Submit manuscript...
Journal of
eISSN: 2377-4282

Nanomedicine Research

Research Article Volume 4 Issue 4

Investigations on the Relativistic Interactions in One-Electron Atoms with Modified Anharmonic Oscillator

Abdelmadjid Maireche

Department of Physics, University of Msila Msila, Algeria

Correspondence: Abdelmadjid Maireche, Laboratory of Physics and Material Chemistry, Physics department, University of M’sila-M’sila Algeria, Tel +213664834317

Received: November 30, 2016 | Published: December 16, 2016

Citation: Maireche A (2016) Investigations on the Relativistic Interactions in One-Electron Atoms with Modified Anharmonic Oscillator. J Nanomed Res 4(4): 00097. DOI: 10.15406/jnmr.2016.04.00097

Download PDF

Abstract

The bound–state solutions of the modified Dirac equation (m.d.e.) for the modified anharmonic oscillator (m.a.o.) are presented exactly for arbitrary spin–orbit quantum number k( k ˜ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada qadaqaaiqadUgagaacaaGaayjkaiaawMcaaaaa@39F1@  by means Bopp’s shift method instead to solving (m.d.e.) with star product, in the framework of noncommutativity three dimensional real space (NC: 3D–RS). The exact corrections for n th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad6gada ahaaqcfasabeaacaWG0bGaamiAaaaaaaa@39A2@ excited states are found straightforwardly for interactions in one–electron atoms by applying the standard perturbation theory. Furthermore, the obtained corrections of energies are depended on two infinitesimal parameters ( Θ ij , χ ij ) ε ij k ( Θ k , χ k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeuiMde1aaSbaaKqbGeaacaWGPbGaamOAaaqabaqcfaOaaiilaiab eE8aJnaaBaaajuaibaGaamyAaiaadQgaaKqbagqaaaGaayjkaiaawM caaiabggMi6kabew7aLnaaDaaajuaibaGaamyAaiaadQgaaeaacaWG RbaaaKqbaoaabmaabaGaeuiMde1aaSbaaKqbGeaacaWGRbaabeaaju aGcaGGSaGaeq4Xdm2aaSbaaKqbGeaacaWGRbaajuaGbeaaaiaawIca caGLPaaaaaa@5170@  which induced by position–position noncommutativity, in addition to the non–relativistic quantum mechanics ( n,j,l=l±1/2,m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamOBaiaacYcacaWGQbGaaiilaiaadYgacqGH9aqpcaWGSbGaeyyS aeRaaGymaiaac+cacaaIYaGaaiilaiaad2gaaiaawIcacaGLPaaaaa a@43E6@  and ( n,j= l ˜ ± s ˜ , m ˜ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamOBaiaacYcacaWGQbGaeyypa0JabmiBayaaiaGaeyySaeRabm4C ayaaiaGaaiilaiqad2gagaacaaGaayjkaiaawMcaaaaa@4140@  under spin–symmetry and p–spin symmetry in (NC: 3D–RS), respectively. In limit of parameters ( Θ k , χ k )( 0,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeuiMde1aaSbaaKqbGeaacaWGRbaajuaGbeaacaGGSaGaeq4Xdm2a aSbaaKqbGeaacaWGRbaajuaGbeaaaiaawIcacaGLPaaacqGHsgIRda qadaqaaiaaicdacaGGSaGaaGimaaGaayjkaiaawMcaaaaa@4514@ , the energy equation is consistent with the results of ordinary relativistic quantum mechanics.

Keywords: anharmonic oscillator, noncommutative space, star product, bopp’s shift method, dirac equation

Abbreviations

MOA: Modified Anharmonic Oscillator; (NC: 3D–RS): Noncommutativity Three Dimensional Real Space; MDE: Modified Dirac Equation; (NCCRs): NC Canonical Commutations Relations

Introduction

One of the interesting problems of the relativistic quantum mechanics is to find exact solutions to the Klein–Gordon (to the treatment of a zero–spin particle) and Dirac (spin ½ particles and anti–particles) equations for certain potentials of the physical interest, in recent years, considerable efforts have been done to obtain the analytical solution of central and non–central physics problems for different areas of atoms, nuclei, and hadrons, numerous papers of the physicist have discussed in details all the necessary information for the quantum system and in particularly the bound states solutions.1–21 Some of these potentials are known to play important roles in many fields, one of such potential is the anharmonic oscillator has been a subject of many studies, it is a central potential of nuclear shell model, etc.20,21 The ordinary quantum structures obey the standard Weyl–Heisenberg algebra in both Schrödinger and Heisenberg (the operators are depended on time) pictures, respectively, as (Throughout this paper the natural unit are employed):

[ x i , p j ]=[ x i ( t ), p j ( t ) ]=i δ ij [ x i , x j ]=[ p i , p j ]=[ x i ( t ), x j ( t ) ]=[ p i ( t ), p j ( t ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aam WaaeaacaWG4bWaaSbaaKqbGeaacaWGPbaabeaajuaGcaGGSaGaamiC amaaBaaajuaibaGaamOAaaqcfayabaaacaGLBbGaayzxaaGaeyypa0 ZaamWaaeaacaWG4bWaaSbaaKqbGeaacaWGPbaabeaajuaGdaqadaqa aiaadshaaiaawIcacaGLPaaacaGGSaGaamiCamaaBaaajuaibaGaam OAaaqcfayabaWaaeWaaeaacaWG0baacaGLOaGaayzkaaaacaGLBbGa ayzxaaGaeyypa0JaamyAaiabes7aKnaaBaaajuaibaGaamyAaiaadQ gaaeqaaaGcbaqcfa4aamWaaeaacaWG4bWaaSbaaKqbGeaacaWGPbaa beaajuaGcaGGSaGaamiEamaaBaaajuaibaGaamOAaaqabaaajuaGca GLBbGaayzxaaGaeyypa0ZaamWaaeaacaWGWbWaaSbaaKqbGeaacaWG PbaabeaajuaGcaGGSaGaamiCamaaBaaajuaibaGaamOAaaqcfayaba aacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaWG4bWaaSbaaKqbGeaa caWGPbaabeaajuaGdaqadaqaaiaadshaaiaawIcacaGLPaaacaGGSa GaamiEamaaBaaajuaibaGaamOAaaqabaqcfa4aaeWaaeaacaWG0baa caGLOaGaayzkaaaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaacaWGWb WaaSbaaKqbGeaacaWGPbaabeaajuaGdaqadaqaaiaadshaaiaawIca caGLPaaacaGGSaGaamiCamaaBaaajuaibaGaamOAaaqabaqcfa4aae WaaeaacaWG0baacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyypa0Ja aGimaaaaaa@82C3@   (1)

where the two operators ( x i ( t ), p i ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamiEamaaBaaajuaibaGaamyAaaqabaqcfa4aaeWaaeaacaWG0baa caGLOaGaayzkaaGaaiilaiaadchadaWgaaqcfasaaiaadMgaaeqaaK qbaoaabmaabaGaamiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaaa @433E@ in Heisenberg picture are related to the corresponding operators ( x i , p i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamiEamaaBaaajuaibaGaamyAaaqabaqcfaOaaiilaiaadchadaWg aaqcfasaaiaadMgaaeqaaaqcfaOaayjkaiaawMcaaaaa@3E3A@  in Schrödinger picture from the following projections relations:

x i ( t )=exp(i H ^ ( t t 0 )) x i exp(i H ^ ( t t 0 )) p i ( t )=exp(i H ^ ( t t 0 )) p i exp(i H ^ ( t t 0 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam iEamaaBaaajuaibaGaamyAaaqabaqcfa4aaeWaaeaacaWG0baacaGL OaGaayzkaaGaeyypa0JaciyzaiaacIhacaGGWbGaaiikaiaadMgace WGibGbaKaadaqadaqaaiaadshacqGHsislcaWG0bWaaSbaaKqbGeaa caaIWaaajuaGbeaaaiaawIcacaGLPaaacaGGPaGaamiEamaaBaaaju aibaGaamyAaaqabaqcfaOaciyzaiaacIhacaGGWbGaaiikaiabgkHi TiaadMgaceWGibGbaKaadaqadaqaaiaadshacqGHsislcaWG0bWaaS baaKqbGeaacaaIWaaajuaGbeaaaiaawIcacaGLPaaacaGGPaaakeaa juaGcaWGWbWaaSbaaKqbGeaacaWGPbaabeaajuaGdaqadaqaaiaads haaiaawIcacaGLPaaacqGH9aqpciGGLbGaaiiEaiaacchacaGGOaGa amyAaiqadIeagaqcamaabmaabaGaamiDaiabgkHiTiaadshadaWgaa qcfasaaiaaicdaaeqaaaqcfaOaayjkaiaawMcaaiaacMcacaWGWbWa aSbaaKqbGeaacaWGPbaabeaajuaGciGGLbGaaiiEaiaacchacaGGOa GaeyOeI0IaamyAaiqadIeagaqcamaabmaabaGaamiDaiabgkHiTiaa dshadaWgaaqcfasaaiaaicdaaKqbagqaaaGaayjkaiaawMcaaiaacM caaaaa@7B0A@   (2)

here H ^ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcaaaa@3756@  denote to the ordinary quantum Hamiltonian operator. In addition, for spin ½ particles described by the Dirac equation, experiment tells us that must satisfy Fermi Dirac statistics obey the restriction of Pauli, which imply to gives the only non–null equal–time anti–commutator for field operators as follows:

{ Ψ α ( t,r ), Ψ ¯ β ( t,r' ) }=i ( γ 0 ) αβ δ 3 ( r-r' )   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaacmaaba GaeuiQdK1aaSbaaKqbGeaacqaHXoqyaKqbagqaamaabmaabaGaamiD aiaacYcacaqGYbaacaGLOaGaayzkaaGaaiilaiqbfI6azzaaraWaaS baaKqbGeaacqaHYoGyaKqbagqaamaabmaabaGaamiDaiaacYcacaqG YbGaae4jaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaiabg2da9iaadM gadaqadaqaaiabeo7aNnaaCaaabeqcfasaaiaaicdaaaaajuaGcaGL OaGaayzkaaWaaSbaaKqbGeaacqaHXoqycqaHYoGyaKqbagqaaiabes 7aKnaaCaaabeqcfasaaiaabodaaaqcfa4aaeWaaeaacaqGYbGaaeyl aiaabkhacaqGNaaacaGLOaGaayzkaaGaaeiiaiaabccaaaa@5EA7@   (3)

 with Ψ β (t, r 1 )= Ψ + β (t, r 1 ) γ 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbmqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaacq qHOoqwaSqabeaacqGHsislaaGcdaWgaaWcbaGaeqOSdigabeaakiaa cIcacaWG0bGaaiilaiaadkhadaahaaWcbeqaaiaaigdaaaGccaGGPa Gaeyypa0JaeuiQdK1aaWbaaSqabeaacqGHRaWkaaGcdaWgaaWcbaGa eqOSdigabeaakiaacIcacaWG0bGaaiilaiaadkhadaahaaWcbeqaai aaigdaaaGccaGGPaGaeq4SdC2aaWbaaSqabeaacaaIWaaaaaaa@4C88@ . Very recently, many authors have worked on solving these equations with physical potential in the new structure of quantum mechanics, known by NC quantum mechanics, which known firstly H Snyder.22 to obtaining profound and new applications for different areas of matter sciences in the microscopic and nano scales.23–68 It is important to noticing that, the new quantum structure of NC space based on the following NC canonical commutations relations (NCCRs) in both Schrödinger and Heisenberg pictures, respectively, as follows.23–60

[ x ^ i , p ^ j ]=[ x ^ i ( t ) , p ^ j ( t ) ]=i δ ij ,[ x ^ i , x ^ j ]=[ x ^ i ( t ) , x ^ j ( t ) ]=i θ ij    [ p ^ i , p ^ j ]= [ p ^ i ( t ) , p ^ j ( t ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aam WaaeaaceWG4bGbaKaadaWgaaqcfasaaiaadMgaaeqaaKqbaoaaxaca baGaaiilaaqabeaacqGHxiIkaaGabmiCayaajaWaaSbaaKqbGeaaca WGQbaabeaaaKqbakaawUfacaGLDbaacqGH9aqpdaWadaqaaiqadIha gaqcamaaBaaajuaibaGaamyAaaqabaqcfa4aaeWaaeaacaWG0baaca GLOaGaayzkaaWaaCbiaeaacaGGSaaabeqaaiabgEHiQaaaceWGWbGb aKaadaWgaaqaamaaBaaajuaibaGaamOAaaqabaaajuaGbeaadaqada qaaiaadshaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpcaWG PbGaeqiTdq2aaSbaaKqbGeaacaWGPbGaamOAaaqabaqcfaOaaiilam aadmaabaGabmiEayaajaWaaSbaaKqbGeaacaWGPbaabeaajuaGdaWf GaqaaiaacYcaaeqabaGaey4fIOcaaiqadIhagaqcamaaBaaajuaiba GaamOAaaqabaaajuaGcaGLBbGaayzxaaGaeyypa0ZaamWaaeaaceWG 4bGbaKaadaWgaaqcfasaaiaadMgaaeqaaKqbaoaabmaabaGaamiDaa GaayjkaiaawMcaamaaxacabaGaaiilaaqabeaacqGHxiIkaaGabmiE ayaajaWaaSbaaKqbGeaacaWGQbaabeaajuaGdaqadaqaaiaadshaai aawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpcaWGPbGaeqiUde3a aSbaaKqbGeaacaWGPbGaamOAaaqabaqcfaOaaeiiaaGcbaqcfaOaae iiamaadmaabaGabmiCayaajaWaaSbaaKqbGeaacaWGPbaabeaajuaG daWfGaqaaiaacYcaaeqabaGaey4fIOcaaiqadchagaqcamaaBaaaju aibaGaamOAaaqabaaajuaGcaGLBbGaayzxaaGaeyypa0Jaaeiiamaa dmaabaGabmiCayaajaWaaSbaaKqbGeaacaWGPbaabeaajuaGdaqada qaaiaadshaaiaawIcacaGLPaaadaWfGaqaaiaacYcaaeqabaGaey4f IOcaaiqadchagaqcamaaBaaajuaibaGaamOAaaqabaqcfa4aaeWaae aacaWG0baacaGLOaGaayzkaaaacaGLBbGaayzxaaGaeyypa0JaaGim aaaaaa@9337@   (4)

Where the two new operators ( x ^ i ( t ), p ^ i ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GabmiEayaajaWaaSbaaKqbGeaacaWGPbaajuaGbeaadaqadaqaaiaa dshaaiaawIcacaGLPaaacaGGSaGabmiCayaajaWaaSbaaKqbGeaaca WGPbaabeaajuaGdaqadaqaaiaadshaaiaawIcacaGLPaaaaiaawIca caGLPaaaaaa@435E@ in Heisenberg picture are related to the corresponding new operators ( x ^ i , p ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GabmiEayaajaWaaSbaaKqbGeaacaWGPbaabeaajuaGcaGGSaGabmiC ayaajaWaaSbaaKqbGeaacaWGPbaabeaaaKqbakaawIcacaGLPaaaaa a@3E5A@  in Schrödinger picture from the new projections relations:

x ^ i ( t )=exp(i H ^ nc ( t t 0 ))* x ^ i *exp(i H ^ nc ( t t 0 )) p ^ i ( t )=exp(i H ^ nc ( t t 0 ))* p ^ i *exp(i H ^ nc ( t t 0 )) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOabm iEayaajaWaaSbaaKqbGeaacaWGPbaabeaajuaGdaqadaqaaiaadsha aiaawIcacaGLPaaacqGH9aqpciGGLbGaaiiEaiaacchacaGGOaGaam yAaiqadIeagaqcamaaBaaajuaibaGaamOBaiaadogaaeqaaKqbaoaa bmaabaGaamiDaiabgkHiTiaadshadaWgaaqaaiaaicdaaeqaaaGaay jkaiaawMcaaiaacMcacaGGQaGabmiEayaajaWaaSbaaKqbGeaacaWG PbaabeaajuaGcaGGQaGaciyzaiaacIhacaGGWbGaaiikaiabgkHiTi aadMgaceWGibGbaKaadaWgaaqaamaaBaaabaGaamOBaiaadogaaeqa aaqabaWaaeWaaeaacaWG0bGaeyOeI0IaamiDamaaBaaajuaibaGaaG imaaqcfayabaaacaGLOaGaayzkaaGaaiykaaGcbaqcfaOabmiCayaa jaWaaSbaaKqbGeaacaWGPbaabeaajuaGdaqadaqaaiaadshaaiaawI cacaGLPaaacqGH9aqpciGGLbGaaiiEaiaacchacaGGOaGaamyAaiqa dIeagaqcamaaBaaajuaibaGaamOBaiaadogaaKqbagqaamaabmaaba GaamiDaiabgkHiTiaadshadaWgaaqaaiaaicdaaeqaaaGaayjkaiaa wMcaaiaacMcacaGGQaGabmiCayaajaWaaSbaaKqbGeaacaWGPbaabe aajuaGcaGGQaGaciyzaiaacIhacaGGWbGaaiikaiabgkHiTiaadMga ceWGibGbaKaadaWgaaqcfasaaiaad6gacaWGJbaabeaajuaGdaqada qaaiaadshacqGHsislcaWG0bWaaSbaaKqbGeaacaaIWaaajuaGbeaa aiaawIcacaGLPaaacaGGPaaaaaa@86CF@   (5)

with H ^ nc MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamOBaiaadogaaeqaaaaa@3980@ being the Hamiltonian operator of the quantum system described on (NC: 3D–RS) symmetries. The very small parameters θ μν MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI7aXn aaCaaabeqcfasaaiabeY7aTjabe27aUbaaaaa@3BED@  (compared to the energy) are elements of anti symmetric real matrix of dimension ( length ) 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba WaaeWaaeaacaqGSbGaaeyzaiaab6gacaqGNbGaaeiDaiaabIgaaiaa wIcacaGLPaaadaahaaqcfasabeaacaaIYaaaaaqcfayaaiabl+qiOb aaaaa@4069@  and ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba Gaey4fIOcacaGLOaGaayzkaaaaaa@38F1@  denote to the new star product (the Moyal–Weyl product), which is generalized between two arbitrary functions f( x )  f ^ ( x ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAgada qadaqaaiaadIhaaiaawIcacaGLPaaacaqGGaGaeyOKH4QabmOzayaa jaWaaeWaaeaaceWG4bGbaKaaaiaawIcacaGLPaaaaaa@400B@ and g( x ) g ^ ( x ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEgada qadaqaaiaadIhaaiaawIcacaGLPaaacqGHsgIRceWGNbGbaKaadaqa daqaaiqadIhagaqcaaGaayjkaiaawMcaaaaa@3F6A@ to f ^ ( x ^ ) g ^ ( x ^ )( fg )( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAgaga qcamaabmaabaGabmiEayaajaaacaGLOaGaayzkaaGabm4zayaajaWa aeWaaeaaceWG4bGbaKaaaiaawIcacaGLPaaacqGHHjIUdaqadaqaai aadAgacqGHxiIkcaWGNbaacaGLOaGaayzkaaWaaeWaaeaacaWG4baa caGLOaGaayzkaaaaaa@463A@  instead of the usual product ( fg )( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamOzaiaadEgaaiaawIcacaGLPaaadaqadaqaaiaadIhaaiaawIca caGLPaaaaaa@3C5F@  in ordinary three dimensional spaces.23–68

f ^ ( x ^ ) g ^ ( x ^ )( fg )( x )exp( i 2 θ μν μ x ν x ( fg )( x,p ) (fg i 2 θ μν μ x f ν x g| ( x μ = x ν ν ) +O( θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAgaga qcamaabmaabaGabmiEayaajaaacaGLOaGaayzkaaGabm4zayaajaWa aeWaaeaaceWG4bGbaKaaaiaawIcacaGLPaaacqGHHjIUdaqadaqaai aadAgacqGHxiIkcaWGNbaacaGLOaGaayzkaaWaaeWaaeaacaWG4baa caGLOaGaayzkaaGaeyyyIORaciyzaiaacIhacaGGWbGaaiikamaala aabaGaamyAaaqaaiaaikdaaaGaeqiUde3aaWbaaKqbGeqabaGaeqiV d0MaeqyVd4gaaKqbakabgkGi2oaaDaaajuaibaGaeqiVd0gabaGaam iEaaaajuaGcqGHciITdaqhaaqcfasaaiabe27aUbqaaiaadIhaaaqc fa4aaeWaaeaacaWGMbGaam4zaaGaayjkaiaawMcaamaabmaabaGaam iEaiaacYcacaWGWbaacaGLOaGaayzkaaGaeyyyIO7aaqGaaeaacaGG OaGaamOzaiaadEgacqGHsisldaWcaaqaaiaadMgaaeaacaaIYaaaai abeI7aXnaaCaaajuaibeqaaiabeY7aTjabe27aUbaajuaGcqGHciIT daqhaaqcfasaaiabeY7aTbqaaiaadIhaaaqcfaOaamOzaiabgkGi2o aaDaaajuaibaGaeqyVd4gabaGaamiEaaaajuaGcaWGNbaacaGLiWoa daWgaaqaamaabmaabaGaamiEamaaCaaabeqcfasaaiabeY7aTbaaju aGcqGH9aqpcaWG4bWaaWbaaKqbGeqabaGaeqyVd4gaaKqbaoaaCaaa juaibeqaaiabe27aUbaaaKqbakaawIcacaGLPaaaaeqaaiabgUcaRi aad+eadaqadaqaaiabeI7aXnaaCaaabeqcfasaaiaaikdaaaaajuaG caGLOaGaayzkaaaaaa@920C@   (6)

where f ^ ( x ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAgaga qcamaabmaabaGabmiEayaajaaacaGLOaGaayzkaaaaaa@3A0A@  and g ^ ( x ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadEgaga qcamaabmaabaGabmiEayaajaaacaGLOaGaayzkaaaaaa@3A0B@  are the new function in (NC: 3D–RS), the following term ( i 2 θ mn μ x f( x ) ν x g( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTm aalaaabaGaamyAaaqaaiaaikdaaaGaeqiUde3aaWbaaeqajuaibaGa amyBaiaad6gaaaqcfaOaeyOaIy7aa0baaKqbGeaacqaH8oqBaeaaca WG4baaaKqbakaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH ciITdaqhaaqcfasaaiabe27aUbqaaiaadIhaaaqcfaOaam4zamaabm aabaGaamiEaaGaayjkaiaawMcaaaaa@4E6C@ ) is induced by (space–space) noncommutativity properties and O( θ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaad+eada qadaqaaiabeI7aXnaaCaaajuaibeqaaiaaikdaaaaajuaGcaGLOaGa ayzkaaaaaa@3C26@  stands for the second and higher order terms of θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI7aXb aa@382F@ , a Bopp’s shift method can be used, instead of solving any quantum systems by using directly star product procedure.23–55

[ x ^ i , x ^ j ]=[ x ^ i ( t ), x ^ j ( t ) ]=i θ ij and [ p ^ i , p ^ j ]=[ p ^ i ( t ), p ^ j ( t ) ]=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba GabmiEayaajaWaaSbaaKqbGeaacaWGPbaajuaGbeaacaGGSaGabmiE ayaajaWaaSbaaKqbGeaacaWGQbaabeaaaKqbakaawUfacaGLDbaacq GH9aqpdaWadaqaaiqadIhagaqcamaaBaaajuaibaGaamyAaaqcfaya baWaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaiilaiqadIhagaqcam aaBaaajuaibaGaamOAaaqabaqcfa4aaeWaaeaacaWG0baacaGLOaGa ayzkaaaacaGLBbGaayzxaaGaeyypa0JaamyAaiabeI7aXnaaBaaaju aibaGaamyAaiaadQgaaKqbagqaauaabeqabiaaaeaacaqGHbGaaeOB aiaabsgaaeaadaWadaqaaiqadchagaqcamaaBaaajuaibaGaamyAaa qcfayabaGaaiilaiqadchagaqcamaaBaaajuaibaGaamOAaaqcfaya baaacaGLBbGaayzxaaGaeyypa0ZaamWaaeaaceWGWbGbaKaadaWgaa qcfasaaiaadMgaaKqbagqaamaabmaabaGaamiDaaGaayjkaiaawMca aiaacYcaceWGWbGbaKaadaWgaaqcfasaaiaadQgaaKqbagqaamaabm aabaGaamiDaaGaayjkaiaawMcaaaGaay5waiaaw2faaiabg2da9iaa icdaaaaaaa@6EA6@   (7)

The three–generalized coordinates ( x ^ = x ^ 1 , y ^ = x ^ 2 , z ^ = x ^ 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GabmiEayaajaGaeyypa0JabmiEayaajaWaaSbaaKqbGeaacaaIXaaa beaajuaGcaGGSaGabmyEayaajaGaeyypa0JabmiEayaajaWaaSbaaK qbGeaacaaIYaaabeaajuaGcaGGSaGabmOEayaajaGaeyypa0JabmiE ayaajaWaaSbaaKqbGeaacaaIZaaabeaaaKqbakaawIcacaGLPaaaaa a@4790@  in the NC space are depended with corresponding three–usual generalized positions ( x,y,z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamiEaiaacYcacaWG5bGaaiilaiaadQhaaiaawIcacaGLPaaaaaa@3C5C@  and momentum coordinates ( p x , p y , p z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamiCamaaBaaajuaibaGaamiEaaqabaqcfaOaaiilaiaadchadaWg aaqcfasaaiaadMhaaeqaaKqbakaacYcacaWGWbWaaSbaaKqbGeaaca WG6baajuaGbeaaaiaawIcacaGLPaaaaaa@41D2@  by the following relations, as follows.25,28,29,32–34,37–47

x ^ =x θ 12 2 p y θ 13 2 p z ,      y ^ =y θ 21 2 p x θ 23 2 p z z ^ =z θ 31 2 p x θ 32 2 p y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOabm iEayaajaGaeyypa0JaamiEaiabgkHiTmaalaaabaGaeqiUde3aaSba aKqbGeaacaaIXaGaaGOmaaqabaaajuaGbaGaaGOmaaaacaWGWbWaaS baaKqbGeaacaWG5baabeaajuaGcqGHsisldaWcaaqaaiabeI7aXnaa BaaajuaibaGaaGymaiaaiodaaKqbagqaaaqaaiaaikdaaaGaamiCam aaBaaajuaibaGaamOEaaqabaqcfaOaaiilaiaabccacaqGGaGaaeii aiaabccacaqGGaGabmyEayaajaGaeyypa0JaamyEaiabgkHiTmaala aabaGaeqiUde3aaSbaaKqbGeaacaaIYaGaaGymaaqcfayabaaabaGa aGOmaaaacaWGWbWaaSbaaKqbGeaacaWG4baabeaajuaGcqGHsislda WcaaqaaiabeI7aXnaaBaaajuaibaGaaGOmaiaaiodaaKqbagqaaaqa aiaaikdaaaGaamiCamaaBaaajuaibaGaamOEaaqabaaakeaajuaGce WG6bGbaKaacqGH9aqpcaWG6bGaeyOeI0YaaSaaaeaacqaH4oqCdaWg aaqcfasaaiaaiodacaaIXaaajuaGbeaaaeaacaaIYaaaaiaadchada WgaaqcfasaaiaadIhaaeqaaKqbakabgkHiTmaalaaabaGaeqiUde3a aSbaaKqbGeaacaaIZaGaaGOmaaqcfayabaaabaGaaGOmaaaacaWGWb WaaSbaaKqbGeaacaWG5baajuaGbeaaaaaa@7717@   (8)

 The non–vanish–commutators in (NC–3D: RS) can be determined as follows:

[ x ^ , p ^ x ]=[ y ^ , p ^ y ]=[ z ^ , p ^ z ]=i, [ x ^ , y ^ ]=i θ 12 ,[ x ^ , z ^ ]=i θ 13 ,[ y ^ , z ^ ]=i θ 23 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aam WaaeaaceWG4bGbaKaacaGGSaGabmiCayaajaWaaSbaaKqbGeaacaWG 4baabeaaaKqbakaawUfacaGLDbaacqGH9aqpdaWadaqaaiqadMhaga qcaiaacYcaceWGWbGbaKaadaWgaaqcfasaaiaadMhaaKqbagqaaaGa ay5waiaaw2faaiabg2da9maadmaabaGabmOEayaajaGaaiilaiqadc hagaqcamaaBaaajuaibaGaamOEaaqcfayabaaacaGLBbGaayzxaaGa eyypa0JaamyAaiaacYcaaOqaaKqbaoaadmaabaGabmiEayaajaGaai ilaiqadMhagaqcaaGaay5waiaaw2faaiabg2da9iaadMgacqaH4oqC daWgaaqcfasaaiaaigdacaaIYaaajuaGbeaacaGGSaWaamWaaeaace WG4bGbaKaacaGGSaGabmOEayaajaaacaGLBbGaayzxaaGaeyypa0Ja amyAaiabeI7aXnaaBaaajuaibaGaaGymaiaaiodaaeqaaKqbakaacY cadaWadaqaaiqadMhagaqcaiaacYcaceWG6bGbaKaaaiaawUfacaGL DbaacqGH9aqpcaWGPbGaeqiUde3aaSbaaKqbGeaacaaIYaGaaG4maa qabaaaaaa@7081@   (9)

which allow us to getting the operator r ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbmqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOCayaaja WaaWbaaSqabKqaGhaacaaIYaaaaaaa@38D3@  on NC three dimensional spaces as follows.25,28,29,32,33,34,37–48

r ^ 2 = r 2 L Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadkhaga qcamaaCaaajuaibeqaaiaaikdaaaqcfaOaeyypa0JaamOCamaaCaaa juaibeqaaiaaikdaaaqcfaOaeyOeI0ccbeGab8htayaalaGafuiMde LbaSaaaaa@4010@   (10)

Where the coupling LΘ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqabKqbakaa=X eacqqHyoquaaa@38C7@  is given by ( Θ ij = θ ij /2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeuiMde1aaSbaaeaacaWGPbqcfaIaamOAaaqcfayabaGaeyypa0Ja eqiUde3aaSbaaKqbGeaacaWGPbGaamOAaaqabaqcfaOaai4laiaaik daaiaawIcacaGLPaaaaaa@4318@ :

LΘ L x Θ 12 + L y Θ 23 + L z Θ 13   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqabKqbakaa=X eacqqHyoqucqGHHjIUcaWGmbWaaSbaaKqbGeaacaWG4baajuaGbeaa cqqHyoqudaWgaaqcfasaaiaaigdacaaIYaaajuaGbeaacqGHRaWkca WGmbWaaSbaaKqbGeaacaWG5baajuaGbeaacqqHyoqudaWgaaqcfasa aiaaikdacaaIZaaabeaajuaGcqGHRaWkcaWGmbWaaSbaaKqbGeaaca WG6baabeaajuaGcqqHyoqudaWgaaqcfasaaiaaigdacaaIZaaabeaa juaGcaqGGaaaaa@505F@   (11)

with L x =y p z z p y   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada WgaaqcfasaaiaadIhaaeqaaKqbakabg2da9iaadMhacaWGWbWaaSba aKqbGeaacaWG6baajuaGbeaacqGHsislcaWG6bGaamiCamaaBaaaju aibaGaamyEaaqabaqcfaOaaeiiaaaa@4358@ , L y  = zp x -xp z   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada WgaaqcfasaaiaadMhaaeqaaKqbakaabccacqGH9aqpcaqG6bGaaeiC amaaBaaajuaibaGaaeiEaaqcfayabaGaaeylaiaabIhacaqGWbWaaS baaKqbGeaacaqG6baabeaajuaGcaqGGaaaaa@43B1@ and L z =x p y y p x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada WgaaqcfasaaiaadQhaaKqbagqaaiabg2da9iaadIhacaWGWbWaaSba aKqbGeaacaWG5baajuaGbeaacqGHsislcaWG5bGaamiCamaaBaaaju aibaGaamiEaaqabaaaaa@4225@ . Furthermore, the new equal–time anti–commutator for fermionic field operators’ noncommutative spaces can be expressed in the following postulate relations:

{ Ψ ^ α ( t,r ) , * Ψ ¯ ^ β ( t,r' ) }=i ( γ 0 ) αβ δ 3 ( r-r' )  { Ψ ^ α ( t,r ) , * Ψ ^ α ( t,r' ) }={ Ψ ¯ ^ α ( t,r ) , * Ψ ¯ ^ β ( t,r' ) }=i θ αβ δ 3 ( r-r' )   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aai WaaeaacuqHOoqwgaqcamaaBaaajuaibaGaeqySdegabeaajuaGdaqa daqaaiaadshacaGGSaGaaeOCaaGaayjkaiaawMcaamaawagabeqabK qbGeaacaGGQaaajuaGbaGaaiilaaaacuqHOoqwgaqegaqcamaaBaaa juaibaGaeqOSdigajuaGbeaadaqadaqaaiaadshacaGGSaGaaeOCai aabEcaaiaawIcacaGLPaaaaiaawUhacaGL9baacqGH9aqpcaWGPbWa aeWaaeaacqaHZoWzdaahaaqabKqbGeaacaaIWaaaaaqcfaOaayjkai aawMcaamaaBaaabaGaeqySdeMaeqOSdigabeaacqaH0oazdaahaaqa bKqbGeaacaqGZaaaaKqbaoaabmaabaGaaeOCaiaab2cacaqGYbGaae 4jaaGaayjkaiaawMcaaiaabccaaOqaaKqbaoaacmaabaGafuiQdKLb aKaadaWgaaqcfasaaiabeg7aHbqabaqcfa4aaeWaaeaacaWG0bGaai ilaiaabkhaaiaawIcacaGLPaaadaGfGbqabeqajuaibaGaaiOkaaqc fayaaiaacYcaaaGafuiQdKLbaKaadaWgaaqcfasaaiabeg7aHbqcfa yabaWaaeWaaeaacaWG0bGaaiilaiaabkhacaqGNaaacaGLOaGaayzk aaaacaGL7bGaayzFaaGaeyypa0ZaaiWaaeaacuqHOoqwgaqegaqcam aaBaaajuaibaGaeqySdegabeaajuaGdaqadaqaaiaadshacaGGSaGa aeOCaaGaayjkaiaawMcaamaawagabeqabKqbGeaacaGGQaaajuaGba GaaiilaaaacuqHOoqwgaqegaqcamaaBaaabaGaeqOSdigabeaadaqa daqaaiaadshacaGGSaGaaeOCaiaabEcaaiaawIcacaGLPaaaaiaawU hacaGL9baacqGH9aqpcaWGPbGaeqiUde3aaSbaaKqbGeaacqaHXoqy cqaHYoGyaeqaaKqbakabes7aKnaaCaaajuaibeqaaiaabodaaaqcfa 4aaeWaaeaacaqGYbGaaeylaiaabkhacaqGNaaacaGLOaGaayzkaaGa aeiiaiaabccaaaaa@9D6C@   (12)

Here T is the time–ordered product. The purpose of the present work is to extend and present the solution of the Dirac equation with spin–1/2 particle moving in (m.a.o.) potential of the new form:

V ao ( r ^ )= 1 2 M ω 2 r 2 + α 2M r 2 +{ ( α 2M r 4 1 2 M ω 2 ) L Θ   for the    spin symmetric    case  ( α 2M r 4 1 2 M ω 2 ) L ˜ Θ   for the p-spin symmetric    case  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadggacaWGVbaabeaajuaGdaqadaqaaiqadkhagaqc aaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaa GaamytaiabeM8a3naaCaaajuaibeqaaiaaikdaaaqcfaOaamOCamaa CaaajuaibeqaaiaaikdaaaqcfaOaey4kaSYaaSaaaeaacqaHXoqyae aacaaIYaGaamytaiaadkhadaahaaqcfasabeaacaaIYaaaaaaajuaG cqGHRaWkdaGabaabaeqabaWaaeWaaeaadaWcaaqaaiabeg7aHbqaai aaikdacaWGnbGaamOCamaaCaaajuaibeqaaiaaisdaaaaaaKqbakab gkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaamytaiabeM8a3naaCa aabeqcfasaaiaaikdaaaaajuaGcaGLOaGaayzkaaacbeGab8htayaa laGafuiMdeLbaSaafaqabeqacaaabaGaaeiiaiaabccacaqGMbGaae 4BaiaabkhaaeaacaqG0bGaaeiAaiaabwgacaqGGaGaaeiiaiaabcca caqGGaGaae4CaiaabchacaqGPbGaaeOBaiaabccacaqGZbGaaeyEai aab2gacaqGTbGaaeyzaiaabshacaqGYbGaaeyAaiaabogacaqGGaGa aeiiaiaabccacaqGGaGaae4yaiaabggacaqGZbGaaeyzaiaabccaaa aabaWaaeWaaeaadaWcaaqaaiabeg7aHbqaaiaaikdacaWGnbGaamOC amaaCaaajuaibeqaaiaaisdaaaaaaKqbakabgkHiTmaalaaabaGaaG ymaaqaaiaaikdaaaGaamytaiabeM8a3naaCaaajuaibeqaaiaaikda aaaajuaGcaGLOaGaayzkaaGab8htayaalyaaiaGafuiMdeLbaSaafa qabeqacaaabaGaaeiiaiaabccacaqGMbGaae4BaiaabkhaaeaacaqG 0bGaaeiAaiaabwgacaqGGaGaaeiCaiaab2cacaqGZbGaaeiCaiaabM gacaqGUbGaaeiiaiaabohacaqG5bGaaeyBaiaab2gacaqGLbGaaeiD aiaabkhacaqGPbGaae4yaiaabccacaqGGaGaaeiiaiaabccacaqGJb GaaeyyaiaabohacaqGLbGaaeiiaaaaaaGaay5Eaaaaaa@A9B5@   (13)

In (NC: 3D–RS) using the generalization Bopp’s shift method to discover the new symmetries and a possibility to obtain another applications to this potential in different fields. This work based essentially on our previously works.23–48 The outline of our recently article is as follows: In next section, we briefly review the Dirac equation with anharmonic oscillator on based to.18–21 In section three, we give a description of the Bopp’s shift method for the (m.d.e.) with (m.a.o).Then in section four, we apply standard perturbation theory to establish exact modifications at first order of infinitesimal parameters ( Θ,χ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeuiMdeLaaiilaiabeE8aJbGaayjkaiaawMcaaaaa@3BE0@  for the perturbed Dirac equation in (NC–3D: RS) for spin–orbital (pseudo–spin orbital) and the relativistic magnetic spectrum for (m.a.o.). In the fifth section, we resume the global spectrum and corresponding NC Hamiltonian for (m.a.o.). Finally, some important concluding remarks are drawn from the present study in last section.

Review the Dirac equation for anharmonic oscillator in ordinary quantum

We start this section by considering a relativistic particle in spherically symmetric for the potential V(r,θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbmqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaacI cacaWGYbGaaiilaiabeI7aXjaacMcaaaa@3B8A@  which known by anharmonic oscillator, given by in the main reference.21

V( r,θ )= 1 2 M ω 2 r 2 + α 2M r 2 + η 2M r 2 sin( θ ) η0 V( r )= 1 2 M ω 2 r 2 + α 2M r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada qadaqaaiaadkhacaGGSaGaeqiUdehacaGLOaGaayzkaaGaeyypa0Za aSaaaeaacaaIXaaabaGaaGOmaaaacaWGnbGaeqyYdC3aaWbaaKqbGe qabaGaaGOmaaaajuaGcaWGYbWaaWbaaeqajuaibaGaaGOmaaaajuaG cqGHRaWkdaWcaaqaaiabeg7aHbqaaiaaikdacaWGnbGaamOCamaaCa aajuaqbeqaaiaaikdaaaaaaKqbakabgUcaRmaalaaabaGaeq4TdGga baGaaGOmaiaad2eacaWGYbWaaWbaaKqbGeqabaGaaGOmaaaajuaGci GGZbGaaiyAaiaac6gadaqadaqaaiabeI7aXbGaayjkaiaawMcaaaaa daGdKaqaaiabeE7aOjabgkziUkaaicdaaeqacaGLsgcacaWGwbWaae WaaeaacaWGYbaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaa baGaaGOmaaaacaWGnbGaeqyYdC3aaWbaaeqajuaibaGaaGOmaaaaju aGcaWGYbWaaWbaaKqbGeqabaGaaGOmaaaajuaGcqGHRaWkdaWcaaqa aiabeg7aHbqaaiaaikdacaWGnbGaamOCamaaCaaajuaibeqaaiaaik daaaaaaaaa@71DF@   (14)

where M, ω MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeM8a3b aa@3846@ , (α and η)denote the rest mass, frequency of particle and dimensionless parameters. The Dirac equation describing a fermionic particle (spin–1/2 particle) with scalar S(r,θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbmqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiaacI cacaWGYbGaaiilaiabeI7aXjaacMcaaaa@3B87@  and vector V(r,θ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbmqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaacI cacaWGYbGaaiilaiabeI7aXjaacMcaaaa@3B8A@  potentials is given by.18–21

( αP+β(M+S(r,θ)) )Ψ( r,θ,ϕ )=( EV( r,θ ) )Ψ( r,θ,ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeqySdeMaaeiuaiabgUcaRiabek7aIjaacIcacaWGnbGaey4kaSIa am4uaiaacIcacaWGYbGaaiilaiabeI7aXjaacMcacaGGPaaacaGLOa GaayzkaaGaeuiQdK1aaeWaaeaacaWGYbGaaiilaiabeI7aXjaacYca cqaHvpGzaiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaadweacqGHsi slcaWGwbWaaeWaaeaacaWGYbGaaiilaiabeI7aXbGaayjkaiaawMca aaGaayjkaiaawMcaaiabfI6aznaabmaabaGaamOCaiaacYcacqaH4o qCcaGGSaGaeqy1dygacaGLOaGaayzkaaaaaa@6173@   (15)

here M are E the fermions’ mass and the relativistic energy while ( α i =( 0 σ i σ i 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeg7aHn aaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0ZaaeWaaeaafaqabeGa caaabaGaaGimaaqaaiabeo8aZnaaBaaajuaibaGaamyAaaqabaaaju aGbaGaeq4Wdm3aaSbaaKqbGeaacaWGPbaabeaaaKqbagaacaaIWaaa aaGaayjkaiaawMcaaaaa@4512@ , β=( I 2×2 0 0 I 2×2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabek7aIj abg2da9maabmaabaqbaeqabiGaaaqaaiaadMeadaWgaaqcfasaaiaa ikdacqGHxdaTcaaIYaaajuaGbeaaaeaacaaIWaaabaGaaGimaaqaai aadMeadaWgaaqcfasaaiaaikdacqGHxdaTcaaIYaaajuaGbeaaaaaa caGLOaGaayzkaaaaaa@46A1@ ) are the usual Dirac matrices, the spinor Ψ(r,θ,φ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbmqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiQdKLaai ikaiaadkhacaGGSaGaeqiUdeNaaiilaiabeA8aQjaacMcaaaa@3EAB@  can be expressed as.21

Ψ nk ( r,θ,ϕ )=( f nk ( r ) g nk ( r ) )= 1 r ( F nk ( r ) Y jm l ( θ,ϕ ) i G n k ˜ ( r ) Y jm l ˜ ( θ,ϕ ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfI6azn aaBaaajuaibaGaamOBaiaadUgaaeqaaKqbaoaabmaabaGaamOCaiaa cYcacqaH4oqCcaGGSaGaeqy1dygacaGLOaGaayzkaaGaeyypa0Zaae WaaeaafaqabeGabaaabaGaamOzamaaBaaajuaibaGaamOBaiaadUga aeqaaKqbaoaabmaajuaybaqcfa4aa8HaaKqbGfaacaWGYbaacaGLxd caaiaawIcacaGLPaaaaKqbagaacaWGNbWaaSbaaKqbGeaacaWGUbGa am4Aaaqabaqcfa4aaeWaaeaadaWhcaqaaiaadkhaaiaawEniaaGaay jkaiaawMcaaaaaaiaawIcacaGLPaaacqGH9aqpdaWcaaqaaiaaigda aeaacaWGYbaaamaabmaaeaqabeaacaWGgbWaaSbaaKqbGeaacaWGUb Gaam4AaaqcfayabaWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaamyw amaaDaaajuaibaGaamOAaiaad2gaaeaacaWGSbaaaKqbaoaabmaaba GaeqiUdeNaaiilaiabew9aMbGaayjkaiaawMcaaaqaaiaadMgacaWG hbWaaSbaaKqbGeaacaWGUbGabm4AayaaiaaabeaajuaGdaqadaqcfa saaiaadkhaaiaawIcacaGLPaaajuaGcaWGzbWaa0baaKqbGeaacaWG QbGaamyBaaqaaiqadYgagaacaaaajuaGdaqadaqaaiabeI7aXjaacY cacqaHvpGzaiaawIcacaGLPaaaaaGaayjkaiaawMcaaaaa@7D3A@   (16)

where σ 1 =( 0 1 1 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo8aZn aaBaaajuaibaGaaGymaaqabaqcfaOaeyypa0ZaaeWaaeaafaqabeGa caaabaGaaGimaaqaaiaaigdaaeaacaaIXaaabaGaaGimaaaaaiaawI cacaGLPaaaaaa@3F5D@ , σ 2 =( 0 i i 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo8aZn aaBaaajuaibaGaaGOmaaqabaqcfaOaeyypa0ZaaeWaaeaafaqabeGa caaabaGaaGimaaqaaiabgkHiTiaadMgaaeaacaWGPbaabaGaaGimaa aaaiaawIcacaGLPaaaaaa@40B1@ and σ 3 =( 1 0 0 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeo8aZn aaBaaajuaibaGaaG4maaqabaqcfaOaeyypa0ZaaeWaaeaafaqabeGa caaabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaeyOeI0IaaGymaa aaaiaawIcacaGLPaaaaaa@404C@  and are 2×2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdacq GHxdaTcaaIYaaaaa@3A08@  three Pauli matrices while k( k ˜ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada qadaqaaiqadUgagaacaaGaayjkaiaawMcaaaaa@39F1@  is related to the total angular momentum quantum numbers for spin symmetry l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYgaaa a@376A@  and p–spin symmetry l ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadYgaga acaaaa@3779@  as.18–21

k={ ( l+1 )  if  -( j+1/2 ),( s 1/2 , p 3/2 ,etc )j=l+ 1 2 , aligned spin ( k0 ) +l    if  j=l+ 1 2 ,( p 1/2 , d 3/2 ,etc )j=l 1 2 , unaligned spin ( k0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgacq GH9aqpdaGabaabaeqabaGaeyOeI0YaaeWaaeaacaWGSbGaey4kaSIa aGymaaGaayjkaiaawMcaaiaabccacaqGGaGaaeyAaiaabAgacaqGGa Gaaeiiaiaab2cadaqadaqaaiaabQgacqGHRaWkcaqGXaGaae4laiaa bkdaaiaawIcacaGLPaaacaqGSaWaaeWaaeaacaqGZbWaaSbaaKqbGe aacaqGXaGaae4laiaabkdaaeqaaKqbakaacYcacaWGWbWaaSbaaKqb GeaacaaIZaGaai4laiaaikdaaeqaaKqbakaacYcacaWGLbGaamiDai aadogaaiaawIcacaGLPaaacaqGSaGaaeiiaiaadQgacqGH9aqpcaWG SbGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGSaGaaeiiai aabggacaqGSbGaaeyAaiaabEgacaqGUbGaaeyzaiaabsgacaqGGaGa ae4CaiaabchacaqGPbGaaeOBaiaabccadaqadaqaaiaabUgacqGHPm s4caqGWaaacaGLOaGaayzkaaaabaGaey4kaSIaamiBaiaabccacaqG GaGaaeiiaiaabccacaqGPbGaaeOzaiaabccacaqGGaGaamOAaiabg2 da9iaadYgacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacYca daqadaqaaiaabchadaWgaaqcfasaaiaabgdacaqGVaGaaeOmaaqcfa yabaGaaiilaiaadsgadaWgaaqcfasaaiaaiodacaGGVaGaaGOmaaqa baqcfaOaaiilaiaadwgacaWG0bGaam4yaaGaayjkaiaawMcaaiaabY cacaqGGaGaamOAaiabg2da9iaadYgacqGHsisldaWcaaqaaiaaigda aeaacaaIYaaaaiaacYcacaqGGaGaaeyDaiaab6gacaqGHbGaaeiBai aabMgacaqGNbGaaeOBaiaabwgacaqGKbGaaeiiaiaabohacaqGWbGa aeyAaiaab6gacaqGGaWaaeWaaeaacaqGRbGaeyOkJeVaaeimaaGaay jkaiaawMcaaaaacaGL7baaaaa@A50E@   (17)

and

k ˜ ={ l ˜     if  -( j+1/2 ),( s 1/2 , p 3/2 ,etc )j= l ˜ 1 2 , aligned spin ( k0 ) +( l ˜ +1 )    if   j= l ˜ + 1 2 ,( p 1/2 , d 3/2 ,etc )j= l ˜ + 1 2 , unaligned spin ( k0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadUgaga acaiabg2da9maaceaaeaqabeaacqGHsislceWGSbGbaGaacaqGGaGa aeiiaiaabccacaqGGaGaaeyAaiaabAgacaqGGaGaaeiiaiaab2cada qadaqaaiaabQgacqGHRaWkcaqGXaGaae4laiaabkdaaiaawIcacaGL PaaacaqGSaWaaeWaaeaacaqGZbWaaSbaaeaacaqGXaGaae4laiaabk daaeqaaiaacYcacaWGWbWaaSbaaeaacaaIZaGaai4laiaaikdaaeqa aiaacYcacaWGLbGaamiDaiaadogaaiaawIcacaGLPaaacaqGSaGaae iiaiaadQgacqGH9aqpceWGSbGbaGaacqGHsisldaWcaaqaaiaaigda aeaacaaIYaaaaiaacYcacaqGGaGaaeyyaiaabYgacaqGPbGaae4zai aab6gacaqGLbGaaeizaiaabccacaqGZbGaaeiCaiaabMgacaqGUbGa aeiiamaabmaabaGaae4AaiabgMYiHlaabcdaaiaawIcacaGLPaaaae aacqGHRaWkdaqadaqaaiqadYgagaacaiabgUcaRiaaigdaaiaawIca caGLPaaacaqGGaGaaeiiaiaabccacaqGGaGaaeyAaiaabAgacaqGGa GaaeiiaiaabccacaWGQbGaeyypa0JabmiBayaaiaGaey4kaSYaaSaa aeaacaaIXaaabaGaaGOmaaaacaGGSaWaaeWaaeaacaqGWbWaaSbaae aacaqGXaGaae4laiaabkdaaeqaaiaacYcacaWGKbWaaSbaaeaacaaI ZaGaai4laiaaikdaaeqaaiaacYcacaWGLbGaamiDaiaadogaaiaawI cacaGLPaaacaqGSaGaaeiiaiaadQgacqGH9aqpceWGSbGbaGaacqGH RaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacYcacaqGGaGaaeyDai aab6gacaqGHbGaaeiBaiaabMgacaqGNbGaaeOBaiaabwgacaqGKbGa aeiiaiaabohacaqGWbGaaeyAaiaab6gacaqGGaWaaeWaaeaacaqGRb GaeyOkJeVaaeimaaGaayjkaiaawMcaaaaacaGL7baaaaa@A461@   (18)

The radial functions ( F nk ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada Wgaaqcfasaaiaad6gacaWGRbaabeaajuaGdaqadaqaaiaadkhaaiaa wIcacaGLPaaaaaa@3C84@ , G nk ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada Wgaaqcfasaaiaad6gacaWGRbaabeaajuaGdaqadaqaaiaadkhaaiaa wIcacaGLPaaaaaa@3C85@ ) are obtained by solving the following differential equations.18–21

[ d 2 d r 2 k(k+1) r 2 ( M+ E nk Δ( r )( M E nk +Σ( r ) )+ dΔ( r ) dr ( d dr + k r ) M E nk +Σ( r ) ) ] F nk ( r )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGKbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacaWG KbGaamOCamaaCaaabeqcfasaaiaaikdaaaaaaKqbakabgkHiTmaala aabaGaam4AaiaacIcacaWGRbGaey4kaSIaaGymaiaacMcaaeaacaWG YbWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaeyOeI0YaaeWaaeaaca WGnbGaey4kaSIaamyramaaBaaajuaibaGaamOBaiaadUgaaKqbagqa aiabgkHiTiabfs5aenaabmaabaGaamOCaaGaayjkaiaawMcaamaabm aabaGaamytaiabgkHiTiaadweadaWgaaqcfasaaiaad6gacaWGRbaa beaajuaGcqGHRaWkcqqHJoWudaqadaqaaiaadkhaaiaawIcacaGLPa aaaiaawIcacaGLPaaacqGHRaWkdaWcaaqaamaalaaabaGaamizaiab fs5aenaabmaabaGaamOCaaGaayjkaiaawMcaaaqaaiaadsgacaWGYb aaamaabmaabaWaaSaaaeaacaWGKbaabaGaamizaiaadkhaaaGaey4k aSYaaSaaaeaacaWGRbaabaGaamOCaaaaaiaawIcacaGLPaaaaeaaca WGnbGaeyOeI0IaamyramaaBaaajuaibaGaamOBaiaadUgaaeqaaKqb akabgUcaRiabfo6atnaabmaabaGaamOCaaGaayjkaiaawMcaaaaaai aawIcacaGLPaaaaiaawUfacaGLDbaacaWGgbWaaSbaaKqbGeaacaWG UbGaam4AaaqcfayabaWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaey ypa0JaaGimaaaa@8001@   (19)

and

[ d 2 d r 2 k(k1) r 2 ( M+ E nk Δ( r )( M E nk +Σ( r ) )+ dΣ( r ) dr ( d dr + k r ) M+ E nk Δ( r ) ) ] G n k ˜ ( r )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGKbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacaWG KbGaamOCamaaCaaajuaibeqaaiaaikdaaaaaaKqbakabgkHiTmaala aabaGaam4AaiaacIcacaWGRbGaeyOeI0IaaGymaiaacMcaaeaacaWG YbWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfa4aaeWaaeaacaWGnbGaey 4kaSIaamyramaaBaaajuaibaGaamOBaiaadUgaaeqaaKqbakabgkHi Tiabfs5aenaabmaabaGaamOCaaGaayjkaiaawMcaamaabmaabaGaam ytaiabgkHiTiaadweadaWgaaqcfasaaiaad6gacaWGRbaabeaajuaG cqGHRaWkcqqHJoWudaqadaqaaiaadkhaaiaawIcacaGLPaaaaiaawI cacaGLPaaacqGHRaWkdaWcaaqaamaalaaabaGaamizaiabfo6atnaa bmaabaGaamOCaaGaayjkaiaawMcaaaqaaiaadsgacaWGYbaaamaabm aabaWaaSaaaeaacaWGKbaabaGaamizaiaadkhaaaGaey4kaSYaaSaa aeaacaWGRbaabaGaamOCaaaaaiaawIcacaGLPaaaaeaacaWGnbGaey 4kaSIaamyramaaBaaajuaibaGaamOBaiaadUgaaeqaaKqbakabgkHi Tiabfs5aenaabmaabaGaamOCaaGaayjkaiaawMcaaaaaaiaawIcaca GLPaaaaiaawUfacaGLDbaacaWGhbWaaSbaaKqbGeaacaWGUbGabm4A ayaaiaaajuaGbeaadaqadaqaaiaadkhaaiaawIcacaGLPaaacqGH9a qpcaaIWaaaaa@7F2F@   (20)

The exact spin symmetry corresponding dΔ( r ) dr =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba Gaamizaiabfs5aenaabmaabaGaamOCaaGaayjkaiaawMcaaaqaaiaa dsgacaWGYbaaaiabg2da9iaaicdaaaa@3EF8@ , thus the radial function F nk ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada Wgaaqcfasaaiaad6gacaWGRbaajuaGbeaadaqadaqaaiaadkhaaiaa wIcacaGLPaaaaaa@3C84@  satisfying the following like Schrödinger equation.21

[ d 2 d r 2 k(k+1) r 2 M 2 E 2 ( ME )( 1 2 M ω 2 r 2 + α 2M r 2 ) ] F nk ( r )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGKbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacaWG KbGaamOCamaaCaaabeqcfasaaiaaikdaaaaaaKqbakabgkHiTmaala aabaGaam4AaiaacIcacaWGRbGaey4kaSIaaGymaiaacMcaaeaacaWG YbWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaeyOeI0IaamytamaaCa aajuaibeqaaiaaikdaaaqcfaOaeyOeI0IaamyramaaCaaajuaibeqa aiaaikdaaaqcfa4aaeWaaeaacaWGnbGaeyOeI0IaamyraaGaayjkai aawMcaamaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGnbGa eqyYdC3aaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGYbWaaWbaaKqbGe qabaGaaGOmaaaajuaGcqGHRaWkdaWcaaqaaiabeg7aHbqaaiaaikda caWGnbGaamOCamaaCaaajuaibeqaaiaaikdaaaaaaaqcfaOaayjkai aawMcaaaGaay5waiaaw2faaiaadAeadaWgaaqcfasaaiaad6gacaWG RbaabeaajuaGdaqadaqaaiaadkhaaiaawIcacaGLPaaacqGH9aqpca aIWaaaaa@69ED@   (21)

The relativistic energy E n,k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaGGSaGaam4Aaaqabaaaaa@3A25@  and radial upper wave F nk ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada Wgaaqcfasaaiaad6gacaWGRbaajuaGbeaadaqadaqaaiaadkhaaiaa wIcacaGLPaaaaaa@3C84@  are given by.21

M 2 E n,k 2 M( M+ E n,k ) +4n+2L+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamytamaaCaaabeqcfasaaiaaikdaaaqcfaOaeyOeI0Iaamyramaa DaaajuaibaGaamOBaiaacYcacaWGRbaabaGaaGOmaaaaaKqbagaada Gcaaqaaiaad2eadaqadaqaaiaad2eacqGHRaWkcaWGfbWaaSbaaKqb GeaacaWGUbGaaiilaiaadUgaaKqbagqaaaGaayjkaiaawMcaaaqaba aaaiabgUcaRiaaisdacaWGUbGaey4kaSIaaGOmaiaadYeacqGHRaWk caaIZaGaeyypa0JaaGimaaaa@4F93@   (22)

and

F n,k ( r )= C n exp( M( M+ E n,k ) 2 r 2 ) r L+1 L n L+1/2 ( M( M+ E n,k ) r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada Wgaaqcfasaaiaad6gacaGGSaGaam4Aaaqabaqcfa4aaeWaaeaacaWG YbaacaGLOaGaayzkaaGaeyypa0Jaam4qamaaBaaajuaibaGaamOBaa qabaqcfaOaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqa amaakaaabaGaamytamaabmaabaGaamytaiabgUcaRiaadweadaWgaa qcfasaaiaad6gacaGGSaGaam4AaaqcfayabaaacaGLOaGaayzkaaaa beaaaeaacaaIYaaaaiaadkhadaahaaqcfasabeaacaaIYaaaaaqcfa OaayjkaiaawMcaaiaadkhadaahaaqcfasabeaacaWGmbGaey4kaSIa aGymaaaajuaGcaWGmbWaa0baaKqbGeaacaWGUbaabaGaamitaiabgU caRiaaigdacaGGVaGaaGOmaaaajuaGdaqadaqaamaakaaabaGaamyt amaabmaabaGaamytaiabgUcaRiaadweadaWgaaqcfasaaiaad6gaca GGSaGaam4AaaqabaaajuaGcaGLOaGaayzkaaaabeaacaWGYbWaaWba aeqajuaibaGaaGOmaaaaaKqbakaawIcacaGLPaaaaaa@690E@   (23)

where L n L+1/2 ( M( M+ E n,k ) r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYeada qhaaqcfasaaiaad6gaaeaacaWGmbGaey4kaSIaaGymaiaac+cacaaI YaaaaKqbaoaabmaabaWaaOaaaeaacaWGnbWaaeWaaeaacaWGnbGaey 4kaSIaamyramaaBaaajuaibaGaamOBaiaacYcacaWGRbaabeaaaKqb akaawIcacaGLPaaaaeqaaiaadkhadaahaaqabKqbGeaacaaIYaaaaa qcfaOaayjkaiaawMcaaaaa@496B@  stands for the associated Laguerre functions. For, the exact pseudospin symmetry which corresponds d( r ) dr =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamizaiabggHiLpaabmaabaGaamOCaaGaayjkaiaawMcaaaqaaiaa dsgacaWGYbaaaiabg2da9iaaicdaaaa@3F36@ , the relativistic energy E n,k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaGGSaGaam4Aaaqcfayabaaaaa@3AB3@  and radial lower wave G nk ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada Wgaaqcfasaaiaad6gacaWGRbaajuaGbeaadaqadaqaaiaadkhaaiaa wIcacaGLPaaaaaa@3C85@  are given by.21

M 2 E n,k 2 M( M E n,k ) +4n+2 L ˜ +3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaamytamaaCaaabeqcfasaaiaaikdaaaqcfaOaeyOeI0Iaamyramaa DaaajuaibaGaamOBaiaacYcacaWGRbaabaGaaGOmaaaaaKqbagaada Gcaaqaaiaad2eadaqadaqaaiaad2eacqGHsislcaWGfbWaaSbaaKqb GeaacaWGUbGaaiilaiaadUgaaeqaaaqcfaOaayjkaiaawMcaaaqaba aaaiabgUcaRiaaisdacaWGUbGaey4kaSIaaGOmaiqadYeagaacaiab gUcaRiaaiodacqGH9aqpcaaIWaaaaa@4FAD@   (24)

and

G n,k ( r )= C n exp( M( M E n,k ) 2 r 2 ) r L ˜ +1 L n L ˜ +1/2 ( M( M E n,k ) r 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada Wgaaqcfasaaiaad6gacaGGSaGaam4Aaaqabaqcfa4aaeWaaeaacaWG YbaacaGLOaGaayzkaaGaeyypa0Jaam4qamaaBaaajuaibaGaamOBaa qabaqcfaOaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaWcaaqa amaakaaabaGaamytamaabmaabaGaamytaiabgkHiTiaadweadaWgaa qcfasaaiaad6gacaGGSaGaam4AaaqcfayabaaacaGLOaGaayzkaaaa beaaaeaacaaIYaaaaiaadkhadaahaaqcfasabeaacaaIYaaaaaqcfa OaayjkaiaawMcaaiaadkhadaahaaqcfasabeaaceWGmbGbaGaacqGH RaWkcaaIXaaaaKqbakaadYeadaqhaaqcfasaaiaad6gaaeaaceWGmb GbaGaacqGHRaWkcaaIXaGaai4laiaaikdaaaqcfa4aaeWaaeaadaGc aaqaaiaad2eadaqadaqaaiaad2eacqGHsislcaWGfbWaaSbaaKqbGe aacaWGUbGaaiilaiaadUgaaKqbagqaaaGaayjkaiaawMcaaaqabaGa amOCamaaCaaabeqcfasaaiaaikdaaaaajuaGcaGLOaGaayzkaaaaaa@6943@   (25)

NC relativistic hamiltonian for (m.a.o.)

Formalism of bopp’s shift method

In this section I first highlight in brief the basics of the concepts of the quantum noncommutative quantum mechanics in the framework of relativistic Dirac equation for modified an harmonic oscillator V ao ( r ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadggacaWGVbaabeaajuaGdaqadaqaaiqadkhagaqc aaGaayjkaiaawMcaaaaa@3C9B@  on based to our works.25,28,29,32,–48

  1. Ordinary Dirac Hamiltonian operator H ^ ( p i , x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaabmaabaGaamiCamaaBaaajuaibaGaamyAaaqcfayabaGaaiil aiaadIhadaWgaaqcfasaaiaadMgaaeqaaaqcfaOaayjkaiaawMcaaa aa@3F17@ replace by NC Dirac Hamiltonian operator H ^ ncao ( p ^ i , x ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaabaWaaSbaaKqbGeaacaWGUbGaam4yaiabgkHiTiaadgga caWGVbaajuaGbeaaaeqaamaabmaabaGabmiCayaajaWaaSbaaKqbGe aacaWGPbaajuaGbeaacaGGSaGabmiEayaajaWaaSbaaKqbGeaacaWG PbaabeaaaKqbakaawIcacaGLPaaaaaa@44D7@
  2. Ordinary spinor Ψ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfI6azn aabmaabaWaa8HaaeaacaWGYbaacaGLxdcaaiaawIcacaGLPaaaaaa@3C3C@ replace by new spinor Ψ ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqbfI6azz aataWaaeWaaeaadaWhdaqaaiqadkhagaWeaaGaayz4GaaacaGLOaGa ayzkaaaaaa@3C7B@ ,
  3. Ordinary relativistic energy E nk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabweada Wgaaqcfasaaiaab6gacaqGRbaajuaGbeaaaaa@39FD@ replaces by new relativistic energy E ncao MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamyyaiaad+gaaeqaaaaa @3C34@ and ordinary product replace by new star product.

Thus, the Dirac equation in ordinary quantum mechanics will change into the Dirac equation in extended quantum mechanics for the (m.a.o.) as follows:

H ^ ncao ( p ^ i , x ^ i ) Ψ ( r )= E ncao Ψ ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaqcfa4aaSbaaKqbGeaacaWGUbGaam4yaiabgkHi TiaadggacaWGVbaabeaaaKqbagqaamaabmaabaGabmiCayaajaWaaS baaKqbGeaacaWGPbaabeaajuaGcaGGSaGabmiEayaajaWaaSbaaKqb GeaacaWGPbaajuaGbeaaaiaawIcacaGLPaaacqGHxiIkcuqHOoqwga WeamaabmaabaWaa8XaaeaaceWGYbGbambaaiaawgoiaaGaayjkaiaa wMcaaiabg2da9iaadweadaWgaaqcfasaaiaad6gacaWGJbGaeyOeI0 Iaamyyaiaad+gaaKqbagqaaiqbfI6azzaataWaaeWaaeaadaWhdaqa aiqadkhagaWeaaGaayz4GaaacaGLOaGaayzkaaaaaa@59D5@ (26)

The Bopp’s shift method permutes to reduce the above NC equation to simplest form with usual product and translations applied to in space and phase operators:

H ncao ( p ^ i , x ^ i )ψ( r )= E ncao ψ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamyyaiaad+gaaeqaaKqb aoaabmaabaGabmiCayaajaWaaSbaaKqbGeaacaWGPbaabeaajuaGca GGSaGabmiEayaajaWaaSbaaKqbGeaacaWGPbaabeaaaKqbakaawIca caGLPaaacqaHipqEdaqadaqaaiqadkhagaWcaaGaayjkaiaawMcaai abg2da9iaadweadaWgaaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamyy aiaad+gaaKqbagqaaiabeI8a5naabmaabaGabmOCayaalaaacaGLOa Gaayzkaaaaaa@54B5@   (27)

Where the new Hamiltonian operator H ncao ( p ^ i , x ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamyyaiaad+gaaeqaaKqb aoaabmaabaGabmiCayaajaWaaSbaaKqbGeaacaWGPbaabeaajuaGca GGSaGabmiEayaajaWaaSbaaKqbGeaacaWGPbaabeaaaKqbakaawIca caGLPaaaaaa@44A6@  can be expressed in three general varieties: both NC space and NC phase (NC–3D: RSP), only NC space (NC–3D: RS) and only NC phase (NC: 3D–RP) as, respectively:

H ncao ( p ^ i , x ^ i )H( p ^ i = p i 1 2 θ ¯ ij x j ; x ^ i = x i 1 2 θ ij p j )   for ( NC-3D: RSP ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamyyaiaad+gaaKqbagqa amaabmaabaGabmiCayaajaWaaSbaaKqbGeaacaWGPbaabeaajuaGca GGSaGabmiEayaajaWaaSbaaKqbGeaacaWGPbaabeaaaKqbakaawIca caGLPaaacqGHHjIUcaWGibWaaeWaaeaaceWGWbGbaKaadaWgaaqcfa saaiaadMgaaeqaaKqbakabg2da9iaadchadaWgaaqcfasaaiaadMga aeqaaKqbakabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaa0aaae aacqaH4oqCaaWaaSbaaKqbGeaacaWGPbGaamOAaaqabaqcfaOaamiE amaaBaaajuaibaGaamOAaaqabaqcfaOaai4oaiqadIhagaqcamaaBa aajuaibaGaamyAaaqabaqcfaOaeyypa0JaamiEamaaBaaajuaibaGa amyAaaqabaqcfaOaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacq aH4oqCdaWgaaqcfasaaiaadMgacaWGQbaabeaajuaGcaWGWbWaaSba aKqbGeaacaWGQbaabeaaaKqbakaawIcacaGLPaaafaqabeqacaaaba GaaeiiaiaabccacaqGMbGaae4Baiaabkhaaeaadaqadaqaaiaab6ea caqGdbGaaeylaiaabodacaqGebGaaeOoaiaabccacaqGsbGaae4uai aabcfaaiaawIcacaGLPaaaaaaaaa@7771@ (28)

H ncao ( p ^ i , x ^ i )H( p ^ i = p i ; x ^ i = x i 1 2 θ ij p j )  for ( NC-3D: RS ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamyyaiaad+gaaeqaaKqb aoaabmaabaGabmiCayaajaWaaSbaaKqbGeaacaWGPbaabeaajuaGca GGSaGabmiEayaajaWaaSbaaKqbGeaacaWGPbaabeaaaKqbakaawIca caGLPaaacqGHHjIUcaWGibWaaeWaaeaaceWGWbGbaKaadaWgaaqcfa saaiaadMgaaeqaaKqbakabg2da9iaadchadaWgaaqcfasaaiaadMga aeqaaKqbakaacUdaceWG4bGbaKaadaWgaaqcfasaaiaadMgaaeqaaK qbakabg2da9iaadIhadaWgaaqcfasaaiaadMgaaeqaaKqbakabgkHi TmaalaaabaGaaGymaaqaaiaaikdaaaGaeqiUde3aaSbaaKqbGeaaca WGPbGaamOAaaqabaqcfaOaamiCamaaBaaajuaibaGaamOAaaqcfaya baaacaGLOaGaayzkaaGaaeiiaiaabccacaqGMbGaae4Baiaabkhaca qGGaWaaeWaaeaacaqGobGaae4qaiaab2cacaqGZaGaaeiraiaabQda caqGGaGaaeOuaiaabofaaiaawIcacaGLPaaaaaa@6D76@ (29)

H ncao ( p ^ i , x ^ i )H( p ^ i = p i 1 2 θ ¯ ij ; x j , x ^ i = x i ) for ( NC-3D: RP ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamyyaiaad+gaaKqbagqa amaabmaabaGabmiCayaajaWaaSbaaKqbGeaacaWGPbaabeaajuaGca GGSaGabmiEayaajaWaaSbaaKqbGeaacaWGPbaabeaaaKqbakaawIca caGLPaaacqGHHjIUcaWGibWaaeWaaeaaceWGWbGbaKaadaWgaaqcfa saaiaadMgaaeqaaKqbakabg2da9iaadchadaWgaaqcfasaaiaadMga aeqaaKqbakabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaWaa0aaae aacqaH4oqCaaWaaSbaaKqbGeaacaWGPbGaamOAaaqabaqcfaOaai4o aiaadIhadaWgaaqcfasaaiaadQgaaeqaaKqbakaacYcaceWG4bGbaK aadaWgaaqcfasaaiaadMgaaeqaaKqbakabg2da9iaadIhadaWgaaqc fasaaiaadMgaaeqaaaqcfaOaayjkaiaawMcaauaabeqabiaaaeaaca qGMbGaae4Baiaabkhaaeaadaqadaqaaiaab6eacaqGdbGaaeylaiaa bodacaqGebGaaeOoaiaabccacaqGsbGaaeiuaaGaayjkaiaawMcaaa aaaaa@6C60@   (30)

In recently work, we are interest with the second variety which present by eq. (29) and by the means of the auxiliary two variables x ^ i = x i 1 2 θ ij p j MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIhaga qcamaaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0JaamiEamaaBaaa juaibaGaamyAaaqabaqcfaOaeyOeI0YaaSaaaeaacaaIXaaabaGaaG OmaaaacqaH4oqCdaWgaaqcfasaaiaadMgacaWGQbaajuaGbeaacaWG WbWaaSbaaKqbGeaacaWGQbaabeaaaaa@4636@  and p ^ i = p i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadchaga qcamaaBaaajuaibaGaamyAaaqabaqcfaOaeyypa0JaamiCamaaBaaa juaibaGaamyAaaqcfayabaaaaa@3D0F@ , the new modified Hamiltonian H ncao ( p ^ i , x ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamyyaiaad+gaaeqaaKqb aoaabmaabaGabmiCayaajaWaaSbaaKqbGeaacaWGPbaabeaajuaGca GGSaGabmiEayaajaWaaSbaaKqbGeaacaWGPbaajuaGbeaaaiaawIca caGLPaaaaaa@44A6@  may be written as follows

H ncao ( p ^ i , x ^ i )=α p ^ +β(M+S( r ^ ))+ V ao ( r ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaKaaGfaajuaycaWGib WaaSbaaKazfa4=baGaamOBaiaadogacqGHsislcaWGHbGaam4Baaqc fawabaWaaeWaaeaaceWGWbGbaKaadaWgaaqcKvaG=haacaWGPbaabe aajuaycaGGSaGabmiEayaajaWaaSbaaKazfa4=baGaamyAaaqabaaa juaycaGLOaGaayzkaaGaeyypa0tcaaMaeqySdeMabmiCayaajaGaey 4kaSscaaIaeqOSdiMaaiikaiaad2eacqGHRaWkcaWGtbGaaiikaiqa dkhagaqcaiaacMcacaGGPaGaae4kaKqbGjaadAfadaWgaaqcKvaG=h aacaWGHbGaam4BaaqcfawabaWaaeWaaeaaceWGYbGbaKaaaiaawIca caGLPaaaaaa@5FB3@   (31)

where the modified anharmonic oscillator V ao ( r ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadggacaWGVbaajuaGbeaadaqadaqaaiqadkhagaqc aaGaayjkaiaawMcaaaaa@3C9B@  is given by:

V ao ( r ^ )= 1 2 M ω 2 r ^ 2 + α 2M r ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqaaiaadggacaWGVbaabeaadaqadaqaaiqadkhagaqcaaGaayjk aiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaamytai abeM8a3naaCaaajuaibeqaaiaaikdaaaqcfaOabmOCayaajaWaaWba aeqajuaibaGaaGOmaaaajuaGcqGHRaWkdaWcaaqaaiabeg7aHbqaai aaikdacaWGnbGabmOCayaajaWaaWbaaKqbGeqabaGaaGOmaaaaaaaa aa@4B78@ (32)

The Dirac equation in the presence of above interaction V ao ( r ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadggacaWGVbaabeaajuaGdaqadaqaaiqadkhagaqc aaGaayjkaiaawMcaaaaa@3C9B@  can be rewritten according Bopp shift method as follows:

( αP+β(M+S( r ^ )) )Ψ( r,θ,ϕ )=( E ncao V ao ( r ^ ) )Ψ( r,θ,ϕ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeqySdeMaaeiuaiabgUcaRiabek7aIjaacIcacaWGnbGaey4kaSIa am4uaiaacIcaceWGYbGbaKaacaGGPaGaaiykaaGaayjkaiaawMcaai abfI6aznaabmaabaGaamOCaiaacYcacqaH4oqCcaGGSaGaeqy1dyga caGLOaGaayzkaaGaeyypa0ZaaeWaaeaacaWGfbWaaSbaaKqbGeaaca WGUbGaam4yaiabgkHiTiaadggacaWGVbaajuaGbeaacqGHsislcaWG wbWaaSbaaKqbGeaacaWGHbGaam4BaaqcfayabaWaaeWaaeaaceWGYb GbaKaaaiaawIcacaGLPaaaaiaawIcacaGLPaaacqqHOoqwdaqadaqa aiaadkhacaGGSaGaeqiUdeNaaiilaiabew9aMbGaayjkaiaawMcaaa aa@64FD@   (33)

The radial functions ( F nk ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada Wgaaqcfasaaiaad6gacaWGRbaabeaajuaGdaqadaqaaiaadkhaaiaa wIcacaGLPaaaaaa@3C84@ , G nk ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada Wgaaqcfasaaiaad6gacaWGRbaajuaGbeaadaqadaqaaiaadkhaaiaa wIcacaGLPaaaaaa@3C85@ ) are obtained by solving two equations:

[ d dr + k r ] F nk ( r )=[ M+ E nckb Δ( r ^ ) ] G nk ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGKbaabaGaamizaiaadkhaaaGaey4kaSYaaSaaaeaa caWGRbaabaGaamOCaaaaaiaawUfacaGLDbaacaWGgbWaaSbaaKqbGe aacaWGUbGaam4Aaaqabaqcfa4aaeWaaeaacaWGYbaacaGLOaGaayzk aaGaeyypa0ZaamWaaeaacaWGnbGaey4kaSIaamyramaaBaaajuaiba GaamOBaiaadogacqGHsislcaWGRbGaamOyaaqabaqcfaOaeyOeI0Ia euiLdq0aaeWaaeaaceWGYbGbaKaaaiaawIcacaGLPaaaaiaawUfaca GLDbaacaWGhbWaaSbaaKqbGeaacaWGUbGaam4AaaqcfayabaWaaeWa aeaacaWGYbaacaGLOaGaayzkaaaaaa@5A09@   (34)

[ d dr + k r ] G nk ( r )=[ M E nckb +Σ( r ^ ) ] G nk ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGKbaabaGaamizaiaadkhaaaGaey4kaSYaaSaaaeaa caWGRbaabaGaamOCaaaaaiaawUfacaGLDbaacaWGhbWaaSbaaKqbGe aacaWGUbGaam4Aaaqabaqcfa4aaeWaaeaacaWGYbaacaGLOaGaayzk aaGaeyypa0ZaamWaaeaacaWGnbGaeyOeI0IaamyramaaBaaajuaiba GaamOBaiaadogacqGHsislcaWGRbGaamOyaaqabaqcfaOaey4kaSIa eu4Odm1aaeWaaeaaceWGYbGbaKaaaiaawIcacaGLPaaaaiaawUfaca GLDbaacaWGhbWaaSbaaKqbGeaacaWGUbGaam4Aaaqabaqcfa4aaeWa aeaacaWGYbaacaGLOaGaayzkaaaaaa@5A28@   (35)

with Δ( r ^ )=V( r ^ )S( r ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aen aabmaabaGabmOCayaajaaacaGLOaGaayzkaaGaeyypa0JaamOvamaa bmaabaGabmOCayaajaaacaGLOaGaayzkaaGaeyOeI0Iaam4uamaabm aabaGabmOCayaajaaacaGLOaGaayzkaaaaaa@4335@ and Σ( r ^ )=V( r ^ )+S( r ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atn aabmaabaGabmOCayaajaaacaGLOaGaayzkaaGaeyypa0JaamOvamaa bmaabaGabmOCayaajaaacaGLOaGaayzkaaGaey4kaSIaam4uamaabm aabaGabmOCayaajaaacaGLOaGaayzkaaaaaa@4348@ , eliminating F nk ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada Wgaaqcfasaaiaad6gacaWGRbaabeaajuaGdaqadaqaaiaadkhaaiaa wIcacaGLPaaaaaa@3C84@ and G nk ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadEeada Wgaaqcfasaaiaad6gacaWGRbaajuaGbeaadaqadaqaaiaadkhaaiaa wIcacaGLPaaaaaa@3C85@ from Eqs. (34) and (35), we can obtain the following two Schrödinger–like differential equations in (NC–3D: RS) symmetries as follows:

[ d 2 d r 2 k(k+1) r 2 ( M+ E ncao Δ( r ^ ) )( M E ncao +Σ( r ^ ) ) ] F nk ( r )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGKbWaaWbaaKqbGeqabaGaaGOmaaaaaKqbagaacaWG KbGaamOCamaaCaaajuaibeqaaiaaikdaaaaaaKqbakabgkHiTmaala aabaGaam4AaiaacIcacaWGRbGaey4kaSIaaGymaiaacMcaaeaacaWG YbWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaeyOeI0YaaeWaaeaaca WGnbGaey4kaSIaamyramaaBaaajuaibaGaamOBaiaadogacqGHsisl caWGHbGaam4BaaqabaqcfaOaeyOeI0IaeuiLdq0aaeWaaeaaceWGYb GbaKaaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaqadaqaaiaad2ea cqGHsislcaWGfbWaaSbaaKqbGeaacaWGUbGaam4yaiabgkHiTiaadg gacaWGVbaajuaGbeaacqGHRaWkcqqHJoWudaqadaqaaiqadkhagaqc aaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaadA eadaWgaaqcfasaaiaad6gacaWGRbaajuaGbeaadaqadaqaaiaadkha aiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@6C84@   (36)

and

[ d 2 d r 2 k(k1) r 2 ( M+ E ncao Δ( r ^ ) )( M E ncao +Σ( r ^ ) ) ] G nk ( r )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaba WaaSaaaeaacaWGKbWaaWbaaeqajuaibaGaaGOmaaaaaKqbagaacaWG KbGaamOCamaaCaaajuaibeqaaiaaikdaaaaaaKqbakabgkHiTmaala aabaGaam4AaiaacIcacaWGRbGaeyOeI0IaaGymaiaacMcaaeaacaWG YbWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaeyOeI0YaaeWaaeaaca WGnbGaey4kaSIaamyramaaBaaajuaibaGaamOBaiaadogacqGHsisl caWGHbGaam4BaaqabaqcfaOaeyOeI0IaeuiLdq0aaeWaaeaaceWGYb GbaKaaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaqadaqaaiaad2ea cqGHsislcaWGfbWaaSbaaKqbGeaacaWGUbGaam4yaiabgkHiTiaadg gacaWGVbaabeaajuaGcqGHRaWkcqqHJoWudaqadaqaaiqadkhagaqc aaGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaadE eadaWgaaqcfasaaiaad6gacaWGRbaajuaGbeaadaqadaqaaiaadkha aiaawIcacaGLPaaacqGH9aqpcaaIWaaaaa@6C90@ (37)

After straightforward calculations one can obtains the following two terms: 1 2 M ω 2 r ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaaGymaaqaaiaaikdaaaGaamytaiabeM8a3naaCaaabeqaaiaaikda aaGabmOCayaajaWaaWbaaeqabaGaaGOmaaaaaaa@3D62@  and α 2M r ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaeqySdegabaGaaGOmaiaad2eaceWGYbGbaKaadaahaaqcfasabeaa caaIYaaaaaaaaaa@3BC9@  in (NC–3D: RS) as follows:

1 2 M ω 2 r ^ 2 = 1 2 M ω 2 r 2 1 2 M ω 2 L Θ α 2M r ^ 2 = α 2M r 2 + α L Θ 2M r 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aaS aaaeaacaaIXaaabaGaaGOmaaaacaWGnbGaeqyYdC3aaWbaaeqajuai baGaaGOmaaaajuaGceWGYbGbaKaadaahaaqabKqbGeaacaaIYaaaaK qbakabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaamytaiabeM8a 3naaCaaajuaibeqaaiaaikdaaaqcfaOaamOCamaaCaaajuaibeqaai aaikdaaaqcfaOaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaWG nbGaeqyYdC3aaWbaaKqbGeqabaGaaGOmaaaaieqajuaGceWFmbGbaS aacuqHyoqugaWcaaGcbaqcfa4aaSaaaeaacqaHXoqyaeaacaaIYaGa amytaiqadkhagaqcamaaCaaajuaibeqaaiaaikdaaaaaaKqbakabg2 da9maalaaabaGaeqySdegabaGaaGOmaiaad2eacaWGYbWaaWbaaKqb GeqabaGaaGOmaaaaaaqcfaOaey4kaSYaaSaaaeaacqaHXoqyceWFmb GbaSaacuqHyoqugaWcaaqaaiaaikdacaWGnbGaamOCamaaCaaabeqc fasaaiaaisdaaaaaaaaaaa@672D@   (38)

Which allow us to writing the (m.a.o.) potential V ao ( r ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadggacaWGVbaabeaajuaGdaqadaqaaiqadkhagaqc aaGaayjkaiaawMcaaaaa@3C9B@ in (NC–3D: RS) as follows:

V ao ( r ^ )= 1 2 M ω 2 r 2 + α 2M r 2 +{ V ^ 1pao ( r,Θ,M,ω )=( α 2M r 4 1 2 M ω 2 ) L Θ   for the    spin symmetric    case  V ^ 2pao ( r,Θ,M,ω )=( α 2M r 4 1 2 M ω 2 ) L ˜ Θ   for the p-spin symmetric    case  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam OvamaaBaaabaGaamyyaiaad+gaaeqaamaabmaabaGabmOCayaajaaa caGLOaGaayzkaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaaca WGnbGaeqyYdC3aaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGYbWaaWba aKqbGeqabaGaaGOmaaaajuaGcqGHRaWkdaWcaaqaaiabeg7aHbqaai aaikdacaWGnbGaamOCamaaCaaajuaibeqaaiaaikdaaaaaaaGcbaqc faOaey4kaSYaaiqaaqaabeqaaiqadAfagaqcamaaBaaajuaibaGaaG ymaiaadchacqGHsislcaWGHbGaam4BaaqcfayabaWaaeWaaeaacaWG YbGaaiilaiabfI5arjaacYcacaWGnbGaaiilaiabeM8a3bGaayjkai aawMcaaiabg2da9maabmaabaWaaSaaaeaacqaHXoqyaeaacaaIYaGa amytaiaadkhadaahaaqcfasabeaacaaI0aaaaaaajuaGcqGHsislda WcaaqaaiaaigdaaeaacaaIYaaaaiaad2eacqaHjpWDdaahaaqcfasa beaacaaIYaaaaaqcfaOaayjkaiaawMcaaGqabiqa=XeagaWcaiqbfI 5arzaalaqbaeqabeGaaaqaaiaabccacaqGGaGaaeOzaiaab+gacaqG YbaabaGaaeiDaiaabIgacaqGLbGaaeiiaiaabccacaqGGaGaaeiiai aabohacaqGWbGaaeyAaiaab6gacaqGGaGaae4CaiaabMhacaqGTbGa aeyBaiaabwgacaqG0bGaaeOCaiaabMgacaqGJbGaaeiiaiaabccaca qGGaGaaeiiaiaabogacaqGHbGaae4CaiaabwgacaqGGaaaaaqaaiqa dAfagaqcamaaBaaajuaibaGaaGOmaiaadchacqGHsislcaWGHbGaam 4Baaqabaqcfa4aaeWaaeaacaWGYbGaaiilaiabfI5arjaacYcacaWG nbGaaiilaiabeM8a3bGaayjkaiaawMcaaiabg2da9maabmaabaWaaS aaaeaacqaHXoqyaeaacaaIYaGaamytaiaadkhadaahaaqabKqbGeaa caaI0aaaaaaajuaGcqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaai aad2eacqaHjpWDdaahaaqabKqbGeaacaaIYaaaaaqcfaOaayjkaiaa wMcaaiqa=XeagaWcgaacaiqbfI5arzaalaqbaeqabeGaaaqaaiaabc cacaqGGaGaaeOzaiaab+gacaqGYbaabaGaaeiDaiaabIgacaqGLbGa aeiiaiaabchacaqGTaGaae4CaiaabchacaqGPbGaaeOBaiaabccaca qGZbGaaeyEaiaab2gacaqGTbGaaeyzaiaabshacaqGYbGaaeyAaiaa bogacaqGGaGaaeiiaiaabccacaqGGaGaae4yaiaabggacaqGZbGaae yzaiaabccaaaaaaiaawUhaaaaaaa@C8E1@   (39)

It’s clearly that, the first 2–terms represent the ordinary anharmonic oscillator while the rest two parts V ^ 1pao ( r,Θ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga qcamaaBaaajuaibaGaaGymaiaadchacqGHsislcaWGHbGaam4Baaqa baqcfa4aaeWaaeaacaWGYbGaaiilaiabfI5arjaacYcacaWGnbGaai ilaiabeM8a3bGaayjkaiaawMcaaaaa@455E@  and V ^ 2pao ( r,Θ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga qcamaaBaaajuaibaGaaGOmaiaadchacqGHsislcaWGHbGaam4Baaqa baqcfa4aaeWaaeaacaWGYbGaaiilaiabfI5arjaacYcacaWGnbGaai ilaiabeM8a3bGaayjkaiaawMcaaaaa@455F@  are produced by the deformation of space, this allows writing the (m.a.o.) in the NC case as an equation similarly to the usual Dirac equation of the commutative type with a non local potential. Furthermore, using the unit step function (also known as the Heaviside step function or simply the theta function) we can rewrite the modified anharmonic oscillator to the following form:

V ao ( r ^ )= 1 2 M ω 2 r 2 + α 2M r 2  +θ( E ncao ) V ^ 1pao ( r,Θ,M,ω )+θ( E ncao ) V ^ 2pao ( r,Θ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadggacaWGVbaabeaajuaGdaqadaqaaiqadkhagaqc aaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaa GaamytaiabeM8a3naaCaaajuaibeqaaiaaikdaaaqcfaOaamOCamaa CaaajuaibeqaaiaaikdaaaqcfaOaey4kaSYaaSaaaeaacqaHXoqyae aacaaIYaGaamytaiaadkhadaahaaqcfasabeaacaaIYaaaaaaajuaG caqGGaGaey4kaSIaeqiUde3aaeWaaeaacaWGfbWaaSbaaKqbGeaaca WGUbGaam4yaiabgkHiTiaadggacaWGVbaabeaaaKqbakaawIcacaGL PaaaceWGwbGbaKaadaWgaaqcfasaaiaaigdacaWGWbGaeyOeI0Iaam yyaiaad+gaaeqaaKqbaoaabmaabaGaamOCaiaacYcacqqHyoqucaGG SaGaamytaiaacYcacqaHjpWDaiaawIcacaGLPaaacqGHRaWkcqaH4o qCdaqadaqaaiabgkHiTiaadweadaWgaaqcfasaaiaad6gacaWGJbGa eyOeI0Iaamyyaiaad+gaaeqaaaqcfaOaayjkaiaawMcaaiqadAfaga qcamaaBaaajuaibaGaaGOmaiaadchacqGHsislcaWGHbGaam4Baaqc fayabaWaaeWaaeaacaWGYbGaaiilaiabfI5arjaacYcacaWGnbGaai ilaiabeM8a3bGaayjkaiaawMcaaaaa@80D1@ (40)

Where

θ( x )={ 1      for x 0      for x0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeI7aXn aabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maaceaaeaqabeaa caaIXaqbaeqabeGaaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGa GaaeOzaiaab+gacaqGYbaabaGaaeiEaiabgQYiXlaabcdacaqGGaaa aaqaaiaaicdafaqabeqacaaabaGaaeiiaiaabccacaqGGaGaaeiiai aabccacaqGMbGaae4BaiaabkhaaeaacaqG4bGaeyykJeUaaeimaaaa aaGaay5Eaaaaaa@51EB@   (41)

We generalized the constraint for the pseudospin (p–spin) symmetry Δ( r )=V( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aen aabmaabaGaamOCaaGaayjkaiaawMcaaiabg2da9iaadAfadaqadaqa aiaadkhaaiaawIcacaGLPaaaaaa@3EC0@  and Σ( r )= C ps =constants MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atn aabmaabaGaamOCaaGaayjkaiaawMcaaiabg2da9iaadoeadaWgaaqc fasaaiaadchacaWGZbaabeaajuaGcqGH9aqpcaqGJbGaae4Baiaab6 gacaqGZbGaaeiDaiaabggacaqGUbGaaeiDaiaabohaaaa@4893@ which presented in refs.18–21 into the new form Δ( r ^ )=V( r ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfs5aen aabmaabaGabmOCayaajaaacaGLOaGaayzkaaGaeyypa0JaamOvamaa bmaabaGabmOCayaajaaacaGLOaGaayzkaaaaaa@3EE0@  and Σ( r ^ )= C ^ ps =constants MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo6atn aabmaabaGabmOCayaajaaacaGLOaGaayzkaaGaeyypa0Jabm4qayaa jaWaaSbaaKqbGeaacaWGWbGaam4CaaqcfayabaGaeyypa0Jaae4yai aab+gacaqGUbGaae4CaiaabshacaqGHbGaaeOBaiaabshacaqGZbaa aa@48B3@  in (NC–3D: RS) and inserting the potential V ao ( r ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada WgaaqcfasaaiaadggacaWGVbaabeaajuaGdaqadaqaaiqadkhagaqc aaGaayjkaiaawMcaaaaa@3C9B@  in eq. (39) into the two Schrödinger–like differential equations (36) and (37), one obtains:

[ d 2 d r 2 k(k+1) r 2 ( M+ E nckb )( M E nckb + C ps ) ( a r 2 +br c r )( M E nckb + C ps ) ( ( c 2 r 3 b 2r a ) )( M E nckb + C ^ ps ) L Θ ] F nk ( r )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaea qabeaadaWcaaqaaiaadsgadaahaaqcfasabeaacaaIYaaaaaqcfaya aiaadsgacaWGYbWaaWbaaKqbGeqabaGaaGOmaaaaaaqcfaOaeyOeI0 YaaSaaaeaacaWGRbGaaiikaiaadUgacqGHRaWkcaaIXaGaaiykaaqa aiaadkhadaahaaqabKqbGeaacaaIYaaaaaaajuaGcqGHsisldaqada qaaiaad2eacqGHRaWkcaWGfbWaaSbaaKqbGeaacaWGUbGaam4yaiab gkHiTiaadUgacaWGIbaabeaaaKqbakaawIcacaGLPaaadaqadaqaai aad2eacqGHsislcaWGfbWaaSbaaKqbGeaacaWGUbGaam4yaiabgkHi TiaadUgacaWGIbaajuaGbeaacqGHRaWkcaWGdbWaaSbaaKqbGeaaca WGWbGaam4CaaqcfayabaaacaGLOaGaayzkaaaabaGaeyOeI0YaaeWa aeaacaWGHbGaamOCamaaCaaabeqcfasaaiaaikdaaaqcfaOaey4kaS IaamOyaiaadkhacqGHsisldaWcaaqaaiaadogaaeaacaWGYbaaaaGa ayjkaiaawMcaamaabmaabaGaamytaiabgkHiTiaadweadaWgaaqcfa saaiaad6gacaWGJbGaeyOeI0Iaam4AaiaadkgaaeqaaKqbakabgUca RiaadoeadaWgaaqcfasaaiaadchacaWGZbaabeaaaKqbakaawIcaca GLPaaaaeaacqGHsisldaqadaqaamaabmaabaWaaSaaaeaacaWGJbaa baGaaGOmaiaadkhadaahaaqabKqbGeaacaaIZaaaaaaajuaGcqGHsi sldaWcaaqaaiaadkgaaeaacaaIYaGaamOCaaaacqGHsislcaWGHbaa caGLOaGaayzkaaaacaGLOaGaayzkaaWaaeWaaeaacaWGnbGaeyOeI0 IaamyramaaBaaajuaibaGaamOBaiaadogacqGHsislcaWGRbGaamOy aaqabaqcfaOaey4kaSIabm4qayaajaWaaSbaaKqbGeaacaWGWbGaam 4CaaqabaaajuaGcaGLOaGaayzkaaacbeGab8htayaalaGafuiMdeLb aSaaaaGaay5waiaaw2faaiaadAeadaWgaaqcfasaaiaad6gacaWGRb aajuaGbeaadaqadaqaaiaadkhaaiaawIcacaGLPaaacqGH9aqpcaaI Waaaaa@9EDF@   (42)

[ d 2 d r 2 k(k1) r 2 ( M+ E nckb )( M E nckb + C ps ) ( a r 2 +br c r ) ( M E nckb + C ps ) ( ( c 2 r 3 b 2r a ) ) L Θ ( M E nckb + C ^ ps ) ] G nk ( r )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaadmaaea qabeaadaWcaaqaaiaadsgadaahaaqcfasabeaacaaIYaaaaaqcfaya aiaadsgacaWGYbWaaWbaaeqajuaibaGaaGOmaaaaaaqcfaOaeyOeI0 YaaSaaaeaacaWGRbGaaiikaiaadUgacqGHsislcaaIXaGaaiykaaqa aiaadkhadaahaaqabKqbGeaacaaIYaaaaaaajuaGcqGHsisldaqada qaaiaad2eacqGHRaWkcaWGfbWaaSbaaKqbGeaacaWGUbGaam4yaiab gkHiTiaadUgacaWGIbaajuaGbeaaaiaawIcacaGLPaaadaqadaqaai aad2eacqGHsislcaWGfbWaaSbaaKqbGeaacaWGUbGaam4yaiabgkHi TiaadUgacaWGIbaajuaGbeaacqGHRaWkcaWGdbWaaSbaaKqbGeaaca WGWbGaam4CaaqcfayabaaacaGLOaGaayzkaaaabaGaeyOeI0YaaeWa aeaacaWGHbGaamOCamaaCaaajuaibeqaaiaaikdaaaqcfaOaey4kaS IaamOyaiaadkhacqGHsisldaWcaaqaaiaadogaaeaacaWGYbaaaaGa ayjkaiaawMcaaiaabccadaqadaqaaiaad2eacqGHsislcaWGfbWaaS baaKqbGeaacaWGUbGaam4yaiabgkHiTiaadUgacaWGIbaabeaajuaG cqGHRaWkcaWGdbWaaSbaaKqbGeaacaWGWbGaam4Caaqcfayabaaaca GLOaGaayzkaaaabaGaeyOeI0YaaeWaaeaadaqadaqaamaalaaabaGa am4yaaqaaiaaikdacaWGYbWaaWbaaKqbGeqabaGaaG4maaaaaaqcfa OaeyOeI0YaaSaaaeaacaWGIbaabaGaaGOmaiaadkhaaaGaeyOeI0Ia amyyaaGaayjkaiaawMcaaaGaayjkaiaawMcaaGqabiqa=XeagaWcai qbfI5arzaalaWaaeWaaeaacaWGnbGaeyOeI0IaamyramaaBaaajuai baGaamOBaiaadogacqGHsislcaWGRbGaamOyaaqcfayabaGaey4kaS Iabm4qayaajaWaaSbaaKqbGeaacaWGWbGaam4CaaqcfayabaaacaGL OaGaayzkaaaaaiaawUfacaGLDbaacaWGhbWaaSbaaKqbGeaacaWGUb Gaam4AaaqcfayabaWaaeWaaeaacaWGYbaacaGLOaGaayzkaaGaeyyp a0JaaGimaaaa@9F8E@  (43)

It’s clearly that, the additive two parts V ^ 1pao ( r,Θ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga qcamaaBaaajuaibaGaaGymaiaadchacqGHsislcaWGHbGaam4Baaqa baqcfa4aaeWaaeaacaWGYbGaaiilaiabfI5arjaacYcacaWGnbGaai ilaiabeM8a3bGaayjkaiaawMcaaaaa@455E@  and V ^ 2pao ( r,Θ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga qcamaaBaaajuaibaGaaGOmaiaadchacqGHsislcaWGHbGaam4Baaqa baqcfa4aaeWaaeaacaWGYbGaaiilaiabfI5arjaacYcacaWGnbGaai ilaiabeM8a3bGaayjkaiaawMcaaaaa@455F@  are proportional with infinitesimal parameter Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfI5arb aa@37F0@ , thus we can considered as a perturbations terms.

The exact relativistic spin–orbital hamiltonian and the corresponding spectrum for (m.a.o.) in (nc: 3d– rs) symmetries for excited states for one–electron atoms

The exact relativistic spin–orbital hamiltonian for (m.a.o.) in (nc: 3d– rs) symmetries for one–electron atoms:

 Again, the two perturbative terms V ^ 1pao ( r,Θ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga qcamaaBaaajuaibaGaaGymaiaadchacqGHsislcaWGHbGaam4Baaqa baqcfa4aaeWaaeaacaWGYbGaaiilaiabfI5arjaacYcacaWGnbGaai ilaiabeM8a3bGaayjkaiaawMcaaaaa@455E@  and V ^ 2pao ( r,Θ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga qcamaaBaaajuaibaGaaGOmaiaadchacqGHsislcaWGHbGaam4Baaqa baqcfa4aaeWaaeaacaWGYbGaaiilaiabfI5arjaacYcacaWGnbGaai ilaiabeM8a3bGaayjkaiaawMcaaaaa@455F@  can be rewritten to the equivalent physical form for (m.a.o.) potential as follows:

{ V ^ 1pao ( r,Θ,M,ω )=Θ( α 2M r 4 1 2 M ω 2 ) L S   for the    spin symmetric    case  V ^ 2pao ( r,Θ,M,ω )=Θ( α 2M r 4 1 2 M ω 2 ) L ˜ S ˜   for the p-spin symmetric    case  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaceaaea qabeaaceWGwbGbaKaadaWgaaqcfasaaiaaigdacaWGWbGaeyOeI0Ia amyyaiaad+gaaKqbagqaamaabmaabaGaamOCaiaacYcacqqHyoquca GGSaGaamytaiaacYcacqaHjpWDaiaawIcacaGLPaaacqGH9aqpcqqH yoqudaqadaqaamaalaaabaGaeqySdegabaGaaGOmaiaad2eacaWGYb WaaWbaaKqbGeqabaGaaGinaaaaaaqcfaOaeyOeI0YaaSaaaeaacaaI XaaabaGaaGOmaaaacaWGnbGaeqyYdC3aaWbaaeqajuaibaGaaGOmaa aaaKqbakaawIcacaGLPaaaieqaceWFmbGbaSaadaWhcaqaaiaadofa aiaawEniauaabeqabiaaaeaacaqGGaGaaeiiaiaabAgacaqGVbGaae OCaaqaaiaabshacaqGObGaaeyzaiaabccacaqGGaGaaeiiaiaabcca caqGZbGaaeiCaiaabMgacaqGUbGaaeiiaiaabohacaqG5bGaaeyBai aab2gacaqGLbGaaeiDaiaabkhacaqGPbGaae4yaiaabccacaqGGaGa aeiiaiaabccacaqGJbGaaeyyaiaabohacaqGLbGaaeiiaaaaaeaace WGwbGbaKaadaWgaaqcfasaaiaaikdacaWGWbGaeyOeI0Iaamyyaiaa d+gaaeqaaKqbaoaabmaabaGaamOCaiaacYcacqqHyoqucaGGSaGaam ytaiaacYcacqaHjpWDaiaawIcacaGLPaaacqGH9aqpcqqHyoqudaqa daqaamaalaaabaGaeqySdegabaGaaGOmaiaad2eacaWGYbWaaWbaae qajuaibaGaaGinaaaaaaqcfaOaeyOeI0YaaSaaaeaacaaIXaaabaGa aGOmaaaacaWGnbGaeqyYdC3aaWbaaKqbGeqabaGaaGOmaaaaaKqbak aawIcacaGLPaaaceWFmbGbaSGbaGaadaWhcaqaaiqadofagaacaaGa ay51GaqbaeqabeGaaaqaaiaabccacaqGGaGaaeOzaiaab+gacaqGYb aabaGaaeiDaiaabIgacaqGLbGaaeiiaiaabchacaqGTaGaae4Caiaa bchacaqGPbGaaeOBaiaabccacaqGZbGaaeyEaiaab2gacaqGTbGaae yzaiaabshacaqGYbGaaeyAaiaabogacaqGGaGaaeiiaiaabccacaqG GaGaae4yaiaabggacaqGZbGaaeyzaiaabccaaaaaaiaawUhaaaaa@B784@   (44)

Furthermore, the above perturbative terms V ^ 1pao ( r,Θ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga qcamaaBaaajuaibaGaaGymaiaadchacqGHsislcaWGHbGaam4Baaqa baqcfa4aaeWaaeaacaWGYbGaaiilaiabfI5arjaacYcacaWGnbGaai ilaiabeM8a3bGaayjkaiaawMcaaaaa@455E@  and V ^ 2pao ( r,Θ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadAfaga qcamaaBaaajuaibaGaaGOmaiaadchacqGHsislcaWGHbGaam4Baaqa baqcfa4aaeWaaeaacaWGYbGaaiilaiabfI5arjaacYcacaWGnbGaai ilaiabeM8a3bGaayjkaiaawMcaaaaa@455F@  can be rewritten to the following new equivalent form for (m.a.o.) potential: 

{ V ^ 1pao ( r,Θ,M,ω )= 1 2 Θ( α 2M r 4 1 2 M ω 2 )( J 2 L 2 S 2 )   for the    spin symmetric    case  V ^ 2pao ( r,Θ,M,ω )= 1 2 Θ( α 2M r 4 1 2 M ω 2 )( J 2 L 2 S ˜ 2 )   for the p-spin symmetric    case  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaceaaea qabeaaceWGwbGbaKaadaWgaaqcfasaaiaaigdacaWGWbGaeyOeI0Ia amyyaiaad+gaaeqaaKqbaoaabmaabaGaamOCaiaacYcacqqHyoquca GGSaGaamytaiaacYcacqaHjpWDaiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiaaigdaaeaacaaIYaaaaiabfI5arnaabmaabaWaaSaaaeaacq aHXoqyaeaacaaIYaGaamytaiaadkhadaahaaqcfasabeaacaaI0aaa aaaajuaGcqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2eacq aHjpWDdaahaaqcfasabeaacaaIYaaaaaqcfaOaayjkaiaawMcaamaa bmaabaWaa8XaaeaacaWGkbaacaGLHdcadaahaaqabKqbGeaacaaIYa aaaKqbakabgkHiTmaaFmaabaGaamitaaGaayz4GaWaaWbaaKqbGeqa baGaaGOmaaaajuaGcqGHsisldaWhdaqaaiaadofaaiaawgoiamaaCa aajuaibeqaaiaaikdaaaaajuaGcaGLOaGaayzkaaaabaqbaeqabeGa aaqaaiaabccacaqGGaGaaeOzaiaab+gacaqGYbaabaGaaeiDaiaabI gacaqGLbGaaeiiaiaabccacaqGGaGaaeiiaiaabohacaqGWbGaaeyA aiaab6gacaqGGaGaae4CaiaabMhacaqGTbGaaeyBaiaabwgacaqG0b GaaeOCaiaabMgacaqGJbGaaeiiaiaabccacaqGGaGaaeiiaiaaboga caqGHbGaae4CaiaabwgacaqGGaaaaaqaaiqadAfagaqcamaaBaaaju aibaGaaGOmaiaadchacqGHsislcaWGHbGaam4Baaqabaqcfa4aaeWa aeaacaWGYbGaaiilaiabfI5arjaacYcacaWGnbGaaiilaiabeM8a3b GaayjkaiaawMcaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGa euiMde1aaeWaaeaadaWcaaqaaiabeg7aHbqaaiaaikdacaWGnbGaam OCamaaCaaajuaibeqaaiaaisdaaaaaaKqbakabgkHiTmaalaaabaGa aGymaaqaaiaaikdaaaGaamytaiabeM8a3naaCaaajuaibeqaaiaaik daaaaajuaGcaGLOaGaayzkaaWaaeWaaeaadaWhdaqaaiaadQeaaiaa wgoiamaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0Yaa8Xaaeaaca WGmbaacaGLHdcadaahaaqabKqbGeaacaaIYaaaaKqbakabgkHiTmaa FmaabaGabm4uayaaiaaacaGLHdcadaahaaqabKqbGeaacaaIYaaaaa qcfaOaayjkaiaawMcaaaqaauaabeqabiaaaeaacaqGGaGaaeiiaiaa bAgacaqGVbGaaeOCaaqaaiaabshacaqGObGaaeyzaiaabccacaqGWb GaaeylaiaabohacaqGWbGaaeyAaiaab6gacaqGGaGaae4CaiaabMha caqGTbGaaeyBaiaabwgacaqG0bGaaeOCaiaabMgacaqGJbGaaeiiai aabccacaqGGaGaaeiiaiaabogacaqGHbGaae4CaiaabwgacaqGGaaa aaaacaGL7baaaaa@D372@   (45)

To the best of our knowledge, we just replace the two spin–orbital coupling S L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaFmaaba Gaam4uaaGaayz4GaWaa8XaaeaacaWGmbaacaGLHdcaaaa@3BA0@  and L ˜ S ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqabKqbakqa=X eagaWcgaacamaaFiaabaGabm4uayaaiaaacaGLxdcaaaa@3A0B@  by the expression 1 2 ( J 2 L 2 S 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaaGymaaqaaiaaikdaaaWaaeWaaeaadaWhdaqaaiaadQeaaiaawgoi amaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0Yaa8XaaeaacaWGmb aacaGLHdcadaahaaqcfasabeaacaaIYaaaaKqbakabgkHiTmaaFmaa baGaam4uaaGaayz4GaWaaWbaaKqbGeqabaGaaGOmaaaaaKqbakaawI cacaGLPaaaaaa@47E6@  and 1 2 ( J 2 L 2 S ˜ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaalaaaba GaaGymaaqaaiaaikdaaaWaaeWaaeaadaWhdaqaaiaadQeaaiaawgoi amaaCaaajuaibeqaaiaaikdaaaqcfaOaeyOeI0Yaa8XaaeaacaWGmb aacaGLHdcadaahaaqabKqbGeaacaaIYaaaaKqbakabgkHiTmaaFmaa baGabm4uayaaiaaacaGLHdcadaahaaqabKqbGeaacaaIYaaaaaqcfa OaayjkaiaawMcaaaaa@47F5@ , in relativistic quantum mechanics.The set ( H nckb ( p ^ i , x ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadIeada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0Iaam4AaiaadkgaaKqbagqa amaabmaabaGabmiCayaajaWaaSbaaKqbGeaacaWGPbaabeaajuaGca GGSaGabmiEayaajaWaaSbaaKqbGeaacaWGPbaabeaaaKqbakaawIca caGLPaaaaaa@44A3@ , J 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabQeada ahaaqcfasabeaacaqGYaaaaaaa@384B@ , L 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabYeada ahaaqcfasabeaacaaIYaaaaaaa@3854@ ,S ˜2 and J z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQeada WgaaqcfasaaiaadQhaaeqaaKqbakaacMcaaaa@39D1@  forms a complete of conserved physics quantities and the spin–orbit quantum number k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgaaa a@3769@  ( k ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadUgaga acaaaa@3778@ ) is related to the quantum numbers for spin symmetry l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadYgaaa a@376A@  and p–spin symmetry l ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadYgaga acaaaa@3779@  as follows.18–21

k={ k 1 ( l+1 )    if  -( j+1/2 ),( s 1/2 , p 3/2 ,etc )j=l+ 1 2 , aligned spin ( k0 ) k 2 +l    if   ( j=l+ 1 2 ),( p 1/2 , d 3/2 ,etc )j=l 1 2 , unaligned spin ( k0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgacq GH9aqpdaGabaabaeqabaGaam4AamaaBaaajuaibaGaaGymaaqabaqc faOaeyyyIORaeyOeI0YaaeWaaeaacaWGSbGaey4kaSIaaGymaaGaay jkaiaawMcaaiaabccacaqGGaGaaeiiaiaabccacaqGPbGaaeOzaiaa bccacaqGGaGaaeylamaabmaabaGaaeOAaiabgUcaRiaabgdacaqGVa GaaeOmaaGaayjkaiaawMcaaiaabYcadaqadaqaaiaabohadaWgaaqc fasaaiaabgdacaqGVaGaaeOmaaqcfayabaGaaiilaiaadchadaWgaa qcfasaaiaaiodacaGGVaGaaGOmaaqabaqcfaOaaiilaiaadwgacaWG 0bGaam4yaaGaayjkaiaawMcaaiaabYcacaqGGaGaamOAaiabg2da9i aadYgacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaiaacYcacaqG GaGaaeyyaiaabYgacaqGPbGaae4zaiaab6gacaqGLbGaaeizaiaabc cacaqGZbGaaeiCaiaabMgacaqGUbGaaeiiamaabmaabaGaae4Aaiab gMYiHlaabcdaaiaawIcacaGLPaaaaeaacaWGRbWaaSbaaKqbGeaaca aIYaaajuaGbeaacqGHHjIUcqGHRaWkcaWGSbGaaeiiaiaabccacaqG GaGaaeiiaiaabMgacaqGMbGaaeiiaiaabccacaqGGaWaaeWaaeaaca WGQbGaeyypa0JaamiBaiabgUcaRmaalaaabaGaaGymaaqaaiaaikda aaaacaGLOaGaayzkaaGaaiilamaabmaabaGaaeiCamaaBaaajuaiba Gaaeymaiaab+cacaqGYaaabeaajuaGcaGGSaGaamizamaaBaaajuai baGaaG4maiaac+cacaaIYaaajuaGbeaacaGGSaGaamyzaiaadshaca WGJbaacaGLOaGaayzkaaGaaeilaiaabccacaWGQbGaeyypa0JaamiB aiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaaiilaiaabccaca qG1bGaaeOBaiaabggacaqGSbGaaeyAaiaabEgacaqGUbGaaeyzaiaa bsgacaqGGaGaae4CaiaabchacaqGPbGaaeOBaiaabccadaqadaqaai aabUgacqGHQms8caqGWaaacaGLOaGaayzkaaaaaiaawUhaaaaa@B123@   (46)

and

k ˜ ={ k ˜ 1 l ˜     if  -( j+1/2 ),( s 1/2 , p 3/2 ,etc )j= l ˜ 1 2 , aligned spin ( k0 ) k ˜ 2 +( l ˜ +1 )    if   ( j= l ˜ + 1 2 ),( p 1/2 , d 3/2 ,etc )j= l ˜ + 1 2 , unaligned spin ( k0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadUgaga acaiabg2da9maaceaaeaqabeaaceWGRbGbaGaadaWgaaqcfasaaiaa igdaaeqaaKqbakabggMi6kabgkHiTiqadYgagaacaiaabccacaqGGa GaaeiiaiaabccacaqGPbGaaeOzaiaabccacaqGGaGaaeylamaabmaa baGaaeOAaiabgUcaRiaabgdacaqGVaGaaeOmaaGaayjkaiaawMcaai aabYcadaqadaqaaiaabohadaWgaaqcfasaaiaabgdacaqGVaGaaeOm aaqcfayabaGaaiilaiaadchadaWgaaqcfasaaiaaiodacaGGVaGaaG OmaaqcfayabaGaaiilaiaadwgacaWG0bGaam4yaaGaayjkaiaawMca aiaabYcacaqGGaGaamOAaiabg2da9iqadYgagaacaiabgkHiTmaala aabaGaaGymaaqaaiaaikdaaaGaaiilaiaabccacaqGHbGaaeiBaiaa bMgacaqGNbGaaeOBaiaabwgacaqGKbGaaeiiaiaabohacaqGWbGaae yAaiaab6gacaqGGaWaaeWaaeaacaqGRbGaeyykJeUaaeimaaGaayjk aiaawMcaaaqaaiqadUgagaacamaaBaaajuaibaGaaGOmaaqabaqcfa OaeyyyIORaey4kaSYaaeWaaeaaceWGSbGbaGaacqGHRaWkcaaIXaaa caGLOaGaayzkaaGaaeiiaiaabccacaqGGaGaaeiiaiaabMgacaqGMb GaaeiiaiaabccacaqGGaWaaeWaaeaacaWGQbGaeyypa0JabmiBayaa iaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaaaiaawIcacaGLPa aacaGGSaWaaeWaaeaacaqGWbWaaSbaaKqbGeaacaqGXaGaae4laiaa bkdaaKqbagqaaiaacYcacaWGKbWaaSbaaKqbGeaacaaIZaGaai4lai aaikdaaeqaaKqbakaacYcacaWGLbGaamiDaiaadogaaiaawIcacaGL PaaacaqGSaGaaeiiaiaadQgacqGH9aqpceWGSbGbaGaacqGHRaWkda WcaaqaaiaaigdaaeaacaaIYaaaaiaacYcacaqGGaGaaeyDaiaab6ga caqGHbGaaeiBaiaabMgacaqGNbGaaeOBaiaabwgacaqGKbGaaeiiai aabohacaqGWbGaaeyAaiaab6gacaqGGaWaaeWaaeaacaqGRbGaeyOk JeVaaeimaaGaayjkaiaawMcaaaaacaGL7baaaaa@B19B@   (47)

With k ˜ ( k ˜ 1 )= l ˜ ( l ˜ +1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadUgaga acamaabmaabaGabm4AayaaiaGaeyOeI0IaaGymaaGaayjkaiaawMca aiabg2da9iqadYgagaacamaabmaabaGabmiBayaaiaGaey4kaSIaaG ymaaGaayjkaiaawMcaaaaa@41D4@  and k( k1 )=l( l+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada qadaqaaiaadUgacqGHsislcaaIXaaacaGLOaGaayzkaaGaeyypa0Ja amiBamaabmaabaGaamiBaiabgUcaRiaaigdaaiaawIcacaGLPaaaaa a@4198@ , which allows us to form two diagonal ( 3×3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaaG4maiabgEna0kaaiodaaiaawIcacaGLPaaaaaa@3B93@  matrixes H ^ soao ( k 1 , k 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaam4Caiaad+gacqGHsislcaWGHbGaam4Baaqc fayabaWaaeWaaeaacaWGRbWaaSbaaKqbGeaacaaIXaaabeaajuaGca GGSaGaam4AamaaBaaajuaibaGaaGOmaaqabaaajuaGcaGLOaGaayzk aaaaaa@4430@  and H ˜ ^ soao ( k ˜ 1 , k ˜ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga acgaqcamaaBaaajuaibaGaam4Caiaad+gacqGHsislcaWGHbGaam4B aaqabaqcfa4aaeWaaeaaceWGRbGbaGaadaWgaaqcfasaaiaaigdaaK qbagqaaiaacYcaceWGRbGbaGaadaWgaaqcKvaG=haacaaIYaaabeaa aKqbakaawIcacaGLPaaaaaa@461F@ , for (m.a.o.), respectively, in (NC: 3D–RS) as:

( H ^ soao ) 11 ( k 1 )= k 1 Θ( α 2M r 4 1 2 M ω 2 )    if -( j+1/2 ),( s 1/2 , p 3/2 ,etc )j=l+ 1 2 , aligned spin ( k0 ) ( H ^ soao ) 22 ( k 2 )= k 2 Θ( α 2M r 4 1 2 M ω 2 )     if ( j=l+ 1 2 ),( p 1/2 , d 3/2 ,etc )j=l 1 2 , unaligned spin ( k0 ) ( H ^ soao ) 33 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aae WaaeaaceWGibGbaKaadaWgaaqcfasaaiaadohacaWGVbGaeyOeI0Ia amyyaiaad+gaaeqaaaqcfaOaayjkaiaawMcaamaaBaaajuaibaGaaG ymaiaaigdaaeqaaKqbaoaabmaabaGaam4AamaaBaaajuaibaGaaGym aaqabaaajuaGcaGLOaGaayzkaaGaeyypa0Jaam4AamaaBaaajuaiba GaaGymaaqabaqcfaOaeuiMde1aaeWaaeaadaWcaaqaaiabeg7aHbqa aiaaikdacaWGnbGaamOCamaaCaaabeqcfasaaiaaisdaaaaaaKqbak abgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaamytaiabeM8a3naa CaaajuaibeqaaiaaikdaaaaajuaGcaGLOaGaayzkaaGaaGPaVlaabc cacaqGGaGaaeiiaaGcbaqcfaOaaeyAaiaabAgacaqGGaGaaeylamaa bmaabaGaaeOAaiabgUcaRiaabgdacaqGVaGaaeOmaaGaayjkaiaawM caaiaabYcadaqadaqaaiaabohadaWgaaqcfasaaiaabgdacaqGVaGa aeOmaaqabaqcfaOaaiilaiaadchadaWgaaqcfasaaiaaiodacaGGVa GaaGOmaaqcfayabaGaaiilaiaadwgacaWG0bGaam4yaaGaayjkaiaa wMcaaiaabYcacaqGGaGaamOAaiabg2da9iaadYgacqGHRaWkdaWcaa qaaiaaigdaaeaacaaIYaaaaiaacYcacaqGGaGaaeyyaiaabYgacaqG PbGaae4zaiaab6gacaqGLbGaaeizaiaabccacaqGZbGaaeiCaiaabM gacaqGUbGaaeiiamaabmaabaGaae4AaiabgMYiHlaabcdaaiaawIca caGLPaaaaeaadaqadaqaaiqadIeagaqcamaaBaaajuaibaGaam4Cai aad+gacqGHsislcaWGHbGaam4BaaqcfayabaaacaGLOaGaayzkaaWa aSbaaKqbGeaacaaIYaGaaGOmaaqabaqcfa4aaeWaaeaacaWGRbWaaS baaKqbGeaacaaIYaaabeaaaKqbakaawIcacaGLPaaacqGH9aqpcaWG RbWaaSbaaKqbGeaacaaIYaaabeaajuaGcqqHyoqudaqadaqaamaala aabaGaeqySdegabaGaaGOmaiaad2eacaWGYbWaaWbaaKqbGeqabaGa aGinaaaaaaqcfaOaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaaca WGnbGaeqyYdC3aaWbaaKqbGeqabaGaaGOmaaaaaKqbakaawIcacaGL PaaacaqGGaGaaeiiaiaabccacaqGGaaabaGaaeyAaiaabAgacaqGGa WaaeWaaeaacaWGQbGaeyypa0JaamiBaiabgUcaRmaalaaabaGaaGym aaqaaiaaikdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaGaaeiCam aaBaaajuaibaGaaeymaiaab+cacaqGYaaajuaGbeaacaGGSaGaamiz amaaBaaajuaibaGaaG4maiaac+cacaaIYaaabeaajuaGcaGGSaGaam yzaiaadshacaWGJbaacaGLOaGaayzkaaGaaeilaiaabccacaWGQbGa eyypa0JaamiBaiabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaai ilaiaabccacaqG1bGaaeOBaiaabggacaqGSbGaaeyAaiaabEgacaqG UbGaaeyzaiaabsgacaqGGaGaae4CaiaabchacaqGPbGaaeOBaiaabc cadaqadaqaaiaabUgacqGHQms8caqGWaaacaGLOaGaayzkaaaakeaa juaGdaqadaqaaiqadIeagaqcamaaBaaajuaibaGaam4Caiaad+gacq GHsislcaWGHbGaam4BaaqabaaajuaGcaGLOaGaayzkaaWaaSbaaKqb GeaacaaIZaGaaG4maaqabaqcfaOaeyypa0JaaGimaaaaaa@EDA6@   (48)

and

( H ^ soao ) 11 ( k ˜ 1 )= k ˜ 1 Θ( α 2M r 4 1 2 M ω 2 )    if  -( j+1/2 ),( s 1/2 , p 3/2 ,etc )j= l ˜ 1 2 , aligned spin ( k0 ) ( H ^ soao ) 22 ( k ˜ 2 )= k ˜ 2 Θ( α 2M r 4 1 2 M ω 2 )     if   ( j= l ˜ + 1 2 ),( p 1/2 , d 3/2 ,etc )j= l ˜ + 1 2 , unaligned spin ( k0 ) ( H ^ soao ) 33 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aae WaaeaaceWGibGbaKaadaWgaaqcfasaaiaadohacaWGVbGaeyOeI0Ia amyyaiaad+gaaeqaaaqcfaOaayjkaiaawMcaamaaBaaajuaibaGaaG ymaiaaigdaaeqaaKqbaoaabmaabaGabm4AayaaiaWaaSbaaKqbGeaa caaIXaaabeaaaKqbakaawIcacaGLPaaacqGH9aqpceWGRbGbaGaada WgaaqcfasaaiaaigdaaeqaaKqbakabfI5arnaabmaabaWaaSaaaeaa cqaHXoqyaeaacaaIYaGaamytaiaadkhadaahaaqcfasabeaacaaI0a aaaaaajuaGcqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2ea cqaHjpWDdaahaaqabKqbGeaacaaIYaaaaaqcfaOaayjkaiaawMcaai aaykW7caqGGaGaaeiiaiaabccaaOqaaKqbakaabMgacaqGMbGaaeii aiaabccacaqGTaWaaeWaaeaacaqGQbGaey4kaSIaaeymaiaab+caca qGYaaacaGLOaGaayzkaaGaaeilamaabmaabaGaae4CamaaBaaajuai baGaaeymaiaab+cacaqGYaaajuaGbeaacaGGSaGaamiCamaaBaaaju aibaGaaG4maiaac+cacaaIYaaabeaajuaGcaGGSaGaamyzaiaadsha caWGJbaacaGLOaGaayzkaaGaaeilaiaabccacaWGQbGaeyypa0Jabm iBayaaiaGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGSaGa aeiiaiaabggacaqGSbGaaeyAaiaabEgacaqGUbGaaeyzaiaabsgaca qGGaGaae4CaiaabchacaqGPbGaaeOBaiaabccadaqadaqaaiaabUga cqGHPms4caqGWaaacaGLOaGaayzkaaaabaWaaeWaaeaaceWGibGbaK aadaWgaaqcfasaaiaadohacaWGVbGaeyOeI0Iaamyyaiaad+gaaKqb agqaaaGaayjkaiaawMcaamaaBaaajuaibaGaaGOmaiaaikdaaeqaaK qbaoaabmaabaGabm4AayaaiaWaaSbaaKqbGeaacaaIYaaajuaGbeaa aiaawIcacaGLPaaacqGH9aqpceWGRbGbaGaadaWgaaqcfasaaiaaik daaKqbagqaaiabfI5arnaabmaabaWaaSaaaeaacqaHXoqyaeaacaaI YaGaamytaiaadkhadaahaaqcfasabeaacaaI0aaaaaaajuaGcqGHsi sldaWcaaqaaiaaigdaaeaacaaIYaaaaiaad2eacqaHjpWDdaahaaqc fasabeaacaaIYaaaaaqcfaOaayjkaiaawMcaaiaabccacaqGGaGaae iiaiaabccaaeaacaqGPbGaaeOzaiaabccacaqGGaGaaeiiamaabmaa baGaamOAaiabg2da9iqadYgagaacaiabgUcaRmaalaaabaGaaGymaa qaaiaaikdaaaaacaGLOaGaayzkaaGaaiilamaabmaabaGaaeiCamaa BaaajuaibaGaaeymaiaab+cacaqGYaaajuaGbeaacaGGSaGaamizam aaBaaajuaibaGaaG4maiaac+cacaaIYaaajuaGbeaacaGGSaGaamyz aiaadshacaWGJbaacaGLOaGaayzkaaGaaeilaiaabccacaWGQbGaey ypa0JabmiBayaaiaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaa caGGSaGaaeiiaiaabwhacaqGUbGaaeyyaiaabYgacaqGPbGaae4zai aab6gacaqGLbGaaeizaiaabccacaqGZbGaaeiCaiaabMgacaqGUbGa aeiiamaabmaabaGaae4AaiabgQYiXlaabcdaaiaawIcacaGLPaaaaO qaaKqbaoaabmaabaGabmisayaajaWaaSbaaKqbGeaacaWGZbGaam4B aiabgkHiTiaadggacaWGVbaajuaGbeaaaiaawIcacaGLPaaadaWgaa qcfasaaiaaiodacaaIZaaabeaajuaGcqGH9aqpcaaIWaaaaaa@EFF8@  (49)

The exact relativistic spin–orbital spectrum for (m.a.o.) potential symmetries for nthexcited states for one–electron atoms in (NC: 3D– RSP) symmetries:

 In this sub section, we are going to study the modifications to the energy levels E ncper:u ( Θ, k 1 , E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaigdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaaaaa@4DE7@  and E ncper:d ( Θ, k 2 , E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadsgaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaikdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaaaaa@4DD7@  for ( -( j+1/2 ),( s 1/2 , p 3/2 ,etc )j=l+ 1 2 , aligned spin ( k0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaab2cada qadaqaaiaabQgacqGHRaWkcaqGXaGaae4laiaabkdaaiaawIcacaGL PaaacaqGSaWaaeWaaeaacaqGZbWaaSbaaKqbGeaacaqGXaGaae4lai aabkdaaeqaaKqbakaacYcacaWGWbWaaSbaaKqbGeaacaaIZaGaai4l aiaaikdaaeqaaKqbakaacYcacaWGLbGaamiDaiaadogaaiaawIcaca GLPaaacaqGSaGaaeiiaiaadQgacqGH9aqpcaWGSbGaey4kaSYaaSaa aeaacaaIXaaabaGaaGOmaaaacaGGSaGaaeiiaiaabggacaqGSbGaae yAaiaabEgacaqGUbGaaeyzaiaabsgacaqGGaGaae4CaiaabchacaqG PbGaaeOBaiaabccadaqadaqaaiaabUgacqGHPms4caqGWaaacaGLOa Gaayzkaaaaaa@6337@  and spin–up) and ( ( j=l+ 1 2 ),( p 1/2 , d 3/2 ,etc )j=l 1 2 , unaligned spin ( k0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamOAaiabg2da9iaadYgacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI YaaaaaGaayjkaiaawMcaaiaacYcadaqadaqaaiaabchadaWgaaqcfa saaiaabgdacaqGVaGaaeOmaaqabaqcfaOaaiilaiaadsgadaWgaaqc fasaaiaaiodacaGGVaGaaGOmaaqcfayabaGaaiilaiaadwgacaWG0b Gaam4yaaGaayjkaiaawMcaaiaabYcacaqGGaGaamOAaiabg2da9iaa dYgacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaaaiaacYcacaqGGa GaaeyDaiaab6gacaqGHbGaaeiBaiaabMgacaqGNbGaaeOBaiaabwga caqGKbGaaeiiaiaabohacaqGWbGaaeyAaiaab6gacaqGGaWaaeWaae aacaqGRbGaeyOkJeVaaeimaaGaayjkaiaawMcaaaaa@65E3@  and spin down), respectively, at first order of infinitesimal parameter Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfI5arb aa@37F0@ , for ground state, obtained by applying the standard perturbation theory, using Eqs. (22), (44)and (45) as:

Ψ + nk ( r,θ,ϕ )[ θ( E ncao ) V ^ 1pao ( r,Θ, E nk ,M,ω ) +θ( E ncao ) V ^ 2pao ( r,Θ, E nk ,M,ω ) ] Ψ nk ( r,θ,ϕ ) r 2 drdΩ = =θ( E ncao ) F * nk ( r ) V ^ 1pkb ( r,Θ, E nk ,M,ω ) F nk ( r )dr θ( E ncao ) G n k ˜ * ( r ) V ^ 2pao ( r,Θ, E nk ,M,ω ) G n k ˜ ( r )dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aa8 qaaeaadaGfGbqabeqabaGaey4kaScabaGaeuiQdKfaamaaBaaajuai baGaamOBaiaadUgaaKqbagqaamaabmaabaGaamOCaiaacYcacqaH4o qCcaGGSaGaeqy1dygacaGLOaGaayzkaaWaamWaaqaabeqaaiabeI7a XnaabmaabaGaamyramaaBaaajuaibaGaamOBaiaadogacqGHsislca WGHbGaam4BaaqcfayabaaacaGLOaGaayzkaaGabmOvayaajaWaaSba aKqbGeaacaaIXaGaamiCaiabgkHiTiaadggacaWGVbaabeaajuaGda qadaqaaiaadkhacaGGSaGaeuiMdeLaaiilaiaadweadaWgaaqaaiaa d6gacaWGRbaabeaacaGGSaGaamytaiaacYcacqaHjpWDaiaawIcaca GLPaaaaeaacqGHRaWkcqaH4oqCdaqadaqaaiabgkHiTiaadweadaWg aaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamyyaiaad+gaaeqaaaqcfa OaayjkaiaawMcaaiqadAfagaqcamaaBaaajuaibaGaaGOmaiaadcha cqGHsislcaWGHbGaam4Baaqabaqcfa4aaeWaaeaacaWGYbGaaiilai abfI5arjaacYcacaWGfbWaaSbaaKqbGeaacaWGUbGaam4Aaaqabaqc faOaaiilaiaad2eacaGGSaGaeqyYdChacaGLOaGaayzkaaaaaiaawU facaGLDbaacqqHOoqwdaWgaaqcfasaaiaad6gacaWGRbaajuaGbeaa daqadaqaaiaadkhacaGGSaGaeqiUdeNaaiilaiabew9aMbGaayjkai aawMcaaiaadkhadaahaaqcfasabeaacaaIYaaaaKqbakaadsgacaWG YbGaamizaiabfM6axbqabeqacqGHRiI8aiabg2da9aGcbaqcfaOaey ypa0JaeqiUde3aaeWaaeaacaWGfbWaaSbaaKqbGeaacaWGUbGaam4y aiabgkHiTiaadggacaWGVbaabeaaaKqbakaawIcacaGLPaaadaWdba qaaiaadAeadaahaaqcfasabeaacaGGQaaaaKqbaoaaBaaajuaibaGa amOBaiaadUgaaeqaaKqbaoaabmaabaGaamOCaaGaayjkaiaawMcaai qadAfagaqcamaaBaaajuaibaGaaGymaiaadchacqGHsislcaWGRbGa amOyaaqcfayabaWaaeWaaeaacaWGYbGaaiilaiabfI5arjaacYcaca WGfbWaaSbaaeaacaWGUbGaam4AaaqabaGaaiilaiaad2eacaGGSaGa eqyYdChacaGLOaGaayzkaaGaamOramaaBaaajuaibaGaamOBaiaadU gaaeqaaKqbaoaabmaabaGaamOCaaGaayjkaiaawMcaaiaadsgacaWG YbaabeqabiabgUIiYdaakeaajuaGcqGHsislcqaH4oqCdaqadaqaai aadweadaWgaaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamyyaiaad+ga aeqaaaqcfaOaayjkaiaawMcaamaapeaabaGaam4ramaaBaaajuaiba GaamOBaiqadUgagaacaaqabaqcfa4aaWbaaKqbGeqabaGaaiOkaaaa juaGdaqadaqaaiaadkhaaiaawIcacaGLPaaaceWGwbGbaKaadaWgaa qcfasaaiaaikdacaWGWbGaeyOeI0Iaamyyaiaad+gaaeqaaKqbaoaa bmaabaGaamOCaiaacYcacqqHyoqucaGGSaGaamyramaaBaaajuaiba GaamOBaiaadUgaaeqaaKqbakaacYcacaWGnbGaaiilaiabeM8a3bGa ayjkaiaawMcaaiaadEeadaWgaaqcfasaaiaad6gaceWGRbGbaGaaae qaaKqbaoaabmaabaGaamOCaaGaayjkaiaawMcaaiaadsgacaWGYbaa beqabiabgUIiYdaaaaa@F405@   (50)

The first parts represent the modifications to the energy levels for the spin symmetric cases E ncper:u ( Θ, k 1 , E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaigdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaaaaa@4DE7@  and E ncper:d ( Θ, k 2 , E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadsgaaKqbagqaamaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaikdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaaaaa@4DD7@  while the second part represent the modifications to the energy levels ( E ncper:d ( Θ, k ˜ 1 , E 0k , E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadsgaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiqadUgaga acamaaBaaajuaibaGaaGymaaqabaqcfaOaaiilaiaadweadaWgaaqc fasaaiaaicdacaWGRbaabeaajuaGcaGGSaGaamyramaaBaaajuaiba GaamOBaiaadUgaaeqaaKqbakaacYcacaWGnbGaaiilaiabeM8a3bGa ayjkaiaawMcaaaaa@51E6@ , E ncper:u ( Θ, k ˜ 2 , E 0k , E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiqadUgaga acamaaBaaajuaibaGaaGOmaaqabaqcfaOaaiilaiaadweadaWgaaqc fasaaiaaicdacaWGRbaabeaajuaGcaGGSaGaamyramaaBaaajuaiba GaamOBaiaadUgaaeqaaKqbakaacYcacaWGnbGaaiilaiabeM8a3bGa ayjkaiaawMcaaaaa@51F8@ ) for the spin spin–symmetry, then we have explicitly:

E ncper:u ( Θ, k 1 , E nk ,M,ω )θ( E nckb ) k 1 Θ F * nk ( r )( α 2M r 4 1 2 M ω 2 ) F nk ( r )dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaKqbagqaamaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaigdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaGaeyyyIORaeqiUde3aaeWaaeaacaWGfbWaaSbaaKqb GeaacaWGUbGaam4yaiabgkHiTiaadUgacaWGIbaabeaaaKqbakaawI cacaGLPaaacaWGRbWaaSbaaKqbGeaacaaIXaaabeaajuaGcqqHyoqu daWdbaqaamaaxacabaGaamOraaqabKqbGeaacaGGQaaaaKqbaoaaBa aajuaibaGaamOBaiaadUgaaeqaaKqbaoaabmaabaGaamOCaaGaayjk aiaawMcaamaabmaabaWaaSaaaeaacqaHXoqyaeaacaaIYaGaamytai aadkhadaahaaqcfasabeaacaaI0aaaaaaajuaGcqGHsisldaWcaaqa aiaaigdaaeaacaaIYaaaaiaad2eacqaHjpWDdaahaaqcfasabeaaca aIYaaaaaqcfaOaayjkaiaawMcaaiaadAeadaWgaaqcfasaaiaad6ga caWGRbaabeaajuaGdaqadaqaaiaadkhaaiaawIcacaGLPaaacaWGKb GaamOCaaqabeqacqGHRiI8aaaa@7CBB@   (51)

E ncper:u ( Θ, k 2 , E nk ,M,ω )θ( E nckb ) k 2 Θ F * nk ( r )( α 2M r 4 1 2 M ω 2 ) F nk ( r )dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaikdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaGaeyyyIORaeqiUde3aaeWaaeaacaWGfbWaaSbaaKqb GeaacaWGUbGaam4yaiabgkHiTiaadUgacaWGIbaajuaGbeaaaiaawI cacaGLPaaacaWGRbWaaSbaaKqbGeaacaaIYaaajuaGbeaacqqHyoqu daWdbaqaamaaxacabaGaamOraaqabKqbGeaacaGGQaaaaKqbaoaaBa aajuaibaGaamOBaiaadUgaaeqaaKqbaoaabmaabaGaamOCaaGaayjk aiaawMcaamaabmaabaWaaSaaaeaacqaHXoqyaeaacaaIYaGaamytai aadkhadaahaaqabKqbGeaacaaI0aaaaaaajuaGcqGHsisldaWcaaqa aiaaigdaaeaacaaIYaaaaiaad2eacqaHjpWDdaahaaqabKqbGeaaca aIYaaaaaqcfaOaayjkaiaawMcaaiaadAeadaWgaaqcfasaaiaad6ga caWGRbaajuaGbeaadaqadaqaaiaadkhaaiaawIcacaGLPaaacaWGKb GaamOCaaqabeqacqGHRiI8aaaa@7CBD@   (52)

Inserting the radial function F nk (r) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbmqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaWGUbGaam4AaaqabaGccaGGOaGaamOCaiaacMcaaaa@3B2D@  given by Eq. (23) into the above two Eqs. (51) and (52) to obtain:

E ncper:u ( Θ, k 2 , E nk ,M,ω )θ( E ncao )Θ k 1 | C n | 2 0 + exp( M( M+ E n,k ) r 2 ) r 2L+2 [ L n L+1/2 ( M( M+ E n,k ) r 2 ) ] 2 ( α 2M r 4 1 2 M ω 2 )dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajuaibaGaamOBaiaadogacqGHsislcaWGWbGaamyzaiaa dkhacaGG6aGaamyDaaqabaqcfa4aaeWaaeaacqqHyoqucaGGSaGaam 4AamaaBaaajuaibaGaaGOmaaqabaqcfaOaaiilaiaadweadaWgaaqc fasaaiaad6gacaWGRbaabeaajuaGcaGGSaGaamytaiaacYcacqaHjp WDaiaawIcacaGLPaaacqGHHjIUcqaH4oqCdaqadaqaaiaadweadaWg aaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamyyaiaad+gaaKqbagqaaa GaayjkaiaawMcaaiabfI5arjaadUgadaWgaaqcfasaaiaaigdaaeqa aKqbaoaaemaabaGaam4qamaaBaaajuaibaGaamOBaaqcfayabaaaca GLhWUaayjcSdWaaWbaaeqajuaibaGaaGOmaaaaaOqaaKqbaoaapeha baGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaGcaaqaaiaad2 eadaqadaqaaiaad2eacqGHRaWkcaWGfbWaaSbaaKqbGeaacaWGUbGa aiilaiaadUgaaeqaaaqcfaOaayjkaiaawMcaaaqabaGaamOCamaaCa aabeqcfasaaiaaikdaaaaajuaGcaGLOaGaayzkaaGaamOCamaaCaaa juaibeqaaiaaikdacaWGmbGaey4kaSIaaGOmaaaajuaGdaWadaqaai aadYeadaqhaaqcfasaaiaad6gaaeaacaWGmbGaey4kaSIaaGymaiaa c+cacaaIYaaaaKqbaoaabmaabaWaaOaaaeaacaWGnbWaaeWaaeaaca WGnbGaey4kaSIaamyramaaBaaajuaibaGaamOBaiaacYcacaWGRbaa juaGbeaaaiaawIcacaGLPaaaaeqaaiaadkhadaahaaqcfasabeaaca aIYaaaaaqcfaOaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaajuai beqaaiaaikdaaaqcfa4aaeWaaeaadaWcaaqaaiabeg7aHbqaaiaaik dacaWGnbGaamOCamaaCaaabeqcfasaaiaaisdaaaaaaKqbakabgkHi TmaalaaabaGaaGymaaqaaiaaikdaaaGaamytaiabeM8a3naaCaaabe qcfasaaiaaikdaaaaajuaGcaGLOaGaayzkaaGaamizaiaadkhaaKqb GeaacaaIWaaabaGaey4kaSIaeyOhIukajuaGcqGHRiI8aaaaaa@A656@   (53)

E ncper:u ( Θ, k 2 , E nk ,M,ω )θ( E ncao )Θ k 2 | C n | 2 0 + exp( M( M+ E n,k ) r 2 ) r 2L+2 [ L n L+1/2 ( M( M+ E n,k ) r 2 ) ] 2 ( α 2M r 4 1 2 M ω 2 )dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajuaibaGaamOBaiaadogacqGHsislcaWGWbGaamyzaiaa dkhacaGG6aGaamyDaaqabaqcfa4aaeWaaeaacqqHyoqucaGGSaGaam 4AamaaBaaajuaibaGaaGOmaaqabaqcfaOaaiilaiaadweadaWgaaqc fasaaiaad6gacaWGRbaajuaGbeaacaGGSaGaamytaiaacYcacqaHjp WDaiaawIcacaGLPaaacqGHHjIUcqaH4oqCdaqadaqaaiaadweadaWg aaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamyyaiaad+gaaKqbagqaaa GaayjkaiaawMcaaiabfI5arjaadUgadaWgaaqcfasaaiaaikdaaeqa aKqbaoaaemaabaGaam4qamaaBaaajuaibaGaamOBaaqcfayabaaaca GLhWUaayjcSdWaaWbaaKqbGeqabaGaaGOmaaaaaOqaaKqbaoaapeha baGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaGcaaqaaiaad2 eadaqadaqaaiaad2eacqGHRaWkcaWGfbWaaSbaaKqbGeaacaWGUbGa aiilaiaadUgaaKqbagqaaaGaayjkaiaawMcaaaqabaGaamOCamaaCa aajuaibeqaaiaaikdaaaaajuaGcaGLOaGaayzkaaGaamOCamaaCaaa beqcfasaaiaaikdacaWGmbGaey4kaSIaaGOmaaaajuaGdaWadaqaai aadYeadaqhaaqcfasaaiaad6gaaeaacaWGmbGaey4kaSIaaGymaiaa c+cacaaIYaaaaKqbaoaabmaabaWaaOaaaeaacaWGnbWaaeWaaeaaca WGnbGaey4kaSIaamyramaaBaaajuaibaGaamOBaiaacYcacaWGRbaa juaGbeaaaiaawIcacaGLPaaaaeqaaiaadkhadaahaaqcfasabeaaca aIYaaaaaqcfaOaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaabeqc fasaaiaaikdaaaqcfa4aaeWaaeaadaWcaaqaaiabeg7aHbqaaiaaik dacaWGnbGaamOCamaaCaaabeqcfasaaiaaisdaaaaaaKqbakabgkHi TmaalaaabaGaaGymaaqaaiaaikdaaaGaamytaiabeM8a3naaCaaaju aibeqaaiaaikdaaaaajuaGcaGLOaGaayzkaaGaamizaiaadkhaaKqb GeaacaaIWaaabaGaey4kaSIaeyOhIukajuaGcqGHRiI8aaaaaa@A657@   (54)

To evaluate the integrations here, we rewriting the above two integrals to the useful forms:

E ncper:u ( Θ, k 2 , E nk ,M,ω )θ( E ncao )Θ k 1 | C n | 2 μ=1 2 T ao μ ( E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaikdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqcfayabaGaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaGaeyyyIORaeqiUde3aaeWaaeaacaWGfbWaaSbaaKqb GeaacaWGUbGaam4yaiabgkHiTiaadggacaWGVbaajuaGbeaaaiaawI cacaGLPaaacqqHyoqucaWGRbWaaSbaaKqbGeaacaaIXaaabeaajuaG daabdaqaaiaadoeadaWgaaqcfasaaiaad6gaaKqbagqaaaGaay5bSl aawIa7amaaCaaajuaibeqaaiaaikdaaaqcfa4aaabCaeaacaWGubWa a0baaKqbGeaacaWGHbGaam4BaaqaaiabeY7aTbaajuaGdaqadaqaai aadweadaWgaaqcfasaaiaad6gacaWGRbaajuaGbeaacaGGSaGaamyt aiaacYcacqaHjpWDaiaawIcacaGLPaaaaKqbGeaacqaH8oqBcqGH9a qpcaaIXaaabaGaaGOmaaqcfaOaeyyeIuoaaaa@79FE@   (55)

E ncper:u ( Θ, k 2 , E nk ,M,ω )θ( E ncao )Θ k 2 | C n | 2 μ=1 2 T ao μ ( E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaikdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqcfayabaGaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaGaeyyyIORaeqiUde3aaeWaaeaacaWGfbWaaSbaaKqb GeaacaWGUbGaam4yaiabgkHiTiaadggacaWGVbaajuaGbeaaaiaawI cacaGLPaaacqqHyoqucaWGRbWaaSbaaKqbGeaacaaIYaaajuaGbeaa daabdaqaaiaadoeadaWgaaqcfasaaiaad6gaaKqbagqaaaGaay5bSl aawIa7amaaCaaajuaibeqaaiaaikdaaaqcfa4aaabCaeaacaWGubWa a0baaKqbGeaacaWGHbGaam4BaaqaaiabeY7aTbaajuaGdaqadaqaai aadweadaWgaaqcfasaaiaad6gacaWGRbaabeaajuaGcaGGSaGaamyt aiaacYcacqaHjpWDaiaawIcacaGLPaaaaKqbGeaacqaH8oqBcqGH9a qpcaaIXaaabaGaaGOmaaqcfaOaeyyeIuoaaaa@79FF@   (56)

Where the factors T ao μ ( E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada qhaaqcfasaaiaadggacaWGVbaabaGaeqiVd0gaaKqbaoaabmaabaGa amyramaaBaaajuaibaGaamOBaiaadUgaaKqbagqaaiaacYcacaWGnb GaaiilaiabeM8a3bGaayjkaiaawMcaaaaa@44D2@   ( μ=1,2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeqiVd0Maeyypa0JaaGymaiaacYcacaaIYaaacaGLOaGaayzkaaaa aa@3CE5@  are given by:

T ao 1 ( E nk ,M,ω )= α 2M 0 + exp( M( M+ E n,k ) r 2 ) r 2L2 [ L n L+1/2 ( M( M+ E n,k ) r 2 ) ] 2 dr T ao 2 ( E nk ,M,ω )= 1 2 M ω 2 0 + exp( M( M+ E n,k ) r 2 ) r 2L+2 [ L n L+1/2 ( M( M+ E n,k ) r 2 ) ] 2 dr MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam ivamaaDaaajuaibaGaamyyaiaad+gaaeaacaaIXaaaaKqbaoaabmaa baGaamyramaaBaaajuaibaGaamOBaiaadUgaaKqbagqaaiaacYcaca WGnbGaaiilaiabeM8a3bGaayjkaiaawMcaaiabg2da9maalaaabaGa eqySdegabaGaaGOmaiaad2eaaaWaa8qCaqaabeqaaiGacwgacaGG4b GaaiiCamaabmaabaGaeyOeI0YaaOaaaeaacaWGnbWaaeWaaeaacaWG nbGaey4kaSIaamyramaaBaaajuaibaGaamOBaiaacYcacaWGRbaabe aaaKqbakaawIcacaGLPaaaaeqaaiaadkhadaahaaqcfasabeaacaaI YaaaaaqcfaOaayjkaiaawMcaaiaadkhadaahaaqcfasabeaacaaIYa GaamitaiabgkHiTiaaikdaaaaajuaGbaWaamWaaeaacaWGmbWaa0ba aKqbGeaacaWGUbaabaGaamitaiabgUcaRiaaigdacaGGVaGaaGOmaa aajuaGdaqadaqaamaakaaabaGaamytamaabmaabaGaamytaiabgUca RiaadweadaWgaaqcfasaaiaad6gacaGGSaGaam4Aaaqcfayabaaaca GLOaGaayzkaaaabeaacaWGYbWaaWbaaeqajuaibaGaaGOmaaaaaKqb akaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaqcfasabeaacaaIYa aaaKqbakaadsgacaWGYbaaaKqbGeaacaaIWaaabaGaey4kaSIaeyOh IukajuaGcqGHRiI8aaGcbaqcfaOaamivamaaDaaajuaibaGaamyyai aad+gaaeaacaaIYaaaaKqbaoaabmaabaGaamyramaaBaaajuaibaGa amOBaiaadUgaaeqaaKqbakaacYcacaWGnbGaaiilaiabeM8a3bGaay jkaiaawMcaaiabg2da9iabgkHiTmaalaaabaGaaGymaaqaaiaaikda aaGaamytaiabeM8a3naaCaaajuaibeqaaiaaikdaaaqcfa4aa8qCaq aabeqaaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0YaaOaaaeaa caWGnbWaaeWaaeaacaWGnbGaey4kaSIaamyramaaBaaajuaibaGaam OBaiaacYcacaWGRbaabeaaaKqbakaawIcacaGLPaaaaeqaaiaadkha daahaaqcfasabeaacaaIYaaaaaqcfaOaayjkaiaawMcaaiaadkhada ahaaqabKqbGeaacaaIYaGaamitaiabgUcaRiaaikdaaaaajuaGbaWa amWaaeaacaWGmbWaa0baaKqbGeaacaWGUbaabaGaamitaiabgUcaRi aaigdacaGGVaGaaGOmaaaajuaGdaqadaqaamaakaaabaGaamytamaa bmaabaGaamytaiabgUcaRiaadweadaWgaaqcfasaaiaad6gacaGGSa Gaam4AaaqcfayabaaacaGLOaGaayzkaaaabeaacaWGYbWaaWbaaeqa juaibaGaaGOmaaaaaKqbakaawIcacaGLPaaaaiaawUfacaGLDbaada ahaaqcfasabeaacaaIYaaaaKqbakaadsgacaWGYbaaaKqbGeaacaaI WaaabaGaey4kaSIaeyOhIukajuaGcqGHRiI8aaaaaa@C54A@   (57)

The above two equations, after employing an appropriate coordinate transformation r 2 =t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbmqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaCa aaleqabaGaaGOmaaaakiabg2da9iaadshaaaa@39E2@ , transforms to the following form:

T ao 1 ( E nk ,M,ω )= α 4M 0 + exp( M( M+ E n,k ) t ) t ( L 1 2 )1 [ L n L+1/2 ( M( M+ E n,k ) t ) ] 2 dt T ao 2 ( E nk ,M,ω )= 1 4 M ω 2 0 + exp( M( M+ E n,k ) t ) t ( L+ 3 2 )1 [ L n L+1/2 ( M( M+ E n,k ) t ) ] 2 dt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam ivamaaDaaajuaibaGaamyyaiaad+gaaeaacaaIXaaaaKqbaoaabmaa baGaamyramaaBaaajuaibaGaamOBaiaadUgaaKqbagqaaiaacYcaca WGnbGaaiilaiabeM8a3bGaayjkaiaawMcaaiabg2da9maalaaabaGa eqySdegabaGaaGinaiaad2eaaaWaa8qCaqaabeqaaiGacwgacaGG4b GaaiiCamaabmaabaGaeyOeI0YaaOaaaeaacaWGnbWaaeWaaeaacaWG nbGaey4kaSIaamyramaaBaaajuaibaGaamOBaiaacYcacaWGRbaaju aGbeaaaiaawIcacaGLPaaaaeqaaiaadshaaiaawIcacaGLPaaacaWG 0bWaaWbaaeqabaWaaeWaaeaacaWGmbGaeyOeI0YaaSaaaeaacaaIXa aabaGaaGOmaaaaaiaawIcacaGLPaaacqGHsislcaaIXaaaaaqaamaa dmaabaGaamitamaaDaaajuaibaGaamOBaaqaaiaadYeacqGHRaWkca aIXaGaai4laiaaikdaaaqcfa4aaeWaaeaadaGcaaqaaiaad2eadaqa daqaaiaad2eacqGHRaWkcaWGfbWaaSbaaKqbGeaacaWGUbGaaiilai aadUgaaKqbagqaaaGaayjkaiaawMcaaaqabaGaamiDaaGaayjkaiaa wMcaaaGaay5waiaaw2faamaaCaaajuaibeqaaiaaikdaaaqcfaOaam izaiaadshaaaqcfasaaiaaicdaaeaacqGHRaWkcqGHEisPaKqbakab gUIiYdaakeaajuaGcaWGubWaa0baaKqbGeaacaWGHbGaam4Baaqaai aaikdaaaqcfa4aaeWaaeaacaWGfbWaaSbaaKqbGeaacaWGUbGaam4A aaqcfayabaGaaiilaiaad2eacaGGSaGaeqyYdChacaGLOaGaayzkaa Gaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaabaGaaGinaaaacaWGnbGa eqyYdC3aaWbaaKqbGeqabaGaaGOmaaaajuaGdaWdXbabaeqabaGaci yzaiaacIhacaGGWbWaaeWaaeaacqGHsisldaGcaaqaaiaad2eadaqa daqaaiaad2eacqGHRaWkcaWGfbWaaSbaaKqbGeaacaWGUbGaaiilai aadUgaaKqbagqaaaGaayjkaiaawMcaaaqabaGaamiDaaGaayjkaiaa wMcaaiaadshadaahaaqabeaadaqadaqaaiaadYeacqGHRaWkdaWcaa qaaiaaiodaaeaacaaIYaaaaaGaayjkaiaawMcaaiabgkHiTiaaigda aaaabaWaamWaaeaacaWGmbWaa0baaKqbGeaacaWGUbaabaGaamitai abgUcaRiaaigdacaGGVaGaaGOmaaaajuaGdaqadaqaamaakaaabaGa amytamaabmaabaGaamytaiabgUcaRiaadweadaWgaaqcfasaaiaad6 gacaGGSaGaam4AaaqcfayabaaacaGLOaGaayzkaaaabeaacaWG0baa caGLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaKqbGeqabaGaaGOmaa aajuaGcaWGKbGaamiDaaaajuaibaGaaGimaaqaaiabgUcaRiabg6Hi LcqcfaOaey4kIipaaaaa@C400@   (58)

Now, to obtain the modifications to the energy levels for  excited states we apply the following special integration.69

0 + t . α1. exp( δt ) Γ m λ ( δt ) Γ n β ( δt )dt = δ α Γ( nα+β+1 )Γ( m+λ+1 ) m!n!Γ( 1α+β )Γ( 1+λ ) F 3 2 ( m,α,αβ;n+α,λ+1;1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aaC biaeaadaWfqaqaamaavadabeqabeqacqGHRiI8aaqcfasaaiaaicda aKqbagqaaaqabKqbGeaacqGHRaWkcqGHEisPaaqcfaOaamiDamaaDa aabaGaaiOlaaqaaKqbGiabeg7aHjabgkHiTiaaigdajuaGcaGGUaaa aiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0IaeqiTdqMaamiDaa GaayjkaiaawMcaaiabfo5ahnaaDaaajuaibaGaamyBaaqaaiabeU7a SbaajuaGdaqadaqaaiabes7aKjaadshaaiaawIcacaGLPaaacaaMc8 Uaeu4KdC0aa0baaKqbGeaacaWGUbaabaGaeqOSdigaaKqbaoaabmaa baGaeqiTdqMaamiDaaGaayjkaiaawMcaaiaadsgacaWG0baakeaaju aGcqGH9aqpdaWcaaqaaiabes7aKnaaCaaajuaibeqaaiabgkHiTiab eg7aHbaajuaGcqqHtoWrdaqadaqaaiaad6gacqGHsislcqaHXoqycq GHRaWkcqaHYoGycqGHRaWkcaaIXaaacaGLOaGaayzkaaGaeu4KdC0a aeWaaeaacaWGTbGaey4kaSIaeq4UdWMaey4kaSIaaGymaaGaayjkai aawMcaaaqaaiaad2gacaqGHaGaamOBaiaabgcacqqHtoWrdaqadaqa aiaaigdacqGHsislcqaHXoqycqGHRaWkcqaHYoGyaiaawIcacaGLPa aacqqHtoWrdaqadaqaaiaaigdacqGHRaWkcqaH7oaBaiaawIcacaGL PaaaaaWaaSraaeaacaaIZaaabeaacaWGgbWaaSbaaKqbGeaacaaIYa aabeaajuaGdaqadaqaaiabgkHiTiaad2gacaGGSaGaeqySdeMaaiil aiabeg7aHjabgkHiTiabek7aIjaacUdacqGHsislcaWGUbGaey4kaS IaeqySdeMaaiilaiabeU7aSjabgUcaRiaaigdacaGG7aGaaGymaaGa ayjkaiaawMcaaaaaaa@A57B@   (59)

where F 3 2 ( m,α,αβ;n+α,λ+1;1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaBeaaba GaaG4maaqabaGaamOramaaBaaajuaibaGaaGOmaaqabaqcfa4aaeWa aeaacqGHsislcaWGTbGaaiilaiabeg7aHjaacYcacqaHXoqycqGHsi slcqaHYoGycaGG7aGaeyOeI0IaamOBaiabgUcaRiabeg7aHjaacYca cqaH7oaBcqGHRaWkcaaIXaGaai4oaiaaigdaaiaawIcacaGLPaaaaa a@4EEB@  obtained from the generalized the hypergeometric function F p q ( α 1 ,..., α p , β 1 ,...., β q ,z ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaBeaaju aibaGaamiCaaqcfayabaGaamOramaaBaaajuaibaGaamyCaaqabaqc fa4aaeWaaeaacqaHXoqydaWgaaqcfasaaiaaigdaaeqaaKqbakaacY cacaGGUaGaaiOlaiaac6cacaGGSaGaeqySde2aaSbaaKqbGeaacaWG WbaajuaGbeaacaGGSaGaeqOSdi2aaSbaaKqbGeaacaaIXaaabeaaju aGcaGGSaGaaiOlaiaac6cacaGGUaGaaiOlaiaacYcacqaHYoGydaWg aaqcfasaaiaadghaaeqaaKqbakaacYcacaWG6baacaGLOaGaayzkaa aaaa@53C5@  for p=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadchacq GH9aqpcaaIZaaaaa@3931@  and q=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadghacq GH9aqpcaaIYaaaaa@3931@  while Γ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfo5ahn aabmaabaGaamiEaaGaayjkaiaawMcaaaaa@3A67@  denote to the usual Gamma function. After straightforward calculations, we can obtain the explicitly results:

T ao 1 ( E nk ,M,ω )= α 4M [ M( M+ E n,k ) ] 2L1 4 Γ( n+2 )Γ( n+L+3/2 ) ( n! ) 2 Γ( 2 )Γ( L+3/2 ) 3 F 2 ( n,L1/2,1;Ln1/2,L+3/2;1 ) T ao 2 ( E nk ,M,ω )= 1 4 M ω 2 [ M( M+ E n,k ) ] 2L+3 4 Γ( n )Γ( n+L+3/2 ) ( n! ) 2 Γ( L+3/2 ) 3 F 2 ( n,L+ 3 2 ,1;Ln+3/2,L+3/2;1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam ivamaaDaaajuaibaGaamyyaiaad+gaaeaacaaIXaaaaKqbaoaabmaa baGaamyramaaBaaajuaibaGaamOBaiaadUgaaeqaaKqbakaacYcaca WGnbGaaiilaiabeM8a3bGaayjkaiaawMcaaiabg2da9maalaaabaGa eqySdegabaGaaGinaiaad2eaaaWaaSaaaeaadaWadaqaaiaad2eada qadaqaaiaad2eacqGHRaWkcaWGfbWaaSbaaKqbGeaacaWGUbGaaiil aiaadUgaaeqaaaqcfaOaayjkaiaawMcaaaGaay5waiaaw2faamaaCa aabeqaaiabgkHiTmaalaaabaGaaGOmaiaadYeacqGHsislcaaIXaaa baGaaGinaaaaaaGaeu4KdC0aaeWaaeaacaWGUbGaey4kaSIaaGOmaa GaayjkaiaawMcaaiabfo5ahnaabmaabaGaamOBaiabgUcaRiaadYea cqGHRaWkcaaIZaGaai4laiaaikdaaiaawIcacaGLPaaaaeaadaqada qaaiaad6gacaqGHaaacaGLOaGaayzkaaWaaWbaaKqbGeqabaGaaGOm aaaajuaGcqqHtoWrdaqadaqaaiaaikdaaiaawIcacaGLPaaacqqHto WrdaqadaqaaiaadYeacqGHRaWkcaaIZaGaai4laiaaikdaaiaawIca caGLPaaaaaWaaSraaKqbGeaacaaIZaaabeaaaOqaaKqbakaadAeada WgaaqcfasaaiaaikdaaeqaaKqbaoaabmaabaGaeyOeI0IaamOBaiaa cYcacaWGmbGaeyOeI0IaaGymaiaac+cacaaIYaGaaiilaiabgkHiTi aaigdacaGG7aGaamitaiabgkHiTiaad6gacqGHsislcaaIXaGaai4l aiaaikdacaGGSaGaamitaiabgUcaRiaaiodacaGGVaGaaGOmaiaacU dacaaIXaaacaGLOaGaayzkaaaakeaajuaGcaWGubWaa0baaKqbGeaa caWGHbGaam4Baaqaaiaaikdaaaqcfa4aaeWaaeaacaWGfbWaaSbaaK qbGeaacaWGUbGaam4AaaqcfayabaGaaiilaiaad2eacaGGSaGaeqyY dChacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaSaaaeaacaaIXaaaba GaaGinaaaacaWGnbGaeqyYdC3aaWbaaKqbGeqabaGaaGOmaaaajuaG daWcaaqaamaadmaabaGaamytamaabmaabaGaamytaiabgUcaRiaadw eadaWgaaqcfasaaiaad6gacaGGSaGaam4AaaqcfayabaaacaGLOaGa ayzkaaaacaGLBbGaayzxaaWaaWbaaeqabaGaeyOeI0YaaSaaaeaaca aIYaGaamitaiabgUcaRiaaiodaaeaacaaI0aaaaaaacqqHtoWrdaqa daqaaiaad6gaaiaawIcacaGLPaaacqqHtoWrdaqadaqaaiaad6gacq GHRaWkcaWGmbGaey4kaSIaaG4maiaac+cacaaIYaaacaGLOaGaayzk aaaabaWaaeWaaeaacaWGUbGaaeyiaaGaayjkaiaawMcaamaaCaaabe qcfasaaiaaikdaaaqcfaOaeu4KdC0aaeWaaeaacaWGmbGaey4kaSIa aG4maiaac+cacaaIYaaacaGLOaGaayzkaaaaamaaBeaajuaibaGaaG 4maaqabaaakeaajuaGcaWGgbWaaSbaaKqbGeaacaaIYaaabeaajuaG daqadaqaaiabgkHiTiaad6gacaGGSaGaamitaiabgUcaRmaalaaaba GaaG4maaqaaiaaikdaaaGaaiilaiaaigdacaGG7aGaamitaiabgkHi Tiaad6gacqGHRaWkcaaIZaGaai4laiaaikdacaGGSaGaamitaiabgU caRiaaiodacaGGVaGaaGOmaiaacUdacaaIXaaacaGLOaGaayzkaaaa aaa@E635@   (60)

Hence the exact modifications E ncper:u ( Θ, k 1 , E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaKqbagqaamaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaigdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqcfayabaGaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaaaaa@4DE7@  and E ncper:d ( Θ, k 2 , E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadsgaaKqbagqaamaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaikdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaaaaa@4DD7@  of E ncper:d ( Θ, k 2 , E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadsgaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaikdaaKqbagqaaiaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaaaaa@4DD7@  excited states which produced by spin–orbital effect:

E ncper:u ( Θ, k 2 , E nk ,M,ω )θ( E ncao )Θ k 1 | C n | 2 T ao ( E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaikdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaGaeyyyIORaeqiUde3aaeWaaeaacaWGfbWaaSbaaKqb GeaacaWGUbGaam4yaiabgkHiTiaadggacaWGVbaajuaGbeaaaiaawI cacaGLPaaacqqHyoqucaWGRbWaaSbaaKqbGeaacaaIXaaabeaajuaG daabdaqaaiaadoeadaWgaaqcfasaaiaad6gaaKqbagqaaaGaay5bSl aawIa7amaaCaaajuaibeqaaiaaikdaaaqcfaOaamivamaaBaaajuai baGaamyyaiaad+gaaeqaaKqbaoaabmaabaGaamyramaaBaaajuaiba GaamOBaiaadUgaaeqaaKqbakaacYcacaWGnbGaaiilaiabeM8a3bGa ayjkaiaawMcaaaaa@712E@   (61)

E ncper:u ( Θ, k 2 , E nk ,M,ω )θ( E ncao )Θ k 2 | C n | 2 T ao ( E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaKqbagqaamaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaikdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqcfayabaGaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaGaeyyyIORaeqiUde3aaeWaaeaacaWGfbWaaSbaaKqb GeaacaWGUbGaam4yaiabgkHiTiaadggacaWGVbaabeaaaKqbakaawI cacaGLPaaacqqHyoqucaWGRbWaaSbaaKqbGeaacaaIYaaajuaGbeaa daabdaqaaiaadoeadaWgaaqcfasaaiaad6gaaKqbagqaaaGaay5bSl aawIa7amaaCaaajuaibeqaaiaaikdaaaqcfaOaamivamaaBaaajuai baGaamyyaiaad+gaaKqbagqaamaabmaabaGaamyramaaBaaajuaiba GaamOBaiaadUgaaKqbagqaaiaacYcacaWGnbGaaiilaiabeM8a3bGa ayjkaiaawMcaaaaa@712F@   (62)

Where T ao ( E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada WgaaqcfasaaiaadggacaWGVbaabeaajuaGdaqadaqaaiaadweadaWg aaqcfasaaiaad6gacaWGRbaajuaGbeaacaGGSaGaamytaiaacYcacq aHjpWDaiaawIcacaGLPaaaaaa@431B@  is the sum of two factors T ao 1 ( E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada qhaaqcfasaaiaadggacaWGVbaabaGaaGymaaaajuaGdaqadaqaaiaa dweadaWgaaqcfasaaiaad6gacaWGRbaabeaajuaGcaGGSaGaamytai aacYcacqaHjpWDaiaawIcacaGLPaaaaaa@43D7@  and T ao 2 ( E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadsfada qhaaqcfasaaiaadggacaWGVbaabaGaaGOmaaaajuaGdaqadaqaaiaa dweadaWgaaqcfasaaiaad6gacaWGRbaajuaObeaajuaGcaGGSaGaam ytaiaacYcacqaHjpWDaiaawIcacaGLPaaaaaa@4486@ .

The exact relativistic magnetic spectrum for (m.a.o.) for nth excited states for one–electron atoms in (NC: 3D– RS) symmetries:

Having obtained the exact modifications to the relativistic energy levels E ncper:u ( Θ, k 1 , E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadwhaaKqbagqaamaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaigdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaaaaa@4DE7@  and E ncper:d ( Θ, k 2 , E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamiCaiaadwgacaWGYbGa aiOoaiaadsgaaeqaaKqbaoaabmaabaGaeuiMdeLaaiilaiaadUgada WgaaqcfasaaiaaikdaaeqaaKqbakaacYcacaWGfbWaaSbaaKqbGeaa caWGUbGaam4AaaqcfayabaGaaiilaiaad2eacaGGSaGaeqyYdChaca GLOaGaayzkaaaaaa@4DD7@  for nth excited states which produced with relativistic NC spin–orbital Hamiltonian operator, our objective now, we consider another interested physically meaningful phenomena, which also can be produce from the perturbative terms of anharmonic oscillator related to the influence of an external uniform magnetic field, it’s sufficient to apply the following two replacements to describing these phenomena:

( α 2M r 4 1 2 M ω 2 ){ L Θ χ( α 2M r 4 1 2 M ω 2 ) B L    for the    spin symmetric    case  L ˜ Θ χ( α 2M r 4 1 2 M ω 2 ) B L ˜ for the p-spin symmetric    case  ΘχB   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfa4aae WaaeaadaWcaaqaaiabeg7aHbqaaiaaikdacaWGnbGaamOCamaaCaaa juaibeqaaiaaisdaaaaaaKqbakabgkHiTmaalaaabaGaaGymaaqaai aaikdaaaGaamytaiabeM8a3naaCaaajuaibeqaaiaaikdaaaaajuaG caGLOaGaayzkaaWaaiqaaqaabeqaaGqabiqa=XeagaWcaiqbfI5arz aalaGaeyOKH4QaeyOKH4Qaeq4Xdm2aaeWaaeaadaWcaaqaaiabeg7a HbqaaiaaikdacaWGnbGaamOCamaaCaaajuaibeqaaiaaisdaaaaaaK qbakabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaamytaiabeM8a 3naaCaaajuaibeqaaiaaikdaaaaajuaGcaGLOaGaayzkaaWaa8Haae aacaWGcbaacaGLxdcadaWhcaqaaiaadYeaaiaawEniauaabeqabiaa aeaacaqGGaGaaeiiaiaabccacaqGMbGaae4BaiaabkhaaeaacaqG0b GaaeiAaiaabwgacaqGGaGaaeiiaiaabccacaqGGaGaae4Caiaabcha caqGPbGaaeOBaiaabccacaqGZbGaaeyEaiaab2gacaqGTbGaaeyzai aabshacaqGYbGaaeyAaiaabogacaqGGaGaaeiiaiaabccacaqGGaGa ae4yaiaabggacaqGZbGaaeyzaiaabccaaaaabaWaa8HaaeaaceWFmb GbaGaaaiaawEniaiqbfI5arzaalaGaeyOKH4QaeyOKH4Qaeq4Xdm2a aeWaaeaadaWcaaqaaiabeg7aHbqaaiaaikdacaWGnbGaamOCamaaCa aabeqcfasaaiaaisdaaaaaaKqbakabgkHiTmaalaaabaGaaGymaaqa aiaaikdaaaGaamytaiabeM8a3naaCaaajuaibeqaaiaaikdaaaaaju aGcaGLOaGaayzkaaWaa8HaaeaacaWGcbaacaGLxdcaceWFmbGbaGaa caWFGaGaa8hiaiaa=bcacaWFGaGaa8hiauaabeqabiaaaeaacaqGMb Gaae4BaiaabkhaaeaacaqG0bGaaeiAaiaabwgacaqGGaGaaeiCaiaa b2cacaqGZbGaaeiCaiaabMgacaqGUbGaaeiiaiaabohacaqG5bGaae yBaiaab2gacaqGLbGaaeiDaiaabkhacaqGPbGaae4yaiaabccacaqG GaGaaeiiaiaabccacaqGJbGaaeyyaiaabohacaqGLbGaaeiiaaaaaa Gaay5EaaaakeaajuaGcqqHyoqucqGHsgIRcqaHhpWyjuaicaWGcbqc faOaaeiiaiaabccaaaaa@C0D1@   (63)

here χ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabeE8aJb aa@3830@  is infinitesimal real proportional’s constants, and we choose the magnetic field  B =B k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaaFmaaba Gaaeiiaiaadkeaaiaawgoiaiabg2da9iaadkeadaWhdaqaaiaadUga aiaawgoiaaaa@3E1E@  for simplify the calculations, which allow us to introduce the modified new magnetic Hamiltonian H ^ magao ( r, E nk ,M,ω,χ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamyBaiaadggacaWGNbGaeyOeI0Iaamyyaiaa d+gaaeqaaKqbaoaabmaabaGaamOCaiaacYcacaWGfbWaaSbaaKqbGe aacaWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGaeqyYdCNa aiilaiabeE8aJbGaayjkaiaawMcaaaaa@4ADE@  on the (NC: 3D–RS), as:

H ^ magao ( r, E nk ,M,ω,χ ) =χ( α 2M r 4 1 2 M ω 2 ){ ( B J S ˜ B )  for the    spin symmetric    case  ( B J S ˜ B ) for the p-spin symmetric    case  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOabm isayaajaWaaSbaaKqbGeaacaWGTbGaamyyaiaadEgacqGHsislcaWG HbGaam4Baaqabaqcfa4aaeWaaeaacaWGYbGaaiilaiaadweadaWgaa qcfasaaiaad6gacaWGRbaabeaajuaGcaGGSaGaamytaiaacYcacqaH jpWDcaGGSaGaeq4XdmgacaGLOaGaayzkaaaakeaajuaGcqGH9aqpcq aHhpWydaqadaqaamaalaaabaGaeqySdegabaGaaGOmaiaad2eacaWG YbWaaWbaaKqbGeqabaGaaGinaaaaaaqcfaOaeyOeI0YaaSaaaeaaca aIXaaabaGaaGOmaaaacaWGnbGaeqyYdC3aaWbaaeqajuaibaGaaGOm aaaaaKqbakaawIcacaGLPaaadaGabaabaeqabaWaaeWaaeaadaWhca qaaiaadkeaaiaawEniamaaFiaabaGaamOsaaGaay51GaGaeyOeI0Ya a8XaaeaaceWGtbGbaGaaaiaawgoiamaaFmaabaGaamOqaaGaayz4Ga aacaGLOaGaayzkaaqbaeqabeGaaaqaaiaabccacaqGMbGaae4Baiaa bkhaaeaacaqG0bGaaeiAaiaabwgacaqGGaGaaeiiaiaabccacaqGGa Gaae4CaiaabchacaqGPbGaaeOBaiaabccacaqGZbGaaeyEaiaab2ga caqGTbGaaeyzaiaabshacaqGYbGaaeyAaiaabogacaqGGaGaaeiiai aabccacaqGGaGaae4yaiaabggacaqGZbGaaeyzaiaabccaaaaabaWa aeWaaeaadaWhcaqaaiaadkeaaiaawEniamaaFiaabaGaamOsaaGaay 51GaGaeyOeI0Yaa8HaaeaaceWGtbGbaGaaaiaawEniamaaFmaabaGa amOqaaGaayz4GaaacaGLOaGaayzkaaqbaeqabeGaaaqaaiaabAgaca qGVbGaaeOCaaqaaiaabshacaqGObGaaeyzaiaabccacaqGWbGaaeyl aiaabohacaqGWbGaaeyAaiaab6gacaqGGaGaae4CaiaabMhacaqGTb GaaeyBaiaabwgacaqG0bGaaeOCaiaabMgacaqGJbGaaeiiaiaabcca caqGGaGaaeiiaiaabogacaqGHbGaae4CaiaabwgacaqGGaaaaaaaca GL7baaaaaa@AEC9@   (64)

where ( S B , S ˜ B ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeyOeI0Yaa8XaaeaacaWGtbaacaGLHdcadaWhdaqaaiaadkeaaiaa wgoiaiaacYcadaWhcaqaaiqadofagaacaaGaay51GaWaa8Xaaeaaca WGcbaacaGLHdcaaiaawIcacaGLPaaaaaa@43DD@  denotes to the two ordinary and pseudo Hamiltonians of Zeeman effect. To obtain the exact NC magnetic modifications of energy E mag-ao ( χ,m, E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaab2gacaqGHbGaae4zaiaab2cacaqGHbGaae4Baaqa baqcfa4aaeWaaeaacqaHhpWycaGGSaGaamyBaiaacYcacaWGfbWaaS baaKqbGeaacaWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGa eqyYdChacaGLOaGaayzkaaaaaa@4A7F@  for (m.a.o.) under spin–symmetry case which produced automatically from the effect of operator H ^ magao ( r, E nk ,M,ω,χ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamyBaiaadggacaWGNbGaeyOeI0Iaamyyaiaa d+gaaeqaaKqbaoaabmaabaGaamOCaiaacYcacaWGfbWaaSbaaKqbGe aacaWGUbGaam4AaaqcfayabaGaaiilaiaad2eacaGGSaGaeqyYdCNa aiilaiabeE8aJbGaayjkaiaawMcaaaaa@4ADE@ , we make the following two simultaneously replacements:

k 1 m    and       Θχ  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgada WgaaqcfasaaiaaigdaaeqaaKqbakabgkziUkaab2gacaqGGaGaaeii aiaabccacaqGGaGaaeyyaiaab6gacaqGKbGaaeiiaiaabccacaqGGa GaaeiiaiaabccacaqGGaGaaeiiaiabfI5arjabgkziUkabeE8aJjaa bccaaaa@4B59@   (65)

Then, the relativistic magnetic modification of energy E mag-ao ( χ,m, E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaab2gacaqGHbGaae4zaiaab2cacaqGHbGaae4Baaqa baqcfa4aaeWaaeaacqaHhpWycaGGSaGaamyBaiaacYcacaWGfbWaaS baaKqbGeaacaWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGa eqyYdChacaGLOaGaayzkaaaaaa@4A7F@  corresponding ground state on the (NC–3D: RS) symmetries, can be determined from the following relation:

E mag-ao ( χ,m, E nk ,M,ω )=θ( E ncao )χmBΘ | C n | 2 T ao ( E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaab2gacaqGHbGaae4zaiaab2cacaqGHbGaae4Baaqc fayabaWaaeWaaeaacqaHhpWycaGGSaGaamyBaiaacYcacaWGfbWaaS baaKqbGeaacaWGUbGaam4AaaqcfayabaGaaiilaiaad2eacaGGSaGa eqyYdChacaGLOaGaayzkaaGaeyypa0JaeqiUde3aaeWaaeaacaWGfb WaaSbaaKqbGeaacaWGUbGaam4yaiabgkHiTiaadggacaWGVbaajuaG beaaaiaawIcacaGLPaaacqaHhpWycaWGTbGaamOqaiabfI5arnaaem aabaGaam4qamaaBaaajuaibaGaamOBaaqcfayabaaacaGLhWUaayjc SdWaaWbaaKqbGeqabaGaaGOmaaaajuaGcaWGubWaaSbaaKqbGeaaca WGHbGaam4BaaqcfayabaWaaeWaaeaacaWGfbWaaSbaaKqbGeaacaWG UbGaam4AaaqcfayabaGaaiilaiaad2eacaGGSaGaeqyYdChacaGLOa Gaayzkaaaaaa@6DEA@   (66)

Where m denote to the angular momentum quantum number satisfying the interval, lm+l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTi aadYgacqGHKjYOcaWGTbGaeyizImQaey4kaSIaamiBaaaa@3E86@ , which allow us to fixing ( 2l+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdaca WGSbGaey4kaSIaaGymaaaa@39C3@ ) values for this quantum number.

Themain results of exact modified global spectrum for (m.a.o.) for one–electron atoms under spin–symmetry and p–spin symmetry in (NC: 3D–RS):

This principal part of the paper is devoted to the presentation of the several results obtained in the previous sections, we resume the nth excited states eigenenergies ( E ncu ( Θ, k 1 ,χ,n,m, E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamyDaaqabaqcfa4aaeWa aeaacqqHyoqucaGGSaGaam4AamaaBaaajuaibaGaaGymaaqabaqcfa OaaiilaiabeE8aJjaacYcacaWGUbGaaiilaiaad2gacaGGSaGaamyr amaaBaaajuaibaGaamOBaiaadUgaaeqaaKqbakaacYcacaWGnbGaai ilaiabeM8a3bGaayjkaiaawMcaaaaa@4FFF@ , E ncd ( Θ, k 2 ,χ,n,m, E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0Iaamizaaqabaqcfa4aaeWa aeaacqqHyoqucaGGSaGaam4AamaaBaaajuaibaGaaGOmaaqabaqcfa OaaiilaiabeE8aJjaacYcacaWGUbGaaiilaiaad2gacaGGSaGaamyr amaaBaaajuaibaGaamOBaiaadUgaaKqbagqaaiaacYcacaWGnbGaai ilaiabeM8a3bGaayjkaiaawMcaaaaa@4FEF@ )of modified Dirac equation corresponding for ( -( j+1/2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaab2cada qadaqaaiaabQgacqGHRaWkcaqGXaGaae4laiaabkdaaiaawIcacaGL Paaaaaa@3C9C@ , ( s 1/2 , p 3/2 ,etc ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba Gaae4CamaaBaaajuaibaGaaeymaiaab+cacaqGYaaabeaajuaGcaGG SaGaamiCamaaBaaajuaibaGaaG4maiaac+cacaaIYaaabeaajuaGca GGSaGaamyzaiaadshacaWGJbaacaGLOaGaayzkaaaaaa@4419@ , j=l+ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbmqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabg2 da9iaadYgacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@3B48@ , aligned spin k0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabUgacq GHPms4caqGWaaaaa@39D3@  and spin–down) and (  j=l+ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabccaca WGQbGaeyypa0JaamiBaiabgUcaRmaalaaabaGaaGymaaqaaiaaikda aaaaaa@3C6B@ , ( p 1/2 , d 3/2 ,etc ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaaeiCamaaBaaajuaibaGaaeymaiaab+cacaqGYaaabeaajuaGcaGG SaGaamizamaaBaaajuaibaGaaG4maiaac+cacaaIYaaajuaGbeaaca GGSaGaamyzaiaadshacaWGJbaacaGLOaGaayzkaaaaaa@440A@ , j=l 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQgacq GH9aqpcaWGSbGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaaaaa@3BD3@ , un aligned spin k0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaabUgacq GHQms8caqGWaaaaa@39E4@  and spin up), respectively, at first order of parameter Θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabfI5arb aa@37F0@ , for (m.a.o.) potential in (NC: 3D–RS), respectively, on based to the obtained new results(61), (62) and (66), in addition to the original results (22) of energies in commutative space, we obtain the following original results:

E ncu ( Θ, k 1 ,χ,n,m, E nk ,M,ω )= E n k 1 +θ( E ncao )Θ k 1 | C n | 2 T ao ( E nk ,M,ω ) +θ( E ncao )χmBΘ | C n | 2 T ao ( E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajuaibaGaamOBaiaadogacqGHsislcaWG1baabeaajuaG daqadaqaaiabfI5arjaacYcacaWGRbWaaSbaaKqbGeaacaaIXaaaju aGbeaacaGGSaGaeq4XdmMaaiilaiaad6gacaGGSaGaamyBaiaacYca caWGfbWaaSbaaKqbGeaacaWGUbGaam4AaaqcfayabaGaaiilaiaad2 eacaGGSaGaeqyYdChacaGLOaGaayzkaaGaeyypa0JaamyramaaBaaa baGaamOBaiaadUgadaWgaaqcfasaaiaaigdaaKqbagqaaaqabaGaey 4kaSIaeqiUde3aaeWaaeaacaWGfbWaaSbaaKqbGeaacaWGUbGaam4y aiabgkHiTiaadggacaWGVbaabeaaaKqbakaawIcacaGLPaaacqqHyo qucaWGRbWaaSbaaKqbGeaacaaIXaaabeaajuaGdaabdaqaaiaadoea daWgaaqcfasaaiaad6gaaKqbagqaaaGaay5bSlaawIa7amaaCaaaju aibeqaaiaaikdaaaqcfaOaamivamaaBaaajuaibaGaamyyaiaad+ga aeqaaKqbaoaabmaabaGaamyramaaBaaajuaibaGaamOBaiaadUgaae qaaKqbakaacYcacaWGnbGaaiilaiabeM8a3bGaayjkaiaawMcaaaGc baqcfaOaey4kaSIaeqiUde3aaeWaaeaacaWGfbWaaSbaaKqbGeaaca WGUbGaam4yaiabgkHiTiaadggacaWGVbaabeaaaKqbakaawIcacaGL PaaacqaHhpWycaWGTbGaamOqaiabfI5arnaaemaabaGaam4qamaaBa aajuaibaGaamOBaaqcfayabaaacaGLhWUaayjcSdWaaWbaaKqbGeqa baGaaGOmaaaajuaGcaWGubWaaSbaaKqbGeaacaWGHbGaam4Baaqaba qcfa4aaeWaaeaacaWGfbWaaSbaaKqbGeaacaWGUbGaam4Aaaqabaqc faOaaiilaiaad2eacaGGSaGaeqyYdChacaGLOaGaayzkaaaaaaa@9BB0@   (67)

and

E ncd ( Θ, k 2 ,χ,n,m, E nk ,M,ω )= E n k 2 +θ( E ncao )Θ k 2 | C n | 2 T ao ( E nk ,M,ω ) +θ( E ncao )χmBΘ | C n | 2 T ao ( E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajuaibaGaamOBaiaadogacqGHsislcaWGKbaabeaajuaG daqadaqaaiabfI5arjaacYcacaWGRbWaaSbaaKqbGeaacaaIYaaaju aGbeaacaGGSaGaeq4XdmMaaiilaiaad6gacaGGSaGaamyBaiaacYca caWGfbWaaSbaaKqbGeaacaWGUbGaam4AaaqabaqcfaOaaiilaiaad2 eacaGGSaGaeqyYdChacaGLOaGaayzkaaGaeyypa0JaamyramaaBaaa baGaamOBaiaadUgadaWgaaqcfasaaiaaikdaaeqaaaqcfayabaGaey 4kaSIaeqiUde3aaeWaaeaacaWGfbWaaSbaaKqbGeaacaWGUbGaam4y aiabgkHiTiaadggacaWGVbaabeaaaKqbakaawIcacaGLPaaacqqHyo qucaWGRbWaaSbaaKqbGeaacaaIYaaabeaajuaGdaabdaqaaiaadoea daWgaaqcfasaaiaad6gaaKqbagqaaaGaay5bSlaawIa7amaaCaaaju aibeqaaiaaikdaaaqcfaOaamivamaaBaaajuaibaGaamyyaiaad+ga aKqbagqaamaabmaabaGaamyramaaBaaajuaibaGaamOBaiaadUgaaK qbagqaaiaacYcacaWGnbGaaiilaiabeM8a3bGaayjkaiaawMcaaaGc baqcfaOaey4kaSIaeqiUde3aaeWaaeaacaWGfbWaaSbaaKqbGeaaca WGUbGaam4yaiabgkHiTiaadggacaWGVbaajuaGbeaaaiaawIcacaGL PaaacqaHhpWycaWGTbGaamOqaiabfI5arnaaemaabaGaam4qamaaBa aajuaibaGaamOBaaqcfayabaaacaGLhWUaayjcSdWaaWbaaeqajuai baGaaGOmaaaajuaGcaWGubWaaSbaaKqbGeaacaWGHbGaam4Baaqaba qcfa4aaeWaaeaacaWGfbWaaSbaaKqbGeaacaWGUbGaam4Aaaqcfaya baGaaiilaiaad2eacaGGSaGaeqyYdChacaGLOaGaayzkaaaaaaa@9BA2@   (68)

As it is montionated in.18 in view of exact spin symmetry in commutative space ( E nk E nk MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbmqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGUbGaam4AaaqabaGccqGHsgIRcqGHsislcaWGfbWaaSba aSqaaiaad6gacaWGRbaabeaaaaa@3E8F@ , V( r )V( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAfada qadaqaaiaadkhaaiaawIcacaGLPaaacqGHsgIRcqGHsislcaWGwbWa aeWaaeaacaWGYbaacaGLOaGaayzkaaaaaa@4009@ , kk+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadUgacq GHsgIRcaWGRbGaey4kaSIaaGymaaaa@3BE3@  and F nk ( r ) G n k ˜ ( r ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadAeada Wgaaqcfasaaiaad6gacaWGRbaabeaajuaGdaqadaqaaiaadkhaaiaa wIcacaGLPaaacqGHsgIRcaWGhbWaaSbaaKqbGeaacaWGUbGabm4Aay aaiaaajuaGbeaadaqadaqaaiaadkhaaiaawIcacaGLPaaaaaa@448C@ ), we need to generalize the above translations to the case of NC three dimensional spaces, then the negative values E ncu ( Θ, k ˜ 1 ,χ,m,n, E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamyDaaqabaqcfa4aaeWa aeaacqqHyoqucaGGSaGabm4AayaaiaWaaSbaaKqbGeaacaaIXaaabe aajuaGcaGGSaGaeq4XdmMaaiilaiaad2gacaGGSaGaamOBaiaacYca caWGfbWaaSbaaKqbGeaacaWGUbGaam4AaaqabaqcfaOaaiilaiaad2 eacaGGSaGaeqyYdChacaGLOaGaayzkaaaaaa@500E@  and E ncd ( Θ, k ˜ 2 ,χ,m,n, E nk ,M,ω ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadweada Wgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamizaaqcfayabaWaaeWa aeaacqqHyoqucaGGSaGabm4AayaaiaWaaSbaaKqbGeaacaaIYaaabe aajuaGcaGGSaGaeq4XdmMaaiilaiaad2gacaGGSaGaamOBaiaacYca caWGfbWaaSbaaKqbGeaacaWGUbGaam4AaaqabaqcfaOaaiilaiaad2 eacaGGSaGaeqyYdChacaGLOaGaayzkaaaaaa@4FFE@  are obtained as:

E ncu ( Θ, k 1 ,χ,m,n, E nk ,M,ω ) E ncu ( Θ, k ˜ 1 ,χ,m,n, E nk ,M,ω ) E ncu ( Θ, k 1 ,χ,m,n, E nk ,M,ω ) E ncd ( Θ, k 2 ,χ,n,m, E nk ,M,ω ) E ncd ( Θ, k ˜ 2 ,χ,m,n, E nk ,M,ω ) E ncd ( Θ, k 2 ,χ,m,n, E nk ,M,ω ) V( r ^ )V( r ^ ) k ˜ 1 k 1 +1      and      k ˜ 2 k 2 +1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOaam yramaaBaaajuaibaGaamOBaiaadogacqGHsislcaWG1baajuaGbeaa daqadaqaaiabfI5arjaacYcacaWGRbWaaSbaaKqbGeaacaaIXaaabe aajuaGcaGGSaGaeq4XdmMaaiilaiaad2gacaGGSaGaamOBaiaacYca caWGfbWaaSbaaKqbGeaacaWGUbGaam4AaaqabaqcfaOaaiilaiaad2 eacaGGSaGaeqyYdChacaGLOaGaayzkaaGaeyOKH4QaamyramaaBaaa juaibaGaamOBaiaadogacqGHsislcaWG1baabeaajuaGdaqadaqaai abfI5arjaacYcaceWGRbGbaGaadaWgaaqcfasaaiaaigdaaeqaaKqb akaacYcacqaHhpWycaGGSaGaamyBaiaacYcacaWGUbGaaiilaiaadw eadaWgaaqcfasaaiaad6gacaWGRbaajuaGbeaacaGGSaGaamytaiaa cYcacqaHjpWDaiaawIcacaGLPaaaaOqaaKqbakabggMi6kabgkHiTi aadweadaWgaaqcfasaaiaad6gacaWGJbGaeyOeI0IaamyDaaqabaqc fa4aaeWaaeaacqqHyoqucaGGSaGaam4AamaaBaaajuaibaGaaGymaa qcfayabaGaaiilaiabeE8aJjaacYcacaWGTbGaaiilaiaad6gacaGG SaGaamyramaaBaaajuaibaGaamOBaiaadUgaaKqbagqaaiaacYcaca WGnbGaaiilaiabeM8a3bGaayjkaiaawMcaaaqaaiaadweadaWgaaqc fasaaiaad6gacaWGJbGaeyOeI0Iaamizaaqabaqcfa4aaeWaaeaacq qHyoqucaGGSaGaam4AamaaBaaajuaibaGaaGOmaaqabaqcfaOaaiil aiabeE8aJjaacYcacaWGUbGaaiilaiaad2gacaGGSaGaamyramaaBa aajuaibaGaamOBaiaadUgaaeqaaKqbakaacYcacaWGnbGaaiilaiab eM8a3bGaayjkaiaawMcaaiabgkziUkaadweadaWgaaqcfasaaiaad6 gacaWGJbGaeyOeI0Iaamizaaqabaqcfa4aaeWaaeaacqqHyoqucaGG SaGabm4AayaaiaWaaSbaaKqbGeaacaaIYaaajuaGbeaacaGGSaGaeq 4XdmMaaiilaiaad2gacaGGSaGaamOBaiaacYcacaWGfbWaaSbaaKqb GeaacaWGUbGaam4AaaqabaqcfaOaaiilaiaad2eacaGGSaGaeqyYdC hacaGLOaGaayzkaaaabaGaeyyyIORaeyOeI0IaamyramaaBaaajuai baGaamOBaiaadogacqGHsislcaWGKbaabeaajuaGdaqadaqaaiabfI 5arjaacYcacaWGRbWaaSbaaKqbGeaacaaIYaaabeaajuaGcaGGSaGa eq4XdmMaaiilaiaad2gacaGGSaGaamOBaiaacYcacaWGfbWaaSbaaK qbGeaacaWGUbGaam4AaaqcfayabaGaaiilaiaad2eacaGGSaGaeqyY dChacaGLOaGaayzkaaaabaGaamOvamaabmaabaGabmOCayaajaaaca GLOaGaayzkaaGaeyOKH4QaeyOeI0IaamOvamaabmaabaGabmOCayaa jaaacaGLOaGaayzkaaaakeaajuaGceWGRbGbaGaadaWgaaqcfasaai aaigdaaeqaaKqbakabgkziUkaadUgadaWgaaqcfasaaiaaigdaaeqa aKqbakabgUcaRiaaigdacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai aabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeiiaiaabccacaqGGaGa aeiiaiqadUgagaacamaaBaaajuaibaGaaGOmaaqcfayabaGaeyOKH4 Qaam4AamaaBaaajuaibaGaaGOmaaqcfayabaGaey4kaSIaaGymaaaa aa@FECD@   (69)

It’s clearly, that the obtained eigenvalues of energies are real is Hermitian; consequently, the modified quantum Hamiltonian operator H ^ ncao ( p ^ i , x ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamOBaiaadogacqGHsislcaWGHbGaam4Baaqc fayabaWaaeWaaeaaceWGWbGbaKaadaWgaaqcfasaaiaadMgaaKqbag qaaiaacYcaceWG4bGbaKaadaWgaaqcfasaaiaadMgaaeqaaaqcfaOa ayjkaiaawMcaaaaa@44B6@  is Hermitian and may be expressed as follows:

H ^ ncao ( p ^ i , x ^ i )= H ^ comao ( p i , x i ) +{ Θ( α 2M r 4 1 2 M ω 2 ) S L +χ( α 2M r 4 1 2 M ω 2 ) ( B J S ˜ B ) for the    spin symmetric    case  Θ( α 2M r 4 1 2 M ω 2 ) S ˜ L +χ( α 2M r 4 1 2 M ω 2 ) ( B J S ˜ B ) for the  p-spin symmetric  case  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaqcfaOabm isayaajaWaaSbaaKqbGeaacaWGUbGaam4yaiabgkHiTiaadggacaWG VbaabeaajuaGdaqadaqaaiqadchagaqcamaaBaaajuaibaGaamyAaa qabaqcfaOaaiilaiqadIhagaqcamaaBaaajuaibaGaamyAaaqabaaa juaGcaGLOaGaayzkaaGaeyypa0JabmisayaajaWaaSbaaKqbGeaaca WGJbGaam4Baiaad2gacqGHsislcaWGHbGaam4Baaqabaqcfa4aaeWa aeaacaWGWbWaaSbaaKqbGeaacaWGPbaabeaajuaGcaGGSaGaamiEam aaBaaajuaibaGaamyAaaqabaaajuaGcaGLOaGaayzkaaaakeaajuaG cqGHRaWkdaGabaabaeqabaGaeuiMde1aaeWaaeaadaWcaaqaaiabeg 7aHbqaaiaaikdacaWGnbGaamOCamaaCaaajuaibeqaaiaaisdaaaaa aKqbakabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaamytaiabeM 8a3naaCaaajuaibeqaaiaaikdaaaaajuaGcaGLOaGaayzkaaWaa8Xa aeaacaWGtbaacaGLHdcadaWhdaqaaiaadYeaaiaawgoiaiabgUcaRi abeE8aJnaabmaabaWaaSaaaeaacqaHXoqyaeaacaaIYaGaamytaiaa dkhadaahaaqcfasabeaacaaI0aaaaaaajuaGcqGHsisldaWcaaqaai aaigdaaeaacaaIYaaaaiaad2eacqaHjpWDdaahaaqabKqbGeaacaaI YaaaaaqcfaOaayjkaiaawMcaaaqaamaabmaabaWaa8HaaeaacaWGcb aacaGLxdcadaWhcaqaaiaadQeaaiaawEniaiabgkHiTmaaFmaabaGa bm4uayaaiaaacaGLHdcadaWhdaqaaiaadkeaaiaawgoiaaGaayjkai aawMcaauaabeqabiaaaeaacaqGMbGaae4BaiaabkhaaeaacaqG0bGa aeiAaiaabwgacaqGGaGaaeiiaiaabccacaqGGaGaae4Caiaabchaca qGPbGaaeOBaiaabccacaqGZbGaaeyEaiaab2gacaqGTbGaaeyzaiaa bshacaqGYbGaaeyAaiaabogacaqGGaGaaeiiaiaabccacaqGGaGaae 4yaiaabggacaqGZbGaaeyzaiaabccaaaaabaGaeuiMde1aaeWaaeaa daWcaaqaaiabeg7aHbqaaiaaikdacaWGnbGaamOCamaaCaaabeqcfa saaiaaisdaaaaaaKqbakabgkHiTmaalaaabaGaaGymaaqaaiaaikda aaGaamytaiabeM8a3naaCaaajuaibeqaaiaaikdaaaaajuaGcaGLOa GaayzkaaWaa8HaaeaaceWGtbGbaGaaaiaawEniamaaFmaabaGaamit aaGaayz4GaGaey4kaSIaeq4Xdm2aaeWaaeaadaWcaaqaaiabeg7aHb qaaiaaikdacaWGnbGaamOCamaaCaaabeqcfasaaiaaisdaaaaaaKqb akabgkHiTmaalaaabaGaaGymaaqaaiaaikdaaaGaamytaiabeM8a3n aaCaaajuaibeqaaiaaikdaaaaajuaGcaGLOaGaayzkaaaabaWaaeWa aeaadaWhcaqaaiaadkeaaiaawEniamaaFiaabaGaamOsaaGaay51Ga GaeyOeI0Yaa8HaaeaaceWGtbGbaGaaaiaawEniamaaFmaabaGaamOq aaGaayz4GaaacaGLOaGaayzkaaqbaeqabeGaaaqaaiaabAgacaqGVb GaaeOCaaqaaiaabshacaqGObGaaeyzaiaabccacaqGGaGaaeiCaiaa b2cacaqGZbGaaeiCaiaabMgacaqGUbGaaeiiaiaabohacaqG5bGaae yBaiaab2gacaqGLbGaaeiDaiaabkhacaqGPbGaae4yaiaabccacaqG GaGaae4yaiaabggacaqGZbGaaeyzaiaabccaaaaaaiaawUhaaaaaaa@F21C@   (70)

Where H ^ comao ( p i , x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaam4yaiaad+gacaWGTbGaeyOeI0Iaamyyaiaa d+gaaeqaaKqbaoaabmaabaGaamiCamaaBaaajuaibaGaamyAaaqcfa yabaGaaiilaiaadIhadaWgaaqcfasaaiaadMgaaeqaaaqcfaOaayjk aiaawMcaaaaa@4589@  is given by:

H ^ comao ( p i , x i )=αP+β(M+S(r))+ 1 2 M ω 2 r 2 + α 2M r 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaam4yaiaad+gacaWGTbGaeyOeI0Iaamyyaiaa d+gaaeqaaKqbaoaabmaabaGaamiCamaaBaaajuaibaGaamyAaaqaba qcfaOaaiilaiaadIhadaWgaaqcfasaaiaadMgaaeqaaaqcfaOaayjk aiaawMcaaiabg2da9iabeg7aHjaabcfacqGHRaWkcqaHYoGycaGGOa GaamytaiabgUcaRiaadofacaGGOaGaamOCaiaacMcacaGGPaGaey4k aSYaaSaaaeaacaaIXaaabaGaaGOmaaaacaWGnbGaeqyYdC3aaWbaaK qbGeqabaGaaGOmaaaajuaGcaWGYbWaaWbaaKqbGeqabaGaaGOmaaaa juaGcqGHRaWkdaWcaaqaaiabeg7aHbqaaiaaikdacaWGnbGaamOCam aaCaaajuaibeqaaiaaikdaaaaaaaaa@610E@   (71)

Denote to the ordinary Hamiltonian operator in the commutative space. In this way, one can obtain the complete energy spectra for (m.a.o.) potential in (NC: 3D–RS) symmetries. Know the following accompanying constraint relations:

a–The two quantum numbers ( m ˜ ,m ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GabmyBayaaiaGaaiilaiaad2gaaiaawIcacaGLPaaaaaa@3AA5@  satisfied the two intervals: l ˜ m ˜ + l ˜ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTi qadYgagaacaiabgsMiJkqad2gagaacaiabgsMiJkabgUcaRiqadYga gaacaaaa@3EB3@  and lm+l MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakabgkHiTi aadYgacqGHKjYOcaWGTbGaeyizImQaey4kaSIaamiBaaaa@3E86@ , thus we have 2 l ˜ +1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdace WGSbGbaGaacqGHRaWkcaaIXaaaaa@39D2@  and 2l+1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaikdaca WGSbGaey4kaSIaaGymaaaa@39C3@  values for these quantum numbers,

b–We have also two values for p–spin symmetry j= l ˜ + 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQgacq GH9aqpceWGSbGbaGaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaa aaaa@3BD7@  and j= l ˜ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQgacq GH9aqpceWGSbGbaGaacqGHsisldaWcaaqaaiaaigdaaeaacaaIYaaa aaaa@3BE2@  and two values for spin symmetry j=l+ 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQgacq GH9aqpcaWGSbGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaaaaaaa@3BC8@  and j=l 1 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaadQgacq GH9aqpcaWGSbGaeyOeI0YaaSaaaeaacaaIXaaabaGaaGOmaaaaaaa@3BD3@ .

Allow us to deduce the important original results: every state in usually three dimensional space will be replace by 4( 2 l ˜ +1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaisdada qadaqaaiaaikdaceWGSbGbaGaacqGHRaWkcaaIXaaacaGLOaGaayzk aaaaaa@3C19@  and 4( 2l+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaisdada qadaqaaiaaikdacaWGSbGaey4kaSIaaGymaaGaayjkaiaawMcaaaaa @3C0A@  sub–states under p–spin symmetry and spin symmetry, which allow us to fixing the degenerated states to the 4 i=0 n1 ( 2l+1 ) 4 n 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakaaisdada aeWbqaamaabmaabaGaaGOmaiaadYgacqGHRaWkcaaIXaaacaGLOaGa ayzkaaaabaqcfaIaamyAaiabg2da9iaaicdaaeaacaWGUbGaeyOeI0 IaaGymaaqcfaOaeyyeIuoacqGHHjIUcaaI0aGaamOBamaaCaaabeqc fasaaiaaikdaaaaaaa@48BF@ values in (NC: 3D–RS) symmetries. It is easy to see that the obtained originally results reduce to the ordinary results described on quantum mechanics when the noncommutativity of space disappears ( Θ,χ )( 0,0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeuiMdeLaaiilaiabeE8aJbGaayjkaiaawMcaaiabgkziUoaabmaa baGaaGimaiaacYcacaaIWaaacaGLOaGaayzkaaaaaa@417A@ , equations (67), (68) and (69) reduces to (22) and (24) and one recovers the standard textbook results. Finally one concludes; our obtained results are sufficiently accurate for practical purposes. These results are in agreement with the ones obtained previously.38, 47

The important concluding remarks

Let us summarize our results as follows:

  1. The solution procedure presented in this paper is based on the both of Bopp’s shift method and standard perturbation theory, we investigate the bound state energies of nth excited states for (m.a.o.) described on (NC: 3D–RS).
  2. It is found that the energy eigenvalues depend on the dimensionality of the problem and non–relativistic atomic quantum numbers ( j= l ˜ ±1/2,j=l±1/2, s ˜ =±1/2,l, l ˜ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamOAaiabg2da9iqadYgagaacaiabgglaXkaaigdacaGGVaGaaGOm aiaacYcacaWGQbGaeyypa0JaamiBaiabgglaXkaaigdacaGGVaGaaG OmaiaacYcaceWGZbGbaGaacqGH9aqpcqGHXcqScaaIXaGaai4laiaa ikdacaGGSaGaamiBaiaacYcaceWGSbGbaGaaaiaawIcacaGLPaaaaa a@50E3@ and the two angular momentum quantum numbers ( m, m ˜ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaamyBaiaacYcaceWGTbGbaGaaaiaawIcacaGLPaaaaaa@3AA5@  in addition to the infinitesimal parameters ( Θ,χ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbaoaabmaaba GaeuiMdeLaaiilaiabeE8aJbGaayjkaiaawMcaaaaa@3BE0@ .
  3. We have also constructing the corresponding NC Hermitian Hamiltonian operator H ^ ncao ( p ^ i , x ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaKqbakqadIeaga qcamaaBaaajuaibaGaamOBaiaadogacqGHsislcaWGHbGaam4Baaqa baqcfa4aaeWaaeaaceWGWbGbaKaadaWgaaqcfasaaiaadMgaaeqaaK qbakaacYcaceWG4bGbaKaadaWgaaqcfasaaiaadMgaaeqaaaqcfaOa ayjkaiaawMcaaaaa@44B6@ which presented by eq. (70).

 The energy eigenvalues are in good agreement with the results previously. Finally, we point out that these exact results (67), (68) and (69) obtained for this new proposed form of the modified potential (39) may have some interesting applications in the study of different quantum mechanical systems, nuclear physics, atomic and molecular physics.

Acknowledgments

This work was supported with search laboratory of: Physics and Material Chemistry, in Physics department, Sciences faculty–University of M'sila, Algeria.

Conflicts of interest

None.

References

  1. MK Bahar, F Yasuk. Fermionic Particles with Position–Dependent Mass in the Presence of Inversely Quadratic Yukawa Potential and Tensor Interaction. Pramana Journal of Physics. 2013;80(2):187–197.
  2. M Hamzavi, AA Rajabi, H Hassanabi. Exact Pseudospin Symmetry Solution of the Dirac Equation for Spatially–Dependent Mass Coulomb Potential Including Coulomb–Like Tensor Interaction via Asymptotic Iteration Method. Physics Letters A. 2010;374(42):4303–4307.
  3. H Akcay, C Tezcan. Exact Solutions of the Dirac Equation with Harmonic Oscillator Potential Including a Coulomb–Like Tensor Potential. International Journal of Modern Physics C. 2010;20(6):931–940.
  4. H Akcay. Dirac Equation with Scalar and Vector Quad–ratic Potentials and Coulomb–Like Tensor Potential. Physics Letters A. 2009;373(6):616–620.
  5. E Maghsoodi, H Hassanabadi, S Zarrinkamar. Exact Solutions of the Dirac Equation with Poschl–Teller Double–Ring Shaped Coulomb Potential via the Nikiforov–Uvarov Method. Chinese Physics B. 2013;22(3):030302–1–030302–5.
  6. C Berkdemir, YF Cheng. On the Exact Solutions of the Dirac Equation with a Novel Angle–Dependent Potential. Physica Scripta. 2009;79(3):035003–035010.
  7. Benedict Iserom Ita, Alexander Immaanyikwa Ikeuba. Solutions of the Dirac Equation with Gravitational plus Exponential Potential. Applied Mathematics. 2013;4:1–6.
  8. Jean Mawhin, André Ronveaux. Schrödinger and Dirac equations for the hydrogen atom and Laguerre polynomials. Arch Hist Exact Sci. 2010;64(4):429–460.  
  9. B Biswas, S Debnath. Bound States of the Dirac–Kratzer–Fues Problem with Spin and Pseudo–Spin Symmetry via Laplace Transform Approach. Bulg J Phys. 2016;43:89–99.
  10. F Pakdel, AA Rajabi. Investigation of the nuclear system using the D–dimensional wave equation. Chinese Journal of Physics. 2016;54(3):385–390.
  11. KJ Oyewumi, CO Akoshile. Bound–state solutions of the Dirac–Rosen–Morse potential with spin and pseudospin symmetry. Eur Phys J A. 2010;45:311–318.
  12. H Hassanabadi, E Maghsoodi, S Zarrinkamar. Relativistic symmetry of the Dirac equation and Tietz potential. Eur Phys J plus. 2012;123:31.
  13. MR Setare, S Haidari. Spin symmetry of the Dirac equation with the Yukawa potential. Phys Scr. 2010;81(6):065201.
  14. A Soylu, O Bayrak, I Boztosun. An approximate solution of the Dirac–Hulthen problem with pseudospin and spin symmetry for any k state. J Math Phys. 2007;48:082302.
  15. AA Onate, JO Ojonubah. Relativistic and nonrelativistic solutions of the generalized Pӧschl–Teller and hyperbolical potentials with some thermodynamic properties. Int J Mod Phys E. 2015;24:1550020.
  16. SM Ikhdair, R Sever. Approximate Analytical solutions of the generalized woods–Saxon potentials including the spin–orbit coupling term and spin symmetry. Cent Eur J Phys. 2010;8(4):652–666.
  17. SM Ikhdair, R Sever. Approximate Eigenvalue and Eigenfunctions Solutions for the Generalized Hulthén Potential with any Angular Momentum. J Math Chem. 2007;42(3):461–471.
  18. M Eshghia, SM Ikhdair. Relativistic effect of pseudospin symmetry and tensor coupling on the Mie–type potential via Laplace transformation method. Chin Phys B. 2014;23(12):120304.
  19. Sameer M Ikhdair, Majid Hamzavi. Approximate Relativistic Bound State Solutions of the Tietz–Hua Rotating Oscillator for Any κ–State. Few–Body Syst. 2012;53(3):473–486.
  20. M Hamzavi, AA Rajabi. Solution of Dirac Equation with Killingbeck Potential by Using Wave Function Ansatz Method under Spin Symmetry Limit Commun. Theor Phys. 2011;55(1):35–37.
  21. H Goudarzi, M Sohbati, S Zarrin. Solution of Dirac equation with spin and pseudospin symmetry for an anharmonic oscillator. Journal Of Mathematical Physics. 2011;52(1):013506.
  22. H Snyder. Quantized Space Time. Phys Rev. 1947;71:38–41.
  23. Abdelmadjid Maireche. A Study of Schrödinger Equation with Inverse Sextic Potential in 2–dimensional Non–commutative Space. Afr Rev Phys. 2014;9(0025):185–193.
  24. Abdelmadjid Maireche. Spectrum of Schrödinger Equation with HLC Potential in Non–Commutative Two–dimensional Real Space. The African Rev Phys. 2014;9(0060):479–483.
  25. Abdelmadjid Maireche. Deformed Bound States for Central Fraction Power Potential: Non Relativistic Schrödinger Equation. Afr Rev Phys. 2015;10(0014):97–103.
  26. Abdelmadjid Maireche. Spectrum of Hydrogen Atom Ground State Counting Quadratic Term in Schrödinger Equation. The African Rev Phys. 2015;10:177–183.
  27. Abdelmadjid Maireche. Atomic Spectrum for Schrödinger Equation with Rational Spherical Type Potential in Non–commutative Space and Phase. The African Review of Physics. 2015;10(0046):373–381.
  28. Abdelmadjid Maireche. A Complete Analytical Solution of the Mie–Type Potentials in Non–commutative 3–Dimensional Spaces and Phases Symmetries. Afr Rev Phys. 2016;11:111–117.
  29. Abdelmadjid Maireche. New Exact Energy Eigen–values for (MIQYH) and (MIQHM) Central Potentials: Non–relativistic Solutions. Afr Rev Phys. 2016;11(0023):175–185.
  30. Abdelmadjid Maireche. Nonrelativistic Atomic Spectrum for Companied Harmonic Oscillator Potential and its Inverse in both NC–2D: RSP. International Letters of Chemistry. Physics and Astronomy. 2015;56:1–9.
  31. Abdelmadjid Maireche. New Exact Solution of the Bound States for the Potential Family V(r) =A/r2–B/r+Crk (k=0,–1,–2) in both Noncommutative Three Dimensional Spaces and Phases: Non Relativistic Quantum Mechanics. International Letters of Chemistry, Physics and Astronomy. 2015;58:164–176.
  32. Abdelmadjid Maireche. A New Approach to the Non Relativistic Schrödinger equation for an Energy–Depended Potential V(r,En,l)=V0(1+ηEn,l)r2 in Both Noncommutative three Dimensional spaces and phases. International Letters of Chemistry, Physics and Astronomy. 2015;60:11–19.
  33. Abdelmadjid Maireche. A New Study to the Schrödinger Equation for Modified Potential V(r)= ar2+br–4+cr–6 in Nonrelativistic Three Dimensional Real Spaces and Phases. International Letters of Chemistry, Physics and Astronomy. 2015;61:38–48.
  34. Abdelmadjid Maireche. A New Nonrelativistic Investigation for the Lowest Excitations States of Interactions in One–Electron Atoms, Muonic, Hadronic and Rydberg Atoms with Modified Inverse Power Potential. International Frontier Science Letters. 2016;9:33–46.
  35. Abdelmadjid Maireche. Deformed Quantum Energy Spectra with Mixed Harmonic Potential for Nonrelativistic Schrödinger equation. J Nano– Electron Phys. 2015;7(2):02003–1–02003–6.
  36. Abdelmadjid Maireche. A Recent Study of Quantum Atomic Spectrum of the Lowest Excitations for Schrödinger Equation with Typical Rational Spherical Potential at Planck's and Nanoscales. J Nano Electron Phys. 2015;7(3):3047–3051.
  37. Abdelmadjid Maireche. Quantum Hamiltonian and Spectrum of Schrödinger Equation with companied Harmonic Oscillator Potential and it’s Inverse in three Dimensional Noncommutative Real Space and Phase. J Nano Electron Phys. 2015;7(4):04021–4021–7.
  38. Abdelmadjid Maireche. New Relativistic Atomic Mass Spectra of Quark (u, d and s) for Extended Modified Cornell Potential in Nano and Plank’s Scales. J Nano Electron Phys. 2016;8(1):01020.
  39. Abdelmadjid Maireche. The Nonrelativistic Ground State Energy Spectra of Potential Counting Coulomb and Quadratic Terms in Non–commutative Two Dimensional Real Spaces and Phases. J Nano Electron Phys. 2016;8(1):01021.
  40. Abdelmadjid Maireche. New Theoretical Study of Quantum Atomic Energy Spectra for Lowest Excited States of Central (PIHOIQ) Potential in Noncommutative Spaces and Phases Symmetries at Plan’s and Nanoscales. J Nano Electron Phys. 2016;8(2):02027–1–02027–10
  41. Abdelmadjid Maireche. A New Nonrelativistic Atomic Energy Spectrum of Energy Dependent Potential for Heavy Quarkouniom in Noncommutative Spaces and Phases Symmetries. J Nano Electron Phys. 2016;8(2):02046–1–02046–6.
  42. Abdelmadjid Maireche, Djenaoui Imane. A New Nonrelativistic Investigation for Spectra of Heavy Quarkonia with Modified Cornell Potential: Noncommutative Three Dimensional Space and Phase Space Solutions. J Nano Electron Phys. 2016;8(3):03024.
  43. Abdelmadjid Maireche. New Bound State Energies for Spherical Quantum Dots in Presence of a Confining Potential Model at Nano and Plank’s Scales. Nano World J. 2016;1(4):120–127.
  44. Abdelmadjid Maireche. New exact bound states solutions for (CFPS) potential in the case of Non–commutative three dimensional non relativistic quantum mechanics. Med J Model Simul. 2015;04:060–072.
  45. Abdelmadjid Maireche. Quantum Schrödinger equation with Octic potential in non–commutative two–dimensional complex space. Life Sci J. 2014;11(6):353–359.
  46. Abdelmadjid Maireche. New Quantum atomic spectrum of Schrödinger equation with pseudo harmonic potential in both noncommutative three dimensional spaces and phases. Lat Am J Phys Educ. 2015;09: 1301–1–1301–8.
  47. Abdelmadjid Maireche. A New Relativistic Study for Interactions in One–electron atoms (Spin ½ Particles) with Modified Mie–type Potential. J Nano Electron Phys. 2016;8(4):04027–1–04027–9.
  48. Abdelmadjid Maireche. A new nonrelativistic investigation for interactions in one–electron atoms with modified inverse –square potential: noncommutative two and three dimensional space phase solutions at Planck’s and nano–scales. J Nanomed Res. 2016;4(3):00090–00105.
  49. Anselme F Dossa, Gabriel YH Avossevou. Noncommutative Phase Space and the Two Dimensional Quantum Dipole in Background Electric and Magnetic Fields. Journal of Modern Physics. 2013;4(10):1400–1411.
  50. Jumakari–Mamat, Sayipjamal Dulat, Hekim Mamatabdulla. Landau–like Atomic Problem on a Non–commutative Phase Space. Int J Theor Phys. 2016;55:2913–2918.
  51. Yongjun Xiao, Zhengwen Long, Shaohong Cai. Klein–Gordon Oscillator in Noncommutative Phase Space Under a Uniform Magnetic Field. Int J Theor Phys. 2011:250:3105–3111.
  52. Abdelmalek Boumali, Hassan Hassanabadi. The thermal properties of a two–dimensional Dirac oscillator under an external magnetic field. Eur Phys J Plus. 2013;128:124.
  53. S Dulat, Kang Li. The Aharonov–Casher effect for spin–1 particles in non–commutative quantum mechanics. Eur Phys J C. 2008;54(2):333–337.
  54. Curtright T, Fairlie D, Zachos CK. Features of time independent Wigner functions. Phys Rev D. 1998;58:025002.
  55. Gamboa J, Loewe M, Rojas JC. Noncommutative quantum mechanics. Phys Rev D. 2001;64:067901.
  56. Mezincescu L. Star operation in quantum mechanics. Cornell University Library, USA 2000.
  57. Uan Yi, LI Kang, Wang Jian–Hua, et al. Spin–1/2 relativistic particle in a magnetic field in NC phase space. Chinese Physics C. 2010;34(5):543.
  58. Shaohong Cai, Tao Jing, Guangjie Guo, et al. Dirac Oscillator in Noncommutative Phase Space. International Journal of Theoretical Physics. 2010;49(8):1699–1705.
  59. Joohan Lee. Star Products and the Landau Problem. Journal of the Korean Physical Society. 2005;47(4):571–576.
  60. Yang Zu–Hua, Chao Yun Long, Shuei Jie Qin, et al. DKP Oscillator with spin–0 in Three dimensional Noncommutaive Phase–Space. Int J Theor Phys. 2010;49:644–657.
  61. Jumakari–Mamat, Sayipjamal Dulat, Hekim Mamatabdulla. Landau–like Atomic Proplem on a Non–commutative Phase Space. Int J Theor Phys. 2016;55(6):2913–2918.
  62. Behrouz Mirza, Rasoul Narimani, Somayeh Zare. Relativistic Oscillators in a Noncommutative space in a Magnetic field. Commun Theor Phys. 2011;55:405–409.
  63. Yongjun Xia, Zhengwen Long, Shaohong Cai. Klein–Gordon Oscillator in Noncommutative Phase Space Under a Uniform Magnetic Field. Int J Theor Phys. 2011;50:3105–3111.
  64. Al Jamel. Heavy quarkonia with Cornell potential on noncommutative space. Journal of Theoretical and Applied Physics. 2011;5(1):21–24.
  65. H Hassanabadi1, F Hoseini, S Zarrinkamar. A generalized interaction in noncommutative space: Both relativistic and nonrelativistic fields. Eur Phys J Plus. 2015;130:200.
  66. Won sang, Chung. Two Dimensional Non–commutative Space and Rydberg Atom Model. Int J Theor Phys. 2015;54(6):1840–1849.
  67. P Polychronakos, VP Nair. Quantum mechanics on the noncommutative plane and sphere. Physics Letters B. 2001;505: 267–274.
  68. AEF Djemaï, H Smail. On Quantum Mechanics on Noncommutative Quantum Phase Space. Commun. Theor Phys. 2004;41(6):837–844.
  69. M Abramowitz, A Stegun. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, New York, USA 1965.
Creative Commons Attribution License

©2016 Maireche. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.