaWd biaawIcacaGLPaaapaWaaWraaSqabeaacqGHxiIkaaGccqaH+oaEda WgaaWcbaWdbmaabmaapaqaa8qacqaHgpGAaiaawIcacaGLPaaaa8aa beaak8qacqGHsislcqaHZoWzdaqadaWdaeaapeGaeq4UdWMaey4kaS Iaamyya8aadaWgaaWcbaWdbiaaigdaa8aabeaaaOWdbiaawIcacaGL PaaacaWGKbWdaiqbew7aLzaaraWdbiabgUcaRiabeo7aNnaabmaapa qaa8qacqaH7oaBcqqHPoWvcqGHRaWkcaWGHbWdamaaBaaaleaapeGa aGOmaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadsgapaGabmOAayaara WdbiabgkHiTmaalaaapaqaa8qacqaHZoWza8aabaWdbiaadUeacaWG Ubaaamaadmaapaqaa8qacaWGlbGaam4qa8aadaWgaaWcbaWdbiaaik daa8aabeaak8qacqGHRaWkdaqadaWdaeaapeGaeq4UdW2damaaCeaa leqabaGaey4fIOcaaOGaeqiUde3dbiabgUcaRiabek7aIjaadghacq aH2oGEcaWGSbaacaGLOaGaayzkaaGaeqiXdq3damaaBaaaleaapeWa aeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaa8aabeaak8qacqGHRa WkdaqadaWdaeaapeGaeq4UdWMaeuyQdC1damaaCeaaleqabaGaey4f IOcaaOGaeqiUde3dbiabgUcaRiabek7aIjaadghacqaH2oGEaiaawI cacaGLPaaacqaHepaDpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOX dOgacaGLOaGaayzkaaaapaqabaaak8qacaGLBbGaayzxaaGaamizai aadAgaaaa@A0BC@ .  (4.11)

It follows from (3.8) and (4.11) that

I ¯ =K C 2 +( λ θ +βqζl ) τ ( t ) +( λΩ θ +βqζ ) τ ( φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqadMeagaqeaa baaaaaaaaapeGaeyypa0Jaam4saiaadoeapaWaaSbaaSqaa8qacaaI YaaapaqabaGcpeGaey4kaSYaaeWaa8aabaWdbiabeU7aS9aadaahba WcbeqaaiabgEHiQaaakiabeI7aX9qacqGHRaWkcqaHYoGycaWGXbGa eqOTdONaamiBaaGaayjkaiaawMcaaiabes8a09aadaWgaaWcbaWdbm aabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaapaqabaGcpeGaey4k aSYaaeWaa8aabaWdbiabeU7aSjabfM6ax9aadaahbaWcbeqaaiabgE HiQaaakiabeI7aX9qacqGHRaWkcqaHYoGycaWGXbGaeqOTdOhacaGL OaGaayzkaaGaeqiXdq3damaaBaaaleaapeWaaeWaa8aabaWdbiabeA 8aQbGaayjkaiaawMcaaaWdaeqaaaaa@62BD@ ,  (4.12)

This is the required expression for I ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmysayaara aaaa@36DC@  which is constituted by Killing twist scalars, local temperature, the entropy entrainment,  the magnitude of the heat flow vector,  rotation of the matter part of fluid about the rotation axis, and gravitational potentials encoded in λ which relates meridional circulation velocity magnitude.

From (2.8) and (3.6b), we obtain that

u a = s θ γR q 2 ( Ε ˜ a γν Ε a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGH9aqpdaWc aaWdaeaadaahbaWcbeqaaiabgEHiQaaakiaadohadaahbaWcbeqaai abgEHiQaaakiabeI7aXbqaa8qacqaHZoWzcaWGsbGaamyCa8aadaah aaWcbeqaa8qacaaIYaaaaaaakmaabmaapaqaaiqbfw5afzaaiaWaaS baaSqaa8qacaWGHbaapaqabaGcpeGaeyOeI0Iaeq4SdC2daiabe27a Ujabfw5afnaaBaaaleaapeGaamyyaaWdaeqaaaGcpeGaayjkaiaawM caaaaa@50BF@ ,  (4.13)

where ν= n ( s β q 2 θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe27aUbbaaa aaaaaapeGaeyypa0ZaaSaaa8aabaWdbiaad6gaa8aabaWdbmaabmaa paqaamaaCeaaleqabaGaey4fIOcaaOGaam4Ca8qacqGHsisldaWcaa WdaeaapeGaeqOSdiMaamyCa8aadaahaaWcbeqaa8qacaaIYaaaaaGc paqaamaaCeaaleqabaGaey4fIOcaaOGaeqiUde3aaWbaaSqabeaape GaaGOmaaaaaaaakiaawIcacaGLPaaaaaaaaa@48C6@ .   Making use of (2.38), (2.40), and (4.11) in (4.13), we get

u a = s θ R q 2 [ A 3 ξ ( t )a A 4 ξ ( φ )a λ ε ¯ ,a +λΩ j ¯ ,a + qζ s θ ( ,a l ε ¯ ,a )( I ¯ Kn ) f ,a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaadggaa8aabeaak8qacqGH9aqpdaWc aaWdaeaadaahbaWcbeqaaiabgEHiQaaakiaadohadaahbaWcbeqaai abgEHiQaaakiabeI7aXbqaa8qacaWGsbGaamyCa8aadaahaaWcbeqa a8qacaaIYaaaaaaakmaadmaapaqaa8qacaWGbbWdamaaBaaaleaape GaaG4maaWdaeqaaOWaaWraaSqabeaacqGHxiIkaaGccqaH+oaEdaWg aaWcbaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaamyyaa WdaeqaaOWdbiabgkHiTiaadgeapaWaaSbaaSqaa8qacaaI0aaapaqa baGcdaahbaWcbeqaaiabgEHiQaaakiabe67a4naaBaaaleaapeWaae Waa8aabaWdbiabeA8aQbGaayjkaiaawMcaaiaadggaa8aabeaak8qa cqGHsislcqaH7oaBpaGafqyTduMbaebadaWgaaWcbaWdbiaacYcaca WGHbaapaqabaGcpeGaey4kaSIaeq4UdWMaeuyQdC1daiqadQgagaqe amaaBaaaleaapeGaaiilaiaadggaa8aabeaak8qacqGHRaWkdaWcaa WdaeaapeGaamyCaiabeA7a6bWdaeaadaahbaWcbeqaaiabgEHiQaaa kiaadohadaahbaWcbeqaaiabgEHiQaaakiabeI7aXbaapeWaaeWaa8 aabaWaaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaOWdbiabgkHiTiaa dYgapaGafqyTduMbaebadaWgaaWcbaWdbiaacYcacaWGHbaapaqaba aak8qacaGLOaGaayzkaaGaeyOeI0YaaeWaa8aabaWdbmaalaaapaqa aiqadMeagaqeaaqaa8qacaWGlbGaamOBaaaaaiaawIcacaGLPaaaca WGMbWdamaaBaaaleaapeGaaiilaiaadggaa8aabeaaaOWdbiaawUfa caGLDbaaaaa@8107@    (4.14a) 

where

A 3 =( ε ¯ ,b w b )+ν( ε ,b w b ), A 4 =( j ,b w b )+ν( j ,b w b ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGH9aqpdaqa daWdaeaacuaH1oqzgaqeamaaBaaaleaapeGaaiilaiaadkgaa8aabe aak8qacaWG3bWdamaaCaaaleqabaWdbiaadkgaaaaakiaawIcacaGL PaaacqGHRaWkpaGaeqyVd42dbmaabmaapaqaa8qacqaH1oqzpaWaaS baaSqaa8qacaGGSaGaamOyaaWdaeqaaOWdbiaadEhapaWaaWbaaSqa beaapeGaamOyaaaaaOGaayjkaiaawMcaaiaacYcacaWGbbWdamaaBa aaleaapeGaaGinaaWdaeqaaOWdbiabg2da9maabmaapaqaaiaadQga daWgaaWcbaWdbiaacYcacaWGIbaapaqabaGcpeGaam4Da8aadaahaa Wcbeqaa8qacaWGIbaaaaGccaGLOaGaayzkaaGaey4kaSYdaiabe27a U9qadaqadaWdaeaacaWGQbWaaSbaaSqaa8qacaGGSaGaamOyaaWdae qaaOWdbiaadEhapaWaaWbaaSqabeaapeGaamOyaaaaaOGaayjkaiaa wMcaaaaa@60FF@ ,    . (4.14b)

Contracting (4.14a) with ξ ( t ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIca caGLPaaaa8aabaWdbiaadggaaaaaaa@3E01@      and ξ ( φ ) a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGaayjk aiaawMcaaaWdaeaapeGaamyyaaaaaaa@3EC5@   in turn, respectively,  we get

u t = A 3 , u φ = A 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGH9aqpcaWG bbWdamaaBaaaleaapeGaaG4maaWdaeqaaOGaaiila8qacaWG1bWdam aaBaaaleaapeGaeqOXdOgapaqabaGcpeGaeyypa0JaeyOeI0Iaamyq a8aadaWgaaWcbaWdbiaaisdaa8aabeaaaaa@455C@   (4.15)

From the defining relations of effective energies and effective angular momenta corresponding to both the matter part and entropy fluids and the relation + s β=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaey4kaSYdamaaCeaaleqabaGaey4fIOcaaOGaam4Ca8qacqaHYoGy cqGH9aqpcaaIXaaaaa@3ECE@ , we have

nE u t + q t =( nε+ s ε ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiaadweacaWG1bWdamaaBaaaleaapeGaamiDaaWdaeqaaOWd biabgUcaRiaadghapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaey ypa0JaeyOeI0YaaeWaa8aabaWdbiaad6gacqaH1oqzcqGHRaWkpaWa aWraaSqabeaacqGHxiIkaaGccaWGZbGafqyTduMbaebaa8qacaGLOa Gaayzkaaaaaa@4AC9@    and  nE u φ + q φ =( nj+ s j ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiaadweacaWG1bWdamaaBaaaleaapeGaeqOXdOgapaqabaGc peGaey4kaSIaamyCa8aadaWgaaWcbaWdbiabeA8aQbWdaeqaaOWdbi abg2da9maabmaapaqaa8qacaWGUbWdaiaadQgapeGaey4kaSYdamaa CeaaleqabaGaey4fIOcaaOGaam4CaiqadQgagaqeaaWdbiaawIcaca GLPaaaaaa@4A13@  ,  (4.16)

where E= μ + s θ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraiabg2da98aadaahbaWcbeqaaiabgEHiQaaakiabeY7aT9qa cqGHRaWkdaWcaaWdaeaadaahbaWcbeqaaiabgEHiQaaakiaadohada ahbaWcbeqaaiabgEHiQaaakiabeI7aXbqaa8qacaWGUbaaaaaa@4418@      is the energy of the heat conducting fluid per baryon. It follows from (2.10) that

R q t =ν( ε ,b w b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaadghapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaeyyp a0JaeyOeI0Ydaiabe27aU9qadaqadaWdaeaapeGaeqyTdu2damaaBa aaleaapeGaaiilaiaadkgaa8aabeaak8qacaWG3bWdamaaCaaaleqa baWdbiaadkgaaaaakiaawIcacaGLPaaaaaa@46E3@    and  R q φ =ν( j ,b w b ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuaiaadghapaWaaSbaaSqaa8qacqaHgpGAa8aabeaak8qacqGH 9aqppaGaeqyVd42dbmaabmaapaqaaiaadQgadaWgaaWcbaWdbiaacY cacaWGIbaapaqabaGcpeGaam4Da8aadaahaaWcbeqaa8qacaWGIbaa aaGccaGLOaGaayzkaaaaaa@45E3@   (4.17)

From (4.16) and (4.17),we find that

l= 1 R ( j ,b w b )+( nj+ s j ¯ ) 1 R ( ε ¯ ,b w b )+( nε+ s ε ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiabg2da9maalaaapaqaa8qadaWcaaWdaeaapeGaaGymaaWd aeaapeGaamOuaaaadaqadaWdaeaacaWGQbWaaSbaaSqaa8qacaGGSa GaamOyaaWdaeqaaOWdbiaadEhapaWaaWbaaSqabeaapeGaamOyaaaa aOGaayjkaiaawMcaaiabgUcaRmaabmaapaqaa8qacaWGUbWdaiaadQ gapeGaey4kaSYdamaaCeaaleqabaGaey4fIOcaaOGaam4CaiqadQga gaqeaaWdbiaawIcacaGLPaaaa8aabaWdbmaalaaapaqaa8qacaaIXa aapaqaa8qacaWGsbaaamaabmaapaqaaiqbew7aLzaaraWaaSbaaSqa a8qacaGGSaGaamOyaaWdaeqaaOWdbiaadEhapaWaaWbaaSqabeaape GaamOyaaaaaOGaayjkaiaawMcaaiabgUcaRmaabmaapaqaaiaad6ga cqaH1oqzpeGaey4kaSYdamaaCeaaleqabaGaey4fIOcaaOGaam4Cai qbew7aLzaaraaapeGaayjkaiaawMcaaaaaaaa@5F4E@   (4.18)

which determines the geometrical angular momentum per particle of the matter part of the fluid in terms of the effective energies and angular momenta corresponding to both the matter part and the entropy fluids.  As is seen that the first term on the right hand side of (3.13) is the reciprocal of the geometrical angular momentum that enters in the derivation of an expression describing the rotational velocity of the matter part of fluid given by (3.18).But this derivation loses similarity with that of (3.16). Thus in order to achieve exact similarity with (3.16), we proceed as follows.

From (4.14a), with the aid of (2.1a,b), we get

u t = s θ RK q 2 [ g φφ ( ε ¯ ,b w b )+ g tφ ( j ¯ ,b w b )+ R λ u φ q φ ]+ w t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWG0baaaOGaeyypa0JaeyOeI0Ya aSaaa8aabaWaaWraaSqabeaacqGHxiIkaaGccaWGZbWaaWraaSqabe aacqGHxiIkaaGccqaH4oqCaeaapeGaamOuaiaadUeacaWGXbWdamaa CaaaleqabaWdbiaaikdaaaaaaOWaamWaa8aabaWdbiaadEgapaWaaS baaSqaa8qacqaHgpGAcqaHgpGAa8aabeaak8qadaqadaWdaeaacuaH 1oqzgaqeamaaBaaaleaapeGaaiilaiaadkgaa8aabeaak8qacaWG3b WdamaaCaaaleqabaWdbiaadkgaaaaakiaawIcacaGLPaaacqGHRaWk caWGNbWdamaaBaaaleaapeGaamiDaiabeA8aQbWdaeqaaOWdbmaabm aapaqaaiqadQgagaqeamaaBaaaleaapeGaaiilaiaadkgaa8aabeaa k8qacaWG3bWdamaaCaaaleqabaWdbiaadkgaaaaakiaawIcacaGLPa aacqGHRaWkdaWcaaWdaeaapeGaamOuaaWdaeaapeGaeq4UdWgaaiaa dwhapaWaaSbaaSqaa8qacqaHgpGAa8aabeaak8qacaWGXbWdamaaBa aaleaapeGaeqOXdOgapaqabaaak8qacaGLBbGaayzxaaGaey4kaSIa am4Da8aadaahaaWcbeqaa8qacaWG0baaaaaa@6CD5@ ,  (4.19)

u φ = s θ RK q 2 [ g tφ ( ε ¯ ,b w b )+ g tt ( j ¯ ,b w b )+ R λ u t q φ ]+ w φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacqaHgpGAaaGccqGH9aqpdaWcaaWd aeaadaahbaWcbeqaaiabgEHiQaaakiaadohadaahbaWcbeqaaiabgE HiQaaakiabeI7aXbqaa8qacaWGsbGaam4saiaadghapaWaaWbaaSqa beaapeGaaGOmaaaaaaGcdaWadaWdaeaapeGaam4za8aadaWgaaWcba WdbiaadshacqaHgpGAa8aabeaak8qadaqadaWdaeaacuaH1oqzgaqe amaaBaaaleaapeGaaiilaiaadkgaa8aabeaak8qacaWG3bWdamaaCa aaleqabaWdbiaadkgaaaaakiaawIcacaGLPaaacqGHRaWkcaWGNbWd amaaBaaaleaapeGaamiDaiaadshaa8aabeaak8qadaqadaWdaeaace WGQbGbaebadaWgaaWcbaWdbiaacYcacaWGIbaapaqabaGcpeGaam4D a8aadaahaaWcbeqaa8qacaWGIbaaaaGccaGLOaGaayzkaaGaey4kaS YaaSaaa8aabaWdbiaadkfaa8aabaWdbiabeU7aSbaacaWG1bWdamaa BaaaleaapeGaamiDaaWdaeqaaOWdbiaadghapaWaaSbaaSqaa8qacq aHgpGAa8aabeaaaOWdbiaawUfacaGLDbaacqGHRaWkcaWG3bWdamaa CaaaleqabaWdbiabeA8aQbaaaaa@6B24@ .  (4.20)

Multiplying (4.19) by Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdCfaaa@39DA@  and subtracting the resulting equation from (4.20) and simplifying with the aid of (2.2) and (2.22), we obtain that

Ω ˜ =Ω+ s θ ( λ+ u t )λRK q 2 [ u φ ( ε ¯ ,b w b )+ u t ( j ¯ ,b w b ) RΦ μ q φ ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbfM6axzaaia aeaaaaaaaaa8qacqGH9aqpcqqHPoWvcqGHRaWkdaWcaaWdaeaadaah baWcbeqaaiabgEHiQaaakiaadohadaahbaWcbeqaaiabgEHiQaaaki abeI7aXbqaa8qadaqadaWdaeaapeGaeq4UdWMaey4kaSIaamyDa8aa daahaaWcbeqaa8qacaWG0baaaaGccaGLOaGaayzkaaGaeq4UdWMaam OuaiaadUeacaWGXbWdamaaCaaaleqabaWdbiaaikdaaaaaaOWaamWa a8aabaWdbiaadwhapaWaaSbaaSqaa8qacqaHgpGAa8aabeaak8qada qadaWdaeaacuaH1oqzgaqeamaaBaaaleaapeGaaiilaiaadkgaa8aa beaak8qacaWG3bWdamaaCaaaleqabaWdbiaadkgaaaaakiaawIcaca GLPaaacqGHRaWkcaWG1bWdamaaBaaaleaapeGaamiDaaWdaeqaaOWd bmaabmaapaqaaiqadQgagaqeamaaBaaaleaapeGaaiilaiaadkgaa8 aabeaak8qacaWG3bWdamaaCaaaleqabaWdbiaadkgaaaaakiaawIca caGLPaaacqGHsisldaWcaaWdaeaapeGaamOua8aacqqHMoGraeaada ahbaWcbeqaaiabgEHiQaaakiabeY7aTbaapeGaamyCa8aadaWgaaWc baWdbiabeA8aQbWdaeqaaaGcpeGaay5waiaaw2faaaaa@6EE8@ ,  (4.21)

which bears a complete resemblance with (3.16). Contraction of the third relation of (3.6b) with u a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bWdamaaCaaaleqabaWdbiaadggaaaaaaa@3843@   yields that

Ε ˜ a u a = γR q 2 s θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbfw5afzaaia WaaSbaaSqaaabaaaaaaaaapeGaamyyaaWdaeqaaOWdbiaadwhapaWa aWbaaSqabeaapeGaamyyaaaakiabg2da9iabgkHiTmaalaaapaqaa8 qacqaHZoWzcaWGsbGaamyCa8aadaahaaWcbeqaa8qacaaIYaaaaaGc paqaamaaCeaaleqabaGaey4fIOcaaOGaam4CamaaCeaaleqabaGaey 4fIOcaaOGaeqiUdehaaaaa@48E7@ .  (4.22)

Contraction of (3.8) with u a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG1bWdamaaCaaaleqabaWdbiaadggaaaaaaa@3843@   gives that

Ε ˜ a u a = γqζ s θ ( j ¯ ,a l ε ¯ ,a ) w a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbfw5afzaaia WaaSbaaSqaaabaaaaaaaaapeGaamyyaaWdaeqaaOWdbiaadwhapaWa aWbaaSqabeaapeGaamyyaaaakiabg2da9maalaaapaqaa8qacqaHZo WzcaWGXbGaeqOTdOhapaqaamaaCeaaleqabaGaey4fIOcaaOGaam4C amaaCeaaleqabaGaey4fIOcaaOGaeqiUdehaa8qadaqadaWdaeaace WGQbGbaebadaWgaaWcbaWdbiaacYcacaWGHbaapaqabaGcpeGaeyOe I0IaamiBa8aacuaH1oqzgaqeamaaBaaaleaapeGaaiilaiaadggaa8 aabeaaaOWdbiaawIcacaGLPaaacaWG3bWdamaaCaaaleqabaWdbiaa dggaaaaaaa@544D@ .  (4.23)

It follows from (4.22) and (4.23) that

( l ε ¯ ,a j ¯ ,a ) w a = Rq ζ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaadYgapaGafqyTduMbaebadaWgaaWcbaWdbiaa cYcacaWGHbaapaqabaGcpeGaeyOeI0YdaiqadQgagaqeamaaBaaale aapeGaaiilaiaadggaa8aabeaaaOWdbiaawIcacaGLPaaacaWG3bWd amaaCaaaleqabaWdbiaadggaaaGccqGH9aqpdaWcaaWdaeaapeGaam Ouaiaadghaa8aabaWdbiabeA7a6baaaaa@49C2@ .  (4.24)

On account of (4.24), one can reduce (4.21) to take the following form

Ω ˜ =Ω s θ ( λ+ u t )λK q 2 ( q ζ u t + Φ μ q φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafuyQdCLbaG aaqaaaaaaaaaWdbiabg2da9iabfM6axjabgkHiTmaalaaapaqaamaa CeaaleqabaGaey4fIOcaaOGaam4CamaaCeaaleqabaGaey4fIOcaaO GaeqiUdehabaWdbmaabmaapaqaa8qacqaH7oaBcqGHRaWkcaWG1bWd amaaCaaaleqabaWdbiaadshaaaaakiaawIcacaGLPaaacqaH7oaBca WGlbGaamyCa8aadaahaaWcbeqaa8qacaaIYaaaaaaakmaabmaapaqa a8qadaWcaaWdaeaapeGaamyCaaWdaeaapeGaeqOTdOhaaiaadwhapa WaaSbaaSqaa8qacaWG0baapaqabaGcpeGaey4kaSYaaSaaa8aabaGa euOPdyeabaWaaWraaSqabeaacqGHxiIkaaGccqaH8oqBaaWdbiaadg hapaWaaSbaaSqaa8qacqaHgpGAa8aabeaaaOWdbiaawIcacaGLPaaa aaa@5B12@   (4.25)

which exhibits that the rotational velocity of the matter part of fluid is split into two parts: (i) rotation about the rotation axis and (ii) the rotation caused by the meridional circulation describable by the second term on the right hand side of (4.25). From (2.22) and (4.18), we get

Ω=[ 1 R ( j ¯ ,b w b )+( nj+ s j ¯ ) ] [ 1 R ( ε ¯ ,b w b )+( nε+ s ε ¯ ) Φ μ ( nE q 2 s θ ) ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyQdCLaeyypa0ZaamWaa8aabaWdbmaalaaapaqaa8qacaaIXaaa paqaa8qacaWGsbaaamaabmaapaqaaiqadQgagaqeamaaBaaaleaape Gaaiilaiaadkgaa8aabeaak8qacaWG3bWdamaaCaaaleqabaWdbiaa dkgaaaaakiaawIcacaGLPaaacqGHRaWkdaqadaWdaeaapeGaamOBa8 aacaWGQbWdbiabgUcaR8aadaahbaWcbeqaaiabgEHiQaaakiaadoha ceWGQbGbaebaa8qacaGLOaGaayzkaaaacaGLBbGaayzxaaWdamaaDe aaleaaaeaadaqhaaadbaaabaWdbiabgkHiTiaaigdaaaaaaOWaamWa a8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGsbaaamaabm aapaqaaiqbew7aLzaaraWaaSbaaSqaa8qacaGGSaGaamOyaaWdaeqa aOWdbiaadEhapaWaaWbaaSqabeaapeGaamOyaaaaaOGaayjkaiaawM caaiabgUcaRmaabmaapaqaa8qacaWGUbWdaiabew7aL9qacqGHRaWk paWaaWraaSqabeaacqGHxiIkaaGccaWGZbGafqyTduMbaebaa8qaca GLOaGaayzkaaGaeyOeI0YaaSaaa8aabaGaeuOPdyeabaWaaWraaSqa beaacqGHxiIkaaGccqaH8oqBaaWdbmaabmaapaqaa8qacaWGUbGaam yraiabgkHiTmaalaaapaqaa8qacaWGXbWdamaaCaaaleqabaWdbiaa ikdaaaaak8aabaWaaWraaSqabeaacqGHxiIkaaGccaWGZbWaaWraaS qabeaacqGHxiIkaaGccqaH4oqCaaaapeGaayjkaiaawMcaaaGaay5w aiaaw2faaaaa@773A@ ,  (4.26)

which gives rotational velocity of the matter part of fluid about the rotation axis in terms of thermodynamic variables.

Making use of relation u s a =γ( u a + q a s θ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaqhaaWcbaWdbiaadohaa8aabaWdbiaadggaaaGccqGH 9aqpcqaHZoWzdaqadaWdaeaapeGaamyDa8aadaahaaWcbeqaa8qaca WGHbaaaOGaey4kaSYaaSaaa8aabaWdbiaadghapaWaaWbaaSqabeaa peGaamyyaaaaaOWdaeaadaahbaWcbeqaaiabgEHiQaaakiaadohada ahbaWcbeqaaiabgEHiQaaakiabeI7aXbaaa8qacaGLOaGaayzkaaaa aa@4A81@  , we define the rotational velocity of the entropy fluid as

Ω = u s φ u s t = ( u φ + q φ s θ ) ( u t + q t s θ ) =( Ω ˜ + q φ u t s θ )( 1+ q t u t s θ ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaCeaaleqaba Gaey4fIOcaaOGaeuyQdCfeaaaaaaaaa8qacqGH9aqpdaWcaaWdaeaa peGaamyDa8aadaqhaaWcbaWdbiaadohaa8aabaWdbiabeA8aQbaaaO WdaeaapeGaamyDa8aadaqhaaWcbaWdbiaadohaa8aabaWdbiaadsha aaaaaOGaeyypa0ZaaSaaa8aabaWdbmaabmaapaqaa8qacaWG1bWdam aaCaaaleqabaWdbiabeA8aQbaakiabgUcaRmaalaaapaqaa8qacaWG XbWdamaaCaaaleqabaWdbiabeA8aQbaaaOWdaeaadaahbaWcbeqaai abgEHiQaaakiaadohadaahbaWcbeqaaiabgEHiQaaakiabeI7aXbaa a8qacaGLOaGaayzkaaaapaqaa8qadaqadaWdaeaapeGaamyDa8aada ahaaWcbeqaa8qacaWG0baaaOGaey4kaSYaaSaaa8aabaWdbiaadgha paWaaWbaaSqabeaapeGaamiDaaaaaOWdaeaadaahbaWcbeqaaiabgE HiQaaakiaadohadaahbaWcbeqaaiabgEHiQaaakiabeI7aXbaaa8qa caGLOaGaayzkaaaaaiabg2da9maabmaapaqaaiqbfM6axzaaiaWdbi abgUcaRmaalaaapaqaa8qacaWGXbWdamaaCaaaleqabaWdbiabeA8a QbaaaOWdaeaapeGaamyDa8aadaahaaWcbeqaa8qacaWG0baaaOWdam aaCeaaleqabaGaey4fIOcaaOGaam4CamaaCeaaleqabaGaey4fIOca aOGaeqiUdehaaaWdbiaawIcacaGLPaaadaqadaWdaeaapeGaaGymai abgUcaRmaalaaapaqaa8qacaWGXbWdamaaCaaaleqabaWdbiaadsha aaaak8aabaWdbiaadwhapaWaaWbaaSqabeaapeGaamiDaaaak8aada ahbaWcbeqaaiabgEHiQaaakiaadohadaahbaWcbeqaaiabgEHiQaaa kiabeI7aXbaaa8qacaGLOaGaayzkaaWdamaaDeaaleaaaeaadaqhba adbaaabaWdbiabgkHiTiaaigdaaaaaaaaa@7EC0@ ,  (4.27)

which can be linearized  by ignoring second and higher terms in the expansion of second small bracket on the right hand side of (4.27) to obtain

Ω Ω ˜ + qζ u t s θ ( 1 Ω ˜ l ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaCeaaleqaba Gaey4fIOcaaOGaeuyQdCfeaaaaaaaaa8qacqGHijYUpaGafuyQdCLb aGaapeGaey4kaSYaaSaaa8aabaWdbiaadghacqaH2oGEa8aabaWdbi aadwhapaWaaWbaaSqabeaapeGaamiDaaaak8aadaahbaWcbeqaaiab gEHiQaaakiaadohadaahbaWcbeqaaiabgEHiQaaakiabeI7aXbaape WaaeWaa8aabaWdbiaaigdacqGHsislpaGafuyQdCLbaGaapeGaamiB aaGaayjkaiaawMcaaaaa@4FB1@ ,  (4.28)

where q φ =qζ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaahaaWcbeqaa8qacqaHgpGAaaGccqGH9aqpcaWGXbGa eqOTdOhaaa@3F0E@ and q t =qζl MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaahaaWcbeqaa8qacaWG0baaaOGaeyypa0JaamyCaiab eA7a6jaadYgaaaa@3F3B@ are used.

Multiplying (3.9a) by  and adding the resulting equation to (3.9b), we get

R( l q t + q φ )=( l ε ,a j ,a ) w a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOuamaabmaapaqaa8qacaWGSbGaamyCa8aadaWgaaWcbaWdbiaa dshaa8aabeaak8qacqGHRaWkcaWGXbWdamaaBaaaleaapeGaeqOXdO gapaqabaaak8qacaGLOaGaayzkaaGaeyypa0ZaaeWaa8aabaWdbiaa dYgapaGaeqyTdu2aaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaOWdbi abgkHiT8aacaWGQbWaaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaaGc peGaayjkaiaawMcaaiaadEhapaWaaWbaaSqabeaapeGaamyyaaaaaa a@4F8C@ ,  (4.29)

which because of (4.17) takes the form

l q t + q φ = q ζ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiaadghapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaey4k aSIaamyCa8aadaWgaaWcbaWdbiabeA8aQbWdaeqaaOWdbiabg2da9m aalaaapaqaa8qacaWGXbaapaqaa8qacqaH2oGEaaaaaa@43B0@ .  (4.30)

Using the fact that u a q a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWGHbaaaOGaamyCa8aadaWgaaWc baWdbiaadggaa8aabeaak8qacqGH9aqpcaaIWaaaaa@3E92@ , one may find that

u t ( q t + Ω ˜ q φ )+ u A q A =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWG0baaaOWaaeWaa8aabaWdbiaa dghapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaey4kaSYdaiqbfM 6axzaaiaWdbiaadghapaWaaSbaaSqaa8qacqaHgpGAa8aabeaaaOWd biaawIcacaGLPaaacqGHRaWkcaWG1bWdamaaCaaaleqabaWdbiaadg eaaaGccaWGXbWdamaaBaaaleaapeGaamyqaaWdaeqaaOWdbiabg2da 9iaaicdaaaa@4B4D@ .  (4.31)

It follows from (2.38) and (2.40) that

u A q A = ν R [ ( ε ,b w b ) ξ ( t )A +( j ,b w b ) ξ ( φ )A ] u A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWGbbaaaOGaamyCa8aadaWgaaWc baWdbiaadgeaa8aabeaak8qacqGH9aqpdaWcaaWdaeaacqaH9oGBae aapeGaamOuaaaadaWadaWdaeaapeGaeyOeI0YaaeWaa8aabaGaeqyT du2aaSbaaSqaa8qacaGGSaGaamOyaaWdaeqaaOWdbiaadEhapaWaaW baaSqabeaapeGaamOyaaaaaOGaayjkaiaawMcaa8aadaahbaWcbeqa aiabgEHiQaaakiabe67a4naaBaaaleaapeWaaeWaa8aabaWdbiaads haaiaawIcacaGLPaaacaWGbbaapaqabaGcpeGaey4kaSYaaeWaa8aa baGaamOAamaaBaaaleaapeGaaiilaiaadkgaa8aabeaak8qacaWG3b WdamaaCaaaleqabaWdbiaadkgaaaaakiaawIcacaGLPaaapaWaaWra aSqabeaacqGHxiIkaaGccqaH+oaEdaWgaaWcbaWdbmaabmaapaqaa8 qacqaHgpGAaiaawIcacaGLPaaacaWGbbaapaqabaaak8qacaGLBbGa ayzxaaGaamyDa8aadaahaaWcbeqaa8qacaWGbbaaaaaa@62C0@ ,  (4.32)

which, due to (4.17) , takes the form

u A q A = q φ ( ξ ( φ )A Ω ξ ( t )A ) w A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWGbbaaaOGaamyCa8aadaWgaaWc baWdbiaadgeaa8aabeaak8qacqGH9aqpcaWGXbWdamaaBaaaleaape GaeqOXdOgapaqabaGcpeWaaeWaa8aabaWaaWraaSqabeaacqGHxiIk aaGccqaH+oaEdaWgaaWcbaWdbmaabmaapaqaa8qacqaHgpGAaiaawI cacaGLPaaacaWGbbaapaqabaGcpeGaeyOeI0IaeuyQdC1damaaCeaa leqabaGaey4fIOcaaOGaeqOVdG3aaSbaaSqaa8qadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaaiaadgeaa8aabeaaaOWdbiaawIcacaGL PaaacaWG3bWdamaaCaaaleqabaWdbiaadgeaaaaaaa@551F@ .  (4.33)

Making use of (2.19) on the right hand side of (4.33), we get

u A q A = q φ n g AB ( ξ ( φ )A Ω ξ ( t )A ) f ,B MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyDa8aadaahaaWcbeqaa8qacaWGbbaaaOGaamyCa8aadaWgaaWc baWdbiaadgeaa8aabeaak8qacqGH9aqpdaWcaaWdaeaapeGaamyCa8 aadaWgaaWcbaWdbiabeA8aQbWdaeqaaaGcbaWdbiaad6gadaGcaaWd aeaapeGaeyOeI0Iaam4zaaWcbeaaaaGccaGGScYdamaaCaaaleqaba WdbiaadgeacaWGcbaaaOWaaeWaa8aabaWaaWraaSqabeaacqGHxiIk aaGccqaH+oaEdaWgaaWcbaWdbmaabmaapaqaa8qacqaHgpGAaiaawI cacaGLPaaacaWGbbaapaqabaGcpeGaeyOeI0IaeuyQdC1damaaCeaa leqabaGaey4fIOcaaOGaeqOVdG3aaSbaaSqaa8qadaqadaWdaeaape GaamiDaaGaayjkaiaawMcaaiaadgeaa8aabeaaaOWdbiaawIcacaGL PaaacaWGMbWdamaaBaaaleaapeGaaiilaiaadkeaa8aabeaaaaa@5C3E@ .  (4.34)

Using q t =Ω q φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyCa8aadaWgaaWcbaWdbiaadshaa8aabeaak8qacqGH9aqpcqGH sislcqqHPoWvcaWGXbWdamaaBaaaleaapeGaeqOXdOgapaqabaaaaa@413D@  in (4.31) and simplifying with the aid of (4.34), we get

( 1 Ω ˜ l )= Ω ˜ q Ωζ q φ + 1 nΩ u t g AB ( ξ ( φ )A Ω ξ ( t )A ) f ,B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWdbiaaigdacqGHsislpaGafuyQdCLbaGaapeGaamiB aaGaayjkaiaawMcaaiabg2da9maalaaapaqaaiqbfM6axzaaiaWdbi aadghaa8aabaWdbiabfM6axjabeA7a6jaadghapaWaaSbaaSqaa8qa cqaHgpGAa8aabeaaaaGcpeGaey4kaSYaaSaaa8aabaWdbiaaigdaa8 aabaWdbiaad6gacqqHPoWvcaWG1bWdamaaCaaaleqabaWdbiaadsha aaGcdaGcaaWdaeaapeGaeyOeI0Iaam4zaaWcbeaaaaGccaGGScYdam aaCaaaleqabaWdbiaadgeacaWGcbaaaOWaaeWaa8aabaWaaWraaSqa beaacqGHxiIkaaGccqaH+oaEdaWgaaWcbaWdbmaabmaapaqaa8qacq aHgpGAaiaawIcacaGLPaaacaWGbbaapaqabaGcpeGaeyOeI0IaeuyQ dC1damaaCeaaleqabaGaey4fIOcaaOGaeqOVdG3aaSbaaSqaa8qada qadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaadgeaa8aabeaaaOWd biaawIcacaGLPaaacaWGMbWdamaaBaaaleaapeGaaiilaiaadkeaa8 aabeaaaaa@69B5@ .  (4.35)

From (4.27) and (4.35), we get

Ω ˜ Ω ˜ ( 1+ q 2 Ω s θ u t q φ )+ qζ nΩ s θ ( u t ) g 2 AB ( ξ ( φ )A Ω ξ ( t )A ) f ,B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiqbfM6axzaaia aeaaaaaaaaa8qacqGHijYUpaGafuyQdCLbaGaapeWaaeWaa8aabaWd biaaigdacqGHRaWkdaWcaaWdaeaapeGaamyCa8aadaahaaWcbeqaa8 qacaaIYaaaaaGcpaqaa8qacqqHPoWvpaWaaWraaSqabeaacqGHxiIk aaGccaWGZbWaaWraaSqabeaacqGHxiIkaaGccqaH4oqCpeGaamyDa8 aadaahaaWcbeqaa8qacaWG0baaaOGaamyCa8aadaWgaaWcbaWdbiab eA8aQbWdaeqaaaaaaOWdbiaawIcacaGLPaaacqGHRaWkdaWcaaWdae aapeGaamyCaiabeA7a6bWdaeaapeGaamOBaiabfM6ax9aadaahbaWc beqaaiabgEHiQaaakiaadohadaahbaWcbeqaaiabgEHiQaaakiabeI 7aX9qadaqadaWdaeaapeGaamyDa8aadaahaaWcbeqaa8qacaWG0baa aaGccaGLOaGaayzkaaWdamaaDeaaleaaaeaapeGaaGOmaaaakmaaka aapaqaa8qacqGHsislcaWGNbaaleqaaaaakiaacYkipaWaaWbaaSqa beaapeGaamyqaiaadkeaaaGcdaqadaWdaeaadaahbaWcbeqaaiabgE HiQaaakiabe67a4naaBaaaleaapeWaaeWaa8aabaWdbiabeA8aQbGa ayjkaiaawMcaaiaadgeaa8aabeaak8qacqGHsislcqqHPoWvpaWaaW raaSqabeaacqGHxiIkaaGccqaH+oaEdaWgaaWcbaWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaGaamyqaaWdaeqaaaGcpeGaayjkai aawMcaaiaadAgapaWaaSbaaSqaa8qacaGGSaGaamOqaaWdaeqaaaaa @79EB@ ,  (4.36)

which exhibits that the rotation of the matter part of fluid contributes to the rotation of the entropy fluid besides contributions due to a combination of thermodynamic quantities. This in turn implies that the friction caused by the difference of rotational velocities of the entropy fluid and the matter part of fluid is directly linked with the heat flow. It is the presence of heat that causes the entropy fluid to rotate with different rotational velocity than the rotation of the matter part of fluid. Consequently, the entropy fluid is not corotating with the matter part of fluid.

Creation of injection energy per baryon

This section is concerned with the description of creation of injection energy per baryon due to interaction of heat flow with the motion of a heat conducting fluid and determination of the magnitude of meridional circulation velocity in terms of thermodynamic quantities. In order to demonstrate injection energy creation we invoke the conservation laws of energy and angular momentum currents associated with a stationary axisymmetric heat conducting fluid configuration. The energy current conservation law21 states that there is exchange between the total energy per baryon of the matter part of fluid and of the heat flux coupled with the effective energy per entropn associated with the entropy fluid per unit of local temperature measured in the matter part of fluid’s rest frame. Similar exchange law holds for the conservation of angular momentum current. These two laws are explicitly expressible as:21

n E ,a u a +( ε θ q a ) = ;a 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiaadweapaWaaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaOWd biaadwhapaWaaWbaaSqabeaapeGaamyyaaaakiabgUcaRmaabmaapa qaa8qadaWcaaWdaeaacqaH1oqzaeaadaahbaWcbeqaaiabgEHiQaaa kiabeI7aXbaapeGaamyCa8aadaahaaWcbeqaa8qacaWGHbaaaaGcca GLOaGaayzkaaWdamaaDeaaleaadaqhbaadbaWdbiaacUdacaWGHbaa paqaaaaaaSqaaaaak8qacqGH9aqpcaaIWaaaaa@4BCD@ ,  (5.1a)

n L ,a u a +( j θ q a ) = ;a 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOBaiaadYeapaWaaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaOWd biaadwhapaWaaWbaaSqabeaapeGaamyyaaaakiabgUcaRmaabmaapa qaa8qadaWcaaWdaeaapeGaamOAaaWdaeaadaahbaWcbeqaaiabgEHi QaaakiabeI7aXbaapeGaamyCa8aadaahaaWcbeqaa8qacaWGHbaaaa GccaGLOaGaayzkaaWdamaaDeaaleaadaqhbaadbaWdbiaacUdacaWG HbaapaqaaaaaaSqaaaaak8qacqGH9aqpcaaIWaaaaa@4B3B@ ,   (5.1b)

where

E=( μ + s θ n ) u t + q t n ,L=( μ + s θ n ) u φ + q φ n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeyOeI0Iaamyraiabg2da9maabmaapaqaamaaCeaaleqabaGaey4f IOcaaOGaeqiVd02dbiabgUcaRmaalaaapaqaamaaCeaaleqabaGaey 4fIOcaaOGaam4CamaaCeaaleqabaGaey4fIOcaaOGaeqiUdehabaWd biaad6gaaaaacaGLOaGaayzkaaGaamyDa8aadaWgaaWcbaWdbiaads haa8aabeaak8qacqGHRaWkdaWcaaWdaeaapeGaamyCa8aadaWgaaWc baWdbiaadshaa8aabeaaaOqaa8qacaWGUbaaaiaacYcacaWGmbGaey ypa0ZaaeWaa8aabaWaaWraaSqabeaacqGHxiIkaaGccqaH8oqBpeGa ey4kaSYaaSaaa8aabaWaaWraaSqabeaacqGHxiIkaaGccaWGZbWaaW raaSqabeaacqGHxiIkaaGccqaH4oqCaeaapeGaamOBaaaaaiaawIca caGLPaaacaWG1bWdamaaBaaaleaapeGaeqOXdOgapaqabaGcpeGaey 4kaSYaaSaaa8aabaWdbiaadghapaWaaSbaaSqaa8qacqaHgpGAa8aa beaaaOqaa8qacaWGUbaaaaaa@63BE@ .  (5.1c)

Multiplying the relation μ u t +α q t =ε MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=MjYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaCeaaleqaba Gaey4fIOcaaOGaeqiVd0geaaaaaaaaa8qacaWG1bWdamaaBaaaleaa peGaamiDaaWdaeqaaOWdbiabgUcaRiabeg7aHjaadghapaWaaSbaaS qaa8qacaWG0baapaqabaGcpeGaeyypa0JaeyOeI0Ydaiabew7aLbaa @461D@   by n  and  θ u t +β q t = ε ¯ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabe aacqGHxiIkaaGccqaH4oqCqaaaaaaaaaWdbiaadwhapaWaaSbaaSqa a8qacaWG0baapaqabaGcpeGaey4kaSIaeqOSdiMaamyCa8aadaWgaa WcbaWdbiaadshaa8aabeaak8qacqGH9aqppaGafqyTduMbaebaaaa@4314@    by  s MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWraaSqabe aacqGHxiIkaaGccaWGZbaaaa@3815@  and adding these two resulting relations with the aid of  nα+ s β=1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiabeg 7aHbbaaaaaaaaapeGaey4kaSYdamaaCeaaleqabaGaey4fIOcaaOGa am4Caiabek7aI9qacqGH9aqpcaaIXaaaaa@3F2B@ , we get

E=( ε+ s ε ¯ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbGaeyypa0ZaaeWaa8aabaGaeqyTdu2dbiabgUcaRmaalaaa paqaamaaCeaaleqabaGaey4fIOcaaOGaam4Caiqbew7aLzaaraaaba Wdbiaad6gaaaaacaGLOaGaayzkaaaaaa@4118@ .  (5.2)

Similarly, we find that

L=( j+ s j ¯ n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGmbGaeyypa0ZaaeWaa8aabaWdbiaadQgacqGHRaWkdaWcaaWd aeaadaahbaWcbeqaaiabgEHiQaaakiaadohaceWGQbGbaebaaeaape GaamOBaaaaaiaawIcacaGLPaaaaaa@3FAF@ .  (5.3)

Substituting q a =qζ( ξ ( φ ) a +l ξ ( t ) a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGXbWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqpcaWGXbGa eqOTdO3aaeWaa8aabaWdbiabe67a49aadaqhaaWcbaWdbmaabmaapa qaa8qacqaHgpGAaiaawIcacaGLPaaaa8aabaWdbiaadggaaaGccqGH RaWkcaWGSbGaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiaads haaiaawIcacaGLPaaaa8aabaWdbiaadggaaaaakiaawIcacaGLPaaa aaa@4BBF@  in the second term of (5.1a) and (5.1b), respectively, and simplifying, we get

E ,a u a =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbWdamaaBaaaleaapeGaaiilaiaadggaa8aabeaak8qacaWG 1bWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqpcaaIWaaaaa@3CE0@    or E ,a w a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbWdamaaBaaaleaapeGaaiilaiaadggaa8aabeaak8qacaWG 3bWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqpcaaIWaaaaa@3CE3@   (5.4a)

L ,a u a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGmbWdamaaBaaaleaapeGaaiilaiaadggaa8aabeaak8qacaWG 1bWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqpcaaIWaaaaa@3CE8@    or L ,a w a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGmbWdamaaBaaaleaapeGaaiilaiaadggaa8aabeaak8qacaWG 3bWdamaaCaaaleqabaWdbiaadggaaaGccqGH9aqpcaaIWaaaaa@3CEA@   (5.4b)

Multiplying the equation obtained by substituting (5.3) in (5.4b) by Ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqqHPoWvaaa@37A5@   and subtracting it from the resulting equation obtained by substituting (5.2) in (5.4a), we get

( ε ,a Ω j ,a ) w a +( s n )( ε ¯ ,a Ω j ¯ ,a ) w a +( ε ¯ Ω j ¯ )( s n ) w ,a a =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaacqaH1oqzdaWgaaWcbaWdbiaacYcacaWGHbaapaqa baGcpeGaeyOeI0IaeuyQdCLaamOAa8aadaWgaaWcbaWdbiaacYcaca WGHbaapaqabaaak8qacaGLOaGaayzkaaGaam4Da8aadaahaaWcbeqa a8qacaWGHbaaaOGaey4kaSYaaeWaa8aabaWdbmaalaaapaqaamaaCe aaleqabaGaey4fIOcaaOGaam4Caaqaa8qacaWGUbaaaaGaayjkaiaa wMcaamaabmaapaqaaiqbew7aLzaaraWaaSbaaSqaa8qacaGGSaGaam yyaaWdaeqaaOWdbiabgkHiTiabfM6ax9aaceWGQbGbaebadaWgaaWc baWdbiaacYcacaWGHbaapaqabaaak8qacaGLOaGaayzkaaGaam4Da8 aadaahaaWcbeqaa8qacaWGHbaaaOGaey4kaSYaaeWaa8aabaGafqyT duMbaebapeGaeyOeI0IaeuyQdC1daiqadQgagaqeaaWdbiaawIcaca GLPaaadaqadaWdaeaapeWaaSaaa8aabaWaaWraaSqabeaacqGHxiIk aaGccaWGZbaabaWdbiaad6gaaaaacaGLOaGaayzkaaWdamaaDeaale aapeGaaiilaiaadggaa8aabaaaaOWdbiaadEhapaWaaWbaaSqabeaa peGaamyyaaaakiabg2da9iaaicdaaaa@68B5@ .  (5.5)

Contraction of (2.16) with w a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG3bWdamaaCaaaleqabaWdbiaadggaaaaaaa@3845@   gives a relation which makes the first term zero and hence (5.5) reduces to

( ε ¯ ,a Ω j ¯ ,a ) w a =( ε ¯ Ω j ¯ )( s n ) w ,a a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaacuaH1oqzgaqeamaaBaaaleaapeGaaiilaiaadgga a8aabeaak8qacqGHsislcqqHPoWvpaGabmOAayaaraWaaSbaaSqaa8 qacaGGSaGaamyyaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadEhapaWa aWbaaSqabeaapeGaamyyaaaakiabg2da9iabgkHiTmaabmaapaqaai qbew7aLzaaraWdbiabgkHiTiabfM6ax9aaceWGQbGbaebaa8qacaGL OaGaayzkaaWaaeWaa8aabaWdbmaalaaapaqaamaaCeaaleqabaGaey 4fIOcaaOGaam4Caaqaa8qacaWGUbaaaaGaayjkaiaawMcaa8aadaqh baWcbaWdbiaacYcacaWGHbaapaqaaaaak8qacaWG3bWdamaaCaaale qabaWdbiaadggaaaaaaa@554B@ ,  (5.6)

which is the required relation used in (3.16) to derive an explicit expression for the rotational velocity of matter part of fluid.

It follows from (3.11) and (5.6) that

Φ= μ s θ R q 2 ( ε ¯ Ω j ¯ )( s n ) w ,a a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccqqHMo GrqaaaaaaaaaWdbiabg2da9maalaaapaqaamaaCeaaleqabaGaey4f IOcaaOGaeqiVd02aaWraaSqabeaacqGHxiIkaaGccaWGZbWaaWraaS qabeaacqGHxiIkaaGccqaH4oqCaeaapeGaamOuaiaadghapaWaaWba aSqabeaapeGaaGOmaaaaaaGcdaqadaWdaeaacuaH1oqzgaqea8qacq GHsislcqqHPoWvpaGabmOAayaaraaapeGaayjkaiaawMcaamaabmaa paqaa8qadaWcaaWdaeaadaahbaWcbeqaaiabgEHiQaaakiaadohaae aapeGaamOBaaaaaiaawIcacaGLPaaapaWaa0raaSqaa8qacaGGSaGa amyyaaWdaeaaaaGcpeGaam4Da8aadaahaaWcbeqaa8qacaWGHbaaaa aa@5424@ ,  (5.7)

which shows that the variation of entropy per baryon along the meridional circulation velocity is responsible for the creation of the injection energy per baryon besides the contributions made by other thermodynamic quantities. If entropy per baryon is assumed to be constant along the meridional circulation velocity, then the injection energy per baryon becomes zero which is in contradiction with the very definition of injection energy.35 Hence, we arrive at the conclusion that the variation of entropy per baryon along the meridional circulation velocity generates the injection energy per baryon.

On account of (2.15), we find from (5.1c) that

E+ΩL=( μ + s θ n )( u t +Ω u φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiabgkHiTiaadweacqGHRaWkcqqHPoWvcaWGmbGaeyypa0Za aeWaa8aabaWaaWraaSqabeaacqGHxiIkaaGccqaH8oqBpeGaey4kaS YaaSaaa8aabaWaaWraaSqabeaacqGHxiIkaaGccaWGZbWaaWraaSqa beaacqGHxiIkaaGccqaH4oqCaeaapeGaamOBaaaaaiaawIcacaGLPa aadaqadaWdaeaapeGaamyDa8aadaWgaaWcbaWdbiaadshaa8aabeaa k8qacqGHRaWkcqqHPoWvcaWG1bWdamaaBaaaleaapeGaeqOXdOgapa qabaaak8qacaGLOaGaayzkaaaaaa@51BF@ .  (5.8)

Substituting u t =λ( g tt +Ω g tφ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiaadwhapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaeyyp a0Jaeq4UdW2aaeWaa8aabaWdbiaadEgapaWaaSbaaSqaa8qacaWG0b GaamiDaaWdaeqaaOWdbiabgUcaRiabfM6axjaadEgapaWaaSbaaSqa a8qacaWG0bGaeqOXdOgapaqabaaak8qacaGLOaGaayzkaaaaaa@4733@  and u φ =λ( g tφ +Ω g φφ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiaadwhapaWaaSbaaSqaa8qacqaHgpGAa8aabeaak8qacqGH 9aqpcqaH7oaBdaqadaWdaeaapeGaam4za8aadaWgaaWcbaWdbiaads hacqaHgpGAa8aabeaak8qacqGHRaWkcqqHPoWvcaWGNbWdamaaBaaa leaapeGaeqOXdOMaeqOXdOgapaqabaaak8qacaGLOaGaayzkaaaaaa@497F@  in (5.8) and simplifying with the aid of (2.3), we get

( 1+ w 2 )= λ ( μ + s θ n ) ( EΩ L ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbmaabmaapaqaa8qacaaIXaGaey4kaSIaam4Da8aadaahaaWc beqaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaeyypa0ZaaSaaa8aaba WdbiabeU7aSbWdaeaapeWaaeWaa8aabaWaaWraaSqabeaacqGHxiIk aaGccqaH8oqBpeGaey4kaSYaaSaaa8aabaWaaWraaSqabeaacqGHxi IkaaGccaWGZbWaaWraaSqabeaacqGHxiIkaaGccqaH4oqCaeaapeGa amOBaaaaaiaawIcacaGLPaaaaaWaaeWaa8aabaWdbiaadweacqGHsi slcqqHPoWvcaqGGaGaamitaaGaayjkaiaawMcaaaaa@50D3@ .  (5.9)

From (5.2) and (5.3), we get

EΩ L= Φ ¯ + s n Φ ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiaadweacqGHsislcqqHPoWvcaqGGaGaamitaiabg2da98aa cuqHMoGrgaqea8qacqGHRaWkdaWcaaWdaeaadaahbaWcbeqaaiabgE HiQaaakiaadohaaeaapeGaamOBaaaapaGafuOPdyKbaebaaaa@43C6@ ,  (5.10)

where Φ ¯ = ε ¯ Ω j ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccuqHMo GrgaqeaabaaaaaaaaapeGaeyypa0Zdaiqbew7aLzaaraWdbiabgkHi TiabfM6ax9aaceWGQbGbaebaaaa@3E99@  represents the injection energy per entropon.

Replacing Φ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccqqHMo Graaa@37EB@  from (5.7) in (5.10) and using the resulting equation in (5.9), we obtain

1+ w 2 = λ s Φ ¯ ( n μ + ) [ 1+ n μ θ R q 2 ( ln s n ) w ,a a ] MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiaaigdacqGHRaWkcaWG3bWdamaaCaaaleqabaWdbiaaikda aaGccqGH9aqpdaWcaaWdaeaapeGaeq4UdW2damaaCeaaleqabaGaey 4fIOcaaOGaam4CaiqbfA6agzaaraaabaWdbmaabmaapaqaa8qacaWG UbWdamaaCeaaleqabaGaey4fIOcaaOGaeqiVd02dbiabgUcaRaGaay jkaiaawMcaaaaadaWadaWdaeaapeGaaGymaiabgUcaRmaalaaapaqa a8qacaWGUbWdamaaCeaaleqabaGaey4fIOcaaOGaeqiVd02aaWraaS qabeaacqGHxiIkaaGccqaH4oqCaeaapeGaamOuaiaadghapaWaaWba aSqabeaapeGaaGOmaaaaaaGcdaqadaWdaeaaciGGSbGaaiOBa8qada WcaaWdaeaadaahbaWcbeqaaiabgEHiQaaakiaadohaaeaapeGaamOB aaaaaiaawIcacaGLPaaapaWaa0raaSqaa8qacaGGSaGaamyyaaWdae aaaaGcpeGaam4Da8aadaahaaWcbeqaa8qacaWGHbaaaaGccaGLBbGa ayzxaaaaaa@6008@ ,   (5.11)

which gives the relation between the squared magnitude of the meridional circulation velocity and the variation of entropy per baryon along the matter part of fluid’s 4-velocity. This means that the flow of matter part of fluid cannot be isentropic in the presence of dissipation caused by the heat flow. The variation of entropy per baryon along the meridional circulation velocity plays the dual role in the creation of the injection energy per baryon and also contributes to the squared magnitude of meridional circulation velocity.

From (5.8) and (5.9) with the aid of (2.3) and (2.22), we get

Φ=λ μ G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccqqHMo GrqaaaaaaaaaWdbiabg2da9iabeU7aS9aadaahbaWcbeqaaiabgEHi QaaakiabeY7aT9qacaWGhbaaaa@3E8E@ ,  (5.12)

which is an alternative version of (5.7) in terms metric tensor components associated with the surface of transitivity and the rotational velocity about the rotation axis. This relation may be used to determine the conditions under which a heat conducting fluid configuration admits clockwise or anti-clockwise rotation about the rotation axis.

Link between differential rotation and thermal-fluid vorticity

In this section we find a relation describing the differential rotation of the matter part of fluid along the  thermal-fluid vorticity. The key idea which motivates to explore such relation originates from most celebrated Ferraro’s law of isorotation in RMHD38 because the thermal-fluid vorticity is the magnetic part of of thermal-fluid vorticity 2-form W ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGxbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaaaaa@391A@ . This is composed of a linear combination of matter part of fluid’s vorticity vector and spacelike twist vector associated with a congruence of heat flow lines. It is defined as follows:

V a = W ab u b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiaadAfapaWaaWbaaSqabeaapeGaamyyaaaakiabg2da98aa daahbaWcbeqaaiabgEHiQaaakiaadEfadaahaaWcbeqaa8qacaWGHb GaamOyaaaakiaadwhapaWaaSbaaSqaa8qacaWGIbaapaqabaaaaa@4010@ ,  (6.1a)

which is explicitly expressible as

V a =2 μ ω a +2αq ω a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiaadAfapaWaaWbaaSqabeaapeGaamyyaaaakiabg2da9iaa ikdapaWaaWraaSqabeaacqGHxiIkaaGccqaH8oqBpeGaeqyYdC3dam aaCaaaleqabaWdbiaadggaaaGccqGHRaWkcaaIYaGaeqySdeMaamyC a8aacuaHjpWDgaWeamaaCaaaleqabaWdbiaadggaaaaaaa@47BC@ ,  (6.1b)

and obeys the following condition

m a =( lnαq ) ,a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcdaWfGa qaaiaad2gaaSqabeaacqWIzkszaaGcdaWgaaWcbaaeaaaaaaaaa8qa caWGHbaapaqabaGcpeGaeyypa0ZaaeWaa8aabaGaciiBaiaac6gape GaeqySdeMaamyCaaGaayjkaiaawMcaa8aadaqhbaWcbaWdbiaacYca caWGHbaapaqaaaaaaaa@43DC@ .  (6.1c)

Here ω a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiabeM8a39aadaahaaWcbeqaa8qacaWGHbaaaaaa@3991@  is the matter part of fluid’s vorticity vector defined by ω a = 1 2 η abcd u b u c;d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiabeM8a39aadaahaaWcbeqaa8qacaWGHbaaaOGaeyypa0Za aSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaeq4TdG2damaaCa aaleqabaWdbiaadggacaWGIbGaam4yaiaadsgaaaGccaWG1bWdamaa BaaaleaapeGaamOyaaWdaeqaaOWdbiaadwhapaWaaSbaaSqaa8qaca WGJbGaai4oaiaadsgaa8aabeaaaaa@483F@ . The spacelike twist vector ω a = 1 2 η abcd u b ω cd MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccuaHjp WDgaWeamaaCaaaleqabaaeaaaaaaaaa8qacaWGHbaaaOGaeyypa0Za aSaaa8aabaWdbiaaigdaa8aabaWdbiaaikdaaaGaeq4TdG2damaaCa aaleqabaWdbiaadggacaWGIbGaam4yaiaadsgaaaGccaWG1bWdamaa BaaaleaapeGaamOyaaWdaeqaaOGafqyYdCNbambadaWgaaWcbaWdbi aadogacaWGKbaapaqabaaaaa@4849@   of the congruence of heat flow lines, where ω ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccuaHjp WDgaWeamaaBaaaleaaqaaaaaaaaaWdbiaadggacaWGIbaapaqabaaa aa@3A81@  denotes its rotation tensor.39  The spacelike twist vector ω a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccuaHjp WDgaWeamaaCaaaleqabaaeaaaaaaaaa8qacaWGHbaaaaaa@398C@  is directed along m a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiaad2gapaWaaWbaaSqabeaapeGaamyyaaaaaaa@38B6@   because of the identit  ω a =( ω b m b ) m a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccuaHjp WDgaWeamaaCaaaleqabaaeaaaaaaaaa8qacaWGHbaaaOGaeyypa0Za aeWaa8aabaGafqyYdCNbambadaWgaaWcbaWdbiaadkgaa8aabeaak8 qacaWGTbWdamaaCaaaleqabaWdbiaadkgaaaaakiaawIcacaGLPaaa caWGTbWdamaaCaaaleqabaWdbiaadggaaaaaaa@43BA@ .  The curvature vector associated with the congruence of heat flow lines is m a = m a;b m b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcdaWfGa qaaiaad2gaaSqabeaacqWIzkszaaGcdaWgaaWcbaaeaaaaaaaaa8qa caWGHbaapaqabaGcpeGaeyypa0JaamyBa8aadaWgaaWcbaWdbiaadg gacaGG7aGaamOyaaWdaeqaaOWdbiaad2gapaWaaWbaaSqabeaapeGa amOyaaaaaaa@41E0@ .

From (2.4), we find that

m a =( lnζ ) + ,a λΩ K 2 ζ 2 u t l ,a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcdaWfGa qaaiaad2gaaSqabeaacqWIzkszaaGcdaWgaaWcbaaeaaaaaaaaa8qa caWGHbaapaqabaGcpeGaeyypa0ZaaeWaa8aabaGaciiBaiaac6gape GaeqOTdOhacaGLOaGaayzkaaWdamaaDeaaleaapeGaaiilaiaadgga a8aabaaaaOWdbiabgUcaRmaalaaapaqaa8qacqaH7oaBcqqHPoWvca WGlbWdamaaCaaaleqabaWdbiaaikdaaaGccqaH2oGEpaWaaWbaaSqa beaapeGaaGOmaaaaaOWdaeaapeGaamyDa8aadaWgaaWcbaWdbiaads haa8aabeaaaaGcpeGaamiBa8aadaWgaaWcbaWdbiaacYcacaWGHbaa paqabaaaaa@5188@   (6.2)

Using the defining relations of effective energy and angular momentum per particle associated with the matter part of fluid, we get

α( l q t + q φ )=( lεj ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiabeg7aHnaabmaapaqaa8qacaWGSbGaamyCa8aadaWgaaWc baWdbiaadshaa8aabeaak8qacqGHRaWkcaWGXbWdamaaBaaaleaape GaeqOXdOgapaqabaaak8qacaGLOaGaayzkaaGaeyypa0JaeyOeI0Ya aeWaa8aabaWdbiaadYgapaGaeqyTdu2dbiabgkHiT8aacaWGQbaape GaayjkaiaawMcaaaaa@4983@ ,  (6.3)

which because of (4.29) takes the form

αq ζ =( lεj ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbmaalaaapaqaa8qacqaHXoqycaWGXbaapaqaa8qacqaH2oGE aaGaeyypa0JaeyOeI0YaaeWaa8aabaWdbiaadYgapaGaeqyTdu2dbi abgkHiT8aacaWGQbaapeGaayjkaiaawMcaaaaa@437F@ .  (6.4)

From (6.1c) and (6.2), one may find that

l ,a = u t αqλΩζ K 2 ( αq ζ ) ,a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiaadYgapaWaaSbaaSqaa8qacaGGSaGaamyyaaWdaeqaaOWd biabg2da9maalaaapaqaa8qacaWG1bWdamaaBaaaleaapeGaamiDaa WdaeqaaaGcbaWdbiabeg7aHjaadghacqaH7oaBcqqHPoWvcqaH2oGE caWGlbWdamaaCaaaleqabaWdbiaaikdaaaaaaOWaaeWaa8aabaWdbm aalaaapaqaa8qacqaHXoqycaWGXbaapaqaa8qacqaH2oGEaaaacaGL OaGaayzkaaWdamaaDeaaleaapeGaaiilaiaadggaa8aabaaaaaaa@4ED9@ ,  (6.5)

which shows that the entropy entrainment multiplied by the magnitude of heat flow vector contributes to the variation of geometrical angular momentum per particle.

It follows from (6.4) and (6.5) that

( l ε ,a j ,a )=( 1+ ε u t αλqΩ K 2 )( αq ζ ) ,a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbmaabmaapaqaa8qacaWGSbWdaiabew7aLnaaBaaaleaapeGa aiilaiaadggaa8aabeaak8qacqGHsislpaGaamOAamaaBaaaleaape Gaaiilaiaadggaa8aabeaaaOWdbiaawIcacaGLPaaacqGH9aqpcqGH sisldaqadaWdaeaapeGaaGymaiabgUcaRmaalaaapaqaaiabew7aL9 qacaWG1bWdamaaBaaaleaapeGaamiDaaWdaeqaaaGcbaWdbiabeg7a HjabeU7aSjaadghacqqHPoWvcaWGlbWdamaaCaaaleqabaWdbiaaik daaaaaaaGccaGLOaGaayzkaaWaaeWaa8aabaWdbmaalaaapaqaa8qa cqaHXoqycaWGXbaapaqaa8qacqaH2oGEaaaacaGLOaGaayzkaaWdam aaDeaaleaapeGaaiilaiaadggaa8aabaaaaaaa@5A2A@ .  (6.6)

The magnetic part V a MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiaadAfapaWaaWbaaSqabeaapeGaamyyaaaaaaa@389F@  of thermal-fluid vorticity 2-form W ab MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiaadEfapaWaaSbaaSqaa8qacaWGHbGaamOyaaWdaeqaaaaa @3995@  is given by 21

V a = 1 K ( I u φ + a 5 ) ξ ( t ) a + 1 K ( I u t + a 6 ) ξ ( φ ) a + u t K η abcd ( l ε ,b j ,b ) ξ ( t )c ξ ( φ )d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiaadAfapaWaaWbaaSqabeaapeGaamyyaaaakiabg2da9iab gkHiTmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGlbaaamaabmaapa qaa8qacaWGjbGaamyDa8aadaWgaaWcbaWdbiabeA8aQbWdaeqaaOWd biabgUcaRiaadggapaWaaSbaaSqaa8qacaaI1aaapaqabaaak8qaca GLOaGaayzkaaGaeqOVdG3damaaDaaaleaapeWaaeWaa8aabaWdbiaa dshaaiaawIcacaGLPaaaa8aabaWdbiaadggaaaGccqGHRaWkdaWcaa WdaeaapeGaaGymaaWdaeaapeGaam4saaaadaqadaWdaeaapeGaamys aiaadwhapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaey4kaSIaam yya8aadaWgaaWcbaWdbiaaiAdaa8aabeaaaOWdbiaawIcacaGLPaaa cqaH+oaEpaWaa0baaSqaa8qadaqadaWdaeaapeGaeqOXdOgacaGLOa Gaayzkaaaapaqaa8qacaWGHbaaaOGaey4kaSYaaSaaa8aabaWdbiaa dwhapaWaaSbaaSqaa8qacaWG0baapaqabaaakeaapeGaam4saaaacq aH3oaApaWaaWbaaSqabeaapeGaamyyaiaadkgacaWGJbGaamizaaaa kmaabmaapaqaa8qacaWGSbWdaiabew7aLnaaBaaaleaapeGaaiilai aadkgaa8aabeaak8qacqGHsislcaWGQbWdamaaBaaaleaapeGaaiil aiaadkgaa8aabeaaaOWdbiaawIcacaGLPaaacqaH+oaEpaWaaSbaaS qaa8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiaadogaa8aa beaak8qacqaH+oaEpaWaaSbaaSqaa8qadaqadaWdaeaapeGaeqOXdO gacaGLOaGaayzkaaGaamizaaWdaeqaaaaa@7C2C@ ,  (6.7)

where

a 5 = η abcd w a j ,b ξ ( t )c ξ ( φ )d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiaadggapaWaaSbaaSqaa8qacaaI1aaapaqabaGcpeGaeyyp a0Jaeq4TdG2damaaCaaaleqabaWdbiaadggacaWGIbGaam4yaiaads gaaaGccaWG3bWdamaaBaaaleaapeGaamyyaaWdaeqaaOWdbiaadQga paWaaSbaaSqaa8qacaGGSaGaamOyaaWdaeqaaOWdbiabe67a49aada WgaaWcbaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaam4y aaWdaeqaaOWdbiabe67a49aadaWgaaWcbaWdbmaabmaapaqaa8qacq aHgpGAaiaawIcacaGLPaaacaWGKbaapaqabaaaaa@50CC@    and  a 6 = η abcd w ε a ,b ξ ( t )c ξ ( φ )d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahcqaaaaa aaaaWdbiaadggapaWaaSbaaSqaa8qacaaI2aaapaqabaGcpeGaeyyp a0JaeyOeI0Iaeq4TdG2damaaCaaaleqabaWdbiaadggacaWGIbGaam 4yaiaadsgaaaGccaWG3bWdaiabew7aLnaaBaaaleaapeGaamyyaaWd aeqaaOWaaSbaaSqaa8qacaGGSaGaamOyaaWdaeqaaOWdbiabe67a49 aadaWgaaWcbaWdbmaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGa am4yaaWdaeqaaOWdbiabe67a49aadaWgaaWcbaWdbmaabmaapaqaa8 qacqaHgpGAaiaawIcacaGLPaaacaWGKbaapaqabaaaaa@5253@  .  (6.8)

Using (6.7), we find that

Ω ˜ ,a V a = u t K η abcd Ω ˜ ,a ( l ε ,b j ,b ) ξ ( t )c ξ ( φ )d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccuqHPo WvgaacamaaBaaaleaaqaaaaaaaaaWdbiaacYcacaWGHbaapaqabaGc peGaamOva8aadaahaaWcbeqaa8qacaWGHbaaaOGaeyypa0ZaaSaaa8 aabaWdbiaadwhapaWaaSbaaSqaa8qacaWG0baapaqabaaakeaapeGa am4saaaacqaH3oaApaWaaWbaaSqabeaapeGaamyyaiaadkgacaWGJb Gaamizaaaak8aacuqHPoWvgaacamaaBaaaleaapeGaaiilaiaadgga a8aabeaak8qadaqadaWdaeaapeGaamiBa8aacqaH1oqzdaWgaaWcba WdbiaacYcacaWGIbaapaqabaGcpeGaeyOeI0YdaiaadQgadaWgaaWc baWdbiaacYcacaWGIbaapaqabaaak8qacaGLOaGaayzkaaGaeqOVdG 3damaaBaaaleaapeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa caWGJbaapaqabaGcpeGaeqOVdG3damaaBaaaleaapeWaaeWaa8aaba WdbiabeA8aQbGaayjkaiaawMcaaiaadsgaa8aabeaaaaa@6041@ .  (6.9)

Substituting (6.6) into (6.9) and simplifying, we obtain

Ω ˜ ,A V A = u t g ( 1+ u t αqλΩ K 2 ) AB Ω ˜ A ( αq ζ ) ,B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccuqHPo WvgaacamaaBaaaleaaqaaaaaaaaaWdbiaacYcacaWGbbaapaqabaGc peGaamOva8aadaahaaWcbeqaa8qacaWGbbaaaOGaeyypa0JaeyOeI0 YaaSaaa8aabaWdbiaadwhapaWaaSbaaSqaa8qacaWG0baapaqabaaa keaapeWaaOaaa8aabaWdbiabgkHiTiaadEgaaSqabaaaaOWaaeWaa8 aabaWdbiaaigdacqGHRaWkdaWcaaWdaeaapeGaamyDa8aadaWgaaWc baWdbiaadshaa8aabeaaaOqaa8qacqaHXoqycaWGXbGaeq4UdWMaeu yQdCLaam4sa8aadaahaaWcbeqaa8qacaaIYaaaaaaaaOGaayjkaiaa wMcaaiaacYkipaWaaWbaaSqabeaapeGaamyqaiaadkeaaaGcpaGafu yQdCLbaGaadaWgaaWcbaWdbiaadgeaa8aabeaak8qadaqadaWdaeaa peWaaSaaa8aabaWdbiabeg7aHjaadghaa8aabaWdbiabeA7a6baaai aawIcacaGLPaaapaWaa0raaSqaa8qacaGGSaGaamOqaaWdaeaaaaaa aa@5E50@ ,  (6.10)

which because of (4.25) takes the form

Ω ˜ ,A V A = u t g ( 1+ ε u t αqλΩ K 2 ) AB ( Ω ,A Λ ,A )( αq ζ ) ,B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccuqHPo WvgaacamaaBaaaleaaqaaaaaaaaaWdbiaacYcacaWGbbaapaqabaGc peGaamOva8aadaahaaWcbeqaa8qacaWGbbaaaOGaeyypa0JaeyOeI0 YaaSaaa8aabaWdbiaadwhapaWaaSbaaSqaa8qacaWG0baapaqabaaa keaapeWaaOaaa8aabaWdbiabgkHiTiaadEgaaSqabaaaaOWaaeWaa8 aabaWdbiaaigdacqGHRaWkdaWcaaWdaeaacqaH1oqzpeGaamyDa8aa daWgaaWcbaWdbiaadshaa8aabeaaaOqaa8qacqaHXoqycaWGXbGaeq 4UdWMaeuyQdCLaam4sa8aadaahaaWcbeqaa8qacaaIYaaaaaaaaOGa ayjkaiaawMcaaiaacYkipaWaaWbaaSqabeaapeGaamyqaiaadkeaaa GcdaqadaWdaeaapeGaeuyQdC1damaaBaaaleaapeGaaiilaiaadgea a8aabeaak8qacqGHsislpaGaeu4MdW0aaSbaaSqaa8qacaGGSaGaam yqaaWdaeqaaaGcpeGaayjkaiaawMcaamaabmaapaqaa8qadaWcaaWd aeaapeGaeqySdeMaamyCaaWdaeaapeGaeqOTdOhaaaGaayjkaiaawM caa8aadaqhbaWcbaWdbiaacYcacaWGcbaapaqaaaaaaaa@668C@ ,   (6.11)

where

Λ= s θ ( λ+ u t )λK q 2 ( q ζ u t + Φ μ q φ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccqqHBo atqaaaaaaaaaWdbiabg2da9maalaaapaqaamaaCeaaleqabaGaey4f IOcaaOGaam4CamaaCeaaleqabaGaey4fIOcaaOGaeqiUdehabaWdbm aabmaapaqaa8qacqaH7oaBcqGHRaWkcaWG1bWdamaaCaaaleqabaWd biaadshaaaaakiaawIcacaGLPaaacqaH7oaBcaWGlbGaamyCa8aada ahaaWcbeqaa8qacaaIYaaaaaaakmaabmaapaqaa8qadaWcaaWdaeaa peGaamyCaaWdaeaapeGaeqOTdOhaaiaadwhapaWaaSbaaSqaa8qaca WG0baapaqabaGcpeGaey4kaSYaaSaaa8aabaGaeuOPdyeabaWaaWra aSqabeaacqGHxiIkaaGccqaH8oqBaaWdbiaadghapaWaaSbaaSqaa8 qacqaHgpGAa8aabeaaaOWdbiaawIcacaGLPaaaaaa@58EA@ .  (6.12)

It is seen from (6.11) that Ω ˜ ,A V A 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccuqHPo WvgaacamaaBaaaleaaqaaaaaaaaaWdbiaacYcacaWGbbaapaqabaGc peGaamOva8aadaahaaWcbeqaa8qacaWGbbaaaOGaeyiyIKRaaGimaa aa@3E72@ . This in turn implies that

Ω ˜ ,A ω A 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbiqaaahccuqHPo WvgaacamaaBaaaleaaqaaaaaaaaaWdbiaacYcacaWGbbaapaqabaGc peGaeqyYdC3damaaCaaaleqabaWdbiaadgeaaaGccqGHGjsUcaaIWa aaaa@3F64@ ,  (6.13)

which exhibits that the law of gravitational isorotation ceases to hold in the sense of Glass.40 Thus we arrive at the conclusion that the law of gravitational isorotation breaks down in the case of an axisymmetric stationary heat conducting fluid configurartion due to the entropy entrainment.

Conclusion

The present work is focused on the rotation of a heat conducting fluid configuration based on Carter’s model under the assumption that the background spacetime is non-circular stationary and axisymmetry. It is found that a linear combination of the injection energy gradient and the gradient of rotational velocity about rotation axis is constant along the matter part of fluid flow lines. The level surfaces of constant angular velocity about rotation axis do not coincide with level surfaces of constant effective angular momentum per baryon corresponding to the matter part of fluid because of the variation of Killing twist scalars coupled with thermodynamic quantities in meridional planes. The rotation of matter part of fluid composed of rotation about rotation axis and an additional rotation generated by meridional circulations are completely describable in terms of thermodynamic variables such as the heat flow, injection energy per baryon, chemical potential of matter part of fluid, and the rotational potential created by dynamic space time as an outcome of interaction between the motion of the entropy fluid and of the matter part of fluid. The meridional circulation velocity contributes to the entropy production besides the contributions made by the other thermodynamic quantities. The entropy fluid is not corotating with the matter part of fluid in the presence of dissipation caused by the heat flow. It is found that the law of gravitational isorotation breaks down due to the entropy entrainment in the case of an axisymmetric stationary heat conducting fluid.

Acknowledgments

The author is thankful to reviewer for making valuable suggestions and advising for the improvement of the original first draft of the manuscript.

Conflicts of interest

Author declared there is no conflicts of interest.

References

  1. M Hampel, T Fisher, J Schaffner–Bielich, et al. New Equations of State in Simulations of Core–Collapse Supernovae. Astroph J. 2012;748:70.
  2. PJ Montero, HT Janka, E Muller. Supermassive black hole seeds updates on the quasi–star model. Astroph J. 2012;749:37
  3. K Sumiyoshi, Supernovae and neutron stars playgrounds of dense matter and neutrinos. J Phys Conf Ser. 861,012028 .2017.
  4. C Constantinou, B Mucciali, M Prakash, et al.Treating quarks within neutron stars. Phys Rev C92. 025801 .2015.
  5. GS Denicol, C Gale, S Jeon, et al. Net–baryon diffusion in fluid–dynamic simulations of relativistic heavy–ion collisions. Phys Rev C98 .034916 .2018.
  6. C Eckart. The Thermodynamics of Irreversible Processes. III. Relativistic Theory of the Simple Fluid. Phys Rev.1940;58(10):919.
  7. WA Hiscock, L Lindblom. Stability and causality in dissipative relativistic fluids. Ann Phys j. 1983;151(2):466–496.
  8. WA Hiscock, L Lindblom. Generic instabilities in first–order dissipative relativistic fluid theories. Phys Rev j. 1985;D(31):725–733.
  9. W Israel, JM Stewart. Transient relativistic thermodynamics and kinetic theory. Ann Phys j.1979;118(2):341–372.
  10. H Grad. On the kinetic theory of rarefied gases. Comm Pure Appl Math.1949;2(4):331–407.
  11. R Geroch. Relativistic theories of dissipative fluids. J Math Phys. 1995;36(8):42–26 .
  12. TS Olson. Non–Gaussian pure states and positive Wigner functions. Ann Phys j. 1990;199(1):18–36.
  13. P Huovinen, D Molnar. Applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions. Phys Rev. 014906. 2009;79(1).
  14. GS Denicol, E Molnar, H Niemi, et al. Transport coefficients in the Polyakov quark meson coupling model: A relaxation time approximation. Eur Phys A48.1709, 2012.
  15. A Muronga, Z Xu, C Greiner. Shear viscosity and out of equilibrium dynamics. Phys Rev C. 044915. 2009;79(4).
  16. B Betz, D Henkel, DH Rischke. From kinetic theory to dissipative fluid dynamics.J Phys G36.2009; 62:556–561.
  17. B Carter, Relativistic Fluid Dynamics, Lecture Notes in Mathematics ed A Anile and M Choquet–Bruhat.1989;1385:64.
  18. CS Lopez–Monsalov, N Andersson.  Thermal dynamics in general relativity. Proc Roy Soc. A467. 738 .2011
  19. G Prasad. Thermal vorticity and thermal chirality in relativistic thermally conducting fluid. ClassQuant Grav36. 035007. 2019
  20. D Priou. Gravitational effects of global textures. Phys Rev D. 1223. 1991;43(4).
  21. G Prasad. Rotational motion of a stationary axisymmetric relativistic heat conducting fluid configuration.Phys Astron Int J. 2018;2(6):527–535.
  22.  L Lindblom .On the symetrics of equilibrim stellar models. Astroph J 208. 1976;340:353–364.
  23.  RH Boyer. An interpretation of the Kerr metric in general relativity. Proc Camb Phil Soc.1966;61(2):531–534.
  24.  RK Sachs, Z Physik. Asymptotic Symmetries in Gravitational Theory. Phys Rev.1960;128(6).
  25.  WG Hoover, B Moran, RM More, et al. Heat conduction in a rotating disk via nonequilibrium molecular dynamics. Phys Rev A24.1981;24(4).
  26.  V Rezania, R Maartens. Excess Wing in the Dielectric Loss of Glass Formers: A Johari–Goldstein β Relaxation? Phys Rev Lett. 2000;84(24).
  27.  G Prasad. Classical and Quantum Gravity. Class Quant Grav. 2017;34.
  28.  SW Hawking, GFR Ellis. The Large Scale Structure of Space–Time Cambridge Univ Press.1973
  29.  F Weber, R Negreiros. Hybrid stars in a strong magnetic field. Acta Phys Pol. Supp 3.70 .2010
  30.  R Negreiros , S Schramn. Thermal evolution of neutron stars in two dimensions. Phys Rev D. 2012;85(10).
  31.  AY Potekhin, A De Lucas, JA Pons, et al. Neutron Stars Cooling and Transport. Space Sci Rev. 2015;191(1).
  32.  SK Lander, N Andersson, Month Not Roy. Magnetic fields in axisymmetric neutron stars. Astron Soc J. 2018;395(4):2162–2176.
  33.  E Gourgoulhon , C Markakis, K Uryu, et al. Thermodynamics of magnetized binary compact objects.Phys Rev j D. 2011;82(10).
  34.  B Carter. Black Hole Equilibrium States. In: C Dewitt, BS Dewitt, editors. Black Holes–Les Houches. Gordon Breach, New York. 1973;61–214.
  35.  JM Bardeen. Rotating Stars and Disk. In: C Dewitt, BS Dewitt, editors. Black Holes–Les Houches. Gordon Breach, New York. 1973;273–279.
  36.  B Carter, C Hazard, S Mitton. Perfect fluid and magnetic field conservation in the theory of black hole rings, Galactic Nuclei ed Cambridge Univ Press. 1972:273–279
  37.  JD Bekenstein, E Oron. New conservation laws in general–relativistic magnetohydrodynamics. Phys Rev j D. 1979;18(6).
  38.  AK Raychaudhuri. Ferraro’s theorem in non–flat space time. Month Not Roy Astron Soc. 1979;189(1): 39–43.
  39. PJ Greenberg. The general theory of space–like congruences with an application to vorticity in relativistic hydrodynamics. J Math Anal Appl. 1970;30(1):128–143.
  40. EN Glass. The Zeno’s paradox in quantum theory. J Math Phys.1977;18(4).
Creative Commons Attribution License

©2021 Prasad. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.