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Introduction	

Relativistic dissipative fluid dynamics is important to understand 
the irreversible thermodynamic processes of hot dense nuclear matter 
that is created in supernovae explosions1-3 leading to the formation of 
stellar compact objects like neutron stars4 as well as needed to explain 
physical phenomenon found in laboratory experiments involving 
relativistic heavy-ion collision.5 A relativistic theory of dissipative 
fluid based on irreversible thermodynamic processes has first been 
formulated by Eckart.6 But this theory encountered a difficulty in the 
sense that the occurrence of causality violation and instability7,8 is 
inevitable due to the absence of relaxation timescales corresponding 
to dissipative quantities such as bulk viscous pressure, shear stress 
tensor, and heat flow within the theory. In order to circumvent the 
problems of a causality and instability in a relativistic framework Israel 
and Stewart (IS)9 formulated a new theory of relativistic dissipative 
fluid dynamics by invoking Grad’s 14-moment approximation10 
coupled with Boltzmann equations incorporating relaxation 
timescales corresponding to dissipative quantities. But this theory 
also encountered the problem of instability11-12 and is unsatisfactory 
to some extent in the case of heavy-ion collision experiment.13 IS 
theory9 based on Grad’s moment approximation leads to undesirable 
features like infinite number of equations with different transport 
coefficients describing dissipations.14 Despite considerable efforts,15-16 
consequences related to the onset of dissipation are not well known.

A new direction of investigating dissipative phenomenon 
originating due to heat flow stems from the ground-breaking work 
of Carte17 in which the entropy element is thought of as a fluid. 
The entropy entrainment is a basic element from which an analysis 
of causal property of thermal propagation is built up.18 This idea is 
exploited in18 that led to the formulation of relativistic version of 
Cattaneo equation describing causality preserving heat conduction. 
The crucial fact of Carter’s model to realize is that the existence of 

a pair of particle vorticity 2-form and thermal vorticity 2-form builds 
up a pair of source-free Maxwell’s like equations which describe 
the evolution of a heat conducting fluid.17 The matter part of fluid’s 
4-velocity and the heat flow vector bear an intrinsic relationship of 
mutual interdependence. Consequently, prior choice of components 
of both fluid’s 4-velocity and heat flow vector without solving them 
from Maxwell’s like equations may not be physically consistent with 
the evolution equations of a heat conducting fluid.19 The existence 
of meridional circulation is an inherent consequence19 of Carter’s 
model of a heat conducting fluid.17 At this point, it is worth to recall 
the remark made by Priou20 that IS theory9 and Carter’s variational 
model of heat conducting fluid17 ceases to be equivalent in non-
equilibrium situations. The reason seems to lie in the fact that the 
entropy fluid contribute its energy (i.e., product of entropy density and 
local temperature) per baryon to the  matter part of fluid’s energy per 
baryon which results in the enhancement of total energy per baryon in 
a Carter’s model during the evolution of a heat conducting fluid. The 
variation of this total energy along the matter part of fluid’s 4-velocity 
exchanges with the heat flux coupled to the effective energy per 
entropic associated with the entropy fluid per unit of local temperature 
measured in the matter part of fluid’s rest frame under the assumption 
that the space time representing the gravitational field of such fluid 
configuration is non-circular stationary and axisymmetric.21 Similar 
exchange law for the variation of total angular momentum per baryon 
of matter part of fluid with the heat flux coupled to the effective 
angular momentum per entropon of the entropy fluid per unit of local 
temperature holds under the same spacetime symmetry conditions.21 
Such physical process is not obtainable in IS theory.9 Carter’s model17 
seems to be more capable to describe the interaction between the 
gravitational field and the motion of a heat conducting fluid because 
of the existence of a pair of Maxwell’s like equations and the energy-
momentum tensor built up with a unique term expressing thermal 
stress coupled with a thermodynamic variable encoding the entropy 
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Abstract

The present work is focused to study the rotational velocity of a heat conducting fluid 
configuration based on Carter’s model and related consequences under the assumption that 
the background space time is non-circular stationary and axi symmetric. The level surfaces 
of constant angular velocity about rotation axis do not coincide with level surfaces of 
constant effective angular momentum per baryon corresponding to the matter part of fluid 
because of the variation of Killing twist scalars coupled with thermodynamic quantities 
in meridional planes. The rotation of matter part of fluid bears an intrinsic relationship 
with heat flow, injection energy per baryon, chemical potential of matter part of fluid, and 
rotational potential created by dynamic space time as an outcome of interaction between 
the motion of the entropy fluid and of the matter part of fluid. The meridional circulation 
velocity plays a key role in the creation of the entropy production besides the contributions 
made by other thermodynamic quantities. The entropy fluid is not co rotating with the 
matter part of fluid in the presence of dissipation caused by the heat flow. It is found that a 
linear combination of the injection energy gradient and the gradient of rotational velocity 
about rotation axis is constant along the matter part of fluid flow lines.
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entrainment. This stress term relates the Ricci curvature tensor via 
Einstein field equations in the spacelike 3-space orthogonal to the 
matter part of fluid’s 4-velocity and therefore connects gravitational 
potentials characterized by the metric tensor.

As is known from the work of Lindblom22 that the thermodynamic 
equilibrium of a self- gravitating dissipative fluid requires the 
vanishing of entropy production which in turn implies the vanishing 
of both the heat flow and the shear tensor associated with the fluid flow 
lines in Eckart’s Theory.6 Since by definition such equilibrium state of 
stellar object composed of a heat conducting fluid is axisymmetric 
and stationary,22 it amounts to the vanishing of differential rotation 
and hence the stellar object rotates uniformly and the heat flow dies 
out. But in this conclusion, the missing link is fluid’s vorticity that 
exists even in the case of uniform rotation.23 The vorticity of fluid 
flow lines due to gravitomagnetic effect generates the coriolis force24 
that couples to heat flow.25 Its effect is recognized in.26 The term of 
coriolis force enters in the equilibrium equation if constructed from 
Euler’s equations of motion and vortex lines are twisting.27 Because 
of the presence of non-zero magnitude of fluid’s vorticity, by virtue 
of timelike convergence condition,28 this squared magnitude of fluid’s 
vorticity has a strong bearing on continuous variation of temperature 
via Raychaudhuri equation.28 This means that there is continuous 
thermal dissipation due to internal motion of the fluid under the action 
of coriolis force. Such situation is still not clear in the evolutionary 
scenario of a heat conducting fluid but expected to halt if the vorticity 
magnitude is bounded above.

The dissipative processes that occur in the formation and evolution 
of compact stellar objects involve on the one hand strong gravitational 
effects and on the other hand microscopic properties of hot dense 
matter. Some recent theoretical and numerical investigations29,30  
indicate that the study of thermal evolution of a newly born neutron 
star is important for understanding physical processes of observed 
thermal radiation from such stars on the basis of cooling theory.31 
But the way the energy-balance equation is formulated for the study 
of rotational effects on thermal evolution of a newly born neutron 
star violates the causality principle because the formulation involves 
Fourier’s law for the description of heat conduction and an analogous 
construction of energy-momentum tensor that resembles with that 
of Eckart’s relativistic version of dissipative fluids.6 It is known that 
Fourier’s law of heat conduction violates causality. Such construction 
of theoretical basis used for prediction of rotational effect suffers 
from causality violation and therefore seems to be inconsistent in a 
relativistic framework. Effort32 towards better formulation for the 
description of thermal evolution in the case of a rotating star is still 
ongoing.

If the spacetime configuration representing the gravitational 
field of a self- gravitating heat conducting fluid is assumed to be 
axisymmetric and stationary, it must be non-circular in a Carter’s 
model17 because the heat flow is strongly coupled to meridional 
circulations.19 The existence of meridional circulation is intrinsically 
related to the Killing twist scalars which build up dynamic character 
of the space time. This in turn says that the notion of thermal 
equilibrium based on Eckart’s model,6 which requires the vanishing 
of heat flow, ceases to hold in a Carter’s model.17 The reason is that 
the contribution of heat flow to momentum covector associated with 
both the matter part of fluid and the entropy fluid cannot be excluded 
until meridional circulation ceases.19 The question that arises from 
asking how meridional circulation ceases at the onset of dissipation 
caused by the heat flow in an irreversible thermodynamic process. The 
thermodynamic processes that can thrust out meridional circulation 

during thermal evolution is yet unknown. Furthermore, it is extremely 
difficult to solve thermal relaxation time from relativistic version 
of Cattaneo equation18 without the knowledge of components of 
heat flow vector and the acceleration of fluid’s motion that couples 
to shear and rotation tensors associated with the fluid flow lines in 
a non-circular stationary axisymmetric spacetime. The determination 
of the components of heat flow vector and the matter part of fluid’s 
4-velocity requires the solution of a pair of Maxwell’s like equations 
governing the evolution of a heat conducting fluid. Thus as a first step, 
we find solutions of a pair of Maxwell’s like equations by exploiting 
an electrodynamic analog of the approach developed in33 for the 
case of relativistic magnetohydrodynamics (RMHD) under the same 
spacetime symmetry assumptions and use these solutions to study the 
consequences related to the rotational evolution of both the matter 
part of fluid and the entropy fluid.

The present work is focused on the study of rotational evolution of 
a heat conducting fluid based on Carter’s model17 under the assumption 
that its background spacetime representing the gravitational field is 
non-circular stationary and axisymmetric. The plan of the paper is 
as follows. In Sec.2 we find solution of Maxwell’s like equations 
associated with the evolution of the matter part of fluid by exploiting 
an electrodynamic analog of the approach developed in the case of 
relativistic magnetohydrodynamics (RMHD)33 and derive the relation 
between differential rotation of matter part of fluid and a combination 
of Killing twist scalars and thermodynamic variables. Sec.3 is 
concerned with the rotation of matter part of fluid composed of an 
extra rotation caused by meridional circulation in the meridional plane 
in addition to the usual rotation about the rotation axis. Its connection 
with thermodynamic quantities is described by using the solution 
of Maxwell’s like equations associated with the evolution of the 
entropy fluid. Sec.4 describes the rotational evolution of the entropy 
fluid and related consequences. Sec.5 is devoted to the description of 
the creation of injection energy. Sec.6 is focused on the differential 
rotation of the matter part of fluid along the thermal-fluid vorticity.

Convention: The spacetime metric is of signature 2+ . Small 
case Latin indices run from 0  to 3 . Caiptal Latin indices are used 
to indicate poloidal coordinates which take values1and 2 .Semi-
colon and comma are used, respectively, to denote the covariant and 
partial derivatives. Constituent indices  and  are used to indicate 
matter and entropy part of fluid, respectively, throughout the text and 
not to be confused with tensor indices. Square and round bracket 
around indices represent, respectively, skew-symmetrization and 
symmetrization.

Evolution of the matter part of fluid
In this section we study the evolution of matter part of fluid 

described by Maxwell’s like equations associated with the thermal-
fluid vorticity 2-form abW  and investigate various consequences 
related to dissipation caused by heat flow under the assumption that 
the space time representing the gravitational field of a self-gravitating 
heat conducting fluid is non-circular stationary and axi symmetric. 
The idea to find solutions of Maxwell’s like equations is based on 
an analogous approach developed in33 for the study of relativistic 
magneto hydrodynamics (RMHD) under the same space time 
symmetry assumption. This assumption implies the existence of pair 
of two linearly independent Killing vectors of which one is time like 
Killing vector ( )

a
tξ generating a translational symmetry with open time 

like lines as orbits and the other one is a space like Killing vector ( )
a
ϕξ

generating rotations about a symmetry axis.34 There exists a family 
of invariant time /like 2-surfaces, called surfaces of transitivity, 
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generated by this pair of Killing vectors that correspond to ignorable 
coordinates 0x t=  and 3x ϕ= ( i.e., ( )

a a
ttξ δ=  and  ( )

a a
ϕϕξ δ= 34 The 

ignorable coordinates t and ϕ are called toroidal coordinates. This 
pair of Killing vectors constitutes the basis of tangent plane tangential 
to surface of transitivity. Its dual basis is of the following form:33

                         
( ) ( ) ( )( )1

tt a t a ag g
K ϕϕ ϕ ϕξ ξ= − + ,                       (2.1a)

                            
( ) ( ) ( )( )1

t tta t a ag g
K ϕϕ ϕξ ξ= − ,                         (2.1b)

with the properties

            ( ) ( ) ( ) ( )1a a
t a t aϕ ϕξ ξ= =    and  ( ) ( ) ( ) ( )0a a

t a a tϕ ϕξ ξ= = ,          (2.1c)

where

                                      
2 0t ttK g g gϕ ϕϕ= − >  .                              (2.1d)

At every point of spacetime there is a 2-dimensional spacelike 
tangent plane orthogonal to the timelike 2-plane but due to non-
circularity assumption a family of such spacelike 2-planes do not 
mesh together to form a family of spacelike 2-surfaces. Such non-
integrable 2-planes are called poloidal planes (or meridional planes ). 
We choose the poloidal coordinates 1x r= and  2x z= in cylindrical 
polar coordinates. Thus every vector of spacetime is decomposable 
into toroidal and poloidal components.

The matter part of fluid’s 4-velocity au   can be decomposed as33

                               ( ) ( )( )a a a a
tu wϕλ ξ ξ= + Ω +  ,                           (2.2)

where aw  denotes the meridional circulation velocity orthogonal 
to both ( )

a
tξ   and  ( )

a
ϕξ .The 4-velocity au  obeys the normalization 

condition 1a
au u = − . When this condition is invoked, we find from 

(2.2) that

                                           

2
2 1 w

G
λ +

=  ,                                   (2.3)

where ( )22tt tG g g gϕ ϕϕ= − + Ω +Ω   and 2w  is the squared 
magnitude of meridional circulation velocity.

A unit spacelike vector am  orthogonal to au   may be constructed 
such as

                               ( ) ( )( )a a a
tm lϕζ ξ ξ= +  ,                                      (2.4)

 It follows from (2.2) and (2.4), because of the orthogonality 
condition 0a

au m =  , that

                                 

( )
( )

t

t tt t

g gu
l

u g g
ϕ ϕϕϕ

ϕ

+ Ω
= − = −

+ Ω
 .                          (2.5)

Substituting (2.4) into the normalization condition 1a
am m =  and 

making use of (2.3), we find that

                                       ( )
2

2
21

tu
K w

ζ =
+

 .                                 (2.6)

      The source-free Maxwell’s like equations associated with the 
thermal-fluid vorticity 2-form Wab is of the following form:17

                                     
b

ab aW u = − Ε ,                                 (2.7)

where

        ;2ab b aW µ  
=  , a a au qµ α= +  , and  

2

2a a
R q q
n

β 
= −  

 
 .       (2.8)

Here aµ  is the conjugate momentum convector associated with 
the matter part of fluid corresponding to the matter current an   and 

aq  is the heat flow vector. The chemical potential, entropy per baryon, 
and temperature measured in the matter part of fluid’s rest frame au  
are, respectively, denoted by µ∗  , s∗ , and  θ∗ . The thermodynamic 

variables α  and β  are related by the relations * * *
1 ns

S S
nA

θ
β

 
= −  
 

  

and 
nsA
θα =    which encode the entropy entrainment effect via nsA

.18 The conservation of particle current is described by ; 0a
an =  which 

is equivalent to the baryon conservation law, i.e., ( ) ; 0a
anu = .

The electric part of abW  is computed in the following form:19

   
( )( ) ( )( ) ( ) ( ), , , ,

b b b c d
a a a b b abcd tt a a

Ij w j w wE
K ϕϕ

λ λ η ξ ξ= − Ω − + − ,  (2.9)

where ε  and j denote, respectively, the effective energy per 
particle and the effective angular momentum per particle and are 
expressible as t tu qε µ α∗− = +   and j u qϕ ϕµ α∗= + . The symbol 

abcdη  is the Levi-Civita skew-symmetric tensor and  ( ) ( )
a b

ab tWI ϕξ ξ∗=   
which can be explicitly determined by solving the corresponding 
Maxwell’s like equations. Its explicit form will be derived later on 
in the subsequent discussions. The Hodge dual of   is indicated 

by an overhead star. Contraction of (2.9) with ( )
a
tξ   and ( )

a
ϕξ  in turn 

gives that

                          ,
b

t bwεΕ = −    and ,
b

bj wϕΕ =   .                  (2.10)

On account of (2.1a,b) and (2.10), one can reduce (2.9) to take the 
form

      
( ) ( ) ( ) ( ), , 1 2

b c d
a a a abcdt a a t

Ij A A w
Kϕ ϕλ λ ξ ξ η ξ ξ= − Ω + − −Ε  ,  (2.11)

where

        
( )1

1
t tA g g

K ϕϕ ϕ ϕΕ= − + Ε  and ( )2
1

t t ttA g g
K ϕ ϕ+Ε= − Ε  . (2.12)

Setting a aAqΕ =  , where
2

2sR qA
n θ

β∗
∗

 
= −  

 
  and choosing aq   

directed along am  which is orthogonal to au , we can expres aΕ   as 
follows

                       ( ) ( )( )a a a t aAq Aq lϕζ ξ ξ+Ε = = .                    (2.13)

At this point, It is important to underline that the choice for the 
contra variant components of the heat flow vector aq   directed along 

am  imposes restriction to the vanishing of contra variant poloidal 
components of aq  but its none of covariant components is zero. This 
choice is necessary for obtaining covariant solutions of Maxwell’s like 
equations under the spacetime symmetry assumption. Replacing left 
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hand side of (2.11) by (2.13) and contracting the resulting equation 
with ( )

a
tξ∗   and ( )

a
ϕξ

∗  in turn, we find that

                           1Aq l Aζ =   and  2Aq Aζ = − .                      (2.14)

It follows from (2.5) and (2.14) that

                                           tq qϕ= −Ω  .                                     (2.15)

Making use of (2.13) with the aid of (2.14) in (2.11), we get

                         
( ) ( ), ,

b c d
a a abcd t

Ij w
K ϕηε ξ ξ

λ
−Ω =  .              (2.16)

The injection energy per baryon is defined by35

                                               jεΦ = −Ω   .                        (2.17)

Using (2.17) in (2.16) and inverting the resulting equation, we 
obtain that

                              
( ) ( ) ( ), ,

a abcd
b b t c dw j

I ϕ
λ η ξ ξ= − + Ω  ,          (2.18)

A result from the baryon conservation law derived in33 is of the 
following form:

                                     
( ), , ,a a a

nKf j
I

λ
Φ= − + Ω  ,                 (2.19)

where  denotes Stokes stream function.33 It follows from (2.18) 
and (2.19) that

                                         
( ), , ,a a a

nKf j
I

λ
Φ= − + Ω  ,                    (2.20)

which asserts that the Stokes stream function varies in accordance 
with the linear combination of injection energy gradient and gradient 
of the rotation of matter part of fluid about the rotation axis that 
couples the effective angular momentum per baryon. By inverting 
(2.19), it can be shown that , 0a

af u = . When this result is used in 
(2.20), we find that

                                      ( ), , 0a
a aj uΦ + Ω =  ,                          (2.21)

which exhibits the relation between the variation of the injection 
energy and differential rotation due to rotation about the axis of 
rotation along the matter part of fluid’s 4-velocity. On account of 
(2.15), we find that

                            ( ) ( )tu u jϕµ ε∗ + Ω = − −Ω = −Φ  .             (2.22)

Inserting (2.22) in the first term of (2.21), we get

                         
( ){ } , , 0a

t a au u j uϕµ∗ − + Ω + Ω =  
 .             (2.23)

The quantity   which has appeared in (2.9) needs to be determined 
explicitly. In order to derive its explicit expression we now use the 
notion of differential form and exterior calculus and employ the 

technical machinery developed in33 for computational convenience. 
We rewrite (2.7) in the following form

                                           
.u dµ = Ε  ,                                   (2.24)

Since .u dµ is a one-form, it can be expressed as 

                              ( ) ( ). tu d Xa b ϕµ ξ ξ∗ ∗= + + .                       (2.25)

where b  and b  are unspecified functions. Contracting 
(2.25) with ( )ϕξ   and ( )ϕξ  in turn and making use of symmetry 

condition,i.e.
( )

£ 0
tξ µ = ,  and 

( )
£ 0ξ ϕ

µ =  with the aid of Cartan 
identity, one can get

                                     ( )( ). . ta w d µ ξ=  ,                                 (2.26a)

                                   ( )( ). .b w d ϕµ ξ=  .                                (2.26b)

An explicit expression of µ  is given by

                                     
u qµ αµ∗= +                                 (2.27)

which, on account of (2.2) and (2.4), can be cast in the following 
form

                                     
r s wµ µ∗= + +                                   (228)

where

                               ( ) ( )( )tr ϕµ ξλξ λ∗= + Ω                          (2.29a)

                               ( ) ( )( )ts q lϕξζ ξα= +                     (2.29b)

From (2.27), we have

                  
( ). . . .u u ud dr ds u d wµ µ∗= + +               (2.30)

In view of (2.29a,b), following computational steps given in33, one 
can find that

( )( ) ( )( ). .  . .tdr r rd w ru d dϕλ ξ ξ = − +Ω +   ,  (2.31a)

        ( )( ) ( )( ). .  . .ts s sd su d d w dϕλ ξ ξ = − +Ω +  , (2.31b)

and

                                
( ) 1. Cw d w df

n
µ∗ =  ,                        (2.31c)

where 1C  is a function which, following,33 can be expressed as 

;

1 ,

a

aC f
Kn
µ∗ 

= − 
 

.  Substitution of (2.31a-c) into (2.30) gives 

that

                             
( ) ( ) ( ) ( )

1. . . . .tr s r s rCu d d d df w d w d
n

sϕλ ξµ ξ λ   = − + − Ω + + + +     .                                   (2.32)

Replacing the left hand side of (2.25) by the right hand side of 
(2.32) and contracting the resulting equation with an arbitrary vector 
v lying in meridional plane orthogonal to both ( )tξ  and  ( )ϕξ , one 

may obtain

( ) ( ) ( ) ( )
1. . . . . . . . . .t

Cv v d v d v df w d v w d v
n

X r s r s r sϕλ ξ λ ξ   = − + − Ω + + + +   
        

.                                                                                                        (2.33)
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The last two terms on right hand side of (2.33), by using the results 
derived in,33 can be put in the following form:

( ) ( ) ( )( ) 1, . , .tw d v d w v df v
K

r
n

r ϕµλ τ τ∗= = +Ω
,
 (2.34a)

and

 
( ) ( ) ( )( ) 1. . , .tw d v d w v qs s l df v

Knϕα ζ τ τ= = +  ,   (2.34b)

where Killing twist scalars34 corresponding to ( )tξ   and ( )ϕξ   are, 

respectively, denoted by ( )tτ  and ( )ϕτ  which are defined as follows :

   ( ) ( ) ( ) ( ) ;
abcd

t a t b t c dϕτ η ξ ξ ξ= , ( ) ( ) ( ) ( ) ;
abcd

t a b d cϕ ϕ ϕτ η ξ ξ ξ= .  

                                                                                                   (2.34c)  

Substituting (2.34a-b) in the last two terms of (2.33) and 
simplifying, we find that

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1

1. .t td d KC q l q df
Kn

X r s r s ϕ ϕλ ξ λ ξ λ α ζ τµ µλ α ζ τ∗ ∗     = − + − Ω + + + + + Ω +       .     (2.35)  

It follows from (2.25), (2.26a-b) and (2.35) that

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1. . . , . . .t t t tu d w r sd w d d d C K q l q d

Kn
r s fϕ ϕ ϕ ϕξ ξ λ ξ λ ξ λµ µ ξ µ ξ µ µα ζ τ λ α ζ τ∗ ∗ ∗ ∗         = + − + − Ω + + + + + Ω +        

 
.                                                                           
                                                                                                                                                                                                                             (2.36)  

For further simplification of (2.36) we now proceed as follows.

                             ( ). t tt u qµ εξ αµ= + = −                               (2.37a)  
                                   
                                  ( ). u q jϕ ϕϕξ αµ µ= + =                                   (2.37b) 

                                            
( ) ( ) ( ) ( ). tt t t tt t tt g g q g lgr s u qϕ ϕξ λ α ζ µ εαµ∗ ∗+ = +Ω + + = + = −                                      (2.37c)

Similarly,

                  
( ) ( ). q js ur ϕ ϕϕ µξ α∗+ = + =                  (2.37d) 

Substituting (2.37a-d) into (2.36) and taking (2.24) into account, 
we get

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
1. .  t tw w dj dj C K qd d l q df

Knϕ ϕλ λ λ αε ξ ξ ε µ µζ τ λ α ζ τ∗ ∗ ∗ ∗ = − + + − Ω + + + + Ω+ Ε       (2.38) 

Equating the poloidal components of aΕ   from (2.9) and (2.38), 
we find that

         
( ) ( ) ( ) ( )1  tI KC q l q ϕλ α ζ τµ µλ α ζ τ∗ ∗ = + + + Ω + 

,    (2.39) 

This is the required expression for I which is constituted by Killing 
twist scalars coupled with the chemical potential, magnitude of heat 
flow vector, geometrical angular momentum and rotation of the matter 
part of fluid about the rotation axis. The quantity I that enters in the 
determination of covariant poloidal components of heat flow vector 
illustrates the role of Killing twist scalars and their relationship with 
the heat flow in the meridional plane. Substituting (2.39) into (2.20), 
we get

( ) ( ) ( ) ( ) ( )1 , , , 0a a atKC q l q f Kn jϕλ α ζ τ λ α ζ τ λµ µ∗ ∗ Φ + + + Ω + + + Ω = 
  

,                                                                                                  
                                                                                                          (2.40) 

which describes the evolution of the matter part of fluid in the 
meridional plane in terms of thermodynamic variables coupled to 
Killing twist scalars, the Stokes stream function, injection energy 
gradient, and differential rotation due to rotation about the rotation 
axis. Taking curl of (2.40), we find that

                                      ,[ , ] ,[ , ]A B A BF f j= Ω   ,                               (2.41)

where  ( ) ( ) ( ) ( )1
1

tF KC q l q
Kn ϕλ α ζ τ λ α ζ τ

λ
µ µ∗ ∗ = + + + Ω + 

. The expression of scalar function IF
Knλ

= is composed of a 

combination of thermodynamic variables, Killing twist scalars and 
indicates the importance of Killing twist scalars for the dynamics 
of differential rotation which is usually thought to be related with 
thermodynamic variables that constitute the equation of state (EOS) 
of a hot matter. Alternatively, it suggest that the role of Killing twist 
scalars is inevitable in the description of differential rotation. It is 
evident from (2.41) that the level surfaces of constant Ω and j do not 
coincide because of alignment of level surfaces of constant F and f
in the poloidal plane, in other words, Killing twist scalars representing 
the twist of dynamical spacetime endowed with meridional circulation 
contribute to the differential rotation at the onset of dissipation caused 
by the heat flow. The variation of Stokes stream function in the 
poloidal plane is caused by the variation of both Ω and j along the 
meridional circulation velocity. Thus dynamics of differential rotation 
seems to be complicated in the presence of meridional circulation 
because of its link with the Killing twist scalars. Thus we confine our 
attention to understand the role of meridional circulation in inducing 
extra rotation in addition to the usual rotation about the rotation axis 
and examine the relationship between the rotational velocity of the 
matter part of fluid and the thermodynamic variables in the following 
section.
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Rotational velocity of matter part of fluid
This section is focused on the description of dynamic interaction 

between the matter part of fluid and the entropy fluid in order to 
understand the link between the rotational velocity of matter part of 
fluid and thermodynamic quantities contributed by both the matter 
part of fluid and the entropy fluid. Thus we need to find covariant 
solution of Maxwell’s like equations that govern the evolution of 
the entropy fluid under spacetime symmetry assumption. In a non-
circular stationary axisymmetric spacetime, motion of matter part of 
fluid is composed of rotation around the rotation axis and meridional 
circulation occurring in meridional plane. This gives rise to the effect 
that meridional circulation causes an extra rotational velocity in 
addition to the usual rotation Ω about the rotation axis, as is well 
known in a circular spacetime. The rotation of matter part of fluid is 
linked with the  4-velocity of the entropy fluid because of two reasons 
as follows. First, it is measured in the matter part of fluid’s rest frame 
and bears a direct relation with the 4-velocity of the matter part of 
fluid,and second,  the 4-velocity of the matter part of fluid enters in 
the electric part of Maxwell’s like equations corresponding to the 
thermal vorticity 2-form abZ . The 4-velocity of the entropy fluid a

su   
measured in the matter part of fluid’s frame  is expressible as:18 

                                       ?( )a a a
s su u v= +   ,                                         (3.1) 

where  ( )
1

2 21 svγ
−

= −   and 0a
a su v =   .  The relative flow of entropy 

measured in the matter part of fluid’s rest frame is represented by a
sv   

which describes the heat flow vector aq  and is given by 
a

a
s

qv
s θ∗ ∗=   . 

Making use of (2.2) in (3.1), we get

                                   ( ) ( )( )a a a a
s tu vϕγ λξ λ ξ= + Ω +  ,                         (3.2)

where

                                            
                                  

a
a a qw

s
v

θ∗ ∗= +    .                                   (3.3)

Substituting the expression for  aq    obtainable by setting 
a aq qm=  and using (2.4) into (3.3), we obtain

                                      ( ) ( )1 2
a a a a

tv a a wϕξ ξ= + +  ,                            (3.4)

where 1
q la
s θ
ζ

∗ ∗=   and  2a
s
qζ
θ∗ ∗=  .

From (3.2) and (3.4), we find that

                  
( ) ( ) ( ) ( )1 2

a a a a
s tu a a wϕγ λ ξ λ ξ = + + Ω + + 

 .             (3.5)

Maxwell’s like equations associated with the thermal vorticity 
2-form abZ    are of the following form27 

                                                
b

ab s aZ u = Ε  ,                                     (3.6a)

where

  { ; ]2ab b aZ ϑ=  , a a au qθϑ β∗= + , and  
2

a a as
qR q u
θ

γ ∗ ∗

 
= + 


Ε 


 .    

                                                                                                          (3.6b)

Following Gourgoulhon et al,33 one may obtain 

            
( ) ( ) ( ) ( ),[ ,[] ]2 2 c d

ab a a abcdt b b t
IZ
K

j ϕ ϕηε ξ ξξ ξ∗ ∗= − + +  .          (3.7) 

where  ( ) ( )
a b

ab tI Z ϕξ ξ∗=  , t tu qβθ ε∗ + = − , and  q juϕ ϕβθ∗ + =

. Here ε   and j   represents, respectively, the effective energy per 
entropon and effective angular momentum per entropy in the sense of 
Carter.37The explicit expression for I  will be obtained later on in the 
subsequent discussions.

On account of (3.5) and (3.7), we find from (3.6) that

                
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , 1 , 2 ,

b b b c d
a b b a a abcdt a a t

Ij jw w a a w
Kϕ ϕγ γ γ λ γ λ γε ξξ ξξ ε η∗ ∗= − − + + Ω+ +Ε  .                (3.8)

Contracting (3.8) with ( )
a
tξ   and  ( )

a
ϕξ  in turn and using the 

defining expression of aΕ , we get

                          

2

,
a

t t as
qR q u wε
θ∗ ∗

 
+ = 

 
 ,                     (3.9a)

                      

2

,
a

aj
s
qR q u wϕ ϕθ∗ ∗

 
+ = − 

 
  .                 (3.9b)

Multiplying (3.9b) by Ω and adding to (3.9a) and using (2.15), 
we get

                    
( ), ,2

a
t a au u w

Rq
s jϕ
θ ε

∗ ∗

+Ω = −Ω  .          (3.10)

On account (2.22), we reduce (3.10) to take form

             
( ), ,2

a
a a ws j

Rq
µ θ ε

∗ ∗ ∗

= − −ΩΦ  ,                     (3.11)

which describes the injection energy of the matter part of fluid 
in terms of the effective energy per entropon and effective angular 
momentum per entropy associated with the entropy fluid that couples 
the rotation of matter part of fluid about the rotation axis.

Making use of (2.1a,b) in (3.8), we find contra variant toroidal  
components of aΕ  as follows :

( ) ( )
2

, ,
t a a t

a t aj Rqg w
s

w g w
K ϕϕ ϕ
γ γε

θ∗ ∗
 = − + + Ε (3.12a)

    
( ) ( )

2

, ,
a a

t a tt a
Rqg jg w
s

w w
K

ϕ ϕ
ϕ

γ ε
θ

γ
∗ ∗

 = + +Ε 
    (3.12b)
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where third relation of (3.6b) along with (2.4) and 0a
au q =  are 

used. Making use of the third relation of (3.6b), we find that

                       
( )2

1 ttu l
l RUq

s ϕ

γ
θ∗ ∗

= +Ω Ε − Ε                         (3.13)

where t

u
u

ϕ

Ω =   represents the rotational velocity of the matter 

part of fluid and tU u uϕ= is the rotational potential.37 On account 
of (3.12a,b),  we obtain

( ) ( ) ( ), ,
1tt a t

a a t

g lg
l w u w u w

K U
ϕϕ ϕϕ ϕ

ϕε
γ +

− = − −Ω + +Ε Ε       

                                                                                                          (3.14)
It follows from (2.18) that

( ) ( ) ( )( ), ,€t ABt
t A A t B B

Kuu w u w j l
g

ϕ
ϕ ϕξ ξλ ∗ ∗+ = − + Ω −Φ

−
            

                                                                                                            (3.15)

where €AB  denotes an alternating symbol taking values 1 or 1− .   

       It follows from (3.13), (3.14),and (3.15) that

                 

( ) ( ) ( ) ( )( ), , ,2 ln €t t a ABt
a A A t B Bt

u g lg Kuq w j l
q RKUq n U

s s
g

ϕ
ϕϕ ϕ

ϕ

θ λ ξ ξ
∗ ∗ ∗

∗ ∗
+  

= + − + Ω −


Ω 
−

Φ
 Φ ,                 (3.16)

where the relations tq lqϕ=  and  

( ), , ,lna a
a a a

sw w
n

jε
∗ 

−Ω = −  
 

Φ   are used. This second 

relation will be derived later on and is given in Sec.5. The symbol

( )jεΦ = −Ω  represents the injection energy per entropon 
corresponding to the entropy fluid. It is observed from (3.16) that the 
rotational velocity of the matter part of fluid is composed of the sum 
of three terms of which (i) the first term is the ratio of the toroidal 
components of the heat flow vector, (ii) the second term is the variation 
of the entropy per baryon along the meridional circulation velocity and 
is coupled to thermodynamic variables and metric components, and 
(iii) third term is the rotation contributed by the linear combination of 
the gradient of the injection energy corresponding to the matter part of 
the fluid and the differential rotation arising due to the rotation about 
the rotation axis and the rotational potential.

In order to understand the interpretation of (3.16) as the rotational 
velocity of the matter part of the fluid we turn back to (2.2) which 
tells us that

            

( )1

1

t
t

w

w w
w

ϕ

ϕλ
λ

λ

Ω+
= ≈ Ω+ −Ω

+
Ω    ,          (3.17)

where in the expansion second and higher orders are ignored. The 
second term on the right hand side of (3.17) may be regarded as the 
rotational velocity of the matter part of fluid arising due to the meridional 
circulation velocity and will now be denoted by the symbol Ω   for 
further discussion. The first termΩ on the right hand side of (3.17) 
represents the rotational velocity of the matter part of fluid about the 

rotation axis. Making use of ( )1 A
t tA tt Aw g g g g u

K
ϕ

ϕ ϕ= − −   

and   ( )1t A
tA t Aw g g g g u

K ϕϕ ϕ ϕ= −  obtainable from (2.2) and 

simplifying, one may obtain

( ) ( )1 A A
tA tt Ag g u g g g u

K ϕϕ ϕϕ ϕω ω
λ

 = −Ω + −Ω Ω     ,  

                                                                                                   (3.18)

where tg
g

ϕ

ϕϕ

ω = −    represents the frame dragging effect.35 Thus 

(3.17) may be rewritten as

                                    Ω Ω= Ω+   .                                   (3.19)

It is evident from (3.16) and (3.17) that these two versions of 
rotational velocity of the matter part of fluid are different in the 
sense that (3.16) describes the rotation in terms of the geometrical 
angular momentum l while (3.17) split the rotation into two parts 
composed of rotation about the rotation axis and the rotation caused 
by the meridional circulations. As is known that the geometric angular 
momentum l   is expressible as a function of rotational velocity about 
the rotation axis in the case of circular spacetime but due to non-
circularity assumption such explicit functional relation does not seem 
possible because of the presence of meridional circulation velocity. 
Thus we need to deduce an expression for the rotational velocity 
of the matter part of fluid which may resemble with (3.17).We now 
confine our attention to derivation of such expression by invoking 
Maxwell’s like equations describing the motion of the entropy fluid 
and to obtain the relation between the rotation of both the matter part 
and the entropy fluids in following section.

Rotational velocity of the entropy fluid          

This section is devoted to study the rotation of the entropy fluid 
induced by the rotation of the matter part of fluid that may arise 
because of dynamic coupling between the matter part of fluid and 
the entropy fluid and to explore various consequences related with 
the poloidal components of the matter part of fluid’s 4-velocity and 
the entropy production rate. The presence of Killing twist scalars 
due to meridional circulation of the matter part of fluid is expected 
to contribute to the dynamic evolution of the entropy fluid. This 
requires to find a covariant solution to Maxwell’s like equations 
associated with the thermal vorticity 2-form  abZ . For computational 
convenience, we use the exterior calculus and results developed in.33 
In the language of differential forms, (3.6) is expressible as

                                               
.su dϑ = −Ε                                                   (4.1)
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Since .su dϑ  is a 1-form, it can be decomposed as

                     ( ) ( )1 2.s tu d b Yb ϕϑ ξ ξ∗ ∗= + +                     (4.2)

where 1-form Y  lies in the meridional plane orthogonal to both 

( )tξ  and ( )ϕξ . Contraction of (4.2) with ( )tξ  and ( )ϕξ  in turn gives 

that

                                     ( ) 1. .s tu d bϑ ξ =   ,                              (4.3a)

                                  ( ) 2. .su d bϕϑ ξ =  .                              (4.3b)

Making use of the symmetry conditions 
( ) ( )

£ 0 £
t ϕξ ξϑ ϑ= =  

in the left hand side of (4.3a) and (4.3b), respectively, with the aid of 
(3.5), we get

        
        ( )( )1 . . tb w d ϑγ ξ=   ,  ( )( )2 . .b w d ϕϑγ ξ=  .          (4.4)

Substitution of (4.4) in (4.2) yields that

( )( ) ( ) ( )( ) ( ). . . . .s t tu d w d w d Yϕ ϕϑ ϑ ξγ ξ γ ϑ ξξ∗ ∗   = + +   
  

.                                                                                                            
                                                                                                          (4.5)

In order to compute Y , we proceed with the following construction

             
( ). . . .s s s su d u d ux y wd u dϑ θ∗= + +  ,                (4.6)

Where

( ) ( )tx ϕθξ θξλ λ∗ ∗= + Ω
 
and ( ) ( )ty q l q ϕξ ξβ ζ β ζ= + .                                                                                                            

                                                                                                              (4.7)
Performing similar calculations as are done in Sec.3 in the case of 

particle vorticity 2-form, we find that

          
( ) ( ) ( ) ( ) ( ) ( )

2
1 2. . . . .s t

Cu d a d a d df w dx y x y wx d
n

yϕ

γγ λ ξ γ λ ξ γ γϑ    = − + + − Ω+ + + + +     .                     (4.8)

Replacing the left hand side of (4.5) by (4.8) and contracting the resulting equation with an arbitrary vector  lying in the meridional plane, 
we get

  
( ) ( ) ( ) ( ) ( ) ( )

2
1 2. . . . . . . . . . . .s t

Cv u d v a v d a vY x y x y x yd v df w d v w d v
nϕ

γγ λ ξ γ λ ξ γϑ γ   = = − + + − Ω+ + + + +                                                                                                                                                       
                                                                                                                                                                                 
                                                                                                                                                                                                                               (4.9)

Making use of the results ( ) ( )( ). . .tw d v df v
Kn

x ϕ
λ θ τ τ

∗

= +Ω   and ( ) ( )( ). . .t
qw d v l df v

Kn
y ϕ

β ζ τ τ= +

In the last two terms of (4.9) and simplifying, we find that

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2. .t ta d a d KC q l q dY x y x y f
Knϕ ϕ
γγ λ ξ γ λ ξ λ β ζ τ λ β ζθ τθ∗ ∗     = − + + − Ω+ + + + + + Ω +                                                                                                            

                                                                                                                                                                                                                                      (4.10)

Using ( ) ( ). tx y ξ ε+ = −   and ( ) ( ).x y jϕξ+ =  in (4.10) and ( ). tϑ ξ ε= −  ,  ( ). jϕϑ ξ = in (4.5), respectively, and substituting the resulting 

expressions in (4.1), we obtain

        
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2. .t tj jw d w d a d a d KC q l q df

Knϕ ϕ
γγ γ γ λ γ λ λ βε ξ ξ ε θ θζ τ λ β ζ τ∗ ∗ ∗ ∗Ε  = − − + + Ω + − + + + Ω + 

 .              (4.11)

It follows from (3.8) and (4.11) that

             
( ) ( ) ( ) ( )2 tKC q lI q ϕλ β ζ τ τθλ β ζθ∗ ∗= + + + Ω + ,               (4.12)

This is the required expression for I  which is constituted by 
Killing twist scalars, local temperature, the entropy entrainment,  the 
magnitude of the heat flow vector,  rotation of the matter part of fluid 
about the rotation axis, and gravitational potentials encoded in λ
which relates meridional circulation velocity magnitude.

             From (2.8) and (3.6b), we obtain that 

                                    
( )2a a au

Rq
s

γ
θ νγ

∗ ∗

Ε= − Ε   ,                      (4.13) 

where 
2

2

n
qs

ν

θ
β∗
∗

=
 

−  
 

  .   Making use of (2.38), (2.40), and 

(4.11) in (4.13), we get

( ) ( ) ( )3 4 , , , , ,2a a a a a at a a
qu A A ls I
sR

j f
Knq ϕ

θ ξ ξ ε ζλ λ ε
θ

∗ ∗
∗ ∗

∗ ∗

  
= − − + Ω + − −      

             
                                                                                                         
                                                                                                           (4.14a)  

where

( ) ( )3 , ,
b b

b bA w wε ν ε= +   , ( ) ( )4 , ,
b b

b bA wj j wν= +           . (4.14b) 

Contracting (4.14a) with   ( )
a
tξ   and  ( )

a
ϕξ in turn, respectively,  we 

get 

                          3tu A=  , 4u Aϕ = − .                                            (4.15) 

From the defining relations of effective energies and effective 
angular momenta corresponding to both the matter part and entropy 
fluids and the relation 1sβ∗+ = , we have
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( )t tnEu q n sε ε∗+ = − +    and  ( )j sjnEu q nϕ ϕ
∗+ = +  ,           (4.16) 

where E
n
s θµ

∗ ∗
∗= +      is the energy of the heat conducting fluid 

per baryon. It follows from (2.10) that

                
( ),

b
t bRq wν ε= −    and  ( ),

b
bjRq wϕ ν=                          (4.17) 

From (4.16) and (4.17),we find that

                               

( ) ( )
( ) ( )

,

,

1

1

b
b

b
b

j j sjw n
Rl

w n s
R

ε ε ε

∗

∗

+ +
=

+ +
  ,                     (4.18) 

which determines the geometrical angular momentum per particle 
of the matter part of the fluid in terms of the effective energies and 
angular momenta corresponding to both the matter part and the 
entropy fluids. As is seen that the first term on the right hand side 
of (3.13) is the reciprocal of the geometrical angular momentum that 
enters in the derivation of an expression describing the rotational 
velocity of the matter part of fluid given by (3.18).But this derivation 
loses similarity with that of (3.16). Thus in order to achieve exact 
similarity with (3.16), we proceed as follows.

         From (4.14a), with the aid of (2.1a,b), we get 

      
( ) ( ), ,2

t b b t
b t b

Ru g w g w u q w
RKq

s jϕϕ ϕ ϕ ϕ
θ ε

λ

∗ ∗  = − + + +  
 ,   (4.19)  

    
( ) ( ), ,2

b b
t b tt b t

Ru g w g ws j u q w
RKq

ϕ ϕ
ϕ ϕλ

θ ε
∗ ∗  = + + +  

 .         (4.20)    

Multiplying (4.19) byΩ  and subtracting the resulting equation 
from (4.20) and simplifying with the aid of (2.2) and (2.22), we obtain 
that

( ) ( ) ( ), ,2
b b

b t bt

Ru w u w q
u q

s j
RK

ϕ ϕ
θ
λ

ε
µλ

∗ ∗

∗

 
= Ω + + − 

+ 

Φ
Ω


  ,     (4.21)

which bears a complete resemblance with (3.16). Contraction of 

the third relation of (3.6b) with au   yields that

                                      

2
a

a
R
s

qu γ
θ∗ ∗= −Ε  .                                 (4.22) 

Contraction of (3.8) with au   gives that

                             
( ), ,

a a
a a a

q lj
s

u wγ ζ ε
θ∗ ∗ −Ε = .                         (4.23)

It follows from (4.22) and (4.23) that

                                    
( ), ,

a
a a

Rql wjε
ζ

− = .                               (4.24)

On account of (4.24), one can reduce (4.21) to take the following 
form

        
( ) 2 tt

q
u K
s u q

q ϕζ
θ
λ µλ

∗ ∗

∗

Φ 
= Ω− + + 

Ω




       

   (4.25)

which exhibits that the rotational velocity of the matter part of 
fluid is split into two parts: (i) rotation about the rotation axis and (ii) 

the rotation caused by the meridional circulation describable by the 
second term on the right hand side of (4.25). From (2.22) and (4.18), 
we get

( ) ( ) ( ) ( )
1

2

, ,
1 1b b

b b
qw n w n nEj j s

R
j s

R s
ε ε ε

µ θ
∗ ∗

∗ ∗ ∗

−
   Ω = + + + + − −        

Φ

 ,          
                                                                                                          (4.26)

which gives rotational velocity of the matter part of fluid about the 
rotation axis in terms of thermodynamic variables.

Making use of relation 
a

a a
s s

qu u
θ

γ ∗ ∗

 
= +  

 
 , we define the 

rotational velocity of the entropy fluid as

      

1
1

t
s
t t tt
s t

s
qu

u q q
u u

u
s

uq s s

ϕ
ϕ

ϕ ϕθ
θ θ

θ

−∗ ∗
∗

∗ ∗ ∗ ∗

∗ ∗

 
+      = = = + +        + 

Ω Ω

 
 

 ,                     
                                                                                                        (4.27)

which can be linearized  by ignoring second and higher terms in 
the expansion of second small bracket on the right hand side of (4.27) 
to obtain

                                  
( )1t

q l
u s θ

ζ∗
∗ ∗Ω +Ω≈ −Ω   ,                        (4.28)

where tq q lζ= and tq q lζ= are used.

Multiplying (3.9a) by  and adding the resulting equation to (3.9b), 
we get

                              ( ) ( ), ,
a

t a aR lq q l wjϕ ε+ = −  ,                       (4.29)

which because of (4.17) takes the form

                                          
t

qlq qϕ ζ
+ =  .                                                 (4.30)

Using the fact that 0a
au q = , one may find that

                        ( ) 0t A
t Au q q u qϕ +Ω+ =  .                               (4.31)

It follows from (2.38) and (2.40) that

            
( ) ( ) ( ) ( ), ,

A b b A
A b bt A Au q w w u

R
j ϕ

ν ε ξ ξ∗ ∗ = − + 
 ,              (4.32)

which, due to (4.17) , takes the form

                     ( ) ( )( )A A
A A t Au q q wϕ ϕξ ξ∗ ∗= −Ω   .                       (4.33)

Making use of (2.19) on the right hand side of (4.33), we get

                   
( ) ( )( ) ,€A AB

A BA t A
q

u q f
n g

ϕ
ϕξ ξ∗ ∗= −Ω

−
 .                  (4.34)

Using tq qϕ= −Ω  in (4.31) and simplifying with the aid of (4.34), 
we get

       
( ) ( ) ( )( ) ,

11 €AB
BA t At

ql f
q n u g ϕ
ϕζ

ξ ξ∗ ∗− = + −Ω
Ω
Ω

Ω
Ω

−



 .                         
                                                                                                        (4.35)

From (4.27) and (4.35), we get
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( ) ( ) ( )( )
2

,21 €AB
BA t At t

q q f
u q n gs s u

ϕ
ϕ

ζ ξ ξ
θ θ

∗ ∗
∗ ∗ ∗ ∗

 
 ≈ + + −Ω
 Ω Ω − 

Ω Ω   
, 
                                                                                                          (4.36)

which exhibits that the rotation of the matter part of fluid contributes 
to the rotation of the entropy fluid besides contributions due to a 
combination of thermodynamic quantities. This in turn implies that 
the friction caused by the difference of rotational velocities of the 
entropy fluid and the matter part of fluid is directly linked with the 
heat flow. It is the presence of heat that causes the entropy fluid to 
rotate with different rotational velocity than the rotation of the matter 
part of fluid. Consequently, the entropy fluid is not corotating with the 
matter part of fluid.

Creation of injection energy per baryon
This section is concerned with the description of creation of 

injection energy per baryon due to interaction of heat flow with the 
motion of a heat conducting fluid and determination of the magnitude 
of meridional circulation velocity in terms of thermodynamic 
quantities. In order to demonstrate injection energy creation we 
invoke the conservation laws of energy and angular momentum 
currents associated with a stationary axisymmetric heat conducting 
fluid configuration. The energy current conservation law21 states that 
there is exchange between the total energy per baryon of the matter 
part of fluid and of the heat flux coupled with the effective energy per 
entropn associated with the entropy fluid per unit of local temperature 
measured in the matter part of fluid’s rest frame. Similar exchange law 
holds for the conservation of angular momentum current. These two 
laws are explicitly expressible as:21

                               
,

;
0a a

a
a

nE u qε
θ∗

 + = 
 

 ,                            (5.1a)

                               
,

;
0a a

a
a

jnL u q
θ∗

 + = 
 

 ,                            (5.1b)

where

t
t

qE u
n n
s θµ

∗ ∗
∗ 

− = + +  
 

  ,   
q

L u
n n
s ϕ

ϕ
θµ

∗ ∗
∗ 

= + +  
 

 .     (5.1c)

Multiplying the relation t tu qαµ ε∗ + = −   by   and  

t tu qβθ ε∗ + =    by  s∗  and adding these two resulting relations 

with the aid of  1n sα β∗+ = , we get

                                     

E
n
sεε

∗ 
= + 
 

  .                               (5.2)

Similarly, we find that

                                         

L j
n
sj∗ 

= + 
 

 .                                     (5.3)

Substituting ( ) ( )( )a a a
tq q lϕζ ξ ξ= +  in the second term of 

(5.1a) and (5.1b), respectively, and simplifying, we get

, 0a
aE u =        or          , 0a

aE w =                                                                  (5.4a)

                   , 0a
aL u =       or          , 0a

aL w =   .                                  (5.4b)

Multiplying the equation obtained by substituting (5.3) in (5.4b) 
byΩ   and subtracting it from the resulting equation obtained by 
substituting (5.2) in (5.4a), we get

( ) ( ) ( ), , , , , 0a a a
a a a a a

s sjj w w w
n n

jε ε ε
∗ ∗   

−Ω + −Ω + −Ω =   
   

 
.          (5.5)

Contraction of (2.16) with aw   gives a relation which makes the 
first term zero and hence (5.5) reduces to

          
( ) ( ), , ,

a a
a a ajwj w

n
sε ε

∗ 
−Ω = − −Ω  

 
,             (5.6)

which is the required relation used in (3.16) to derive an explicit 
expression for the rotational velocity of matter part of fluid.

It follows from (3.11) and (5.6) that

                       
( ) ,2

a
a

s sj w
Rq n
µ θ ε

∗ ∗ ∗ ∗ 
= −Ω  

 
Φ  ,                (5.7)

which shows that the variation of entropy per baryon along the 
meridional circulation velocity is responsible for the creation of the 
injection energy per baryon besides the contributions made by other 
thermodynamic quantities. If entropy per baryon is assumed to be 
constant along the meridional circulation velocity, then the injection 
energy per baryon becomes zero which is in contradiction with the very 
definition of injection energy.35 Hence, we arrive at the conclusion that 
the variation of entropy per baryon along the meridional circulation 
velocity generates the injection energy per baryon.

            On account of (2.15), we find from (5.1c) that

          
( )tE L u u

n
s

ϕ
θµ

∗ ∗
∗ 

− +Ω = + +Ω 
 

.                (5.8)

Substituting ( )t tt tu g g ϕλ= +Ω  and 

( )tu g gϕ ϕ ϕϕλ= +Ω  in (5.8) and simplifying with the aid of 
(2.3), we get

             

( ) ( )21  
s

w E L

n
θ

λ

µ
∗ ∗

∗

+ = −Ω
 

+ 
 

 .              (5.9)

From (5.2) and (5.3), we get

                                
 E

n
sL

∗

Φ−Ω = + Φ  ,                        (5.10)

where jεΦ = −Ω  represents the injection energy per 
entropon.

Replacing Φ  from (5.7) in (5.10) and using the resulting equation 
in (5.9), we obtain
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( )

2
,2 ln1 1 a
a

nw w
Rq nn

s sλ µ θ
µ

∗ ∗ ∗ ∗

∗

  
+ = +  + 

Φ

 
 ,      (5.11)

which gives the relation between the squared magnitude of the 
meridional circulation velocity and the variation of entropy per baryon 
along the matter part of fluid’s 4-velocity. This means that the flow of 
matter part of fluid cannot be isentropic in the presence of dissipation 
caused by the heat flow. The variation of entropy per baryon along 
the meridional circulation velocity plays the dual role in the creation 
of the injection energy per baryon and also contributes to the squared 
magnitude of meridional circulation velocity.

From (5.8) and (5.9) with the aid of (2.3) and (2.22), we get

                                      Gµλ ∗Φ =  ,                                   (5.12)

which is an alternative version of (5.7) in terms metric tensor 
components associated with the surface of transitivity and the 
rotational velocity about the rotation axis. This relation may be used 
to determine the conditions under which a heat conducting fluid 
configuration admits clockwise or anti-clockwise rotation about the 
rotation axis.

Link between differential rotation and 
thermal-fluid vorticity

In this section we find a relation describing the differential rotation 
of the matter part of fluid along the  thermal-fluid vorticity. The key 
idea which motivates to explore such relation originates from most 
celebrated Ferraro’s law of isorotation in RMHD38 because the 
thermal-fluid vorticity is the magnetic part of of thermal-fluid vorticity 
2-form . This is composed of a linear combination of matter part 
of fluid’s vorticity vector and spacelike twist vector associated with a 
congruence of heat flow lines. It is defined as follows:

                                           
a ab

bWV u∗= ,                               (6.1a)

which is explicitly expressible as

                                2 2a a aV qµ ωω α∗= + 

,                   (6.1b)

and obeys the following condition

                                         ( ) ,lna am qα=


 .                          (6.1c)

Here aω  is the matter part of fluid’s vorticity vector 

defined by ;
1
2

a abcd
b c du uω η= . The spacelike twist vector 

1
2

a abcd
b cduω ωη= 

  of the congruence of heat flow lines, where 

abω  denotes its rotation tensor.39 The spacelike twist vector aω  is 

directed along am   because of the identit  ( )a b a
bm mω ω= 

.  The 

curvature vector associated with the congruence of heat flow lines is 
;

b
a a bmm m=



.

          From (2.4), we find that

                           
( )

2 2

, ,lna a a
t

lm K
u

λ ζζ Ω
= +



                (6.2)

Using the defining relations of effective energy and angular 
momentum per particle associated with the matter part of fluid, we get

                           
( ) ( )tlq l jqϕ εα + = − −  ,                       (6.3)

which because of (4.29) takes the form

                                       
( )jq l

ζ
εα

= − −  .                          (6.4)

From (6.1c) and (6.2), one may find that

                              
, ,2

t
a a

u ql
q K

α
α λ ζ ζ

 
=  Ω  

  ,                     (6.5)

which shows that the entropy entrainment multiplied by the 
magnitude of heat flow vector contributes to the variation of 
geometrical angular momentum per particle.

It follows from (6.4) and (6.5) that

             
( ), , ,21 t

a a a
u ql

q K
j α

α ζ
εε

λ
  

− = − +  Ω   
.        (6.6)

          

The magnetic part aV  of thermal-fluid vorticity 2-form abW  is 
given by 21

( ) ( ) ( ) ( ) ( ) ( ) ( )5 6 , ,
1 1a a a abcdt

t b bt t c d
uV Iu a Iu a l j

K K Kϕ ϕ ϕξ ξ η ξ ξε= − + + + + −   
,            
                                                                                                           (6.7)

where

( ) ( )5 ,
abcd

a b t c da w j ϕη ξ ξ=   and  ( ) ( )6 ,
abcd

a b t c da w ϕεη ξ ξ= −  .                                         

                                                                                                                 (6.8)

Using (6.7), we find that

          
( ) ( ) ( ), , , ,

a abcdt
a a b b t c d

uV l
K

j ϕεη ξ ξΩ Ω= −  .                                                                     
                                                                                                    (6.9)

Substituting (6.6) into (6.9) and simplifying, we obtain

         
, ,21 €A ABt t
A A B

u u qV
q Kg

α
α λ ζ

   
= − +   Ω−

Ω


Ω
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  ,                                                              

                                                                                                          (6.10)

which because of (4.25) takes the form

( ), , , ,21 €A ABt t
A A A B

u u qV
q Kg

α
α

ε
λ ζ

   
= − + Ω −   Ω 
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Ω
−
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                                                                                                           (6.11)

where

                   
( ) 2 tt

q u
K

s q
u q ϕζ

θ
µλ λ

∗ ∗

∗

 
=Λ

+
Φ

+ 
 

 .                                                                                       
                                                                                                       (6.12)

It is seen from (6.11) that , 0A
AVΩ ≠ . This in turn implies that

, 0A
AωΩ ≠  ,                                                                                                                             (6.13)
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which exhibits that the law of gravitational isorotation ceases to 
hold in the sense of Glass.40 Thus we arrive at the conclusion that 
the law of gravitational isorotation breaks down in the case of an 
axisymmetric stationary heat conducting fluid configurartion due to 
the entropy entrainment.

Conclusion
The present work is focused on the rotation of a heat conducting 

fluid configuration based on Carter’s model under the assumption that 
the background spacetime is non-circular stationary and axisymmetry. 
It is found that a linear combination of the injection energy gradient 
and the gradient of rotational velocity about rotation axis is constant 
along the matter part of fluid flow lines. The level surfaces of constant 
angular velocity about rotation axis do not coincide with level surfaces 
of constant effective angular momentum per baryon corresponding to 
the matter part of fluid because of the variation of Killing twist scalars 
coupled with thermodynamic quantities in meridional planes. The 
rotation of matter part of fluid composed of rotation about rotation 
axis and an additional rotation generated by meridional circulations 
are completely describable in terms of thermodynamic variables such 
as the heat flow, injection energy per baryon, chemical potential of 
matter part of fluid, and the rotational potential created by dynamic 
space time as an outcome of interaction between the motion of the 
entropy fluid and of the matter part of fluid. The meridional circulation 
velocity contributes to the entropy production besides the contributions 
made by the other thermodynamic quantities. The entropy fluid is not 
corotating with the matter part of fluid in the presence of dissipation 
caused by the heat flow. It is found that the law of gravitational 
isorotation breaks down due to the entropy entrainment in the case of 
an axisymmetric stationary heat conducting fluid.
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