Submit manuscript...
eISSN: 2576-4470

Sociology International Journal

Research Article Volume 8 Issue 3

Better measurement of progress in SDG with emphasis on SDG-4 in India

Satyendra Nath Chakrabartty

Indian Statistical Institute, India

Correspondence: Satyendra Nath Chakrabartty, Professor at Indian Statistical Institute, Flat 4B, Cleopatra, DC 258, Street No. 350, Action Area 1, New Town, Kolkata 700156, India

Received: May 25, 2024 | Published: June 12, 2024

Citation: Chakrabartty SN. Better measurement of progress in SDG with emphasis on SDG-4 in India. Sociol Int J. 2024;8(3):141‒147. DOI: 10.15406/sij.2024.08.00387

Download PDF

Abstract

Avoiding scaling and selection of weights and replacing zero target of each indicator by a small value say 0.0001, the paper provides a simple method of multiplicative aggregation of indicators of i-th dimension of SDG-4 at t-th year → dimension scores ( D i t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaeWaa8aabaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNC aGqba8qacqWFdaprpaWaaSbaaSqaa8qacaWGPbWdamaaBaaameaape GaamiDaaWdaeqaaaWcbeaaaOWdbiaawIcacaGLPaaacqGHsgIRaaa@49F3@ country score ( Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@ )Global SDG-4 (Globa l SDG4t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadEeacaWGSbGaam4BaiaadkgacaWGHbGaamiBamaaBaaa leaacaWGtbGaamiraiaadEeacqGHsislcaaI0aGaamiDaaqabaGcca GGPaaaaa@433D@ . Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@  reflects position of i-th country at t-th year by a continuous monotonically increasing variable as an absolute measure satisfying desired properties like meaningful aggregation, Time-reversal test, formation of chain indices, etc. and offering significant benefits. The index is not affected by outliers and produces no bias for developed or underdeveloped countries. It helps to identify relative importance of the dimensions and critical dimensions/indicators requiring managerial attention, assess progress of SDG-4 over time, find distance of Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@ from the SDG targets. It enables testing hypothesis of equality of Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@  across time and space, and is applicable to other SDGs.

The proposed method contributes to improve aggregation of SDG indicators avoiding major limitations of existing methods. Policy makers and researchers can take advantages of the multiplicative aggregation. Future studies may empirically estimate distribution of Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@ and find effect of progress in SDG-4 on other SDGs for a comprehensive SDG progress report for effective monitoring the implementation of the 2030 Agenda.

Keywords: SDG indicators, geometric mean, progress assessment, progress path, cosine similarity, statistical tests, global SDG-4 index

Introduction

India, as a signatory to the Sustainable Development Goals (SDGs) is committed to provide quality education for all, irrespective of gender, caste and creed, disabilities up to secondary level by 2030. The goal 4 of SGD (SDG-4) focusing on Quality, Access, Equity and Inclusion (QAEI) are extremely significant in the context of India due to its large young population, with an median age of 28.7 years where 25.68% are up to 14 years age and 67.49% are in the age group 15- 64 years i.e.” working age population". The demographic dividend can be harnessed with improvement in education, health and skill development.1 In addition, significant gender gap, lack of access to digital learning resources, etc. are challenges to achieve SDG-4 goals by India.

Achievement of progress of SDG-4 is multidimensional in nature. Achievement of a country at a particular time-point (say year) can be divided into a finite number of dimensions where each dimension consists of different number of measurable indicators in different units. This requires a methodologically sound method of aggregation of indicators to obtain dimension scores which again are aggregated to get scores of achievement of SDG-4 or index of achievement of SDG-4 for a given year ( Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@ ) at national level.

Usually, indicators are evaluated at state-levels. Thus, the aggregation methods need to ensure meaningful aggregation of the indices at state-levels and further aggregation of at state-level indices to find Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@ at the national level at t-th year to facilitate.

  1. Better comparison and ranking of several countries at a given year with respect to along with test of equality of Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@ for two or more countries
  2. Assessment of overall progress at time-period (t+over the period and test H 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamisamaaBaaaleaacaaIWaaabeaaaaa@38E1@ : Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@ = ( Ι SDG4t+1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiabfM5ajnaaBaaaleaacaWGtbGaamiraiaadEeacqGHsisl caaI0aGaamiDaiabgUcaRiaaigdaaeqaaOGaaiykaaaa@40DB@
  3. Drawing path of improvements/deteriorations of Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@ across time for each country
  4. Identification of relative importance of dimensions and indicators to aggregated scores
  5. Identification of critical dimensions or indicators showing poor performances for necessary corrective policy action
  6. Measure how far a country is from the SDG-4 targets to be achieved by 2030. Countries can also be ranked in terms of distance from the set of SDG-4 targets
  7. Global SDG-4 index

Focusing attention to SDG-4 only, the paper proposes simple methods of aggregating indicators avoiding normalizations and assigning weights to SDG-4 indicators and discusses properties of the proposed methods.

Outcome targets of SDG-4

Seven outcome targets of SDG-4 to be achieved by 2030 are:

Universal primary and secondary education

All girls and boys to complete free, equitable and quality education (primary and secondary) leading to effective learning outcomes.2

Early childhood development and universal pre-primary education

All girls and boys have access to quality early childhood development, care and pre-primary education to make them ready for primary education.3

Equal access to technical/vocational and higher education

 All women and men to have equal access to affordable and quality technical, vocational and tertiary education, including university education.4

Relevant skills for decent work

Increase significantly the number of youth and adults with relevant skills, including technical and vocational skills, for employment, decent jobs and entrepreneurship.5 Computer-assisted learning had more positive effect compared to having new teaching materials.6

Gender equality and inclusion

Eliminate gender disparities in education and ensure equal access to all levels of education and vocational training for the vulnerables, including persons with disabilities, indigenous peoples and children in vulnerable situations.7

Universal youth literacy

 To ensure that all youth and a substantial proportion of adults, both men and women, achieve literacy and numeracy.8

Education for sustainable development and global citizenship

 To ensure that all learners acquire knowledge and skills needed to promote sustainable development, including among others, through education for sustainable development and sustainable lifestyles, human rights, gender equality, promotion of a culture of peace and non-violence, global citizenship and appreciation of cultural diversity and of culture’s contribution to sustainable development.

Progress made by India towards SGD-4

To achieve SDG-4, the government needs to enact relevant Acts, implement programmes and invest more in education, including early childhood education, teacher training, digital infrastructure, etc. Private sector partnerships can also play important roles in improving access to quality education.

Illustrative list of initiatives taken by the Government of India towards achieving the SDG-4: 

Samagra Shiksha in 2018 by subsuming the erstwhile three schemes Sarva Shiksha Abhiyan (SSA), Rashtriya Madhyamik Shiksha Abhiyan (RMSA) and Teacher Education (TE) to ensure inclusive and equitable quality education at all levels of school education. It covers school education from pre-school level to class XII. It has now been aligned with the National Education Policy (NEP) 2020 in order to ensure inclusive and equitable, quality and holistic school education.

National Skill Development Corporation (NSDC) in 2008 to provide vocational education and training to young people so as to improve their employability and meet the demands of the Indian economy.

Mid-Day Meal Scheme in 1995 to provide free meals to children in government schools to improve enrollment, attendance, and retention rates.

Digital India in 2015 for better digital infrastructure and digital literacy and skill trainings to help transform India into a digitally empowered society and knowledge economy.

National Educational Policy (NEP) in 2020 to meet the changing dynamics of the present day requirement with regard to quality education, innovation and research. NEP 2020 aims to restructure and reorient the education system and achieve universalization of education from pre-school to secondary level with 100% Gross Enrolment Ratio (GER) in school education, and also to eliminate discrimination in education and bring out-of-school children back into the mainstream through an open schooling system and thus make India a knowledge hub by equipping its students with skill development and up gradation including ICT and vocational training. The policy aims at increasing supply of qualified teachers by developing a Common National Professional Standards for Teachers.

Structured Assessment for Analyzing Learning levels (SAFAL) developed by CBSE and launched in 2021 in CBSE schools for grades 3, 5 and 8. As per NEP 2020,this assessment will focus on testing for core concepts, application-based questions and higher-order thinking skills. To ensure progress, SAFAL will provide diagnostic information about students’ learning to schools and thus, support school education to move towards competency-based education. For class IX and X, Learning outcomes developed by NCERT have been disseminated across States/UTs. Learning Outcomes document for the senior secondary level has been developed and the draft document has been shared with States and UTs for feedback.

India has achieved substantial progress towards the Goal-4 of SDG. Total number of students enrolled in school education in India (primary to higher secondary) stood at 25.57 crore in 2021-22 against 25.38 crore in 2020-21, implying an increase of 19.36 lakh enrolments. Similar increasing trends were also observed for Scheduled caste, Scheduled Tribe, other backward students and Children with Special Needs (CWSN) (http://dashboard.udiseplus.gov.in).GER in 2021-22 also improved at primary, upper primary, and higher secondary levels of school education, as compared to 2020-21. Notably, GER in higher secondary has made significant improvement from 53.8% in 2020-21 to 57.6% in 2021-22. Details are shown in Table 1.

2021 - 22 2020-21
Elementary School Secondary School (IX to X) Sr. Secondary School Higher Education
Boys Girls Total  Boys Girls Total  Boys Girls Total  Boys Girls Total 
99.3 101.1* 100.1* 79.7 79.4 79.6 57 58.2 57.6 26.7 27.9 27.3

Table 1 Gross enrollment ratio (in percentage) in India in 2021-22 and 2020-21
Source: Unified District Information System for Education (UDISE +) for 2021-22 and All India Survey on Higher Education (AISHE) for 2020-21.
GER >100 % indicate presence of over- or under-age children at a particular level.

The overall dropout rate as percentage of students who leave school before completing their level or grade also improved in 2021-22 to 1.5% from 1.8% in comparison to the previous year. As per the UDISE+ 2021-22 data, the dropout rate is highest at the secondary level (IX-X) with 12.6%, followed by upper primary (VI - VIII) with 3% and primary (I-V) with 1.5%. The data further reveals that the dropout rate is higher for girls than boys at all levels of education. The rate is slightly higher for upper primary students (Classes VI-VIII), with an average of 3%. However, the dropout rate for secondary school students (Classes IX-X) is significantly higher at 12.6%. However, the rate for girls is significantly higher than for boys and the rate is still a concern, especially in certain states (Table 2).

Description

State

Indicators

Average Annual Dropout Rate: Secondary Level (Grades 9-10)

Percentage of Schools with Access to Basic Infrastructure : Electricity & Drinking Water

Percentage of Trained Teachers at Secondary Level (Grades 9-10)

Pupil-teacher ratio at Secondary Level (Grades 9- 10)

TOP States/UTs

Kerala

9.14

99.24

94.53

16

Himachal Pradesh

7.81

97.59

79.55

9

Tamil Nadu

13.02

96.08

93.31

18

Chandigarh

4.52

100

89.49

12

Bottom States/UTs

Arunachal Pradesh

35.98

50.94

79.04

14

Bihar

28.46

88.66

78.44

58

Jammu and Kashmir

17.81

80.14

80.09

12

Madhya Pradesh

24.85

75.34

81.19

36

Assam

31.47

59.51

29.29

11

 

All India

17.87

84.76

82.62

21

 

Targets

8.8

100

100

30

Table 2 Dropout rate, basic infrastructure & pupil-teacher ratios: 2018-19
Source: Grouped as per SDG: 2020-21, NITI Aayog, Government of India (June 2021).

Literacy Assessment Tests conducted by the National Literacy Mission Authority (NLMA) in consultation with the National Institute of Open Schooling (NIOS), literacy rate is calculated based on Census data. Table 3 depicts Adult Literacy Rate for male and female and corresponding gender-gap. The table revels Adult Literacy Rate for female improved and Gender gap was narrowed down in India during 2001 to 2011. Dimensions and indicators may get changed with time. For example, computation of Educational Development Index (EDI) by NIEPA covered a set of 24 dimensions and two more dimensions were subsequently added viz. School Education Quality Index (SEQI) and Performance Grading Index (PGI). For the dimension Quality Education, indicators used, SDG targets etc. are shown in Table 4.

Year

Male

Female

Total

Gender Gap

2001

73.4

47.8

61

25.6

2011

78.8

59.3

69.3

19.6

Table 3 Adult literacy rate (in percentage) in India (Age≥ 15 years)
Source: GOI, MHRD, Educational Statistics at a Glance, 2016.

Indicator

Source

Present value

Target

Justification

 

Adjusted Net Enrolment Ratio (ANER) in elementary education(I - VIII)

UDISE, 2018-19

87.26

100

This corresponds to the SDG 4.1 to ensure that all girls and boys complete free, equitable, & quality primary and secondary education.

 
 

GER in higher secondary (XI-XII)

UDISE, 2018-19

50.14

100

NEP 2020 aims at universal, free and compulsory access to high-quality and equitable schooling from early childhood care and education (

 

3 years) till XII for all students

 
 
 
 

GER in higher education (18-23 years)

All India Survey of Higher Education, 2018-19

26.3

50

GER in higher education to reach 50% by 2035 - NEP 2020 aims

 

Average annual dropout rate at the secondary level (IX-X)

UDISE, 2018-19

17.87

8.8

The target corresponding to SDG 4.1 ensures that all girls and boys complete free, equitable & quality primary and secondary education. NEP 2020 aims to achieve 100% GER at school education by 2030.

 

Percentage of students in Grade VIII achieving a minimum proficiency level through nationally defined learning outcomes to be attained by the pupils at the end of the grade.

Dep. of School Education & Literacy.

71.9

100

The target corresponds to the SDG 4.1 to ensure that all girls and boys complete free, equitable, & quality primary and secondary education with relevant and effective learning outcomes.

 
 

NIF Progress Report 2020 V2.1, MoSPI, GoI. 

     

Gender Parity Index (GPI) for higher education (18-23 years)

AISHE, 2018-19

1

1

The target is aligned with the SDG 4.5 which aims to eliminate gender disparities in education.

 

Percentage of literate persons (

Periodic Labour Force Survey 2018-19

74.6

100

The target is aligned with the SDG 4.6 to ensure that all youth and a substantial proportion of adults achieve literacy and numeracy, by 2030.

 

15 years)

         

Percentage of schools with access to basic infrastructure

Ministry of Education, 2018-19

84.76

100

NEP 2020 aims to provide effective and adequate infrastructure for all students to have access to safe and engaging school education from preprimary to XII ensuring that no school remains deficient in infrastructure support

 

Percentage of trained teachers at the secondary level (IX- X)

Ministry of Education, 2018-19

82.62

100

The target is aligned with SDG 4c which aims to substantially increase the supply of qualified teachers.

 

Pupil-Teacher Ratio (PTR) at the secondary level

Ministry of Education and UDISE, 2018-19

21

30

NEP 2020 proposes PTR of under 30:1 at each level of school education

 

(IX - X)

         

Table 4 Quality education indicators used in SDG Index 2020-21
Source: SDG 2020-21, NITI Aayog.

Observations

Figures in percentages are not additive. Literacy Rate of India (in percentage) is different from sum or average of percentage Literacy Rate of males and the same for females. Thus, arithmetic aggregation of the indicators is not meaningful. The indicators for Quality Education cannot be added in meaningful fashion. Computation of Gender Gap in Adult Literacy Rate as difference of Literacy Rate of males (in%) minus percentage Literacy Rate of females in Table 3 is also not meaningful.

Instead of Gender Gap, Gender Parity Index (GPI) in education is taken as the ratio of number of male students enrolled in a particular level of education and the number of female students enrolled in the same level of education. However, in case of higher enrollment of females than males, implying education access in favor of female students. As per AISHE, 2020-21 data, GPI for Higher Education (18-23 Years) exceeded unity in large number of States/UTs likeAndaman & Nicobar Islands, Assam, Chandigarh, Chhattisgarh, Delhi, Goa, Haryana, Himachal Pradesh, Jammu and Kashmir, Jharkhand, Karnataka, Kerala, Ladakh, Lakshadweep, Manipur, Meghalaya, Mizoram, Nagaland, Puducherry, Punjab, Sikkim, Tamilnadu, Telangana,, Dadra and Nagar Haveli and Daman and Diu, Uttar Pradesh, Uttrakhand, West Bengal and at All India level.9

However, such GPI may not guarantee increase in enrolment rates and fails to identify barriers to Gender Equality. Theoretically speaking, if literacy rate of male and female are M L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadYeaa8aabeaaaaa@392B@  and F L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadYeaa8aabeaaaaa@3924@ respectively, M L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadYeaa8aabeaaaaa@392B@ > F L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadYeaa8aabeaaaaa@3924@  for 50% of the States/UTs of India and for the rest, F L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOra8aadaWgaaWcbaWdbiaadYeaa8aabeaaaaa@3924@ > M L MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyta8aadaWgaaWcbaWdbiaadYeaa8aabeaaaaa@392B@ , then the country average of gender gap with respect to literacy rate could be zero.

Meaningful application of statistical approach to Z=X+Y demands knowledge of distributions of X and Y with known or estimated probability density function f X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaamiwaaWdaeqaaaaa@3839@  and f Y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaamiwaaWdaeqaaaaa@3839@  respectively and finding f Z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaamiwaaWdaeqaaaaa@3839@  so that f Z ( z )= f X ( x ) f Y ( zx )dx MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaamOwaaWdaeqaaOWdbmaabmaapaqa a8qacaWG6baacaGLOaGaayzkaaGaeyypa0ZaaybCaeqal8aabaWdbi abgkHiTiabg6HiLcWdaeaapeGaeyOhIukan8aabaWdbiabgUIiYdaa kiaadAgapaWaaSbaaSqaa8qacaWGybaapaqabaGcpeWaaeWaa8aaba WdbiaadIhaaiaawIcacaGLPaaacaWGMbWdamaaBaaaleaapeGaamyw aaWdaeqaaOWdbmaabmaapaqaa8qacaWG6bGaeyOeI0IaamiEaaGaay jkaiaawMcaaiaadsgacaWG4baaaa@503E@  for continuous variables. Similar convolution of discrete variables can be defined.10 Methodological limitations and empirical inconsistencies of arithmetic aggregations have been discussed by various researchers like.11-13 For arithmetic aggregation, indicator scores may be converted to continuous monotonic scores following Normal Distribution.14

Aggregation of Indicators

SDG-4 indicators are in percentages or in ratios which do not allow meaningful application of addition and subtraction. It is difficult to maintain the linear trend assumption of such indicators because of the well-known problems of non-heteroscedasticity, non-Gaussian residuals and non-linear relationships close to the interval boundaries.15 However,16 normalized scores of i-th indicator ( x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4bWdamaaBaaaleaapeGaamyAaaWdaeqaaaaa@385C@ ) by Min- Max function i.e.

y i = x i Min.  x i T argeted x i Min.  x i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamyEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpdaWc aaWdaeaapeGaamiEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacq GHsislcaWGnbGaamyAaiaad6gacaGGUaGaaiiOaiaadIhapaWaaSba aSqaa8qacaWGPbaapaqabaaakeaapeGaamiva8aadaWgaaWcbaWdbi aadggacaWGYbGaam4zaiaadwgacaWG0bGaamyzaiaadsgacaWG4bWd amaaBaaameaapeGaamyAaaWdaeqaaaWcbeaak8qacqGHsislcaWGnb GaamyAaiaad6gacaGGUaGaaiiOaiaadIhapaWaaSbaaSqaa8qacaWG Pbaapaqabaaaaaaa@56C0@ *100   (1)

where y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG5bWdamaaBaaaleaapeGaamyAaaWdaeqaaaaa@385D@  is the normalized value of the i-th indicator and Min x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGnbGaamyAaiaad6gacaWG4bWdamaaBaaaleaapeGaamyAaaWd aeqaaaaa@3B0F@  is the minimum of observed values in the data set. This is followed by SDG Index Score for the i-th State/UT corresponding to the j-th goal ( I ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaaaaa@391C@ ) as arithmetic mean (AM) of the normalized values of all indicators (with equal weights) within the Goal i.e.

I ij = k=1 N i j I ij N ij MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysa8aadaWgaaWcbaWdbiaadMgacaWGQbaapaqabaGcpeGaeyyp a0ZaaabmaeaadaWcaaqaaiaadMeadaWgaaWcbaGaamyAaiaadQgaae qaaaGcbaGaamOtamaaBaaaleaacaWGPbGaamOAaaqabaaaaaqaaiaa dUgacqGH9aqpcaaIXaaabaGaamOta8aadaWgaaadbaWdbiaadMgaa8 aabeaal8qacaWGQbaaniabggHiLdaaaa@48EE@    (2)

where N ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGobWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaaaaa@3921@  denotes number of indicators with non-zero targets and obtain composite SDG India Index as AM of I ij s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacaWG Zbaaaa@3A2E@  of all SDGs.

It may be noted that ( x i Min x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqabaGccqGHsisl peGaamytaiaadMgacaWGUbGaamiEa8aadaWgaaWcbaWdbiaadMgaa8 aabeaakiaacMcaaaa@40D5@  or ( T argeted x i Min x i ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadsfapaWaaSbaaSqaa8qacaWGHbGaamOCaiaadEgacaWG LbGaamiDaiaadwgacaWGKbGaamiEa8aadaWgaaadbaWdbiaadMgaa8 aabeaaaSqabaGccqGHsislpeGaamytaiaadMgacaWGUbGaamiEa8aa daWgaaWcbaWdbiaadMgaa8aabeaakiaacMcaaaa@4884@ are not meaningful when x i ' s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4bWdamaaDaaaleaapeGaamyAaaWdaeaapeGaai4jaaaakiaa dohaaaa@3A1A@ are in percentages or ratios. To avoid the problem of data in percentages, 3rd root and 4th root of average of figures in percentage were considered in Human Poverty Index (HPI) for HPI- 1 and HPI – 2 respectively.17 Further analysis of 3rd root and 4th root of average of figures in percentage are problematic. For the Income component,18 used

Incom e X = lo g e X  lo g e ( X Min ) lo g e ( X Max )  lo g e ( X Min ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysaiaad6gacaWGJbGaam4Baiaad2gacaWGLbWdamaaBaaaleaa peGaamiwaaWdaeqaaOWdbiabg2da9maalaaapaqaa8qacaWGSbGaam 4BaiaadEgapaWaaSbaaSqaa8qacaWGLbaapaqabaGcdaahaaWcbeqa a8qacaWGybaaaOGaeyOeI0IaaiiOaiaadYgacaWGVbGaam4za8aada WgaaWcbaWdbiaadwgaa8aabeaakmaaCaaaleqabaWdbmaabmaapaqa a8qacaWGybWdamaaBaaameaapeGaamytaiaadMgacaWGUbaapaqaba aal8qacaGLOaGaayzkaaaaaaGcpaqaa8qacaWGSbGaam4BaiaadEga paWaaSbaaSqaa8qacaWGLbaapaqabaGcdaahaaWcbeqaa8qadaqada WdaeaapeGaamiwa8aadaWgaaadbaWdbiaad2eacaWGHbGaamiEaaWd aeqaaaWcpeGaayjkaiaawMcaaaaakiabgkHiTiaacckacaWGSbGaam 4BaiaadEgapaWaaSbaaSqaa8qacaWGLbaapaqabaGcdaahaaWcbeqa a8qadaqadaWdaeaapeGaamiwa8aadaWgaaadbaWdbiaad2eacaWGPb GaamOBaaWdaeqaaaWcpeGaayjkaiaawMcaaaaaaaaaaa@66E5@    (3)

However, such transformation using natural logarithm is not beyond criticism. For example,  is not invariant under change of origin. Logarithmic transformation does not satisfy properties like Translation Invariance and consistency in aggregation.19 Normalization using Min.- Max function depends heavily on Min x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGnbGaamyAaiaad6gacaWG4bWdamaaBaaaleaapeGaamyAaaWd aeqaaaaa@3B0F@  and changes distribution of Y scores and may affect the composite index. The X – Y curve is not linear. Y-score of an indicator is a relative measure and not an absolute one.20 Un-weighted AM suffers from substitutability effect i.e. low value of an indicator gets compensated by higher value of another indicator. 21Suggested normalization transformation

Z it = | X it X * | S xt MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamOwamaaBaaaleaacaWGPbGaamiDaaqabaGccqGH9aqpdaWcaaqa aiaacYhacaWGybWaaSbaaSqaaiaadMgacaWG0baabeaakiabgkHiTi aadIfapaWaaWbaaSqabeaapeGaaiOkaaaakiaacYhaaeaacaWGtbWa aSbaaSqaaiaadIhacaWG0baabeaaaaaaaa@4602@    (4)

where X it MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGybWdamaaBaaaleaapeGaamyAaiaadshaa8aabeaaaaa@3935@ denotes value of the i-th generic indicator at time t of a country, X * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGybWdamaaCaaaleqabaWdbiaacQcaaaaaaa@37EE@  is the target value for the indicator for the country and S Xt MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbWdamaaBaaaleaapeGaamiwaiaadshaa8aabeaaaaa@391F@ is the standard deviation of X it MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGybWdamaaBaaaleaapeGaamyAaiaadshaa8aabeaaaaa@3935@  based on all countries in year t. The formula by SDSN/Bertelsmann Stiftung report,22 involves value of the “worst” case among the countries in t-th year. Here, range of the transformed variable gets affected by the presence of outliers. However, values of an indicator in a year for all the countries may not be readily available and it could be desirable to compute composite SDG-4 index of a country for a year based on data relevant to the country only. Baseline status index approach was suggested,23 to measure progress made by each region/sub-region compared to the distance between its starting point and the target. Such indicator cannot be found for a region that has already achieved the target in the baseline year, even if it may be away from the target in subsequent years.15

Progress over time

Measurement of progress in SDG-4 over times is desirable. Time series analysis requiring large numbers of data points are not used for SDG data due to short length, at best starting from 2015 with time lag of two years (approx.) from data collection to data dissemination. Other methods used include: Compound annual growth rate (CAGR) based on the initial and final values only is calculated as

CAG R Ai =  ( x it x i t 0 ) 1 t t o 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadgeacaWGhbGaamOua8aadaWgaaWcbaWdbiaadgeacaWG PbaapaqabaGcpeGaeyypa0JaaiiOamaabmaapaqaa8qadaWcaaWdae aapeGaamiEa8aadaWgaaWcbaWdbiaadMgacaWG0baapaqabaaakeaa peGaamiEa8aadaWgaaWcbaWdbiaadMgacaWG0bWdamaaBaaameaape GaaGimaaWdaeqaaaWcbeaaaaaak8qacaGLOaGaayzkaaWdamaaCaaa leqabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWG0bGaeyOeI0 IaamiDa8aadaWgaaadbaWdbiaad+gaa8aabeaaaaaaaOWdbiabgkHi Tiaaigdaaaa@4F8E@    (5)

The required CAGR to achieve the target is:

CAG R Ri =  ( x i * x i t 0 ) 1 T t o 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadgeacaWGhbGaamOua8aadaWgaaWcbaWdbiaadkfacaWG PbaapaqabaGcpeGaeyypa0JaaiiOamaabmaapaqaa8qadaWcaaWdae aapeGaamiEa8aadaWgaaWcbaWdbiaadMgaa8aabeaakmaaCaaaleqa baWdbiaacQcaaaaak8aabaWdbiaadIhapaWaaSbaaSqaa8qacaWGPb GaamiDa8aadaWgaaadbaWdbiaaicdaa8aabeaaaSqabaaaaaGcpeGa ayjkaiaawMcaa8aadaahaaWcbeqaa8qadaWcaaWdaeaapeGaaGymaa WdaeaapeGaamivaiabgkHiTiaadshapaWaaSbaaWqaa8qacaWGVbaa paqabaaaaaaak8qacqGHsislcaaIXaaaaa@4F8A@    (6)

The ratio of observed CAGR and required CAGR i.e. C R i = CAG R Ai CAG R Ri MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadkfapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyyp a0ZaaSaaa8aabaWdbiaadoeacaWGbbGaam4raiaadkfapaWaaSbaaS qaa8qacaWGbbGaamyAaaWdaeqaaaGcbaWdbiaadoeacaWGbbGaam4r aiaadkfapaWaaSbaaSqaa8qacaWGsbGaamyAaaWdaeqaaaaaaaa@460D@ was used as the assessment.24-26 C R i 1  MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadkfapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyis ISRaaGymaiaacckaaaa@3DBF@ implies that the i-th country is “on track” to reach the target. Eurostat (2019) classified EU countries on the basis of C R i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbGaamOua8aadaWgaaWcbaWdbiaadMgaa8aabeaaaaa@38FE@  as follows:

C R i <0 : MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadkfapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyip aWJaaGimaiaacckacaGG6aaaaa@3DCF@ Away from the target

0C R i <0.6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiabgsMiJkaadoeacaWGsbWdamaaBaaaleaapeGaamyAaaWd aeqaaOWdbiabgYda8iaaicdacaGGUaGaaGOnaaaa@3FCE@ : insufficient progress towards the target

0.6C R i <0.95 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGimaiaac6cacaaI2aGaeyizImQaam4qaiaadkfapaWaaSbaaSqa a8qacaWGPbaapaqabaGcpeGaeyipaWJaaGimaiaac6cacaaI5aGaaG ynaaaa@4202@ : Moderate progress towards the target

C R i 0.95 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaadkfapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyyz ImRaaGimaiaac6cacaaI5aGaaGynaaaa@3EE3@ : Significant progress towards the target

The threshold values of the classification based on 36 SDG indicators were slightly different for UN 2020 progress chart.

Consideration of only two data points and ignoring data of in-between years is a criticism against CAGR approach. Better will be a method of estimating country-wise I SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0Ia aGina8aadaWgaaadbaWdbiaadshaa8aabeaaaSqabaaaaa@3CA7@ which facilitate drawing path of improvements/deteriorations of I SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0Ia aGina8aadaWgaaadbaWdbiaadshaa8aabeaaaSqabaaaaa@3CA7@  across time for each country.

Proposed method

Let X 1i ,  X 2i , , X ni MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaigdacaWGPbaapaqabaGcpeGaaiil aiaacckacaWGybWdamaaBaaaleaapeGaaGOmaiaadMgaa8aabeaak8 qacaGGSaGaaiiOaiabgAci8kabgAci8kaacYcacaWGybWdamaaBaaa leaapeGaamOBaiaadMgaa8aabeaaaaa@47AF@ are values of n-indicators of the i-th dimension of SDG-4 of a State/UT at a given year. Let X 1 i 0 ,  X 2 i 0 , , X n i 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwa8aadaWgaaWcbaWdbiaaigdacaWGPbWdamaaBaaameaapeGa aGimaaWdaeqaaaWcbeaak8qacaGGSaGaaiiOaiaadIfapaWaaSbaaS qaa8qacaaIYaGaamyAa8aadaWgaaadbaWdbiaaicdaa8aabeaaaSqa baGcpeGaaiilaiaacckacqGHMacVcqGHMacVcaGGSaGaamiwa8aada WgaaWcbaWdbiaad6gacaWGPbWdamaaBaaameaapeGaaGimaaWdaeqa aaWcbeaaaaa@4AE2@ are the corresponding targets for the indicators of the dimension. Assume each indicator is positively related to the corresponding dimension i.e. higher value of the indicator gives higher value of the dimension. Similarly, assume each dimension is positively related to the higher value of the index of achievement of SDG-4. For example indicator like higher value of average annual dropout rate at the secondary level (IX-X) will deteriorate the dimension Quality Education. For such indicators consider the reciprocal of the indicator. In the instant case, modified indicator will be reciprocal of dropout rate. Indicator like Gender Parity Index (GPI) for higher education (18-23 years) involving different enrolled rate of males and females with the target = 1, take ratio of number of male students enrolled in a particular level of education and the number of female students enrolled in the same level of education.

For positive values of each indicator and each target, define dimension score at t-th year as

D i t = X 1i . X 2i X ni X 1 i 0 . X 2 i 0 X n i 0 n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=na8 e9aadaWgaaWcbaWdbiaadMgapaWaaSbaaWqaa8qacaWG0baapaqaba aaleqaaOWdbiabg2da9maakeaapaqaa8qadaWcaaWdaeaapeGaamiw a8aadaWgaaWcbaWdbiaaigdacaWGPbaapaqabaGcpeGaaiOlaiaadI fapaWaaSbaaSqaa8qacaaIYaGaamyAaaWdaeqaaOWdbiabgAci8kab gAci8kabgAci8kabgAci8kabgAci8kaadIfapaWaaSbaaSqaa8qaca WGUbGaamyAaaWdaeqaaaGcbaWdbiaadIfapaWaaSbaaSqaa8qacaaI XaGaamyAa8aadaWgaaadbaWdbiaaicdaa8aabeaaaSqabaGcpeGaai OlaiaadIfapaWaaSbaaSqaa8qacaaIYaGaamyAa8aadaWgaaadbaWd biaaicdaa8aabeaaaSqabaGcpeGaeyOjGWRaeyOjGWRaeyOjGWRaey OjGWRaeyOjGWRaamiwa8aadaWgaaWcbaWdbiaad6gacaWGPbWdamaa BaaameaapeGaaGimaaWdaeqaaaWcbeaaaaaabaWdbiaad6gaaaaaaa@6F1B@    (7)

or ignoring the n-th root

D i t = X 1i ,  X 2i , , X ni X 1 i 0 ,  X 2 i 0 , , X n i 0   MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaaqaaaaaaaaaWdbiab=na8 e9aadaWgaaWcbaWdbiaadMgapaWaaSbaaWqaa8qacaWG0baapaqaba aaleqaaOWdbiabg2da9maalaaabaGaamiwa8aadaWgaaWcbaWdbiaa igdacaWGPbaapaqabaGcpeGaaiilaiaacckacaWGybWdamaaBaaale aapeGaaGOmaiaadMgaa8aabeaak8qacaGGSaGaaiiOaiabgAci8kab gAci8kaacYcacaWGybWdamaaBaaaleaapeGaamOBaiaadMgaa8aabe aaaOWdbeaacaWGybWdamaaBaaaleaapeGaaGymaiaadMgapaWaaSba aWqaa8qacaaIWaaapaqabaaaleqaaOWdbiaacYcacaGGGcGaamiwa8 aadaWgaaWcbaWdbiaaikdacaWGPbWdamaaBaaameaapeGaaGimaaWd aeqaaaWcbeaak8qacaGGSaGaaiiOaiabgAci8kabgAci8kaacYcaca WGybWdamaaBaaaleaapeGaamOBaiaadMgapaWaaSbaaWqaa8qacaaI Waaapaqabaaaleqaaaaak8qacaGGGcaaaa@6D00@    (8)

D i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaabaaaaaaaaapeGae83a Wt0damaaBaaaleaapeGaamyAa8aadaWgaaadbaWdbiaadshaa8aabe aaaSqabaaaaa@452C@ as per (7) is equivalent to D i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaabaaaaaaaaapeGae83a Wt0damaaBaaaleaapeGaamyAa8aadaWgaaadbaWdbiaadshaa8aabe aaaSqabaaaaa@452C@ as per (8). Computation of D i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaabaaaaaaaaapeGae83a Wt0damaaBaaaleaapeGaamyAa8aadaWgaaadbaWdbiaadshaa8aabe aaaSqabaaaaa@452C@ as per (7) or (8) requires replacement of zero target/achievement of each indicator by a small value say 0.0001

D i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaabaaaaaaaaapeGae83a Wt0damaaBaaaleaapeGaamyAa8aadaWgaaadbaWdbiaadshaa8aabe aaaSqabaaaaa@452C@  gives a single value of achievement of a State/UT for the i-th dimension at t-th period by multiplicative aggregation of the n-chosen indicators.

Proposed index of achievement of SDG-4 for a given year ( I SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0Ia aGina8aadaWgaaadbaWdbiaadshaa8aabeaaaSqabaaaaa@3CA7@ ) at national level is given by a function of geometric mean (ignoring m-root) of m-number of fixed dimensions

D 1 t , D 2 t , .,  D m t   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaabaaaaaaaaapeGae83a Wt0damaaBaaaleaapeGaaGyma8aadaWgaaadbaWdbiaadshaa8aabe aaaSqabaGcpeGaaiilaiab=na8e9aadaWgaaWcbaWdbiaaikdapaWa aSbaaWqaa8qacaWG0baapaqabaaaleqaaOWdbiaacYcacaGGGcGaey OjGWRaeyOjGWRaeyOjGWRaaiOlaiaacYcacaGGGcGae83aWt0damaa BaaaleaapeGaamyBa8aadaWgaaadbaWdbiaadshaa8aabeaal8qaca GGGcaapaqabaaaaa@589E@  i.e.

I SDG 4 t = j=1 m D j t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0Ia aGina8aadaWgaaadbaWdbiaadshaa8aabeaaaSqabaGcpeGaeyypa0 ZaaybCaeqal8aabaWdbiaadQgacqGH9aqpcaaIXaaapaqaa8qacaWG Tbaan8aabaWdbiabg+GivdaatuuDJXwAKzKCHTgD1jharyqr1ngBPr gigjxyRrxDYbacfaGccqWFdaprpaWaaSbaaSqaa8qacaWGQbWdamaa BaaameaapeGaamiDaaWdaeqaaaWcbeaaaaa@531E@ .   (9)

Similarly, Global SDG-4 index of all the k-countries considered can be obtained as geometric mean of I SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0Ia aGina8aadaWgaaadbaWdbiaadshaa8aabeaaaSqabaaaaa@3CA7@  i.e.

=

(Globa l SDG4t )= u=1 k I SDG 4 t u   k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadEeacaWGSbGaam4BaiaadkgacaWGHbGaamiBamaaBaaa leaacaWGtbGaamiraiaadEeacqGHsislcaaI0aGaamiDaaqabaGcca GGPaGaeyypa0ZaaOqaa8aabaWdbmaawahabeWcpaqaa8qacaWG1bGa eyypa0JaaGymaaWdaeaapeGaam4Aaaqdpaqaa8qacqGHpis1aaGcca WGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0IaaGin a8aadaWgaaadbaWdbiaadshaa8aabeaaaSqabaGcdaWgaaWcbaWdbi aadwhaa8aabeaak8qacaqGGcaal8aabaWdbiaadUgaaaaaaa@54F2@    (10)

The following may be noted:

Taking logarithim on both sides of (8) we get

ln D ( i t ) = (i=1) n ln X ( p i ) i=1 n ln X p i 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiBaiaad6gacaWGebWdamaaBaaaleaapeGaaiikaiaadMgapaWa aSbaaWqaa8qacaWG0baapaqabaWcpeGaaiykaaWdaeqaaOWdbiabg2 da9maaqaeabaaaleqabeqdcqGHris5aOWdamaaDaaaleaapeGaaiik aiaadMgacqGH9aqpcaaIXaGaaiykaaWdaeaapeGaamOBaaaakiaadY gacaWGUbGaamiwa8aadaWgaaWcbaWdbiaacIcacaWGWbWdamaaBaaa meaapeGaamyAaaWdaeqaaSWdbiaacMcaa8aabeaakiabgkHiT8qada GfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaad6ga a0WdaeaapeGaeyyeIuoaaOGaciiBaiaac6gacaWGybWdamaaBaaale aapeGaamiCa8aadaWgaaadbaWdbiaadMgapaWaaSbaaeaapeGaaGim aaWdaeqaaaqabaaaleqaaaaa@5B0F@    (11)

In other words, log of a dimension score = Sum of log of n-indicators - Sum of log of the targets

i.e. an additive model.

Properties of the index ISDG-4t )

Proposed index of achievement of SDG-4 for a given year ( Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@ ) at national level as per (9) satisfies:

Product of all Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@ dimensions = Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@ of a country at time period t.

Trade-off among the dimensions or indicators are significantly reduced

Relative importance of i-th dimension to Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@ can be assessed by   D ( i t ) Ι SDG4t *100 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiiOamaalaaabaGaamira8aadaWgaaWcbaWdbiaacIcacaWGPbWd amaaBaaameaapeGaamiDaaWdaeqaaSWdbiaacMcaa8aabeaaaOWdbe aacqqHzoqsdaWgaaWcbaGaam4uaiaadseacaWGhbGaeyOeI0IaaGin aiaadshaaeqaaaaakiaacQcacaaIXaGaaGimaiaaicdaaaa@46E9@ . The dimensions may be ranked with respect to the relative importance.

The i-th dimension will be critical if D i t < D i ( t1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaabaaaaaaaaapeGae83a Wt0damaaBaaaleaapeGaamyAa8aadaWgaaadbaWdbiaadshaa8aabe aaaSqabaGcpeGaeyipaWJae83aWt0damaaBaaaleaapeGaamyAa8aa daWgaaadbaWdbmaabmaapaqaa8qacaWG0bGaeyOeI0IaaGymaaGaay jkaiaawMcaaaWdaeqaaaWcbeaaaaa@4DEE@ . Identification of indicator(s) contributing to deterioration of D i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaabaaaaaaaaapeGae83a Wt0damaaBaaaleaapeGaamyAa8aadaWgaaadbaWdbiaadshaa8aabe aaaSqabaaaaa@452C@  can be made using (8) and necessary corrective action may be initiated on the identified indicators.

Satisfies Time–reversal test since I SDG 4 t I SDG 4 t0  × I SDG 4 t0 I SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadMeapaWaaSbaaSqaa8qacaWGtbGaamiraiaa dEeacqGHsislcaaI0aWdamaaBaaameaapeGaamiDaaWdaeqaaaWcbe aaaOqaa8qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGa eyOeI0IaaGina8aadaWgaaadbaWdbiaadshacaaIWaaapaqabaaale qaaaaak8qacaGGGcGaey41aq7aaSaaa8aabaWdbiaadMeapaWaaSba aSqaa8qacaWGtbGaamiraiaadEeacqGHsislcaaI0aWdamaaBaaame aapeGaamiDaiaaicdaa8aabeaaaSqabaaakeaapeGaamysa8aadaWg aaWcbaWdbiaadofacaWGebGaam4raiabgkHiTiaaisdapaWaaSbaaW qaa8qacaWG0baapaqabaaaleqaaaaaaaa@56C9@ = 1 for a country

Facilitates formation of chain indices since I SDG 4 20 = I SDG 4 21 × I SDG 4 10 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysa8aadaWgaaWcbaWdbiaadofacaWGebGaam4raiabgkHiTiaa isdapaWaaSbaaWqaa8qacaaIYaGaaGimaaWdaeqaaaWcbeaakiabg2 da98qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOe I0IaaGina8aadaWgaaadbaWdbiaaikdacaaIXaaapaqabaaaleqaaO WdbiabgEna0kaadMeapaWaaSbaaSqaa8qacaWGtbGaamiraiaadEea cqGHsislcaaI0aWdamaaBaaameaapeGaaGymaiaaicdaa8aabeaaaS qabaaaaa@4FA6@

From (9),   log I SDG 4 t =  j=1 m log D j t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaciGGSbGaai4BaiaacEgacaWGjbWdamaaBaaaleaapeGaam4uaiaa dseacaWGhbGaeyOeI0IaaGina8aadaWgaaadbaWdbiaadshaa8aabe aaaSqabaGcpeGaeyypa0JaaiiOamaawahabeWcpaqaa8qacaWGQbGa eyypa0JaaGymaaWdaeaapeGaamyBaaqdpaqaa8qacqGHris5aaGcci GGSbGaai4BaiaacEgatuuDJXwAKzKCHTgD1jharyqr1ngBPrgigjxy RrxDYbacfaGae83aWt0damaaBaaaleaapeGaamOAa8aadaWgaaadba Wdbiaadshaa8aabeaaaSqabaaaaa@59F4@

From (10), logGloba l SDG 4 t = 1 k [  u=1 k log( I SDG 4 t u )]  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaciGGSbGaai4BaiaacEgacaWGhbGaamiBaiaad+gacaWGIbGaamyy aiaadYgapaWaaSbaaSqaa8qacaWGtbGaamiraiaadEeacqGHsislca aI0aWdamaaBaaameaapeGaamiDaaWdaeqaaaWcbeaak8qacqGH9aqp daWcaaWdaeaapeGaaGymaaWdaeaapeGaam4AaaaacaGGBbGaaiiOam aawahabeWcpaqaa8qacaWG1bGaeyypa0JaaGymaaWdaeaapeGaam4A aaqdpaqaa8qacqGHris5aaGcciGGSbGaai4BaiaacEgadaqadaWdae aapeGaamysa8aadaWgaaWcbaWdbiaadofacaWGebGaam4raiabgkHi TiaaisdapaWaaSbaaWqaa8qacaWG0baapaqabaaaleqaaOWaaSbaaS qaa8qacaWG1baapaqabaaak8qacaGLOaGaayzkaaGaaiyxaiaaccka aaa@5E06@     (12)

For k-countries, (11) helps to find mean and variance of logGloba l SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaciGGSbGaai4BaiaacEgacaWGhbGaamiBaiaad+gacaWGIbGaamyy aiaadYgapaWaaSbaaSqaa8qacaWGtbGaamiraiaadEeacqGHsislca aI0aWdamaaBaaameaapeGaamiDaaWdaeqaaaWcbeaaaaa@4418@  by transforming logGloba l SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaciGGSbGaai4BaiaacEgacaWGhbGaamiBaiaad+gacaWGIbGaamyy aiaadYgapaWaaSbaaSqaa8qacaWGtbGaamiraiaadEeacqGHsislca aI0aWdamaaBaaameaapeGaamiDaaWdaeqaaaWcbeaaaaa@4418@  of countries by Z i = log I SDG 4 t u i   log I SDG 4 t ¯ SD( log I SDG 4 t ) ~ N( 0, 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGAbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9maa laaapaqaa8qaciGGSbGaai4BaiaacEgacaWGjbWdamaaBaaaleaape Gaam4uaiaadseacaWGhbGaeyOeI0IaaGina8aadaWgaaadbaWdbiaa dshaa8aabeaaaSqabaGcdaWgaaWcbaWdbiaadwhaa8aabeaakmaaBa aaleaapeGaamyAaaWdaeqaaOWdbiabgkHiTiaacckapaWaa0aaaeaa peGaamiBaiaad+gacaWGNbGaamysa8aadaWgaaWcbaWdbiaadofaca WGebGaam4raiabgkHiTiaaisdapaWaaSbaaWqaa8qacaWG0baapaqa baaaleqaaaaaaOqaa8qacaWGtbGaamiramaabmaapaqaa8qaciGGSb Gaai4BaiaacEgacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWG hbGaeyOeI0IaaGina8aadaWgaaadbaWdbiaadshaa8aabeaaaSqaba aak8qacaGLOaGaayzkaaaaaiaac6hacaqGGcGaamOtamaabmaapaqa a8qacaaIWaGaaiilaiaacckacaaIXaaacaGLOaGaayzkaaaaaa@6601@   and further linear transformation of Z i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGAbWdamaaBaaaleaapeGaamyAaaWdaeqaaaaa@383E@ to Y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGzbWdamaaBaaaleaapeGaamyAaaWdaeqaaaaa@383D@  by Y i =( 99 )[ Z i Mi n Z i Ma x Z i Mi n Z i ]+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGzbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabg2da9maa bmaapaqaa8qacaaI5aGaaGyoaaGaayjkaiaawMcaamaadmaapaqaa8 qadaWcaaWdaeaapeGaamOwa8aadaWgaaWcbaWdbiaadMgaa8aabeaa k8qacqGHsislcaWGnbGaamyAaiaad6gapaWaaSbaaSqaa8qacaWGAb WdamaaBaaameaapeGaamyAaaWdaeqaaaWcbeaaaOqaa8qacaWGnbGa amyyaiaadIhapaWaaSbaaSqaa8qacaWGAbWdamaaBaaameaapeGaam yAaaWdaeqaaaWcbeaak8qacqGHsislcaWGnbGaamyAaiaad6gapaWa aSbaaSqaa8qacaWGAbWdamaaBaaameaapeGaamyAaaWdaeqaaaWcbe aaaaaak8qacaGLBbGaayzxaaGaey4kaSIaaGymaaaa@5466@  so that Y i [ 1, 100 ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamywa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHiiIZdaWa daWdaeaapeGaaGymaiaacYcacaGGGcGaaGymaiaaicdacaaIWaaaca GLBbGaayzxaaaaaa@41C1@  

Normally distributed -scores in fixed range enables meaningful addition and parametric analysis including estimation of population mean μ population variance ( σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHdpWCpaWaaWbaaSqabeaapeGaaGOmaaaaaaa@38E2@ ), confidence interval and testing statistical hypothesis of equality of mean log I SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGSbGaam4BaiaadEgacaWGjbWdamaaBaaaleaapeGaam4uaiaa dseacaWGhbGaeyOeI0IaaGina8aadaWgaaadbaWdbiaadshaa8aabe aaaSqabaaaaa@3F77@  of countries at different regions since, if X~N( μ X , σ X 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiwaiaac6hacaWGobWaaeWaa8aabaWdbiabeY7aT9aadaWgaaWc baWdbiaadIfaa8aabeaak8qacaGGSaGaeq4Wdm3damaaDaaaleaape GaamiwaaWdaeaapeGaaGOmaaaaaOGaayjkaiaawMcaaaaa@4310@ and Y N( μ Y , μ Y 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGzbGaaiiOaiaad6eacaGGOaGaeqiVd02damaaBaaaleaapeGa amywaaWdaeqaaOWdbiaacYcacqaH8oqBpaWaa0baaSqaa8qacaWGzb aapaqaa8qacaaIYaaaaOGaaiykaaaa@41C1@  then (X+Y) N( μ X + μ Y , μ X 2 + μ X 2 +2 μ X Y). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGOaGaamiwaiabgUcaRiaadMfacaGGPaGaaiiOaiaad6eacaGG OaGaeqiVd02damaaBaaaleaapeGaamiwaaWdaeqaaOWdbiabgUcaRi abeY7aT9aadaWgaaWcbaWdbiaadMfaa8aabeaak8qacaGGSaGaeqiV d02damaaDaaaleaapeGaamiwaaWdaeaapeGaaGOmaaaakiabgUcaRi abeY7aT9aadaqhaaWcbaWdbiaadIfaa8aabaWdbiaaikdaaaGccqGH RaWkcaaIYaGaeqiVd02damaaBaaaleaapeGaamiwaaWdaeqaaOWdbi aadMfacaGGPaGaaiOlaaaa@539C@ . Average log Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciiBaiaac+gacaGGNbGaeuyMdK0aaSbaaSqaaiaadofacaWGebGa am4raiabgkHiTiaaisdacaWG0baabeaaaaa@40AB@  for the world can also be found as AM of country-wise -scores.

Progress in SDG-4 of a country in successive years is given by I SDG 4 t I SDG 4 ( t1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaamysa8aadaWgaaWcbaWdbiaadofacaWGebGa am4raiabgkHiTiaaisdapaWaaSbaaWqaa8qacaWG0baapaqabaaale qaaaGcbaWdbiaadMeapaWaaSbaaSqaa8qacaWGtbGaamiraiaadEea cqGHsislcaaI0aWdamaaBaaameaapeWaaeWaa8aabaWdbiaadshacq GHsislcaaIXaaacaGLOaGaayzkaaaapaqabaaaleqaaaaaaaa@46D0@ . Effectiveness of policy measures is reflected if I SDG 4 t I SDG 4 ( t1 ) >1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadMeapaWaaSbaaSqaa8qacaWGtbGaamiraiaa dEeacqGHsislcaaI0aWdamaaBaaameaapeGaamiDaaWdaeqaaaWcbe aaaOqaa8qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGa eyOeI0IaaGina8aadaWgaaadbaWdbmaabmaapaqaa8qacaWG0bGaey OeI0IaaGymaaGaayjkaiaawMcaaaWdaeqaaaWcbeaaaaGcpeGaeyOp a4JaaGymaaaa@49C4@ indicating overall progress made by the country in t-th period over (t-1)-th period. Similar ratio can be computed to reflect improvement from the base period i.e. I SDG 4 t I SDG 4 t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadMeapaWaaSbaaSqaa8qacaWGtbGaamiraiaa dEeacqGHsislcaaI0aWdamaaBaaameaapeGaamiDaaWdaeqaaaWcbe aaaOqaa8qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGa eyOeI0IaaGina8aadaWgaaadbaWdbiaadshacaaIWaaapaqabaaale qaaaaaaaa@4551@

 Facilitate drawing progress path registered by a country from baseline period using I SDG 4 t I SDG 4 t0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiaadMeapaWaaSbaaSqaa8qacaWGtbGaamiraiaa dEeacqGHsislcaaI0aWdamaaBaaameaapeGaamiDaaWdaeqaaaWcbe aaaOqaa8qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGa eyOeI0IaaGina8aadaWgaaadbaWdbiaadshacaaIWaaapaqabaaale qaaaaaaaa@4551@  and chain indices.

- If dimension scores are replaced by corresponding targets, I SDG 4 t =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0Ia aGina8aadaWgaaadbaWdbiaadshaa8aabeaaaSqabaGcpeGaeyypa0 JaaGymaaaa@3E82@  implying the country has achieved the SDG-4 targets. Thus,( 1 I SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaGymaiabgkHiTiaadMeapaWaaSbaaSqaa8qacaWGtbGaamiraiaa dEeacqGHsislcaaI0aWdamaaBaaameaapeGaamiDaaWdaeqaaaWcbe aaaaa@3F66@ ) indicates distance of the country from SDG targets at t-th year.

-Hypotheses H 0 : I SDG 4 t Countr y i =  I SDG 4 t Countr y j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibWdamaaBaaaleaapeGaaGimaaWdaeqaaOGaaiOoa8qacaWG jbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0IaaGina8 aadaWgaaadbaWdbiaadshaa8aabeaaaSqabaGcdaWgaaWcbaWdbiaa doeacaWGVbGaamyDaiaad6gacaWG0bGaamOCaiaadMhapaWaaSbaaW qaa8qacaWGPbaapaqabaaaleqaaOWdbiabg2da9iaacckacaWGjbWd amaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0IaaGina8aada WgaaadbaWdbiaadshaa8aabeaaaSqabaGcdaWgaaWcbaWdbiaadoea caWGVbGaamyDaiaad6gacaWG0bGaamOCaiaadMhapaWaaSbaaWqaa8 qacaWGQbaapaqabaaaleqaaaaa@5897@  and H 0 : I SDG 4 t Countr y i = I SDG 4 ( t1 ) Countryi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGibWdamaaBaaaleaapeGaaGimaaWdaeqaaOGaaiOoa8qacaWG jbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0IaaGina8 aadaWgaaadbaWdbiaadshaa8aabeaaaSqabaGcdaWgaaWcbaWdbiaa doeacaWGVbGaamyDaiaad6gacaWG0bGaamOCaiaadMhapaWaaSbaaW qaa8qacaWGPbaapaqabaaaleqaaOWdbiabg2da9iaadMeapaWaaSba aSqaa8qacaWGtbGaamiraiaadEeacqGHsislcaaI0aWdamaaBaaame aapeWaaeWaa8aabaWdbiaadshacqGHsislcaaIXaaacaGLOaGaayzk aaWdamaaBaaabaWdbiaadoeacaWGVbGaamyDaiaad6gacaWG0bGaam OCaiaadMhacaWGPbaapaqabaaabeaaaSqabaaaaa@5A56@   can be tested by conventional t-tests on the logarithms of the dimensions.

Similarity of paths showing progress/decline of I SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0Ia aGina8aadaWgaaadbaWdbiaadshaa8aabeaaaSqabaaaaa@3CA7@  over a span of years for two countries can be tested by Modified Mann-Kendall trend test, which is robust in autocorrelation,27 requiring appropriate choice of similarity measure.28 suggested cosine similarity of progress paths of two countries represented by two p-dimensional vectors covering p-number of years P 1 = ( Prog . 11 ,Prog . 12 , ,Prog . 1p ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hua8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqp daqadaWdaeaapeGaamiuaiaadkhacaWGVbGaam4zaiaac6capaWaaS baaSqaa8qacaaIXaGaaGymaaWdaeqaaOWdbiaacYcacaWGqbGaamOC aiaad+gacaWGNbGaaiOla8aadaWgaaWcbaWdbiaaigdacaaIYaaapa qabaGcpeGaaiilaiaacckacqGHMacVcaGGSaGaamiuaiaadkhacaWG VbGaam4zaiaac6capaWaaSbaaSqaa8qacaaIXaGaamiCaaWdaeqaaa GcpeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaWGubaaaaaa@54E2@ & P 2 = ( Prog . 21 ,Prog . 22 , Prog . 2p ) T MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqadabaaaaaaa aapeGaa8hua8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH9aqp daqadaWdaeaapeGaamiuaiaadkhacaWGVbGaam4zaiaac6capaWaaS baaSqaa8qacaaIYaGaaGymaaWdaeqaaOWdbiaacYcacaWGqbGaamOC aiaad+gacaWGNbGaaiOla8aadaWgaaWcbaWdbiaaikdacaaIYaaapa qabaGcpeGaaiilaiaacckacqGHMacVcaWGqbGaamOCaiaad+gacaWG NbGaaiOla8aadaWgaaWcbaWdbiaaikdacaWGWbaapaqabaaak8qaca GLOaGaayzkaaWdamaaCaaaleqabaWdbiaadsfaaaaaaa@5436@ . Similarity is defined as Cos θ 12 = P 1 T P 2 P 1 P 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaam4qaiaad+gacaWGZbGaeqiUde3damaaBaaaleaapeGaaGymaiaa ikdaa8aabeaak8qacqGH9aqpdaWcaaWdaeaapeGaamiua8aadaWgaa WcbaWdbiaaigdaa8aabeaakmaaCaaaleqabaWdbiaadsfaaaGccaWG qbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaGcbaacbmWdbiaa=bfapa WaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaa8hua8aadaWgaaWcbaWd biaaikdaa8aabeaaaaaaaa@47C4@  where θ 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH4oqCpaWaaSbaaSqaa8qacaaIXaGaaGOmaaWdaeqaaaaa@399E@ is the angle between P 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuamaaBaaaleaacaaIXaaabeaaaaa@38EA@ and P 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamiuamaaBaaaleaacaaIXaaabeaaaaa@38EA@ ; ‖P1‖ ‖P2‖ are the length of the vectors P1 and P2 respectively. For k-number of countries,29 gave method of computation of mean and dispersion of angles φ 1 ,  φ 2 , .., φ k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHgpGApaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiaa cckacqaHgpGApaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaaiilai aacckacqGHMacVcaGGUaGaaiOlaiaacYcacqaHgpGApaWaaSbaaSqa a8qacaWGRbaapaqabaaaaa@4641@ for vectors of unit length can as φ ¯ =Co t 1 j=1 k Cos φ i j=1 k Sin φ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacuaHgpGApaGbaebapeGaeyypa0Jaam4qaiaad+gacaWG0bWdamaa CaaaleqabaWdbiabgkHiTiaaigdaaaGcdaWcaaWdaeaapeWaaubmae qal8aabaWdbiaadQgacqGH9aqpcaaIXaaapaqaa8qacaWGRbaan8aa baWdbiabggHiLdaakiaadoeacaWGVbGaam4CaiabeA8aQ9aadaWgaa WcbaWdbiaadMgaa8aabeaaaOqaa8qadaqfWaqabSWdaeaapeGaamOA aiabg2da9iaaigdaa8aabaWdbiaadUgaa0WdaeaapeGaeyyeIuoaaO Gaam4uaiaadMgacaWGUbGaeqOXdO2damaaBaaaleaapeGaamOAaaWd aeqaaaaaaaa@55A5@  and

Dispersion = 1 [ Cos φ j k ] 2 [   Sin φ j k ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaGcaaWdaeaapeGaaGymaiabgkHiTmaajicapaqaa8qadaWcaaWd aeaapeGaeyyeIuUaam4qaiaad+gacaWGZbGaeqOXdO2damaaBaaale aapeGaamOAaaWdaeqaaaGcbaWdbiaadUgaaaGaaiyxa8aadaahaaWc beqaa8qacaaIYaaaaOGaeyOeI0cacaGLBbGaay5waaGaaiiOamaala aapaqaa8qacqGHris5caWGtbGaamyAaiaad6gacqaHgpGApaWaaSba aSqaa8qacaWGQbaapaqabaaakeaapeGaam4AaaaacaGGDbWdamaaCa aaleqabaWdbiaaikdaaaaabeaaaaa@5142@  

Limitations

Existences of targets in numerical values were assumed. Missing values were not considered, for which several methods are there to tackle the problem of missing value.

Discussion

Avoiding scaling and selection of weights, and replacing zero target of each indicator by a small value say 0.0001, the paper presents a simple method of multiplicative aggregation of indicators of i-th dimension of SDG-4 at t-th year → dimensions ( D i t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGOaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqb aiab=na8e9aadaWgaaWcbaWdbiaadMgapaWaaSbaaWqaa8qacaWG0b aapaqabaaaleqaaOWdbiaacMcacqGHsgIRaaa@488C@  country Ι SDG4t MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeuyMdK0aaSbaaSqaaiaadofacaWGebGaam4raiabgkHiTiaaisda caWG0baabeaaaaa@3DDB@ →  Global SDG-4 (Globa l SDG4t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaiikaiaadEeacaWGSbGaam4BaiaadkgacaWGHbGaamiBamaaBaaa leaacaWGtbGaamiraiaadEeacqGHsislcaaI0aGaamiDaaqabaGcca GGPaaaaa@433D@  to reflect position of i-th country by a continuous variable as an absolute measure which increases monotonically and satisfy desired properties like Time-reversal test, formation of chain indices with benefits like:

Significant reduction of trade-off among the dimensions or indicators.

Less affected by outliers and produces no bias for developed or underdeveloped countries

Identification of relative importance of the dimensions and critical dimension(s) requiring managerial attention

Assessment of progress of SDG-4 over time avoiding methods involving CAGR with limitations.

Assessment of distance from the SDG targets for a country at a time-point

Mean and variance of Global SDG-4 can be obtained in terms of logGloba l SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaciGGSbGaai4BaiaacEgacaWGhbGaamiBaiaad+gacaWGIbGaamyy aiaadYgapaWaaSbaaSqaa8qacaWGtbGaamiraiaadEeacqGHsislca aI0aWdamaaBaaameaapeGaamiDaaWdaeqaaaWcbeaaaaa@4418@

Testing statistical hypothesis of equality of I SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0Ia aGina8aadaWgaaadbaWdbiaadshaa8aabeaaaSqabaaaaa@3CA7@  for two different countries at t-th year and also for equality of I SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0Ia aGina8aadaWgaaadbaWdbiaadshaa8aabeaaaSqabaaaaa@3CA7@  of a country at successive years by conventional t-tests on the logarithms of the dimensions.

I SDG 4 t Countr y i <  I SDG 4 ( t1 ) Countryi MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=Mj0xXdbba91rFfpec8Eeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamysa8aadaWgaaWcbaWdbiaadofacaWGebGaam4raiabgkHiTiaa isdapaWaaSbaaWqaa8qacaWG0baapaqabaaaleqaaOWaaSbaaSqaa8 qacaWGdbGaam4BaiaadwhacaWGUbGaamiDaiaadkhacaWG5bWdamaa BaaameaapeGaamyAaaWdaeqaaSWdbiabgYda8iaacckaa8aabeaak8 qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0Ia aGina8aadaWgaaadbaWdbmaabmaapaqaa8qacaWG0bGaeyOeI0IaaG ymaaGaayjkaiaawMcaa8aadaWgaaqaa8qacaWGdbGaam4Baiaadwha caWGUbGaamiDaiaadkhacaWG5bGaamyAaaWdaeqaaaqabaaaleqaaa aa@59F5@  requires identification of dimension(s) and indicator(s) showing poor performances giving direction of improvement. Necessary corrective actions may be formulated accordingly focusing on the identified critical dimension(s) and indicator(s).

Possible to plot path of progress/decline of the index at country level and measure similarity between such paths registered by a pair of countries during the last p-number of years. If k-countries are considered, ( k c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGRbWdamaaBaaaleaapeGaam4ya8aadaWgaaadbaWdbiaaikda a8aabeaaaSqabaaaaa@395C@ )-pairs are possible. Mean and variance of similarities of progress paths of ( k c 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGRbWdamaaBaaaleaapeGaam4ya8aadaWgaaadbaWdbiaaikda a8aabeaaaSqabaaaaa@395C@ )-pairs of countries can be computed.

The method emphasizing SDG-4 can be applied to other SDGs also. Measuring country level achievements by the proposed method in each other SDGs will help in investigations of progress in SDG-4 on other SDGs like No Poverty(SDG-1), Good health and wellbeing(SDG-3), Gender equality and empowerment of women(SDG-5), Sustained, inclusive and sustainable economic growth and decent work for all (SDG-8), Resilient infrastructure and promotion of sustainable industrialization and foster innovation (SDG-9), Reduced inequalities within and among countries (SDG-10), Sustainable Cities and Communities (SDG-11), Responsible Consumption and Production(SDG-12), Education and awareness toward combating climate changes and their impacts (SDG-13), Promote peaceful and inclusive societies (SDG-16), etc. However, different indicators used for Gender inequality in different SDGs may result in different approaches.

Conclusion

The proposed method of geometric aggregations offering significant benefits contributes to improve aggregation of SDG avoiding major limitations of existing methods of aggregations and offering answers to natural questions like assessment of the index at global level, test of statistical hypothesis on equality of the index at national levels, progress-path across time, similarity of progress-paths, etc. Policy makers and researchers can take advantages of the proposed method of multiplicative aggregation without scaling and choosing weights. The proposed aggregation method is recommended.

Simulation studies may be undertaken to empirically estimate distribution of I SDG 4 t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGjbWdamaaBaaaleaapeGaam4uaiaadseacaWGhbGaeyOeI0Ia aGina8aadaWgaaadbaWdbiaadshaa8aabeaaaSqabaaaaa@3CA7@ and to find effect of progress in SDG-4 on other SDGs along with preparation of a comprehensive SDG progress report for effective monitoring the implementation of the 2030 Agenda.

Acknowledgments

None.

Competing Interests

The authors report there are no competing interests to declare.

Funding

No funds, grants, or other support was received. The author has no relevant financial or non-financial interests to disclose.

References

  1. Pandey B. Achieving SDG 4 in India: moving from quantity to quality education for all. RIS Discussion Papers number 232. 2018.
  2. Miles S, Singal N. The education for all and inclusive education debate: Conflict, contradiction or opportunity?. International Journal of Inclusive Education. 2010;14(1):1–15.
  3. Haslip MJ, Gullo DF. The changing landscape of early childhood education: Implications for policy and practice. Early Childhood Education Journal. 2018;46(3):249–264.
  4. Owens TL. Higher education in the sustainable development goals framework. European Journal of Education. 2017;52(4): 414–420.
  5. Hamburg I. Facilitating lifelong learning in SMEs towards SDG4. Advances in Social Sciences Research Journal. 2020;7(9):262–272.
  6. Krishnaratne S, White H, Ella Carpenter E, et al. Quality education for all children? What works in education in developing countries. International Initiative for Impact Evaluation; New Delhi: 2013.
  7. Koehler G. Tapping the sustainable development goals for progressive gender equity and equality policy? Gender & Development. 2016; 24(1):53–68.
  8. Grotlüschen A, Nienkemper B, Duncker Euringer C, et al. International assessment of low reading proficiency in the adult population: A question of components or lower rungs? International Review of Education. 2020;66(2):235–265.
  9. Ghara TK. Higher education status of the states as in AISHE 2020-21. International Journal of Humanities and Social Science Invention. 2022;11(6):57–61.
  10. Chakrabartty Satyendra Nath. Methodological issues: gender related indices. Discover Global Society. 2023;1(4). 
  11. Barnat N, MacFeely S, Peltola A, et al. Comparing global gender inequality indices: How well do they measure the economic dimension? J Sustain Res. 2019;1:e190016.
  12. Stoet Gijsbert, Geary David C. Sex differences in academic achievement are not related to political, economic, or social equality. Intelligence. 2015;48:137–151.
  13. Hsu Angel, Esty Daniel, Levy Marc, et al. Environmental Performance Index (EPI). 2016.
  14. Chakrabartty SN. Disability and Quality of Life. Health Science Journal. 2022;16(12):1–6.
  15. Gennari P, D’Orazio M. A statistical approach for assessing progress towards the SDG targets. Statistical Journal of the IAOS. 2020;36:1129–1142.
  16. NITI Aayog. SDG India Index and Dashboard 2020–21: Partnerships in the Decade of Action; 2021.
  17. UNDP. Human Development Report. Oxford University Press; New York: 2007.
  18. UNDP. Human Development Report 2010: The Real Wealth of Nations: Pathways to Human Development. New York: 2010.
  19. Chakravarty SR. A generalized human development index. Review of Development Economics. 2003;7(1):99–114.
  20. Sava AM. Weighting method for developing composite indices: application for measuring sectorial specialization. Journal of Applied Quantitative Methods. 2016;II(3):77–84.
  21. OECD. Measuring distance to the SDG targets: An assessment of where OECD countries stand. Paris: OECD Publishing; 2019.
  22. Sachs J, Schmidt Traub G, Kroll C, et al. Bertelsmann Stiftung and Sustainable Development Solutions Network (SDSN). 2019.
  23.  Bidarbakhtnia A. Measuring sustainable development goals (SDGs): An inclusive approach. Global Policy. 2020;11(1):56–67.
  24. World Health Organization and the United Nations Children’s Fund (UNICEF). Methodology for monitoring progress towards the global nutrition targets for 2025. Technical Report WHO-UNICEF Technical Expert Advisory Group on Nutrition Monitoring (TEAM). 2017.
  25. Eurostat. Sustainable development in the European Union, Monitoring report on progress towards the SDGs in an EU context (2019 edition). Publications Office of the European Union; Luxembourg: 2019.
  26. UN Sustainable development goals progress chart 2020 - Technical Note. New York: 2020.
  27. Hamed KH, Rao AR. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology. 1998;204:182–196.
  28. Chakrabartty SN, Sinha D. A single measure of overall export performance. The Journal of Applied Economic Research. 2022;16(3–4):278–308.
  29. Rao CR. Linear statistical inference and its application (2nd edition). Wiley Eastern Private Limited. GOI (2017). Economic Survey 2016-17. Ministry of Finance. 1973.
Creative Commons Attribution License

©2024 Chakrabartty. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.