Loading [MathJax]/jax/output/CommonHTML/jax.js
Submit manuscript...
Journal of
eISSN: 2377-4282

Nanomedicine Research

Research Article Volume 4 Issue 3

A New Nonrelativistic Investigation for Interactions in One-Electron Atoms With Modified Inverse-Square Potential: Noncommutative Two and Three Dimensional Space Phase Solutions at Planck’s and Nano-Scales

Abdelmadjid Maireche

Department of Physics, University of M'sila M'sila, Algeria

Correspondence: Abdelmadjid Maireche, Laboratory of Physics and Material Chemistry, Physics department, University of M'sila-M’sila Algeria, Tel +213664834317

Received: May 30, 2016 | Published: November 28, 2016

Citation: Maireche A (2016) A New Nonrelativistic Investigation for Interactions in One-Electron Atoms With Modified Inverse-Square Potential: Noncommutative Two and Three Dimensional Space Phase Solutions at Planck’s and Nano-Scales. J Nanomed Res 4(3): 00090. DOI: . DOI: 10.15406/jnmr.2016.04.00090

Download PDF

Abstract

In this paper, we present a novel theoretical analytical perform further investigation for the exact solvability of non–relativistic quantum spectrum systems for modified inverse–square potential (m.i.s.) potential is discussed by means Boopp’s shift method instead to solving deformed Schrödinger equations with star product, in the framework of both noncommutativity (two –three) dimensional real space and phase (NC: 2D–RSP) and (NC: 3D–RSP). The exact corrections for excited states are found straightforwardly for interactions in one–electron atoms by means of the standard perturbation theory. Furthermore, the obtained corrections of energies are depended on four infinitesimals parameters ( , ) and ( , ), which are induced by position–position and momentum–momentum noncommutativity, (NC: 2D–RSP) and (NC: 3D–RSP), respectively, in addition to the discreet atomic quantum numbers: and (the angular momentum quantum number) and we have also shown that, the usual states in ordinary two and three dimensional spaces are cancelled and has been replaced by new degenerated sub–states in the new quantum symmetries of (NC: 2D–RSP) and (NC: 3D–RSP).

Keywords: the inverse–square potential, noncommutative space, phase, star product, boopp’s shift method.

Abbreviations

MIS: Modified Inverse Square potential; NC: 2D–3D–RSP: Noncommutativity (two–three) Dimensional Real Space Phase; CCRs: Canonical Commutations Relations; NNCCRs: New Noncommutative Canonical Commutations Relations; MSE: Modified Schrödinger Equations.

Introduction

It is well–known, that, the modern quantum mechanics, satisfied a big successful in the last few years, for describing atoms, nuclei, and molecules and their spectral behaviors based on three fundamental equations: Schrödinger, Klein–Gordon and Dirac. Schrödinger equation rest the first and the latest in terms of interest, it is playing a crucial role in devising well–behaved physical models in different fields of physics and chemists, many potentials are treated within the framework of nonrelativistic quantum mechanics based on this equation in two, three and D generalized spaces.1–32 the quantum structure based to the ordinary canonical commutations relations (CCRs) in both Schrödinger and Heisenberg (the operators are depended on time) pictures (CCRs), respectively, as:

[xi,pj]=iδij                 and    [xi,xj] = [pi,pj] = 0   .…(1.1)

[xi(t),pj(t)] = iδij           and    [xi(t),xj(t)] = [pi(t),pj(t)] = 0 … (1.2)

Where the two operators (xi(t),pi(t)) in Heisenberg picture are related to the corresponding two operators (xi,pi)  in Schrödinger picture from the two projections relations:

xi(t)=exp(iH(tt0))xiexp(iH(tt0))    and    pi(t)=exp(iH(tt0))piexp(iH(tt0))   …(1.3)

Here denote to the ordinary quantum Hamiltonian operator, recently, much considerable effort has been expanded on the solutions of Schrödinger, Dirac and Klein–Gordon equations to noncommutative quantum mechanics, the present paper investigates first the present new quantum structure which based to new noncommutative canonical commutations relations (NNCCRs) in both Schrödinger and Heisenberg pictures, respectively, as follows.33–60

[ˆxi,ˆpj]=iδij,[ˆxi,ˆxj]=iθij          and     [ˆpi,ˆpj]=iˉθij[ˆxi(t),ˆpj(t)]=iδij,[ˆxi(t),ˆxj(t)]=iθij and [ˆpi(t),ˆpj(t)]=iˉθij …. (1.4)

Where the two new operators (ˆxi(t),ˆpi(t)) in Heisenberg picture are related to the corresponding two new operators (ˆxi,ˆpi)  in Schrödinger picture from the two projections relations:

ˆxi(t)=exp(iHnc(tt0))*ˆxi*exp(iHnc(tt0))    and   ˆpi(t)=exp(iHnc(tt0))*ˆpi*exp(iHnc(tt0))   (1.5)

 Here Hnc  denote to the new quantum Hamiltonian operator in the symmetries of (NC: 2D–RSP) and (NC: 3D–RSP). The very small two parameters θμν  and ˉθμν  (compared to the energy) are elements of two ant symmetric real matrixes and ()  denote to the new star product, which is generalized between two arbitrary functions f(x,p)  and g(x,p)  to (fg)(x,p)  instead of the usual product (fg)(x,p)  in ordinary (two–three) dimensional spaces.39–63

(fg)(x,p)  exp(i2θμνxμxν+i2ˉθμνpμpν)(fg)(x,p) = (fgi2θμνxμfxνgi2ˉθμνpμfpνg)(x,p)|(xμ=xν,pμ=pν)+O(θ2,ˉθ2)   .(2)

Where the two covariant derivatives (xμf(x,p),pμf(x,p))  are denotes to the (f(x,p)xμ,f(x,p)pμ) , respectively, and the two following terms [i2θμνxμf(x,p)xνg(x,p) , i2ˉθμνpμf(x,p)pνg(x,p) ] are induced by (space–space) and (phase–phase) noncommutativity properties, respectively, a Boopp's shift method can be used, instead of solving any quantum systems by using directly star product procedure.39–66

[ˆxi,ˆxj]=iθijand[ˆpi,ˆpj]=iˉθij ...(3.1)

The, four generalized positions and momentum coordinates in the noncommutative quantum mechanics (ˆx,ˆy)  and (ˆpx,ˆpy)  are depended with corresponding four usual generalized positions and momentum coordinates in the usual quantum mechanics (x,y)  and (px,py)  by the following four relations.32–55

{ˆx=xθ2py,ˆy=y+θ2pxˆpx=px+ˉθ2y andˆpy=pxˉθ2x  …(3.2)

{ˆx=xθ122pyθ132pz,ˆy=yθ212pxθ232pzand   ˆz=zθ312pxθ322py …(3.3)

 and

{ˆpx=pxˉθ122yˉθ132z,ˆpy=pyˉθ212xˉθ232zand    ˆpz=pzˉθ312xˉθ322y …(3.4)

 The non–vanish 9–commutators in (NC–2D: RSP) and (NC–3D: RSP) can be determined as follows:

[ˆx,ˆpx]=[ˆy,ˆpy]=i,[ˆx,ˆy]=iθ12             and                    [ˆpx,ˆpy]=iˉθ12 …(3.5)

and

[ˆx,ˆpx]=[ˆy,ˆpy]=[ˆz,ˆpz]=i,[ˆx,ˆy]=iθ12,[ˆx,ˆz]=iθ13,[ˆy,ˆz]=iθ23[ˆpx,ˆpy]=iˉθ12,[ˆpy,ˆpz]=iˉθ23,[ˆpx,ˆpz]=iˉθ13 ….(3.6)

Which allow us to getting the two operators ˆr2  and ˆp2  on a noncommutative two dimensional space–phase as follows.32–48

ˆr2=r2θLz    and    ˆp2=p2+ˉθLz  …(4.1)

ˆr2=r2LΘ       and                ˆp22μ = p22μ + Lˉθ2μ  …(4.2)

Where the two couplings LΘ  and  are given by, respectively:

LΘLxΘ12+LyΘ23+LzΘ13    and    LˉθLxˉθ12+Lyˉθ23+Lzˉθ13 … (5.1)

It is–well known, that, in quantum mechanics, the three components (Lx Ly  , Lz  and ) are determined, in Cartesian coordinates:

Lx=ypzzpy,Ly =zpx-xpz      and     Lz=xpyypx … (5.2)

The study of inverse–square potential has now become a very interest field due to their applications in different fields.1 this work is aimed at obtaining an analytic expression for the eigenenergies of a inverse–square potential in (NC: 2D–RSP) and (NC: 3D–RSP) using the generalization Boopp’s shift method based on mentioned formalisms on above equations to discover the new symmetries and a possibility to obtain another applications to this potential in different fields, it is important to notice that, this potential was studied, in ordinary two dimensional spaces, by authors Shi–Hai Dong and Guo–Hua Sun of the Ref. the Schrödinger equation with a Coulomb plus inverse–square potential in D dimensions.1 The organization scheme of the study is given as follows: In next section, we briefly review the Schrödinger equation with inverse–square potential on based to Ref.1 The Section 3, devoted to studying the (two–three) deformed Schrödinger equation by applying both Boopp's shift method to the inverse–square potential. In the fourth section and by applying standard perturbation theory we find the quantum spectrum of the excited states in (NC–2D: RSP) and (NC–3D: RSP) for spin–orbital interaction. In the next section, we derive the magnetic spectrum for studied potential. In the sixth section, we resume the global spectrum and corresponding noncommutative Hamiltonian for inverse–square potential. Finally, the important results and the conclusions are discussed in last section.

Review the eignenfunctions and the energy eigenvalues for inverse–square potential in ordinary two dimensional spaces

Here we will firstly describe the essential steps, which gives the solutions of time independent Schrödinger equation for a fermionic particle like electron of rest mass and its energy moving in inverse–square potential.1

V(r)=Ar2Br … (6)

Where A and B are two positive constant coefficients. The above potential is the sum of Colombian (Br)  and inverse–square potential (Ar2) , if we insert this potential into the non–relativistic Schrödinger equation; we obtain the following equation, in two and three dimensional spaces, respectively, as follows:

{22m0[1rr(rr)+1r22ϕ2]Ar2+Br}Ψ(r,ϕ)=Ε2dΨ(r,ϕ) … (7.1)

{22m0[1r2r(r2r)+1r2sinθθ(sinθθ)+1r2(sinθ)22ϕ2]Ar2+Br}Ψ(r,θ,ϕ)=Ε3dΨ(r,θ,ϕ) …. (7.2)

Here Ψ(r,ϕ)  and Ψ(r,θ,ϕ)  is the solution in the (2–3) dimensional in (polar and spherical) coordinates, the complete wave function ( Ψ(r,ϕ)  and Ψ(r,θ,ϕ) separated as follows:

Ψ(r,ϕ)=Rl(r)e±iϕ ...(8.1)

and

Ψ(x)=Rl(r)Yll(θ,ϕ)  … (8.2)

Substituting eq. (8.1) and (8.2) into eq. (7.1) and (7.2), we obtain the radial function  satisfied the following equation, in (two–three) dimensional spaces.1

d2Rl(ρ)dρ2+2ρdRl(ρ)dρ+(14+τρ2A+l2ρ2)Rl(r) = 0 …(9.1)

1r2r(r2r)Rl(r)+[2(ΕV(r))l(l+1)r2]Rl(r) = 0 … (9.2)

Hereρ=r8E  and τ=B12E .

The proposed solutions of eqs. (9.1) and (9.2) are determined from the unifed relation:

R1(ρ)=ρλeρ2F(ρ)    (10)

where λ=2D+2A+k22  and k=2l+D2 . We Companie between eqs. (9.1), (9.2) and (10) to obtains.1

ρd2F(ρ)dρ2+(2λ+D1ρ)+dF(ρ)dρ+(τλD12)F(ρ)=0  …(11)

The confluent hypergeometric functions φ(λτ+1/2,2λ+1;ρ)  are present the solutions of eq. (11).1

R(ρ)=Νρλeρ2φ(λτ+(D1)/2,2λ+D1;ρ)  …(12)

The constraint conditions on the potential parameters are determined from relations.1

τλ(D1)/2=n=0,1,2,.......n=n+κ2D/2+2=n+l+1τ=Β12Ε=nl1+λ+(D1)/2  … (13)

The normalized wave functions Ψ(ρ,ϕ)  expressed in terms of the radial functions and spherical harmonic functions read as.1

Ψ(ρ,ϕ)=(4Β2n2m+2s21)((nm1)!(2n2m+2s21)(nm+2s21)!)1/2ρs2eρ2L2s2nm1(ρ)exp(±imϕ) ..(14.1)

Ψ(ρ)=(2Bn)32[(nl1)!2n(n+l)!]12ρleρ2L2l+1nl1(ρ)Yll(θ,ϕ) …(14.2)

And the corresponding eigenvalues Ε(n,l,D)  is determined from relation.1

Ε(n,l,D)=2Β(2n2l1+8Α+κ2)={2Β2(2n2m1+2A+m2)2     forD=22B2{(2n)28Aκ(2n)3+16A2κ3(2n)3+48A2κ2(2n)4...} forD=3   (15)

 The rest of this section is devoted to the reapply of some essential properties of generalized Laguerre polynomials L(β)n(ρ)  which are given by:

L(β)n(ρ)12iexp(ρt1t)(1t)β+1tn+1dt  …(16)

Where  is integer, this can be taking the exciplicitly mathematically forms.1,65,66,67

L(β)n(ρ)=β(β+n+1)n!β(β+1)F11(n,β+1;ρ)  …(17)

The Laguerre polynomials may be defined in terms of hypergeometric functions 1F1(n,β+1;ρ) , specifically the confluent hyper geometric functions, as:

F11(n,β+1;ρ)=n=0a(n)ρnb(n)n! … (18.1)

Where a(n) is the Pochhammer symbol, which can be takes the particulars values a(0)=0 and a(n)=a(a+1).....(a+n1) , it is important to notice that, the hypergeometric functions have another common notation Φ(a,b,ρ)  which considered as a function of a, b=0,1,2,... , and the variable ρ . The generalized Laguerre polynomial can also be defined by the following equation:

L(β)n(ρ)=ni=0(1)i(n+βni)(i)!ρi …(18.2)

Deformed schrödinger equations and modified inverse–square (m.i.s.) potential in both (nc–2d: rsp) and (nc–3d: rsp):

 This section is devoted to constructing of non relativistic modified Schrödinger equations (m.s.e) in both (NC–2D: RSP) and (NC–3D: RSP) for (m.i.s.) potential; to achieve this subject, we apply the essentials following steps.32–48

  1. Ordinary two dimensional Hamiltonian operators ( ˆHis2(pi,xi) , ˆHis3(pi,xi) ) will be replaced by new two dimensional Hamiltonian operators (ˆHnc2is(ˆpi,ˆxi)  , ˆHnc3is(ˆpi,ˆxi) ),
  2. Ordinary complex wave function Ψ(r) will be replacing by new complex wave function Ψ(r) ,
  3. Ordinary energies E(n,l,2) and E(n,l,3)  will be replaced by new values Enc2is(n,l,2,...) and Enc3is(n,l,3,...) , respectively.

And the last step corresponds to replace the ordinary old product by new star product () , which allow us to constructing the modified two dimensional Schrödinger equation in both (NC–2D: RSP) and (NC–3D: RSP) as for (m.i.s.) potential:

ˆHnc2is(ˆpi,ˆxi)Ψ(r)=Enc2is(n,l,2,...)Ψ(r) …. (19.1)

and

ˆHnc3is(ˆpi,ˆxi)Ψ(r)=Enc3is(n,l,3,...)Ψ(r) …(19.2)

In order to use the ordinary product without star product, with new vision, as mentioned before, we apply the Boopp’s shift method on the above eqs. (19.1) and (19.2) to obtain two reduced Schrödinger in both (NC–2D: RSP) and (NC–3D: RSP) for (m.i.s.) potential:

Hnc2is(ˆpi,ˆxi)ψ(r)=Enc2is(n,l,2,...)ψ(r) .... (20.1)

and

Hnc3is(ˆpi,ˆxi)ψ(r)=Enc3is(n,l,3,...)ψ(r) ....(20.2)

Where the new operators of Hamiltonian Hnc2is(pi,xi)  and Hnc3is(ˆpi,ˆxi)  can be expressed in three general varieties: both noncommutative space and noncommutative phase (NC–2D: RSP, NC–3D: RSP), only noncommutative space (NC–2D: RS, NC–3D: RS) and only noncommutative phase (NC: 2D–RP, NC: 3D–RP) as, respectively:

Hnc(23)is(ˆpi,ˆxi)H(px+ˉθ2y,pyˉθ2x,xθ2py,y+θ2px)for NC-2D: RSP and NC-3D: RSP ...(21.1)

Hnc(23)is(ˆpi,ˆxi)H(px,py,xθ2py,y+θ2px) for NC-2D: RS and NC-3D: RS ...(22.2)

Hnc(23)is(ˆpi,ˆxi)H(px+ˉθ2y,pxˉθ2x,x,y) for NC-2D: RP and NC-3D: RP ...(22.3)

In recently work, we are interest with the first variety (21.1), after straightforward calculations, we can obtain the five important terms, which will be use to determine the (m.i.s.) potential in (NC: 2D– RSP) and (NC: 3D–RSP), respectively, as:

Aˆr2=Ar4+AθLzr4,   Bˆr=BrBθLz2r3    and     ˆp22m0=p22m0+Lˉθ2m0 …(23)

and

Aˆr2=Ar4+ALΘr4,   Bˆr=BrBLΘ2r3    and    ˆp22m0=p22m0+ˉθLz2m0 …(24)

Which allow us to obtaining the global potential operator Hnc2is(ˆpi,ˆxi)  and Hnc3is(ˆpi,ˆxi)  for (m.i.s) potential in both (NC: 2D–RSP) and (NC: 3D–RSP), respectively, as:

Hnc2is(ˆpi,ˆxi)=Ar2Br+p22m0+ˉθLz2m0+(Ar4B2r3)θLz …(25.1)

and

Hnc3is(ˆpi,ˆxi)=Ar2Br+p22m0+Lˉθ2m0+(Ar4B2r3)LΘ …(25.2)

It’s clearly, that the four first terms are given the ordinary inverse–square potential and kinetic energy in (2D–3D) spaces, while the rest terms are proportional’s with infinitesimals parameters (θ , ˉθ ) and (Θ , ˉθ ), thus, we can considered as a perturbations terms, we noted by ˆH2pert(r,A,B,θ,ˉθ)  and ˆH3pert(r,A,B,Θ,ˉθ)  for (NC: 2D–RSP) and (NC: 3D–RSP) symmetries, respectively, as:

ˆH2pert(r,A,B,θ,ˉθ)=Lzˉθ2m0+(Ar4B2r3)θLz …(26.1)

and

ˆH3pert(r,A,B,Θ,ˉθ)=Lˉθ2m0+(Ar4B2r3)LΘ …(26.2)

The Exact Spin–Orbital Hamiltonian and the Corresponding Spectrum for (m.i.s.) Potential in both (NC: 2D– RSP) and (NC: 3D– RSP) Symmetries for Excited States for One–Electron Atoms

The exact spin–orbital hamiltonian for (m.i.s.) potential in both (NC: 2D– RSP) and (NC: 3D– RSP) symmetries for one–electron atoms

 Again, the perturbative two terms ˆH2pert(r,A,B,θ,ˉθ)  and ˆH3pert(r,A,B,Θ,ˉθ)  can be rewritten to the equivalent physical form for (m.i.p.) potential:

ˆH2pert(r,A,B,θ,ˉθ)={ˉθ2m0+θ(Ar4B2r3)}SL … (26.3)

ˆH3pert(r,A,B,Θ,ˉθ)={ˉθ2m0+Θ(Ar4B2r3)}SL … (26.4)

Furthermore, the above perturbative terms ˆH2pert(r,A,B,θ,ˉθ)  and ˆH3pert(r,A,B,Θ,ˉθ)  can be rewritten to the following new equivalent form for (m.i.p.) potential:

H2pert(r,A,B,θ,θ)=12{θ2m0+θ(Ar4B2r3)}(J2L2S2)   (27.1)

ˆH3pert(r,A,B,Θ,ˉθ)=12{ˉθ2m0+Θ(Ar4B2r3)}(J2L2S2) … (27.2)

To the best of our knowledge, we just replace the coupling spin–orbital SL  by the expression 12(J2L2S2) , in quantum mechanics. The set ( Hnc(23)is(ˆpi,ˆxi) ,J2 , L2 , S2 and Jz)  forms a complete of conserved physics quantities and the eigenvalues of the spin orbital coupling operator are:

p±(j=l±1/2,l,s=1/2)12{(l+12)(l+12+1)+l(l+1)34  p+  forj= l+12polarizationup(l12)(l12+1)+l(l+1)34  p   forj= l+12polarizationdown … (27.3)

Which allows us to form a diagonal (2×2)  and (3×3) two matrixes, with non null elements are [(ˆHsois)11 and (ˆHsois)22 ] and [(ˆHsois)11 ,(ˆHsois)22 , (ˆHsois)33 ] for (m.i.s.) potential in (NC: 2D–RSP) and (NC: 3D–RSP), respectively, as:

(Hsoip)11=p+(ˉθ2m0+θ(Ar4B2r3))if j=l+12 spin -up(Hsoip)22=p(ˉθ2m0+θ(Ar4B2r3)) if j=l12 spin -down ....(28.1)

and

(ˆHsois)11=p+{ˉθ2m0+Θ(Ar4B2r3)}if j=l+12 spin up(ˆHsois)22= p{ˉθ2m0+Θ(Ar4B2r3)} ifj = l12 spin down(ˆHsois)33=0  …(28.2)

Substituting two equations (26.1) and (26.2) into two equations (20.1) and (20.12), respectively and then, the radial parts of the modified Schrödinger equations, satisfying the following important two equations:

d2Rl(ρ)dρ2+2ρdRl(ρ)dρ+(14+τρ2A+l2ρ2{ˉθ2m0+θ(Ar4B2r3)}SL)Rl(r) = 0 … (29.1)

and

1r2r(r2r)Rl(r)+[2(Enc3is(n,l,3,...)V(r))l(l+1)r2{ˉθ2m0+Θ(Ar4B2r3)}SL]Rl(r)=0 …(29.2)

for (m.i.s.) potential in (NC: 2D–RSP) and (NC: 3D–RSP), ii is clearly that the above equations including equations (26.1) and (26.2), the perturbative terms of Hamiltonian operator, which we are subject of discussion in next sub–section.

The exact spin–orbital spectrum for (m.i.s.) potential in both (NC: 2D– RSP) and (NC: 3D– RSP) symmetries for states for one–electron atoms

 In this sub section, we are going to study the modifications to the energy levels (Encper:u(θ,ˉθ)  ,Encper:D(θ,ˉθ) ) and (Encper:u(Θ,ˉθ) , Encper:D(Θ,ˉθ) ) for spin up and spin down, respectively, at first order of parameters (θ ,ˉθ ) and ( Θ , ˉθ ), for excited states nth , obtained by applying the standard perturbation theory, using eqs. (14.1) (14.2), (27.1) and (27.2) corresponding (NC–2D: RSP) and (NC–3D: RSP), respectively, as:

Encper:u(θ,ˉθ)2p+R*(r)[θ(Ar4B2r3)+ˉθ2m0]R(r)rdr       Sij=l+12Encper:D(θ,ˉθ)2pR*(r)[θ(Ar4B2r3)+ˉθ2m0]R(r)rdr       Sij=l12 … (30.1)

and

Encper:u(Θ,ˉθ)αp+(8E)3/2(2Bn)3(nl1)!2n(n+l)!ρ2l+2eρ[L2l+1nl1(ρ)]2[Θ(A'ρ4B'2ρ3)+ˉθ2m0]dρEncper:D(Θ,ˉθ)αp(8E)3/2(2Bn)3(nl1)!2n(n+l)!ρ2l+2eρ[L2l+1nl1(ρ)]2[Θ(A'ρ4B'2ρ3)+ˉθ2m0]dρ ….(30.2)

A direct simplification gives:

Encper:u(θ,ˉθ)2p+(8E)(4Β2n2m+2s21)2((nm1)!(2n2m+2s21)(nm+2s21)!)(θ2i=1Ti2+ˉθ2m0T32)Encper:D(θ,ˉθ)2p(8E)(4Β2n2m+2s21)2((nm1)!(2n2m+2s21)(nm+2s21)!)(θ2i=1Ti2+ˉθ2m0T32) ...(31.1)

and

Encper:u(Θ,ˉθ)αp+(8E)3/2(2Bn)3(nl1)!2n(n+l)!(Θ2i=1Ti3+ˉθ2m0T33)Encper:D(Θ,ˉθ)αp(8E)3/2(2Bn)3(nl1)!2n(n+l)!(Θ2i=1Ti3+ˉθ2m0T33) …(32.2)

Where, the 6– terms: (Ti2 ,Ti3   i=1,2 ), T32  and T33  are given by:

T12=A'+0eρρ2s23[L2s2nm1(ρ)]2dρT22=B'2+0eρρ2s22[L2s2nm1(ρ)]2dρT32=+0eρρ2s2+1[L2s2nm1(ρ)]2dρ ….(33.1)

and

T13=A'+0ρ2l2eρ[L2l+1nl1(ρ)]2dρT23=B'2+0ρ2l1eρ[L2l+1nl1(ρ)]2dρT33=+0ρ2l+2eρ[L2l+1nl1(ρ)]2dρ ….(33.2)

With new notation A'=(8E)2  and B'=(8E)3/2 , know we apply the special integral.1, 61

J(γ)n,α=0exxα+γ[Lαn(x)]2dx=(α+n)!n!nk=0(1)kΓ(n+κ+γ)Γ(κγ)(α+k+γ)!(α+k)!1κ!(nκ)!,  …(34)

Re(α+γ+1)0 , γ  can be takes: ( -3, –2 and +1), α=2s2  and nnm1 , which allow us to obtaining in (NC: 2D–RSP):

T12=A'J(3)nm1,2l+1=(2s2+nm1)!(nm1)!nk=0(1)kΓ(nm+κ4)Γ(κ+3)(2s2+k3)!(2s2+k)!1κ!(nm1κ)!, ....(35.1)

T22=B'2J(2)nl1,2l+1=(2s2+nm1)!(nm1)!nk=0(1)kΓ(nm+κ3)Γ(κ+2)(2s2+k2)!(2s2+k)!1κ!(nm1κ)! ...(35.2)

T32=J(+1)nl1,2l+1=(2s2+nm1)!(nm1)!nk=0(1)kΓ(nm+κ)Γ(κ1)(2s2+k+1)!(2s2+k)!1κ!(nm1κ)! ....(35.3)

For (NC: 3D–RSP) symmetries, we have:

T13=A'J(3)nl1,2l+1=(2l+1+nl1)!(nl1)!nk=0(1)kΓ(nl1+κ3)Γ(κ+3)(2l+1+k3)!(2l+1+k)!1κ!(nl1κ)! ...(36.1)

T31=B'2J(2)nl1,2l+1=(2l+1+nl1)!(nl1)!nk=0(1)kΓ(nl1+κ2)Γ(κ+2)(2l+1+k2)!(2l+1+k)!1κ!(nl1κ)! ...(36.2)

T13=J(+1)nl1,2l+1=(2l+1+nl1)!(nl1)!nk=0(1)kΓ(nl1+κ+1)Γ(κ1)(2l+1+k+1)!(2l+1+k)!1κ!(nl1κ)! ...(36.3)

 Which allow us to obtaining the exact modifications of fundamental states (Encper:u(θ,ˉθ)  ,Encper:D(θ,ˉθ) ) and (Encper:u(Θ,ˉθ) ,Encper:D(Θ,ˉθ) ) produced by spin–orbital effect:

Encper:u(θ,ˉθ)2p+(8E)(4Β2n2m+2s21)2((nm1)!(2n2m+2s21)(nm+2s21)!)(θTs2is(A,B,n,l)+ˉθ2m0T32)Encper:D(θ,ˉθ)2p+(8E)(4Β2n2m+2s21)2((nm1)!(2n2m+2s21)(nm+2s21)!)(θTs2is(A,B,n,l)+ˉθ2m0T323)  …(37.1)

and

Encper:u(Θ,ˉθ)αp+(8E)3/2(2Bn)3(nl1)!2n(n+l)!(ΘTs3is(A,B,n,l)+ˉθ2m0T33)Encper:D(Θ,ˉθ)αp(8E)3/2(2Bn)3(nl1)!2n(n+l)!(ΘTs3is(A,B,n,l)+ˉθ2m0T33) ....(37.2)

Where, the two factors Ts2is(A,B,n,l)  and Ts3is(A,B,n,l)  are given by, respectively:

Ts2is(A,B,n,l)=2i=1Ti2Ts3is(A,B,n,l)=2i=1Ti3 ...(38)

The exact magnetic spectrum for (m.i.s.) potential in both (NC: 2D– RSP) and (NC: 3D– RSP) symmetries for excited states for one–electron atoms

 Having obtained the exact modifications to the energy levels (Encper:u(θ,ˉθ) , Encper:D(θ,ˉθ) ) and (Encper:u(Θ,ˉθ) , Encper:D(Θ,ˉθ) ), for exited nth  states, produced with spin–orbital induced Hamiltonians operators, we now consider interested physically meaningful phenomena, which produced from the perturbative terms of inverse–square potential related to the influence of an external uniform magnetic field, it’s sufficient to apply the following three replacements to describing these phenomena:

Lzˉθ2m0+(Ar4B2r3)θLz{ˉσ2m0+χ(Ar4B2r3)}HL .....(39.1)

Lˉθ2m0+(Ar4B2r3)LΘ{ˉσ2m0+χ(Ar4B2r3)}HL ..(39.2)

θχH,ΘχH    and ˉθˉσH ....(39.3)

Here χ  and ˉσ  are infinitesimal real proportional’s constants, and we choose the magnetic field  H=Hk , which allow us to introduce the modified new magnetic Hamiltonians ˆHm2is(r,A,B,χ,ˉσ)  and ˆHm3is(r,A,B,χ,ˉσ)  in (NC: 2D–RSP) and (NC: 3D–RSP), respectively, as:

ˆHm2is(r,A,B,χ,ˉσ)=(χ(Ar4B2r3)+ˉσ2m0)(HJSH) ....(40.1)

and

ˆHm3is(r,A,B,χ,ˉσ)=(χ(Ar4B2r3)+ˉσ2m0)(HJSH) ....(40.2)

Here (SH)  denote to the ordinary Hamiltonian of Zeeman Effect. To obtain the exact noncommutative magnetic modifications of energy (Emag2-is(θ,ˉθ,n,m,A,B) , Emag-3is(Θ,ˉθ,n,l,A,B) ) for modified inverse–square potential, which produced automatically by the effect of ˆHm2is(r,A,B,χ,ˉσ)  and ˆHm3is(r,A,B,χ,ˉσ) , we make the following three simultaneously replacements:

p+m,(θ,Θ)(χ,χ)    and     ˉθˉσH ....(41)

In two Eqs. (37.1) and (37.2) to obtain the two values Emag2-is(θ,ˉθ,n,m,A,B)  and Emag-3is(Θ,ˉθ,n,l,A,B) for the exact magnetic modifications of spectrum corresponding nth  excited states, in (NC–2D: RSP) and (NC–3D: RSP), respectively, as:

Emag2-is(θ,ˉθ,n,m,A,B)2mH(8E)(4Β2n2m+2s21)2((nm1)!(2n2m+2s21)(nm+2s21)!)(χTs2is(A,B,n,l)+ˉσ2m0T32(A,B,n,l)) ...(42.1)

and

Emag-3is(Θ,ˉθ,n,l,A,B)=mH(8E)3/2(2Bn)3(nl1)!2n(n+l)!(χTs3is(A,B,n,l)+ˉσ2m0T33(A,B,n,l)) ....(42.2)

Where m  denote to the angular momentum quantum number, lm+l , which allow us to fixing (2l+1 ) values for the orbital angular momentum quantum numbers.

Results of exact modified global spectrum of the lowest excitations states for (m.i.s.) potential in both (nc:2d– rsp) and (nc:3d– rsp) symmetries for one–electron atoms

 Let us now resume the eigenenergies of the modified Schrödinger equations obtained in this paper, the total modified energies (Encu(θ,ˉθ) , EncD(θ,ˉθ) ) and (Encu(Θ,ˉθ) , EncD(Θ,ˉθ) ) of a particle fermionic with spin up and spin down are determined corresponding  excited states, respectively, for modified inverse–square potential in (NC: 2D–RSP) and (NC: 3D–RSP), on based to the obtained new results (10.a), (37.1), (37.2), (41.1), (41.2) and (37.b), in addition to the original results (17) of energies we obtain the four new values of global energies:

Encu(θ,ˉθ)2Β2(2n2m1+2A+m2)2+2p+(8E)(4Β2n2m+2s21)2((nm1)!(2n2m+2s21)(nm+2s21)!)(θTsis(A,B,n,l)+ˉθ2m0T3)+2mH(8E)(4Β2n2m+2s21)2((nm1)!(2n2m+2s21)(nm+2s21)!)(χTs2is(A,B,n,l)+ˉσ2m0T32(A,B,n,l)) .....(43.1)

EncD(Θ,ˉθ)2Β2(2n2m1+2A+m2)2+2p(8E)(4Β2n2m+2s21)2((nm1)!(2n2m+2s21)(nm+2s21)!)(θTsis(A,B,n,l)+ˉθ2m0T3)+2mH(8E)(4Β2n2m+2s21)2((nm1)!(2n2m+2s21)(nm+2s21)!)(χTs2is(A,B,n,l)+ˉσ2m0T32(A,B,n,l)) ...(43.2)

Encu(Θ,ˉθ)2B2{(2n)28Aκ(2n)3+16A2κ3(2n)3+48A2κ2(2n)4...}αp+(8E)3/2(2Bn)3(nl1)!2n(n+l)!(ΘTsis(A,B,n,l)+ˉθ2m0T3)mH(8E)3/2(2Bn)3(nl1)!2n(n+l)!(χTs3is(A,B,n,l)+ˉσ2m0T33(A,B,n,l)) .....(43.3)

EncD(Θ,ˉθ)2B2{(2n)28Aκ(2n)3+16A2κ3(2n)3+48A2κ2(2n)4...}p(8E)3/2(2Bn)3(nl1)!2n(n+l)!(ΘTsis(A,B,n,l)+ˉθ2m0T3)mH(8E)3/2(2Bn)3(nl1)!2n(n+l)!(χTs3is(A,B,n,l)+ˉσ2m0T33(A,B,n,l)) ....(43.3)

In this way, one can obtain the complete energy spectra for (m.i.s.) potential in (NC: 2D–RSP) and (NC: 3D–RSP) symmetries. Know the following accompanying constraint relations:

  1. The original spectrum contain two possible values of energies in ordinary two–three dimensional space which presented by equation (15),
  2. The quantum number m satisfied the interval: lm+l , thus we have (2l+1 ) values for this quantum number,
  3. We have also two values for j=l+12 and j=l12 .

Allow us to deduce the important original results: every state in usually (two–three) dimensional space will be replace by 2(2l+1) sub–states and then the degenerated state can be take 2n1i=0(2l+1)2n2 values in (NC: 2D–RSP) and (NC: 3D–RSP) symmetries. It’s clearly, that the obtained eigenvalues of energies are real and then the noncommutative diagonal Hamiltonian operators ˆHnc2ip  and ˆHnc3ip  are Hermitian, furthermore it’s possible to writing the two elements [ (ˆHnc2is)11 ,  (ˆHnc2is)22 ] and [(ˆHnc3is)11,(ˆHnc3is)22,,(ˆHnc3is)33] , as follows, respectively:

(ˆHnc2is)11=12m0(1rr(rr)+1r22ϕ2)+Ar2Br+p+{ˉθ2m0+(Ar4B2r3)θ}+{ˉσ2m0+χ(Ar4B2r3)}HL    (ˆHnc2is)22=12m0(1rr(rr)+1r22ϕ2)+Ar2Br+p{ˉθ2m0+(Ar4B2r3)θ}+{ˉσ2m0+χ(Ar4B2r3)}HL     ....(44.1)

and

{(ˆHnc3is)11=12m0[1r2r(r2r)+1r2sinθθ(sinθθ)+1r2(sinθ)22ϕ2]+Ar2Br+p+[Θ(Ar4B2r3)+ˉθ2m0]+{ˉσ2m0+χ(Ar4B2r3)}HL    for  j=l+1/2  spin up (ˆHnc3is)22=12m0[1r2r(r2r)+1r<sinθθ(sinθθ)+1r2(sinθ)22ϕ2]+Ar2Brp[Θ(Ar4B2r3)+ˉθ2m0]+{ˉσ2m0+χ(Ar4B2r3)}HL    for  j=l1/2  spin down (ˆHnc3is)33=12m0[1r2r(r2r)+1r2sinθθ(sinθθ)+1r2(sinθ)22ϕ2]+Ar2Br ....(44.2)

 On the other hand, the above obtain results (44.1) and (44.2) allow us to constructing the diagonal anisotropic matrixes [(ˆHnc2is)11(ˆHnc2is)22]  and [(ˆHnc3is)11(ˆHnc3is)22](ˆHnc3is)22 of the Hamiltonian operators ˆHnc2ip  and ˆHnc3ip  for (m.i.s.) potential in (NC: 2D–RSP) and (NC: 3D–RSP) symmetries respectively, as:

ˆHnc2ip=((ˆHnc2is)1100(Hnc2is)22) ...(45.1)

and

ˆHnc3is=((Hnc3is)11000(Hnc3is)22000(Hnc3is)33) ...(45.2)

 Which allows us to obtain the original results for this investigation: the obtained Hamiltonian operators (45.1) and (45.2) can be describing atom which has two permanent dipoles: the first is electric dipole moment and the second is magnetic moment in external stationary electromagnetic field. It is important to notice that, the appearance of the polarization states of a fermionic particle for (m.i.s.) potential indicate to the validity of obtained results at very high energy where the two relativistic equations: Klein–Gordon and Dirac will be applied, which allowing to apply these results of various Nano–particles at Nano scales.

Conclusion

In this study we have performed the exact analytical bound state solutions: the energy spectra and the corresponding noncommutative Hamiltonians for the two and three dimensional Schrödinger equations in polar and spherical coordinates for modified inverse–squire potential by using generalization Boopp’s Shift method and standard perturbation theory. It is found that the energy eigenvalues depend on the dimensionality of the problem and new atomic quantum numbers ( j=l±1/1,s=±1/2,l  and the angular momentum quantum number in addition to two infinitesimals parameters (θ ,ˉθ ) and (Θ , ˉθ ) in the symmetries of (NC: 2D–RSP) and (NC: 3D–RSP). And we also showed that the obtained energy spectra degenerate and every old state will be replaced by 2(2l+1) sub–states. Finally, we expect that the results of our research are valid in the high energies, thus the (m.s.e) can gives the same results of Dirac and Klein–Gordon equations.

Acknowledgments

This work was supported with search laboratory of: Physique et Chimie des matériaux, in university of M'sila, Algeria.

Conflicts of interest

None.

References

  1. Shi Hai Dong, Guo–Hua Sun. The Schrödinger equation with a Coulomb plus inverse–square potential in D dimensions. Physica Scripta. 2004;70(2–3):94–97.
  2. J J Pena, G Ovando, J Morales. D–dimensional Eckart+deformed Hylleraas potential: Bound state solutions. Journal of Physics: Conference Series. 2015;574:012089.
  3. L Buragohain, SAS Ahmed. Exactly solvable quantum mechanical systems generated from the anharmonic potentials. Lat Am J Phys Educ. 2010;4(1):79–83.
  4. A Niknam, AA Rajab, M Solaimani. Solutions of D–dimensional Schrödinger equation for Woods–Saxon potential with spin–orbit, coulomb and centrifugal terms through a new hybrid numerical fitting Nikiforov–Uvarov method. J Theor App Phys. 2015;10(1):53–59.
  5. Sameer M, Ikhdair, Ramazan. Sever Exact solutions of the radial Schrödinger equation for some physical potentials. CEJP. 2007;5(4):516–527.
  6. MM Nieto. Hydrogen atom and relativistic pi–mesic atom in N–space dimension. Am J Phys. 1979;47:1067–1072.  
  7. SM Ikhdai, R Sever. Exact polynomial eigensolutions of the Schrödinger equation for the pseudo harmonic potential. J Mol Struc Theochem. 2007;806:155–158.
  8. Ahmed AS, Buragohain L. Generation of new classes of exactly solvable potentials from the trigonometric Rosen–Morse potential. Phys Scr. 2010;84(6):741–746.
  9. Bose SK, Gupta N. Exact solution of non–relativistic Schrödinger equation for certain central physical potentials. Nouvo Cimento. 1996;113B(3):299– 328.  
  10. Flesses GP, Watt A. An exact solution of the Schrödinger equation for a multiterm potential. J Phys A: Math Gen. 1981;14(9):L315–L318.
  11. M Ikhdair, R Sever. Exact solution of the Klein–Gordon equation for the PT symmetri generalized Woods–Saxon potential by the Nikiforov–Uvarov method. Ann Phys. 2007;16:218–232.
  12. SH Dong. Schrödinger equation with the potential V(r) =Ar*−4+Br*−3+Cr*−2+Dr*−1 Physica Scripta. 2001;64:273–276.  
  13. SH Dong, ZQ Ma. Exact solutions to the Schrödinger equation for the potential V(r) = ar2+br−4+cr6 in two dimensions. Journal of Physics. 1998;31(49):9855–9859.
  14. SH Dong A. new approach to the relativistic Schrödinger equation with central potential: Ansatz method. International Journal of Theoretical Physics. 2001;40(2):559–567.
  15. Ali Akder A. new Coulomb ring–shaped potential via generalized parametetric Nikivforov–Uvarov method. Journal of Theoretical and Applied Physics. 2013;7:17.
  16. Sameer M. Ikhdair, Ramazan Sever Relativistic Two–Dimensional Harmonic Oscillator Plus Cornell Potentials in External Magnetic and AB Fields. Advances in High Energy Physics. 2013;11.
  17. Shi Hai Dong, Guo Hua San. Quantum Spectrum of Some An harmonic Central Potentials: Wave Functions Ansatz. Foundations of Physics Letters. 2003;16(4):357–367.
  18. SM Ikhdair. Exact solution of Dirac equation with charged harmonic oscillator in electric field: bound states. Journal of Modern Physics. 2012;3(2):170–179.
  19. H Hassanabadi, S Zarrinkamar. Exact solution Dirac equation for an energy–depended potential. Tur Phys J Plus. 2012;127:120.
  20. H Hassanabadi, M Hamzavi, S Zarrinkamar, et al. Exact solutions of N–Dimensional Schrödinger equation for a potential containing coulomb and quadratic terms. International Journal of the Physical Sciences. 2011;6(3):583–586.
  21. Shi Hai Dong, Zhoung Qi Ma, Giampieero Esposito. Exact solutions of the Schrödinger equation with inverse–power potential. Foundations’ of Physics Letters. 1999;12(5):465–474.
  22. D Agboola. A Complete Analytical Solutions of the Mie–Type Potentials in N–Dimensions. Acta Physica Polonica A. 2011;120:371–377.
  23. D Shi Hai Exact solutions of the two–dimensional Schrödinger equation with certain central potentials. Int J Theor Phys. 2000;39(4):1119–1128.
  24. H Snyder. The Quantization of space time. Phys Rev. 1947;71:38–41.
  25. BI Ita. Solutions of the Schrödinger equation with inversely quadratic Hellmann plus Mie–type potential using Nikiforov–Uvarov Method. International Journal of Recent advances in Physics. 2013;2:4.
  26. BI Ita AI. Ikeuda Solutions of the Schrödinger equation with inversely quadratic Yukawa plus inversely quadratic Hellmann potential using Nikiforov–Uvarov Method. Journal of Atomic and Molecular Physics. 4 2013.
  27. BI Ita AI. Ikeuba AN. Ikot Solutions of the Schrödinger Equation with Quantum Mechanical Gravitational Potential Plus Harmonic Oscillator Potential. Commun Theor Phys. 2014;61:149.
  28. A Ghoshal YK. Ho Ground states of helium in exponential–cosine–screened Coulomb potentials. J Phys B: At Mol Opt Phys. 2009;42(7):075002.
  29. SM Kuchin, NV Maksimenko. Theoretical Estimations of the Spin–Averaged Mass Spectra of Heavy Quarkonia and Bc Mesons. Universal Journal of Physics and Applications. 2013;1(3):295–298.
  30. Shi–Hai Dong. Schrödinger Equation with the Potential V(r) =Ar–4+Br–3+Cr–2+Dr–1; Physica Scripta. 2001;64:273–276.
  31. Abdelmadjid Maireche Spectrum of Schrödinger Equation with HLC Potential in Non–Commutative Two–dimensional Real Space. The African Rev Phys. 2014;9(0060):479–483.
  32. Abdelmadjid Maireche Deformed Quantum Energy Spectra with Mixed Harmonic Potential for Nonrelativistic Schrödinger equation. J Nano– Electron Phys. 2015;7(2):02003–1–02003–6.
  33. Abdelmadjid Maireche A. Study of Schrödinger Equation with Inverse Sextic Potential in 2–dimensional Non–commutative Space. The African Rev Phys. 2014;9(0025):185–193.
  34. Abdelmadjid Maireche. Deformed Bound States for Central Fraction Power Potential: Non Relativistic Schrödinger Equation. The African Rev Phys. 2015;10(0014):97–103.
  35. Abdelmadjid Maireche. Nonrelativistic Atomic Spectrum for Companied Harmonic Oscillator Potential and its Inverse in both NC–2D: RSP. International Letters of Chemistry, Physics and Astronomy. 2015;56:1–9.
  36. Abdelmadjid Maireche. Atomic Spectrum for Schrödinger Equation with Rational Spherical Type Potential in Non–commutative Space and Phase. The African Review of Physics. 2015;10(0046):373–381.
  37. Abdelmadjid Maireche. New exact bound states solutions for (CFPS) potential in the case of Non–commutative three dimensional non relativistic quantum mechanics. Med J Model Simul. 2015;04:060–072.
  38. Abdelmadjid Maireche. New Exact Solution of the Bound States for the Potential Family V(r) =A/r2–B/r+Crk (k=0,–1,–2) in both Noncommutative Three Dimensional Spaces and Phases: Non Relativistic Quantum Mechanics. International Letters of Chemistry, Physics and Astronomy. 2015;58:164–176.
  39. Abdelmadjid Maireche. New Quantum atomic spectrum of Schrödinger equation with pseudo harmonic potential in both noncommutative three dimensional spaces and phases. Lat Am J Phys Educ. 2015;09:1301–1–1301–8.
  40. Abdelmadjid Maireche. A New Approach to the Non Relativistic Schrödinger equation for an Energy–Depended Potential V(r,En,l)=V0(1+ηEn,l)r2 in Both Noncommutative three Dimensional spaces and phases. International Letters of Chemistry, Physics and Astronomy. 2015;60:11–19.
  41. Abdelmadjid Maireche. A Recent Study of Quantum Atomic Spectrum of the Lowest Excitations for Schrödinger Equation with Typical Rational Spherical Potential at Planck's and Nanoscales. J Nano Electron Phys. 2015;7(3):3047–3051.
  42. Abdelmadjid Maireche. A New Study to the Schrödinger Equation for Modified Potential V(r)= ar2+br–4+cr–6 in Nonrelativistic Three Dimensional Real Spaces and Phases. International Letters of Chemistry, Physics and Astronomy. 2015;61:38–48.
  43. Abdelmadjid Maireche. Quantum Hamiltonian and Spectrum of Schrödinger Equation with companied Harmonic Oscillator Potential and its Inverse in three Dimensional Noncommutative Real Space and Phase. J Nano Electron Phys. 2015;7(4):1–7.
  44. Abdelmadjid Maireche. Spectrum of Hydrogen Atom Ground State Counting Quadratic Term in Schrödinger Equation. The African Rev Phys. 2015;10:177–183.
  45. Abdelmadjid Maireche. New Bound State Energies for Spherical Quantum Dots in Presence of a Confining Potential Model at Nano and Plank’s Scales. Nano World J. 2016;1(4):120–127.
  46. Abdelmadjid Maireche. New Relativistic Atomic Mass Spectra of Quark (u, d and s) for Extended Modified Cornell Potential in Nano and Plank’s Scales. J Nano Electron Phys. 2016;8(1):01020.
  47. Abdelmadjid Maireche. The Nonrelativistic Ground State Energy Spectra of Potential Counting Coulomb and Quadratic Terms in Non–commutative Two Dimensional Real Spaces and Phases. J Nano Electron Phys. 2016;8(1):01021.
  48. Abdelmadjid Maireche. New Theoretical Study of Quantum Atomic Energy Spectra for Lowest Excited States of Central (PIHOIQ) Potential in Noncommutative Spaces and Phases Symmetries at Plan’s and Nanoscales. J Nano Electron Phys. 2016;8(2):02027–1–02027–10
  49. Abdelmadjid Maireche. A New Nonrelativistic Atomic Energy Spectrum of Energy Dependent Potential for Heavy Quarkouniom in Noncommutative Spaces and Phases Symmetries. J Nano Electron Phys. 2016;8(2):02046–1–02046–6.
  50. Abdelmadjid Maireche, Djenaoui Imane. A New Nonrelativistic Investigation for Spectra of Heavy Quarkonia with Modified Cornell Potential: Noncommutative Three Dimensional Space and Phase Space Solutions. J Nano Electron Phys. 2016;8(3):03024.
  51. Abdelmadjid Maireche. A Complete Analytical Solution of the Mie–Type Potentials in Non–commutative 3–Dimensional Spaces and Phases Symmetries. Afr Rev Phys. 2016;11:111–117.
  52. Abdelmadjid Maireche. New Exact Energy Eigen–values for (MIQYH) and (MIQHM) Central Potentials: Non–relativistic Solutions. Afr Rev Phys. 2016;11(0023):175–185.
  53. Abdelmadjid Maireche. A New Relativistic Study for Interactions in One–electron atoms (Spin ½ Particles) with Modified Mie–type Potential. J Nano Electron Phys. 2016;8(4):04027–1–04027–9
  54. Shaohong Cai, Tao Jing, Guangjie Guo, et al. Dirac Oscillator in Noncommutative Phase Space. International Journal of Theoretical Physics. 2010;49(8):1699–1705.
  55. Joohan Lee. Star Products and the Landau Problem. Journal of the Korean Physical Society. 2005;47(4):571–576.
  56. Jahan Noncommutative harmonic oscillator at finite temperature: a path integral approach. Brazilian Journal of Physics. 2008;38(4):144–146.
  57. Anselme F Dossa, Gabriel YH. Avossevou Noncommutative Phase Space and the Two Dimensional Quantum Dipole in Background Electric and Magnetic Fields. Journal of Modern Physics. 2013;4(10):1400–1411.
  58. Yang Zu–Hua, Chao Yun Long, Shuei Jie Qin, et al. Long DKP Oscillator with spin–0 in Three dimensional Noncommutaive Phase–Space. Int J Theor Phys. 2010;49:644–657.
  59. Y Yuan, Li Kang, Wang, et al. Spin ½ relativistic particle in a magnetic field in NC Phase space. Chinese Physics C. 2010;34(5):543–547.
  60. Jumakari–Mamat, Sayipjamal Dulat, Hekim Mamatabdulla. Landau–like Atomic Proplem on a Non–commutative Phase Space. Int J Theor Phys. 2016;55(6):2913–2918.
  61. Behrouz Mirza, Rasoul Narimani, Somayeh Zare. Relativistic Oscillators in a Noncommutative space in a Magnetic field. Commun Theor Phys. 2011;55:405–409.
  62. Yongjun Xia, Zhengwen Long, Shaohong Cai, et al. Oscillator in Noncommutative Phase Space Under a Uniform Magnetic Field. Int J Theor Phys. 2011;50:3105–3111.
  63. AEF Djemaï, H Smail. On Quantum Mechanics on Noncommutative Quantum Phase Space. Commun. Theor Phys. 2004;41(6):837–844.
  64. Al Jamel. Heavy quarkonia with Cornell potential on noncommutative space. Journal of Theoretical and Applied Physics. 2011;5(1):21–24.
  65. Nieto MM, Simmons LM. Eigenstates, coherent states, and uncertainty products for the Morse oscillator. Phys Rev A. 1979;19:438–444.
  66. Wen Kai Shao, Yuan Heb, Jing Pan. Some identities for the generalized Laguerre polynomials. J Nonlinear Sci Appl. 2016;9:3388–3396.
  67. Teresa E, Pe_rez, Miguel A. Pinnar On Sobolev Orthogonality for the Generalized Laguerre Polynomials. Journal of approximation theory. 1996;86(3):278–285.
Creative Commons Attribution License

©2016 Maireche. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.