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The present work is focused to study the rotational velocity of a heat conducting fluid
configuration based on Carter’s model and related consequences under the assumption that
the background space time is non-circular stationary and axi symmetric. The level surfaces
of constant angular velocity about rotation axis do not coincide with level surfaces of
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the motion of the entropy fluid and of the matter part of fluid. The meridional circulation
velocity plays a key role in the creation of the entropy production besides the contributions
made by other thermodynamic quantities. The entropy fluid is not co rotating with the
matter part of fluid in the presence of dissipation caused by the heat flow. It is found that a
linear combination of the injection energy gradient and the gradient of rotational velocity
about rotation axis is constant along the matter part of fluid flow lines.
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Introduction a pair of particle vorticity 2-form and thermal vorticity 2-form builds
up a pair of source-free Maxwell’s like equations which describe
the evolution of a heat conducting fluid."” The matter part of fluid’s
4-velocity and the heat flow vector bear an intrinsic relationship of
mutual interdependence. Consequently, prior choice of components
of both fluid’s 4-velocity and heat flow vector without solving them
from Maxwell’s like equations may not be physically consistent with
the evolution equations of a heat conducting fluid." The existence
of meridional circulation is an inherent consequence! of Carter’s
model of a heat conducting fluid.!” At this point, it is worth to recall
the remark made by Priou® that IS theory’ and Carter’s variational
model of heat conducting fluid"” ceases to be equivalent in non-
equilibrium situations. The reason seems to lie in the fact that the
entropy fluid contribute its energy (i.e., product of entropy density and
local temperature) per baryon to the matter part of fluid’s energy per
baryon which results in the enhancement of total energy per baryon in
a Carter’s model during the evolution of a heat conducting fluid. The
variation of this total energy along the matter part of fluid’s 4-velocity
exchanges with the heat flux coupled to the effective energy per
entropic associated with the entropy fluid per unit of local temperature
measured in the matter part of fluid’s rest frame under the assumption
that the space time representing the gravitational field of such fluid
configuration is non-circular stationary and axisymmetric.?! Similar
exchange law for the variation of total angular momentum per baryon
of matter part of fluid with the heat flux coupled to the effective
angular momentum per entropon of the entropy fluid per unit of local
temperature holds under the same spacetime symmetry conditions.?!
Such physical process is not obtainable in IS theory.” Carter’s model'’
seems to be more capable to describe the interaction between the
gravitational field and the motion of a heat conducting fluid because
of the existence of a pair of Maxwell’s like equations and the energy-
momentum tensor built up with a unique term expressing thermal
stress coupled with a thermodynamic variable encoding the entropy

Relativistic dissipative fluid dynamics is important to understand
the irreversible thermodynamic processes of hot dense nuclear matter
that is created in supernovae explosions'~ leading to the formation of
stellar compact objects like neutron stars* as well as needed to explain
physical phenomenon found in laboratory experiments involving
relativistic heavy-ion collision.® A relativistic theory of dissipative
fluid based on irreversible thermodynamic processes has first been
formulated by Eckart.® But this theory encountered a difficulty in the
sense that the occurrence of causality violation and instability”® is
inevitable due to the absence of relaxation timescales corresponding
to dissipative quantities such as bulk viscous pressure, shear stress
tensor, and heat flow within the theory. In order to circumvent the
problems of a causality and instability in a relativistic framework Israel
and Stewart (IS)° formulated a new theory of relativistic dissipative
fluid dynamics by invoking Grad’s 14-moment approximation'’
coupled with Boltzmann equations incorporating relaxation
timescales corresponding to dissipative quantities. But this theory
also encountered the problem of instability'"'? and is unsatisfactory
to some extent in the case of heavy-ion collision experiment."”® IS
theory® based on Grad’s moment approximation leads to undesirable
features like infinite number of equations with different transport
coefficients describing dissipations.'* Despite considerable efforts,'>!¢
consequences related to the onset of dissipation are not well known.

A new direction of investigating dissipative phenomenon
originating due to heat flow stems from the ground-breaking work
of Carte'” in which the entropy element is thought of as a fluid.
The entropy entrainment is a basic element from which an analysis
of causal property of thermal propagation is built up.'® This idea is
exploited in'® that led to the formulation of relativistic version of
Cattaneo equation describing causality preserving heat conduction.
The crucial fact of Carter’s model to realize is that the existence of
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entrainment. This stress term relates the Ricci curvature tensor via
Einstein field equations in the spacelike 3-space orthogonal to the
matter part of fluid’s 4-velocity and therefore connects gravitational
potentials characterized by the metric tensor.

As is known from the work of Lindblom? that the thermodynamic
equilibrium of a self- gravitating dissipative fluid requires the
vanishing of entropy production which in turn implies the vanishing
of both the heat flow and the shear tensor associated with the fluid flow
lines in Eckart’s Theory.® Since by definition such equilibrium state of
stellar object composed of a heat conducting fluid is axisymmetric
and stationary, it amounts to the vanishing of differential rotation
and hence the stellar object rotates uniformly and the heat flow dies
out. But in this conclusion, the missing link is fluid’s vorticity that
exists even in the case of uniform rotation.”® The vorticity of fluid
flow lines due to gravitomagnetic effect generates the coriolis force*
that couples to heat flow.” Its effect is recognized in.*® The term of
coriolis force enters in the equilibrium equation if constructed from
Euler’s equations of motion and vortex lines are twisting.”” Because
of the presence of non-zero magnitude of fluid’s vorticity, by virtue
of timelike convergence condition, this squared magnitude of fluid’s
vorticity has a strong bearing on continuous variation of temperature
via Raychaudhuri equation.® This means that there is continuous
thermal dissipation due to internal motion of the fluid under the action
of coriolis force. Such situation is still not clear in the evolutionary
scenario of a heat conducting fluid but expected to halt if the vorticity
magnitude is bounded above.

The dissipative processes that occur in the formation and evolution
of compact stellar objects involve on the one hand strong gravitational
effects and on the other hand microscopic properties of hot dense
matter. Some recent theoretical and numerical investigations®*
indicate that the study of thermal evolution of a newly born neutron
star is important for understanding physical processes of observed
thermal radiation from such stars on the basis of cooling theory.!
But the way the energy-balance equation is formulated for the study
of rotational effects on thermal evolution of a newly born neutron
star violates the causality principle because the formulation involves
Fourier’s law for the description of heat conduction and an analogous
construction of energy-momentum tensor that resembles with that
of Eckart’s relativistic version of dissipative fluids.® It is known that
Fourier’s law of heat conduction violates causality. Such construction
of theoretical basis used for prediction of rotational effect suffers
from causality violation and therefore seems to be inconsistent in a
relativistic framework. Effort” towards better formulation for the
description of thermal evolution in the case of a rotating star is still
ongoing.

If the spacetime configuration representing the gravitational
field of a self- gravitating heat conducting fluid is assumed to be
axisymmetric and stationary, it must be non-circular in a Carter’s
model'” because the heat flow is strongly coupled to meridional
circulations.' The existence of meridional circulation is intrinsically
related to the Killing twist scalars which build up dynamic character
of the space time. This in turn says that the notion of thermal
equilibrium based on Eckart’s model,® which requires the vanishing
of heat flow, ceases to hold in a Carter’s model.'” The reason is that
the contribution of heat flow to momentum covector associated with
both the matter part of fluid and the entropy fluid cannot be excluded
until meridional circulation ceases.'” The question that arises from
asking how meridional circulation ceases at the onset of dissipation
caused by the heat flow in an irreversible thermodynamic process. The
thermodynamic processes that can thrust out meridional circulation
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during thermal evolution is yet unknown. Furthermore, it is extremely
difficult to solve thermal relaxation time from relativistic version
of Cattaneo equation'® without the knowledge of components of
heat flow vector and the acceleration of fluid’s motion that couples
to shear and rotation tensors associated with the fluid flow lines in
a non-circular stationary axisymmetric spacetime. The determination
of the components of heat flow vector and the matter part of fluid’s
4-velocity requires the solution of a pair of Maxwell’s like equations
governing the evolution of a heat conducting fluid. Thus as a first step,
we find solutions of a pair of Maxwell’s like equations by exploiting
an electrodynamic analog of the approach developed in* for the
case of relativistic magnetohydrodynamics (RMHD) under the same
spacetime symmetry assumptions and use these solutions to study the
consequences related to the rotational evolution of both the matter
part of fluid and the entropy fluid.

The present work is focused on the study of rotational evolution of
aheat conducting fluid based on Carter’s model'” under the assumption
that its background spacetime representing the gravitational field is
non-circular stationary and axisymmetric. The plan of the paper is
as follows. In Sec.2 we find solution of Maxwell’s like equations
associated with the evolution of the matter part of fluid by exploiting
an electrodynamic analog of the approach developed in the case of
relativistic magnetohydrodynamics (RMHD)?*® and derive the relation
between differential rotation of matter part of fluid and a combination
of Killing twist scalars and thermodynamic variables. Sec.3 is
concerned with the rotation of matter part of fluid composed of an
extra rotation caused by meridional circulation in the meridional plane
in addition to the usual rotation about the rotation axis. Its connection
with thermodynamic quantities is described by using the solution
of Maxwell’s like equations associated with the evolution of the
entropy fluid. Sec.4 describes the rotational evolution of the entropy
fluid and related consequences. Sec.5 is devoted to the description of
the creation of injection energy. Sec.6 is focused on the differential
rotation of the matter part of fluid along the thermal-fluid vorticity.

Convention: The spacetime metric is of signature +2. Small
case Latin indices run from 0 to3. Caiptal Latin indices are used
to indicate poloidal coordinates which take valuesland2 .Semi-
colon and comma are used, respectively, to denote the covariant and
partial derivatives. Constituent indices 71 and £ are used to indicate
matter and entropy part of fluid, respectively, throughout the text and
not to be confused with tensor indices. Square and round bracket
around indices represent, respectively, skew-symmetrization and
symmetrization.

Evolution of the matter part of fluid

In this section we study the evolution of matter part of fluid
described by Maxwell’s like equations associated with the thermal-
fluid vorticity 2-form VVab and investigate various consequences
related to dissipation caused by heat flow under the assumption that
the space time representing the gravitational field of a self-gravitating
heat conducting fluid is non-circular stationary and axi symmetric.
The idea to find solutions of Maxwell’s like equations is based on
an analogous approach developed in*® for the study of relativistic
magneto hydrodynamics (RMHD) under the same space time
symmetry assumption. This assumption implies the existence of pair
of two linearly independent Killing vectors of which one is time like
Killing vector §(‘;) generating a translational symmetry with open time
like lines as orbits and the other one is a space like Killing vector 5(‘;)
generating rotations about a symmetry axis.>* There exists a family
of invariant time /like 2-surfaces, called surfaces of transitivity,
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generated by this pair of Killing vectors that correspond to ignorable
coordinates x” =¢ and x* =g ( ie., é‘(‘j) =0, and «f(“(ﬂ) =06, The

ignorable coordinates #and ¢ are called toroidal coordinates. This
pair of Killing vectors constitutes the basis of tangent plane tangential
to surface of transitivity. Its dual basis is of the following form:*

1
()a™ ?(—gwé(,)a + gm,f((,,)a) , (2.1a)
1
(p)a = E(gtgoé(t)a - gtt‘ég(gg)a) 5 (2, lb)
with the properties
(t)a é’(:({;) =1 “(p)a é((:p) and (t)a é:(a(p) =0 (p)a f(’:) , (2.1¢)
where
K=g1 848 >0 . (2.1d)

At every point of spacetime there is a 2-dimensional spacelike
tangent plane orthogonal to the timelike 2-plane but due to non-
circularity assumption a family of such spacelike 2-planes do not
mesh together to form a family of spacelike 2-surfaces. Such non-
integrable 2-planes are called poloidal planes (or meridional planes ).

We choose the poloidal coordinates x' =7 and x? =z in cylindrical
polar coordinates. Thus every vector of spacetime is decomposable
into toroidal and poloidal components.

The matter part of fluid’s 4-velocity u® can be decomposed as*

U :z(/;(‘;) +Q§(‘;))+w" , 2.2)
where W denotes the meridional circulation velocity orthogonal

to both 5(’;) and 5(‘;) .The 4-velocity u“ obeys the normalization

condition #“u, =—1. When this condition is invoked, we find from
(2.2) that

12_1+W2
G 5

2.3)

where G = —( 84 +2Qg,,+ ngw) and w’ is the squared

magnitude of meridional circulation velocity.

A unit spacelike vector m“ orthogonal to u“ may be constructed
such as
m' = é/(g([;) +l§((;)) > 24
It follows from (2.2) and (2.4), because of the orthogonality
condition u“m, =0 , that

u(g _ (gt(p+Qg(p(p) .

J=——2 —_

2.5
U, (gtt +Qgt¢) @3

Substituting (2.4) into the normalization condition m“m, =1 and
making use of (2.3), we find that

2 _ utz
g e 20

The source-free Maxwell’s like equations associated with the
thermal-fluid vorticity 2-form ¥, is of the following form:'”
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2.7)

where

R 2
Wy =24t Mo =1, + 004, and a:;[—ﬂf an . (28)

Here u, is the conjugate momentum convector associated with
the matter part of fluid corresponding to the matter current n“ and
q, is the heat flow vector. The chemical potential, entropy per baryon,
and temperature measured in the matter part of fluid’s rest frame u*

are, respectively, denoted by : o, “s ,and 0. The thermodynamic

. ) 1 Ans
variables & and ﬁ are related by the relations f = {?_*nS_*HJ

and o = which encode the entropy entrainment effect via 4™

6
8 The conservation of particle current is described by n‘; =0 which

is equivalent to the baryon conservation law, i.e., (nu“ ) a: 0.

5

The electric part of W, is computed in the following form:!

. . I .
E, =4, -2y, - (,b w’ )(t)a + (J,bWb )((o)a _Eﬂabcdwbg(t)égﬂ) . (29

where & and ] denote, respectively, the effective energy per
particle and the effective angular momentum per particle and are
expressible as —&="u, +aq, and j= *‘mw +agq, . The symbol
Mapea 15 the Levi-Civita skew-symmetric tensor and [ = *ané‘(‘j)g‘(’;)
which can be explicitly determined by solving the corresponding
Maxwell’s like equations. Its explicit form will be derived later on
in the subsequent discussions. The Hodge dual of W3 is indicated

by an overhead star. Contraction of (2.9) with 5([;) and cf(‘;) in turn
gives that

and E,, = j,w’ (2.10)

_ b
E, =—¢,w

On account of (2.1a,b) and (2.10), one can reduce (2.9) to take the
form

. 1 c
Ea = ﬂ‘,a - mj,a + Alg(t)a - A2§(¢)a - ?nabcdwbg(t)éz(d(o) s (2 1 1)
where

1 1
4= E(—gwE, +g,,E,) and 4, = ;(—ngt +g,E,) . (2.12)

%

Bq’
2

. R(.
Setting E, = Aq, , where 4 :_[ §—
n

j and choosing ¢“
directed along m“ which is orthogonal to u“, we can expresE, as
follows

E, =Aq, = Aq((f(w)g + zg(t)a) . (2.13)

At this point, It is important to underline that the choice for the
contra variant components of the heat flow vector ¢“ directed along
m® imposes restriction to the vanishing of contra variant poloidal
components of ¢ but its none of covariant components is zero. This
choice is necessary for obtaining covariant solutions of Maxwell’s like
equations under the spacetime symmetry assumption. Replacing left
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hand side of (2.11) by (2.13) and contracting the resulting equation
with *55) and *5(‘;) in turn, we find that

Aqll=4, and Aqf =-4,. (2.14)
It follows from (2.5) and (2.14) that
q,=-q, . (2.15)

Making use of (2.13) with the aid of (2.14) in (2.11), we get

. I .
g,a - Q],a = _nabcdwbé:(t)é:(‘;) .

(2.16)
AK
The injection energy per baryon is defined by*
O=c-0y . (2.17)

Using (2.17) in (2.16) and inverting the resulting equation, we
obtain that

a _ A abcd .
W == (5+/Q0 )60l @218)

A result from the baryon conservation law derived in® is of the
following form:

AnK
Ja=~

(0, +j2,) . (2.19)

where f denotes Stokes stream function.?* It follows from (2.18)
and (2.19) that

_ AnK

fa= (,+/Q,) . (2.20)
which asserts that the Stokes stream function varies in accordance
with the linear combination of injection energy gradient and gradient
of the rotation of matter part of fluid about the rotation axis that
couples the effective angular momentum per baryon. By inverting
(2.19), it can be shown that f u“=0. When this result is used in
(2.20), we find that
(qn,a + jQ’a)u“ =0, (2.21)
which exhibits the relation between the variation of the injection
energy and differential rotation due to rotation about the axis of
rotation along the matter part of fluid’s 4-velocity. On account of
(2.15), we find that

“a(u,+Quy ) =—(6-Qj) =@ . (2.22)
Inserting (2.22) in the first term of (2.21), we get
H*ﬂ(u, +Qu¢)} ’a+jQ’a}u” 0. (2.23)

The quantity I which has appeared in (2.9) needs to be determined
explicitly. In order to derive its explicit expression we now use the
notion of differential form and exterior calculus and employ the

u.d,it:—ﬂ,[d(£+§).§(t)}—/IQ[d(L+§).§(¢J+%df+w.d£+w.a’§ .

Replacing the left hand side of (2.25) by the right hand side of
(2.32) and contracting the resulting equation with an arbitrary vector

V lying in meridional plane orthogonal to both é( ) and é:(q)), one
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technical machinery developed in** for computational convenience.
We rewrite (2.7) in the following form

u.d,t_t =E, (2.24)

Since u.d u is a one-form, it can be expressed as
udp= a*é(t) + b*cf(w) +X. (2.25)
where b and b are unspecified functions. Contracting

(2.25) with 5((/)) and g(w) in turn and making use of symmetry

condition,i.e. £§(t);_1:0, and £5(¢)/_1:0 with the aid of Cartan

identity, one can get

a= w.d( ;_1.5(,)) , (2.262)

b= w.d( ;_1.5((0)) . (2.26b)
An explicit expression of (£ is given by

p="uu+aq 2.27)

which, on account of (2.2) and (2.4), can be cast in the following
form

p=r+s+"uw (228)
where
r=" “(ﬂég(r) + ﬂQQ(p)) (2.292)
s=aq¢ (é{p) +l§(t)) (2.29b)
From (2.27), we have
udyu=udr+uds+ud ( *,uv_v) (2.30)

In view of (2.29a,b), following computational steps given in*, one
can find that

wdr =2 [d (rg,)+ed(rs, )} +wdr . 231a)

uds = —i[d (g.a_’f(,) ) +Qd (i'f(w) )} +w.ds ,(2.31b)

and

. C
w.d( ,uw) =—Ldf , (2.31¢)
n
where Cl is a function which, following,* can be expressed as

£

y7]
C=-| -2
! an’“

a

Substitution of (2.31a-c) into (2.30) gives

that

(2.32)

may obtain

Xv= —/lv,[d(z +§).§UJ —ZQv.[d(z+§).§(¢)J +%v.df+ wdr.v 4(—2w3a%.v
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The last two terms on right hand side of (2.33), by using the results
derived in,* can be put in the following form:

w,dr.v= dL(W,V) = /1*#(7(:)

and

w.dg.v:dg(w,v)zaqé’( +lz' )K—dfv (2.34b)

X= —/w[(r +5).& )] iﬂd[(1+§).§(¢)]+é[[<q +(2 utaqsl)z,

It follows from (2.25), (2.26a-b) and (2.35) that

udy= [w.d (2, )} o [W, d(pé, )} =] (r+5) &, |-20d](r+s). 5((0)]+é[€11< +(A'uragll)z,

For further simplification of (2.36) we now proceed as follows.

= pu, +aq, =— (2.37a)

(r+s)&,=2"u(g, +Qg,)+aqd (g, +12,)=

Similarly,

(K"‘i)-é:((a)

=", +aq,=j (2.37d)

. N 1 :
E=—(wde) &, +(wdj) &, +Ade - 1Qdj +K—n[C1K+(/1 u+agl )z,

Equating the poloidal components of E o from (2.9) and (2.38),

we find that

1= [KC] (At urags 1), + (4" aqg’)r((p)} , (2.39)

This is the required expression for / which is constituted by Killing
twist scalars coupled with the chemical potential, magnitude of heat
flow vector, geometrical angular momentum and rotation of the matter
part of fluid about the rotation axis. The quantity / that enters in the
determination of covariant poloidal components of heat flow vector
illustrates the role of Killing twist scalars and their relationship with
the heat flow in the meridional plane. Substituting (2.39) into (2.20),
we get

[KC1 +(/1*y +aql l)r(,)

s

+(/1*yﬂ+aqé’)f(¢)]f,u + AKn (d{a +jQ’a):0
(2.40)

which describes the evolution of the matter part of fluid in the
meridional plane in terms of thermodynamic variables coupled to
Killing twist scalars, the Stokes stream function, injection energy
gradient, and differential rotation due to rotation about the rotation
axis. Taking curl of (2.40), we find that

F:[Af:B] = Q,[Aj,B] > (2.41)
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where Killing twist scalars® corresponding to f( ) and f((p) are,

1 : - .
e ’[( )_ df. Vv (2.34a) respectively, denoted by 7, (1) and 7, (0) which are defined as follows :

T(t) — nabcdf({p) § b§ c " ﬂade§ §¢)b§(¢)d;c~

(2.34c)

Substituting (2.34a-b) in the last two terms of (2.33) and
simplifying, we find that

+ (ﬂQ*,u + ach) r(w)]df . (235)

+(/7.Q*y+aq§)r(¢de

(2.36)

,il.f((p) =pu,+aq,=j (2.37b)
“uu, +ag, =—¢ (2.37¢)

Substituting (2.37a-d) into (2.36) and taking (2.24) into account,
we get

+(ﬂ,*,u£2+aqg”)r(¢)}df (2.38)

where F =%[KCI +(ﬂ*,u +aq§l)r(1) +(l*,u(2+aq§)r(w)}

. The expression of scalar function F = is composed of a

n

combination of thermodynamic variables, Killing twist scalars and
indicates the importance of Killing twist scalars for the dynamics
of differential rotation which is usually thought to be related with
thermodynamic variables that constitute the equation of state (EOS)
of a hot matter. Alternatively, it suggest that the role of Killing twist
scalars is inevitable in the description of differential rotation. It is
evident from (2.41) that the level surfaces of constant {2 and j do not
coincide because of alignment of level surfaces of constant F and f
in the poloidal plane, in other words, Killing twist scalars representing
the twist of dynamical spacetime endowed with meridional circulation
contribute to the differential rotation at the onset of dissipation caused
by the heat flow. The variation of Stokes stream function in the
poloidal plane is caused by the variation of both Q and ; along the
meridional circulation velocity. Thus dynamics of differential rotation
seems to be complicated in the presence of meridional circulation
because of its link with the Killing twist scalars. Thus we confine our
attention to understand the role of meridional circulation in inducing
extra rotation in addition to the usual rotation about the rotation axis
and examine the relationship between the rotational velocity of the
matter part of fluid and the thermodynamic variables in the following
section.
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Rotational velocity of matter part of fluid

This section is focused on the description of dynamic interaction
between the matter part of fluid and the entropy fluid in order to
understand the link between the rotational velocity of matter part of
fluid and thermodynamic quantities contributed by both the matter
part of fluid and the entropy fluid. Thus we need to find covariant
solution of Maxwell’s like equations that govern the evolution of
the entropy fluid under spacetime symmetry assumption. In a non-
circular stationary axisymmetric spacetime, motion of matter part of
fluid is composed of rotation around the rotation axis and meridional
circulation occurring in meridional plane. This gives rise to the effect
that meridional circulation causes an extra rotational velocity in
addition to the usual rotation €2 about the rotation axis, as is well
known in a circular spacetime. The rotation of matter part of fluid is
linked with the 4-velocity of the entropy fluid because of two reasons
as follows. First, it is measured in the matter part of fluid’s rest frame
and bears a direct relation with the 4-velocity of the matter part of
fluid,and second, the 4-velocity of the matter part of fluid enters in
the electric part of Maxwell’s like equations corresponding to the
thermal vorticity 2-form Z,, . The 4-velocity of the entropy fluid u;
measured in the matter part of fluid’s frame is expressible as:!®

ul =2 +vy)

3.1
L
where y = (1 - vf) 2 and u,v; =0 . Therelative flow of entropy

measured in the matter part of fluid’s rest frame is represented by vy

a

which describes the heat flow vector ¢“ and is given by v{ = *q*
Making use of (2.2) in (3.1), we get 50
ut =y(2gp + 2050 +v*) | (3.2)

where

Contracting (3.8) with é:(lj) and f((;) in turn and using the

defining expression of E 4> e get

2
R| g + *q* u, =g w", (3.92)
s ’
q -
R q,+ *s*@u"’ ==J W (3.9b)

Multiplying (3.9b) by €2 and adding to (3.9a) and using (2.15),
we get

* ok

{E L)

u, +Qu(p = (3.10)

e . _ LT .
B, =7 (@) & =1 (7w ) Gy =7 (A a)E, +7 (204 @) T+ 7~ s ey
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(3.3)

Substituting the expression for ¢“ obtainable by setting

q® =gm® and using (2.4) into (3.3), we obtain

v = a1§(‘;) + a2§(‘;) +w', 34
where g, = *qé;l and a, = *qf .
s 50
From (3.2) and (3.4), we find that
ul =y| (A @) +(4Q+ a,) g0 4w | (3.5)

Maxwell’s like equations associated with the thermal vorticity

2-form Z,, are of the following form?’
Zu’ =E, , (3.6a)
where
~ 2
Zab = 2"g{b;a] H 190 = *Hua +ﬂqa H and Ea = yR(qa +*q_*0uaJ .
s

(3.6b)

Following Gourgoulhon et al,* one may obtain
Z,==2& ‘5 +2j * +£ c &4 (3.7

ab = "%€q 5(,);,] Jla §(¢)b] X Uabcdf(,)éz(go) . .

where [ = *Zabg(‘;)g(’;) . "Ou, + Bg, =~z ,and “Ou,+ g, =]
.Here & and j_ represents, respectively, the effective energy per

entropon and effective angular momentum per entropy in the sense of

Carter.”’The explicit expression for / will be obtained later on in the
subsequent discussions.

On account of (3.5) and (3.7), we find from (3.6) that

(3.8)
On account (2.22), we reduce (3.10) to take form
~ */,l*S *9 _ _ .
(D__R—qZ(g’a_Q‘]’a)W R (3.11)

which describes the injection energy of the matter part of fluid
in terms of the effective energy per entropon and effective angular
momentum per entropy associated with the entropy fluid that couples
the rotation of matter part of fluid about the rotation axis.

Making use of (2.1a,b) in (3.8), we find contra variant toroidal
components of E o as follows :

7Rq’

*
S

ot

E = _%[gfmp (E’awa)ﬂ-gw (Iﬂwa )]'—

2
B =Lg, (50) g, (707 ]+ L

w (3.12a)

w? (3.12b)

Citation: Prasad G. Rotational velocity of a relativistic heat conducting fluid configuration in non-circular axisymmetric stationary spacetime. Phys Astron Int J.

2021;5(1):11-23. DOI: 10.15406/paij.2021.05.00229


https://doi.org/10.15406/paij.2021.05.00229

Rotational velocity of a relativistic heat conducting fluid configuration in non-circular axisymmetric

stationary spacetime

where third relation of (3.6b) along with (2.4) and U,g “=0 are
used. Making use of the third relation of (3.6b), we find that

~ 1 "sOu -, =
=—+—L(E'-1E") (3.13)
!l yRUgq
~ ugﬂ
where €2 = — represents the rotational velocity of the matter

part of fluid and U=u'u 0 is the rotational potential.’” On account
of (3.12a,b), we obtain

& q° *s*gut(gw+lgw)q_) n*S

q' RKUq* n)*
where the relations and
(Eﬂ —Qza)wa =—®| > Al
n

relation will be derived later on and is given in Sec.5. The symbol

are used. This second

0 =(§ —Q]_) represents the injection energy per entropon

corresponding to the entropy fluid. It is observed from (3.16) that the
rotational velocity of the matter part of fluid is composed of the sum
of three terms of which (i) the first term is the ratio of the toroidal
components of the heat flow vector, (ii) the second term is the variation
of'the entropy per baryon along the meridional circulation velocity and
is coupled to thermodynamic variables and metric components, and
(iii) third term is the rotation contributed by the linear combination of
the gradient of the injection energy corresponding to the matter part of
the fluid and the differential rotation arising due to the rotation about
the rotation axis and the rotational potential.

In order to understand the interpretation of (3.16) as the rotational
velocity of the matter part of the fluid we turn back to (2.2) which
tells us that

where in the expansion second and higher orders are ignored. The
second term on the right hand side of (3.17) may be regarded as the
rotational velocity of the matter part of fluid arising due to the meridional
circulation velocity and will now be denoted by the symbol €2 for
further discussion. The first term €2 on the right hand side of (3.17)
represents the rotational velocity of the matter part of fluid about the

. . . 4
rotation axis. Making use of w’ =

_%(gt(pgt/l - gttg(pA )M

and W = 4 obtainable from (2.2) and

(o = 2100

simplifying, one may obtain

Copyright:
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40:_7(g¢¢,+lgm,)(E

—IE ,a—Q’a)w"Jr%(utthruqow“’)
(3.14)
It follows from (2.18) that
AKu . . .
uw +u, W’ = _—\/——gt € (CD’A +JQ,A)( 5(,)3 -1 §(¢)3)
(3.15)

where €AB denotes an alternating symbol taking values 1 or—1.

It follows from (3.13), (3.14),and (3.15) that

(3.16)

U\/7€AB((D +JQ )( 5()3_1*5((”)3)’

A 1 ~ A ~ A
Q: AK |:(a)_Q)g(p(pgtAu +(gtt_Qa)g(p(p)g(pAu :| H
(3.18)
where @ = — represents the frame dragging effect.’® Thus
8o
(3.17) may be rewritten as

Q=0+Q . (3.19)

It is evident from (3.16) and (3.17) that these two versions of
rotational velocity of the matter part of fluid are different in the
sense that (3.16) describes the rotation in terms of the geometrical
angular momentum [ while (3.17) split the rotation into two parts
composed of rotation about the rotation axis and the rotation caused
by the meridional circulations. As is known that the geometric angular
momentum/ is expressible as a function of rotational velocity about
the rotation axis in the case of circular spacetime but due to non-
circularity assumption such explicit functional relation does not seem
possible because of the presence of meridional circulation velocity.
Thus we need to deduce an expression for the rotational velocity
of the matter part of fluid which may resemble with (3.17).We now
confine our attention to derivation of such expression by invoking
Maxwell’s like equations describing the motion of the entropy fluid
and to obtain the relation between the rotation of both the matter part
and the entropy fluids in following section.

Rotational velocity of the entropy fluid

This section is devoted to study the rotation of the entropy fluid
induced by the rotation of the matter part of fluid that may arise
because of dynamic coupling between the matter part of fluid and
the entropy fluid and to explore various consequences related with
the poloidal components of the matter part of fluid’s 4-velocity and
the entropy production rate. The presence of Killing twist scalars
due to meridional circulation of the matter part of fluid is expected
to contribute to the dynamic evolution of the entropy fluid. This
requires to find a covariant solution to Maxwell’s like equations
associated with the thermal vorticity 2-form Za , - For computational

convenience, we use the exterior calculus and results developed in.*
In the language of differential forms, (3.6) is expressible as

u,.d3=-E 4.1
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Since U .dﬁ is a 1-form, it can be decomposed as b] = }/W.d (Q.f(t)) , b2 = }/W.d (Q.g((p)) . 44
u, .dﬁ _ b1 *6(,) " b2 *5(,/,) n X (42) Substitution of (4.4) in (4.2) yields that
where 1-form Z lies in the meridional plane orthogonal to both Uy dQ = 7|:W'd (ﬁ-f(,) )} *é(t) + 7[W'd (Q'g(‘ﬂ) ):| *f((p) +Y
f(,) and f(w) . Contraction of (4.2) with 5(0 and 5((/,) in turn gives @5)
that In order to compute Z , we proceed with the following construction
u,.d Q-f(,) =b . (4.32) u.dd=u .dx+u.dy+u.d ( *011/) . (4.6)
u,.d8.g, =b, . (4.3b) Where
xX= /I*Gg(t) + AQ*QQ(/,) and ) = ﬂq{lﬁm +,qu”§((p).

Making use of the symmetry conditions £ ‘ 4=0=¢£ ‘ 3
() — (o) — 4.7
in the left hand side of (4.3a) and (4.3b), respectively, with the aid of

Performing similar calculations as are done in Sec.3 in the case of
(3.5), we get

particle vorticity 2-form, we find that

u.d9= —7(l+a1)d[(£+ Z).f(t)J—y(m+a2)d[(§+ Z)~§<¢J+ /4 52 df +ywdx +ywady . “8)

Replacing the left hand side of (4.5) by (4.8) and contracting the resulting equation with an arbitrary vector 17 lying in the meridional plane,
we get

Yv=u.dlv= —7(/1 +aq, )v.d [(1+ Z).%J — 7(/19 +a, )v.d [(5 +Z)'§(¢)J +7/7czv.df +ywdx.v+ywdy.y
(4.9)

*

. _A0 _P4a¢
Making use of the results W.dx.v = K—n(T(t) + QZ'((/,) ) df v and w.dz.v = K—n(h—(t) + T((p) ) df v

In the last two terms of (4.9) and simplifying, we find that
7 * *
Y=—y(21+ al)d[(iJrz).f(t)] —}/(AQ+a2)d[(§+Z).§(¢J +E[KC2 +(/1 0+ﬂq§l)r(t) +(AQ 6’+ﬁq.§)r(¢)]df
(4.10)
Using (E+Z)’§(t) =-¢ and (£+Z).§(¢) =/ in (4.10) and Q.gj(t) =—z , 5.5((/)) =7 in (4.5), respectively, and substituting the resulting

expressions in (4.1), we obtain

B =y(wdE) &, 7 (wdi) g, 7 (A+a)dE +y(aQ+ az)dj'—KLn[Kcr2 +(A'0+ pact)g, + (270 + ﬁq;)%)}df . (4.11)
It follows from (3.8) and (4.11) that _
_ sl . . _ - g _ I
- * * u,=—; 4 -4 —Ag, + A, + —le, )| —
T =KC,+(2"0+ fg¢i )z, +(1Q°0+ ot )1, “12) =g { G A oy = a2+ (1B ) ( Kn]f,a}
This is the required expression for I which is constituted by (4.142)
Killing twist scalars, local temperature, the entropy entrainment, the where
magnitude of the heat flow vector, rotation of the matter part of fluid
about the rotation axis, and gravitational potentials encoded in A A= (Ebwb)+ V(g bwb) A, = ( j bwb) + v( Jj bwb) . (4.14b)

which relates meridional circulation velocity magnitude.

From (2.8) and (3.6b), we obtain that Contracting (4.14a) with g‘(”;) and 5&) in turn, respectively, we

* *0 - get
u, = ; (B, -nE,) (4.13)
rikq
u =4y, u,=-4,. (4.15)
n .
h =—— . Mak f (2. 2.4
where v . B aking use of (2.38), (2.40), and From the defining relations of effective energies and effective
ST 9 angular momenta corresponding to both the matter part and entropy
(4.11) in (4.13), we get fluids and the relation +"s8 =1, we have
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nEu, +q, = —(ng + *SE) and nEu,+q,= (n] + Sj) (4.16)
where E ="+ il is the energy of the heat conducting fluid
n

per baryon. It follows from (2.10) that

Rq, = —v(g!bwb) and Rq, = v(j’bwb) (4.17)
From (4.16) and (4.17),we find that
- %(j,bwb)+(nj+*s7) , “18)
%(E’bwb) + (ne‘ + *SE)

which determines the geometrical angular momentum per particle
of the matter part of the fluid in terms of the effective energies and
angular momenta corresponding to both the matter part and the
entropy fluids. As is seen that the first term on the right hand side
of (3.13) is the reciprocal of the geometrical angular momentum that
enters in the derivation of an expression describing the rotational
velocity of the matter part of fluid given by (3.18).But this derivation
loses similarity with that of (3.16). Thus in order to achieve exact
similarity with (3.16), we proceed as follows.

From (4.14a), with the aid of (2.1a,b), we get

RK; {gw( )+gw(zbwb)+§uw%}+w

*s*0

u? =—

RKq

, (4.19)

{gw( )+gtt(zbwb)+§utqw}+ w? . (4.20)

Multiplying (4.19) by 2 and subtracting the resulting equation
from (4.20) and simplifying with the aid of (2.2) and (2.22), we obtain

that
{”w (E’bw}’ ) +u, (wab ) —%%} , (4.21)

which bears a complete resemblance with (3.16). Contraction of

the third relation of (3.6b) with u’ yields that

50

Q=0 (,1+u’)/1RKq2

2
But = 1R (4.22)
56
Contraction of (3.8) with u” gives that
Eoa_T95 (T = Ve
Eu'=—"2(j,—lg,|n". (4.23)
K 19(]’ ’ )
It follows from (4.22) and (4.23) that
(17, -7, ) =24 (4.24)

¢

On account of (4.24), one can reduce (4.21) to take the following
form

f).=Q—S—'92 iuﬁjﬂqw (4.25)
(/1+ut)ﬂ,Kq 4 U

which exhibits that the rotational velocity of the matter part of
fluid is split into two parts: (i) rotation about the rotation axis and (ii)
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the rotation caused by the meridional circulation describable by the
second term on the right hand side of (4.25). From (2.22) and (4.18),
we get

which gives rotational velocity of the matter part of fluid about the
rotation axis in terms of thermodynamic variables.

Making use of relation uf=y{ “ *q*é’] , we define the
s

rotational velocity of the entropy fluid as

?
0 (Hw + *q*eJ ) t 1
aerr 50 (o ey i)
o [y, 4 0 u's0 (4.27)
50
which can be linearized by ignoring second and higher terms in

the expansion of second small bracket on the right hand side of (4.27)
to obtain

(4.28)

where ¢' =q¢land ¢' = g¢l are used.

Multiplying (3.9a) by I and adding the resulting equation to (3.9b),
we get

(Zq, + q(p) (lg 7]’a)w“ , (4.29)
which because of (4.17) takes the form
lg, +q,="L . (4.30)
¢
Using the fact that u“q, =0, one may find that
u’(q, +ﬁq¢)+quA =0 . 4.31)
It follows from (2.38) and (2.40) that
o= e g (g e
which, due to (4.17) , takes the form
quA :q¢(*§(¢),4 —Q*f(,)A)WA (4.33)

Making use of (2.19) on the right hand side of (4.33), we get

Ryt COTRE T O

in (4.31) and simplifying with the aid of (4.34),

(4.34)

Using ¢, =-Qq,
we get
® fzq 1 AB [ * ¥
1-Ql )= + € _0 .
( ) QLg, nQu'\-g ( g(‘ﬂ)A ‘Jg(t)A)f,B

From (4.27) and (4.35), we get

(4.35)
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2

f)zf![lJr *? - ]+ 95 5
Qs Ou 4, nQ*s*G(u’) \/%

€ Gy~ 9"

(4.36)

s

which exhibits that the rotation of the matter part of fluid contributes
to the rotation of the entropy fluid besides contributions due to a
combination of thermodynamic quantities. This in turn implies that
the friction caused by the difference of rotational velocities of the
entropy fluid and the matter part of fluid is directly linked with the
heat flow. It is the presence of heat that causes the entropy fluid to
rotate with different rotational velocity than the rotation of the matter
part of fluid. Consequently, the entropy fluid is not corotating with the
matter part of fluid.

Creation of injection energy per baryon

This section is concerned with the description of creation of
injection energy per baryon due to interaction of heat flow with the
motion of a heat conducting fluid and determination of the magnitude
of meridional circulation velocity in terms of thermodynamic
quantities. In order to demonstrate injection energy creation we
invoke the conservation laws of energy and angular momentum
currents associated with a stationary axisymmetric heat conducting
fluid configuration. The energy current conservation law?! states that
there is exchange between the total energy per baryon of the matter
part of fluid and of the heat flux coupled with the effective energy per
entropn associated with the entropy fluid per unit of local temperature
measured in the matter part of fluid’s rest frame. Similar exchange law
holds for the conservation of angular momentum current. These two
laws are explicitly expressible as:?!

nEau“+[f q”j =0, (5.1a)
’ [ sa
a J a _
nL u +(* q j =0, (5.1b)
’ 0 sa
where
—E:(*,LH- sa}uﬁi , L=[*ﬂ+ Sa]“w+q_¢' (5.1¢c)
n n n n
Multiplying the relation “uu, +aq, =—¢ by n and

*Qu, + ﬂqt =£ by "5 and adding these two resulting relations

with the aid of no + *Sﬂ =1, we get

s&
E=e+— (5.2)
n
Similarly, we find that
) *S_.
L=|j+L (53)
n

Substituting q“ :qé/(f(ip) +l§((j)) in the second term of
(5.1a) and (5.1b), respectively, and simplifying, we get

E,aua =0 or E,aw” =0 (5.4a)
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a _ a __
Lu“=0 o Lw'=0. (5.4b)

Multiplying the equation obtained by substituting (5.3) in (5.4b)
by Q) and subtracting it from the resulting equation obtained by
substituting (5.2) in (5.4a), we get

S](E.a -9, )w’ +(E—Qf)[3j =0

*

n n

(£a = Qi)W +[

Contraction of (2.16) with w* gives a relation which makes the
first term zero and hence (5.5) reduces to

— — a_ (= _OF l a
(g’a—Q],a)w = (5 Q]) » M

(5.6)

which is the required relation used in (3.16) to derive an explicit
expression for the rotational velocity of matter part of fluid.

It follows from (3.11) and (5.6) that

* *S *9 *S
=L 2Z(F-0f) 2| w6
Rq n

which shows that the variation of entropy per baryon along the
meridional circulation velocity is responsible for the creation of the
injection energy per baryon besides the contributions made by other
thermodynamic quantities. If entropy per baryon is assumed to be
constant along the meridional circulation velocity, then the injection
energy per baryon becomes zero which is in contradiction with the very
definition of injection energy.* Hence, we arrive at the conclusion that
the variation of entropy per baryon along the meridional circulation
velocity generates the injection energy per baryon.

On account of (2.15), we find from (5.1c) that

-E+QL= *y+% (ut+Qu¢,). (5.8)

Substituting #, = A (g Pl le¢) and

u,= A (gw + ng ) in (5.8) and simplifying with the aid of
(2.3), we get

(1+w2): /I* —(E-QL). (5.9)
. 560
M+
n
From (5.2) and (5.3), we get
E-QL=3+-0 . (5.10)

n

where @ =g —Qj represents the injection energy per
entropon.

Replacing @ from (5.7) in (5.10) and using the resulting equation
in (5.9), we obtain
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1+w’ = /I*SCD 1+I’l/,120 In—> A N
(n ,u+) Rq n)

which gives the relation between the squared magnitude of the
meridional circulation velocity and the variation of entropy per baryon
along the matter part of fluid’s 4-velocity. This means that the flow of
matter part of fluid cannot be isentropic in the presence of dissipation
caused by the heat flow. The variation of entropy per baryon along
the meridional circulation velocity plays the dual role in the creation
of the injection energy per baryon and also contributes to the squared
magnitude of meridional circulation velocity.

From (5.8) and (5.9) with the aid of (2.3) and (2.22), we get

(5.11)

O=1"uG , (5.12)

which is an alternative version of (5.7) in terms metric tensor
components associated with the surface of transitivity and the
rotational velocity about the rotation axis. This relation may be used
to determine the conditions under which a heat conducting fluid
configuration admits clockwise or anti-clockwise rotation about the
rotation axis.

Link between differential rotation and
thermal-fluid vorticity

In this section we find a relation describing the differential rotation
of the matter part of fluid along the thermal-fluid vorticity. The key
idea which motivates to explore such relation originates from most
celebrated Ferraro’s law of isorotation in RMHD?* because the
thermal-fluid vorticity is the magnetic part of of thermal-fluid vorticity
2-form Wy . This is composed of a linear combination of matter part
of fluid’s vorticity vector and spacelike twist vector associated with a
congruence of heat flow lines. It is defined as follows:

Ve="w"u,, (6.1a)
which is explicitly expressible as
V' =2"uo"+2aqa", (6.1b)
and obeys the following condition
0]
m.=(Inagq) , . (6.1¢)

Here @° is the matter part of fluid’s vorticity vector

abed

defined by @ 2577 U,U,.,. The spacelike twist vector

S | _
o' = Ef]adeuba)c 4 of the congruence of heat flow lines, where

C?)ab denotes its rotation tensor.** The spacelike twist vector o’ is

directed along m® because of the identit @* = (C?)bmb ) m“ . The
cgrvature vector associated with the congruence of heat flow lines is
Ma =m,,m .
From (2.4), we find that
© AQK*¢?
Mg = (lng) A,

u,

(6.2)
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Using the defining relations of effective energy and angular
momentum per particle associated with the matter part of fluid, we get

a(lqt+q(p):—(lg—j), (6.3)
which because of (4.29) takes the form
aq _ (Z .
—=—(le—j) . (6.4)
¢
From (6.1c¢) and (6.2), one may find that
4 a9 , (6.5)

] =— |24
T aqck\ ¢ )

which shows that the entropy entrainment multiplied by the
magnitude of heat flow vector contributes to the variation of
geometrical angular momentum per particle.

It follows from (6.4) and (6.5) that

(1o, — )= 10—}

6.6
alqQK* )\ ¢ ©0

The magnetic part V* of thermal-fluid vorticity 2-form W;b is
given by !

a 1 a 1 a abc .
d :_E(1u¢+a5)f )+E(I“f+“6)‘f( 2o (16, = 1) €0

, (¢ 9K
(6.7)
where
as = 1" W, ] 580 Sigpa 04 s =" WE 160 G
(6.3)
Using (6.7), we find that
~ a _ U, abed ~ .
Q=T (25 =) i ©69)
Substituting (6.6) into (6.9) and simplifying, we obtain
~ u u ~ aq
QVi=—F"F=|1+ L €, | —|,.
’A J-g U aqiokK? ¢ )?
(6.10)
which because of (4.25) takes the form
Qri=——t 14— _le®(Q,-A ) 2L],.
e A
(6.11)
where
* *0
A= Ly vy,
(/1+u‘)/1Kq 4 Y7 (6.12)

It is seen from (6.11) that Q AVA # (0 . This in turn implies that

Q0" #0, (6.13)

Citation: Prasad G. Rotational velocity of a relativistic heat conducting fluid configuration in non-circular axisymmetric stationary spacetime. Phys Astron Int J.

2021;5(1):11-23. DOI: 10.15406/paij.2021.05.00229


https://doi.org/10.15406/paij.2021.05.00229

Rotational velocity of a relativistic heat conducting fluid configuration in non-circular axisymmetric

stationary spacetime

which exhibits that the law of gravitational isorotation ceases to
hold in the sense of Glass.* Thus we arrive at the conclusion that
the law of gravitational isorotation breaks down in the case of an
axisymmetric stationary heat conducting fluid configurartion due to
the entropy entrainment.

Conclusion

The present work is focused on the rotation of a heat conducting
fluid configuration based on Carter’s model under the assumption that
the background spacetime is non-circular stationary and axisymmetry.
It is found that a linear combination of the injection energy gradient
and the gradient of rotational velocity about rotation axis is constant
along the matter part of fluid flow lines. The level surfaces of constant
angular velocity about rotation axis do not coincide with level surfaces
of constant effective angular momentum per baryon corresponding to
the matter part of fluid because of the variation of Killing twist scalars
coupled with thermodynamic quantities in meridional planes. The
rotation of matter part of fluid composed of rotation about rotation
axis and an additional rotation generated by meridional circulations
are completely describable in terms of thermodynamic variables such
as the heat flow, injection energy per baryon, chemical potential of
matter part of fluid, and the rotational potential created by dynamic
space time as an outcome of interaction between the motion of the
entropy fluid and of the matter part of fluid. The meridional circulation
velocity contributes to the entropy production besides the contributions
made by the other thermodynamic quantities. The entropy fluid is not
corotating with the matter part of fluid in the presence of dissipation
caused by the heat flow. It is found that the law of gravitational
isorotation breaks down due to the entropy entrainment in the case of
an axisymmetric stationary heat conducting fluid.
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