Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 3 Issue 1

On loop space-self avoiding string representations for Q.C.D(SU(∞))

Luiz CL Botelho

Department of Applied Mathematics, Mathematics Institute, Fluminense Federal University, Brazil

Correspondence: Luiz CL Botelho, Department of Applied Mathematics, Mathematics Institute, Fluminense Federal University, Rua Mario Santos Braga, CEP 24220-140 Niterói, Rio de Janeiro, Brazil

Received: January 07, 2019 | Published: January 21, 2019

Citation: Botelho LCL. On loop space-self avoiding string representations for Q.C.D(SU(?)). Phys Astron Int J. 2019;3(1):29-31 DOI: 10.15406/paij.2019.03.00152

Download PDF

Abstract

We present several clarifying comments on the loop space-self avoid string representation for Q.C.D(SU()) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacaaIUa Gaam4qaiaai6cacaWGebGaaGikaiaadofacaWGvbGaaGikaiabg6Hi LkaaiMcacaaIPaaaaa@41E3@  proposed by this author along last decades.

Keywords: Q.C.D self-avoiding strings representations, Q.C.D loop space

Introduction

We star our introduction by recalling the following highlights from eminent Physicists on the search for a mathematical formalism free from ambiguities in strong and weak strong nuclear forces theory  

  1. “Therefore conclusions based on the renormalization group arguments concerning Q.F.T summed to all orders are dangerous and must be viewed with due caution. So is it with all conclusions from Q.C.D."
  2. “Because of severe divergences, Yang-Mills theories cannot be consistently interpreted by conventional perturbation (LSZ) theory."
  3. “There are method and formulae in science, which serve as master-key to many apparently different problems. The resources of such things have to be refilled from time to time. In AM Polyakov’s opinion (and mine), we have to develop a formalism to sum over random surfaces and Riemann geometries (“Brownian Riemann Surfaces")".

These comment are intend to clarify the concept of self-avoiding string representation for Q.C.D in the formalism of Loop Space Theory, mostly exposed in our previous works on the subject.15 A word about this comment writing format. Since loop space Q.C.DSU and self-avoiding string path integrals are a notoriously difficult mathematical methods subject to be exposed, we deliberately have transferred to 4 appendixes those more mathematical oriented arguments supporting the text main discussions.

Revisiting the loop space formulation for Q.C.D.

Since its proposal several decades ago, the loop space formulation of Q.C.D has been an alternative to the well-known Feynman-diagramatics-perturbative formulation of well-defined quantum field theories.2,68

In this section we intend to point out some the mathematical difficulties on applying the loop space formalism for Q.C.D or to any other quantum field theory with spinorial matter field.

Let us write the generaling functional of color singlet bilinear vectorial curents with the quark fermionic degrees integrated out

Z[Jμ]=1Zdet​​D(Aμ+Jμ)SU(Nc)       (1)

Here SU(Nc) denotes the formal average of the quantum Yang-Mills fields on SU(Nc).

The next step is writing the above functional determinat as a continuous sum over the massless quark trajectories. In a plane wave (euclidean) spinor bases

x,α= e ipx U α (1) (p) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgMYiHlaadI hacaaISaGaeqySdeMaeyOkJeVaaGypaiaadwgadaahaaWcbeqaaiaa dMgacaWGWbGaamiEaaaakiaayIW7caWGvbWaa0baaSqaaiabeg7aHb qaaiabgIcaOiaaigdacqGHPaqkaaGccaaIOaGaamiCaiaaiMcaaaa@4CCC@  (2-a)

(y,β ¯ = U ¯ β (2) e ipy MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaanaaabaGaaG ikaiaadMhacaaISaGaeqOSdiMaeyOkJepaaiaai2dadaqdaaqaaiaa dwfaaaWaa0baaSqaaiabek7aIbqaaiabgIcaOiaaikdacqGHPaqkaa GccaaMi8UaamyzamaaCaaaleqabaGaamyAaiaadchacaWG5baaaaaa @498A@  (2-b)

One has the Feynman path integral formal expression for the above written quark determinant

ln(det D (A+J))= 0 dt t Tr( e ( D (A+J)) ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabloriSjaad6 gacaaIOaGaciizaiaacwgacaGG0bGaaGzaVlaaygW7daajcaqaaiaa dseaaaGaaGikaiaadgeacqGHRaWkcaWGkbGaaGykaiaaiMcacaaI9a GaeyOeI0YaaiWaaeaadaWdXaqabSqaaiaaicdaaeaacqGHEisPa0Ga ey4kIipakmaalaaabaGaamizaiaadshaaeaacaWG0baaaiaayIW7ca qGubGaamOCaiaaiIcacaWGLbWaaWbaaSqabeaacqGHsislcaaIOaGa aGzaVlaaygW7daajcaqaamaaKiaabaGaamiraaaaaaGaaGikaiaadg eacqGHRaWkcaWGkbGaaGykaiaaiMcaaaGccaaIPaaacaGL7bGaayzF aaaaaa@61C9@  

= 0 dt t d D x μ d D p μ X μ (0)= X μ (t)= x μ D F [ X μ [(σ)] × P μ (0)= P μ (T)= p μ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaai2dacqGHsi sldaGabaqaamaapedabeWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8 aOWaaSaaaeaacaWGKbGaamiDaaqaaiaadshaaaWaa8qaaeqaleqabe qdcqGHRiI8aOGaamizamaaCaaaleqabaGaamiraaaakiaadIhadaWg aaWcbaGaeqiVd0gabeaakiaayIW7caWGKbWaaWbaaSqabeaacaWGeb aaaOGaamiCamaaBaaaleaacqaH8oqBaeqaaaGccaGL7baadaGabaqa amaapebabeWcbaGaamiwamaaCaaabeqaaiabeY7aTbaacqGHOaakcq GHWaamcqGHPaqkcqGH9aqpcaWGybWaaWbaaeqabaGaeqiVd0gaaiaa iIcacaWG0bGaaGykaiaai2dacaWG4bWaaWbaaeqabaGaeqiVd0gaaa qab0Gaey4kIipakiaadseadaahaaWcbeqaaiaadAeaaaGccaaIBbGa amiwamaaCaaaleqabaGaeqiVd0gaaOGaaG4waiaaiIcacqaHdpWCca aIPaGaaGyxaaGaay5EaaGaey41aq7aa8qeaeqaleaacaWGqbWaaWba aeqabaGaeqiVd0gaaiabgIcaOiabgcdaWiabgMcaPiabg2da9iaadc fadaahaaqabeaacqaH8oqBaaGaaGikaiaadsfacaaIPaGaaGypaiaa dchadaahaaqabeaacqaH8oqBaaaabeqdcqGHRiI8aaaa@7F11@

exp i 0 t P μ (σ) X ˙ μ (σ)dσ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiGacwgacaGG4b GaaiiCamaabmaabaGaamyAamaapedabeWcbaGaaGimaaqaaiaadsha a0Gaey4kIipakiaadcfadaWgaaWcbaGaeqiVd0gabeaakiaaiIcacq aHdpWCcaaIPaGabmiwayaacaWaaWbaaSqabeaacqaH8oqBaaGccaaI OaGaeq4WdmNaaGykaiaayIW7caWGKbGaeq4WdmhacaGLOaGaayzkaa aaaa@5179@

Dirac SU(N) exp i 0 t γ μ ( P μ (σ)+ A μ (X(σ))+ J μ (X(σ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xgHa1aaSbaaSqaaiaa bseacaWGPbGaamOCaiaadggacaWGJbaabeaakiaayIW7cqWFzecuda WgaaWcbaGaam4uaiaadwfacaaIOaGaamOtaiaaiMcaaeqaaOWaaiGa aeaadaWadaqaaiGacwgacaGG4bGaaiiCamaabmaabaGaamyAamaape dabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiabeo7aNnaaCaaa leqabaGaeqiVd0gaaOWaaeWaaeaacaaIOaGaamiuamaaBaaaleaacq aH8oqBaeqaaOGaaGikaiabeo8aZjaaiMcacqGHRaWkcaWGbbWaaSba aSqaaiabeY7aTbqabaGccaaIOaGaamiwaiaaiIcacqaHdpWCcaaIPa GaaGykaiabgUcaRiaadQeadaWgaaWcbaGaeqiVd0gabeaakiaaiIca caWGybGaaGikaiabeo8aZjaaiMcaaiaawIcacaGLPaaaaiaawIcaca GLPaaaaiaawUfacaGLDbaaaiaaw2haaaaa@7793@           (3)

Unfortunatelly the path integral object eq(3) remains not well understood from a mathematical point of view as far as this author knows.

However, one can use a formal path SU(N) valued variable change:

P μ (σ)+ A μ (X(σ))+ J μ (X(σ))= π μ (σ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa WcbaGaeqiVd0gabeaakiaaiIcacqaHdpWCcaaIPaGaey4kaSIaamyq amaaBaaaleaacqaH8oqBaeqaaOGaaGikaiaadIfacaaIOaGaeq4Wdm NaaGykaiaaiMcacqGHRaWkcaWGkbWaaSbaaSqaaiabeY7aTbqabaGc caaIOaGaamiwaiaaiIcacqaHdpWCcaaIPaGaaGykaiaai2dacqaHap aCdaWgaaWcbaGaeqiVd0gabeaakiaaiIcacqaHdpWCcaaIPaaaaa@57A5@           (4)

One thus gets the “less formal" and more mathematical expression palatable from a Theoretical Physics point of view for the fermion determinant

ln(detD( A μ + J μ )/detD(0)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabloriSjaad6 gacaaIOaGaciizaiaacwgacaGG0bGaaGzaVlaaygW7caWGebGaaGik aiaadgeadaWgaaWcbaGaeqiVd0gabeaakiabgUcaRiaadQeadaWgaa WcbaGaeqiVd0gabeaakiaaiMcacaaIVaGaciizaiaacwgacaGG0bGa aGzaVlaaygW7caWGebGaeyikaGIaeyimaaJaeyykaKIaeyykaKcaaa@5436@

= 0 dt t [ X μ (0)= X μ (t) D F [X(σ)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaai2dacqGHsi sldaWdXaqabSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakmaalaaa baGaamizaiaadshaaeaacaWG0baaaiaaiUfadaWdraqabSqaaiaadI fadaahaaqabeaacqaH8oqBaaGaaGikaiaaicdacaaIPaGaaGypaiaa dIfadaahaaqabeaacqaH8oqBaaGaaGikaiaadshacaaIPaaabeqdcq GHRiI8aOGaamiramaaCaaaleqabaGaamOraaaakiaaiUfacaWGybGa aGikaiabeo8aZjaaiMcacaaIDbaaaa@5661@

π μ (0)= π μ (t) D F [ π μ (σ)]T r SU(N) T r Dirac Dirac SU(N) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaayIW7daWdra qabSqaaiabec8aWnaaCaaabeqaaiabeY7aTbaacqGHOaakcqGHWaam cqGHPaqkcqGH9aqpcqaHapaCdaahaaqabeaacqaH8oqBaaGaaGikai aadshacaaIPaaabeqdcqGHRiI8aOGaamiramaaCaaaleqabaGaamOr aaaakiaaiUfacqaHapaCdaahaaWcbeqaaiabeY7aTbaakiaaiIcacq aHdpWCcaaIPaGaaGyxaiaabsfacaWGYbWaaSbaaSqaaiaadofacaWG vbGaaGikaiaad6eacaaIPaaabeaakiaayIW7caqGubGaamOCamaaBa aaleaacaqGebGaamyAaiaadkhacaWGHbGaam4yaaqabaGccaaMi8+e fv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFzecuda WgaaWcbaGaaeiraiaadMgacaWGYbGaamyyaiaadogaaeqaaOGaaGjc Vlab=LriqnaaBaaaleaacaWGtbGaamyvaiaaiIcacaWGobGaaGykaa qabaaaaa@7908@

×{exp +i 0 t ( γ μ π μ )(σ)dσ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgEna0kaaiU haciGGLbGaaiiEaiaacchadaqadaqaaiabgUcaRiaadMgadaWdXaqa bSqaaiaaicdaaeaacaWG0baaniabgUIiYdGccaaIOaGaeq4SdC2aaW baaSqabeaacqaH8oqBaaGccqaHapaCdaWgaaWcbaGaeqiVd0gabeaa kiaaiMcacaaIOaGaeq4WdmNaaGykaiaadsgacqaHdpWCaiaawIcaca GLPaaaaaa@53CC@

×T r SU(N) SU(N) exp i 0 t ( A μ (X(σ)) π μ (σ))d X μ (σ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaayIW7cqGHxd aTcaqGubGaamOCamaaBaaaleaacaWGtbGaamyvaiaaiIcacaWGobGa aGykaaqabaGcdaWadaqaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHr hAGq1DVbacfaGae8xgHa1aaSbaaSqaaiaadofacaWGvbGaaGikaiaa d6eacaaIPaaabeaakiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0 IaamyAamaapedabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaa iIcacaWGbbWaaWbaaSqabeaacqaH8oqBaaGccaaIOaGaamiwaiaaiI cacqaHdpWCcaaIPaGaaGykaiabgkHiTiabec8aWnaaCaaaleqabaGa eqiVd0gaaOGaaGikaiabeo8aZjaaiMcacaaIPaGaamizaiaadIfada WgaaWcbaGaeqiVd0gabeaakiaaiIcacqaHdpWCcaaIPaaacaGLOaGa ayzkaaaacaGLBbGaayzxaaaaaa@74BA@

×exp i 0 t J μ (X(σ))d X μ (σ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaciaabaGaaG jcVlabgEna0kGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0IaamyA amaapedabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaadQeada WgaaWcbaGaeqiVd0gabeaakiaaiIcacaWGybGaaGikaiabeo8aZjaa iMcacaaIPaGaamizaiaadIfadaahaaWcbeqaaiabeY7aTbaakiaaiI cacqaHdpWCcaaIPaaacaGLOaGaayzkaaaacaGL9baaaaa@560A@             (5)

Unfortunatelly eq(4)-eq(5) still are somewhat mathematically formal and evaluations with them has never been performed in the literature, even if on the non-relativistic case it leads to the correct results. However it is worth to remaind that on lattice, the chances for a fully mathematical rigorous and calculation scheme are greater than its version on the continuum D MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrwtHr hAYaqeguuDJXwAKbstHrhAGq1DVbacfaGae8xhHi1aaWbaaSqabeaa caWGebaaaaaa@43CD@ . This vital matter will be presented elsewhere.

At this point, it is instructive to point out the supersymmetric path integral proposal for a spinning particles.4,5 However its suggested Wilson Loop necessarilly would involves the spin orbit coupling term with the strenght field which is loop lenght dependent. Explicitly:

W B [ C xx ]=T r SU(N) T r Dirac ( Dirac ( SU(N) exp[i 0 t ( A μ (X(σ)) X ˙ μ (σ)+ 1 4 i[ γ μ , γ ν ] F μν (X(σ)dσ)]) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4vam aaCaaaleqabaGaamOqaaaakiaaiUfacaWGdbWaaSbaaSqaaiaadIha caWG4baabeaakiaai2facaaI9aGaaeivaiaadkhadaWgaaWcbaGaam 4uaiaadwfacaaIOaGaamOtaiaaiMcaaeqaaOWaaiqaaeaacaqGubGa amOCamaaBaaaleaacaqGebGaamyAaiaadkhacaWGHbGaam4yaaqaba GccaaIOaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaa cqWFzecudaWgaaWcbaGaaeiraiaadMgacaWGYbGaamyyaiaadogaae qaaOGaaGikaiab=LriqnaaBaaaleaacaWGtbGaamyvaiaaiIcacaWG obGaaGykaaqabaaakiaawUhaaaqaaiaayIW7caaMi8UaaGjcVlGacw gacaGG4bGaaiiCaiaaiUfacqGHsislcaWGPbWaa8qmaeqaleaacaaI WaaabaGaamiDaaqdcqGHRiI8aOGaaGikaiaadgeadaWgaaWcbaGaeq iVd0gabeaakiaaiIcacaWGybGaaGikaiabeo8aZjaaiMcacaaIPaGa bmiwayaacaWaaWbaaSqabeaacqaH8oqBaaGccaaIOaGaeq4WdmNaaG ykaiabgUcaRmaaciaabaWaaSaaaeaacaaIXaaabaGaaGinaaaacaaM i8UaamyAaiaaiUfacqaHZoWzdaahaaWcbeqaaiabeY7aTbaakiaaiY cacqaHZoWzdaahaaWcbeqaaiabe27aUbaakiaai2facaWGgbWaaSba aSqaaiabeY7aTjabe27aUbqabaGccaaIOaGaamiwaiaaiIcacqaHdp WCcaaIPaGaamizaiabeo8aZjaaiMcacaaIDbGaaGykaaGaayzFaaaa aaa@9DD6@     (6)

However to reformulate the ill defined quantum field theory of Q.C.D(SU(N)), one makes the hypothesis that the Wilson Loop on eq(5) is the correct collective variable to be represented through a random surface path integral at least on the lattice framework.1 We point out that this step can be regard as a correct “theoretical physics" argument at the deep infrared region, where the Dirac spin degrees of freedom are frozens. Note that on light of this hypothesis, the string path integral representing the quantum Wilson Loop on eq(5) must be supersymetrized on the string ambient space-time to fully represent the spinning Wilson Loop eq(6).4,5 But mathematical proofs are required and have not been available since still there is not a mathematical theory for spinning Brownian motion at the present time.9

But the whole point of finding string representations for Q.C.D(SU(N)) (or Q.C.D(SU()) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacaaIUa Gaam4qaiaai6cacaWGebGaaGikaiaadofacaWGvbGaaGikaiabg6Hi LkaaiMcacaaIPaaaaa@41E3@ ) more precisely is to argue that Q.C.D as a mathematical object is an ill-defined object by itself. So all previous formulae eq(1)-eq(6) are only suggestive at the continuum and could mathematically make sense (if any) only at lattice, where Q.C.D(SU()) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacaaIUa Gaam4qaiaai6cacaWGebGaaGikaiaadofacaWGvbGaaGikaiabg6Hi LkaaiMcacaaIPaaaaa@41E3@  is well-defined. As a result one must search a string path integral from a formal point of view, heavily inspired on the formal objects eq(1)-eq(6). And Q.C.D should be fully replaced by the string path integral, which must reproduce lattice Q.C.D, when reformulated in the lattice1 (the string path integral!). It is even expected that that Q.C.D string path integral on lattice is the calculational tool for Q.C.D evaluations. A final remark: Q.C.D(SU(N)) string path integral is expected (but not proved yet!) to be the possible found Q.C.D(SU()) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacaaIUa Gaam4qaiaai6cacaWGebGaaGikaiaadofacaWGvbGaaGikaiabg6Hi LkaaiMcacaaIPaaaaa@41E3@  now endowed with all non trivial genus – Unitarization of the associated Q.C.D’s Scattering Matrix). However, the determination of N c =3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaad6eadaWgaa WcbaGaam4yaaqabaGccaaI9aGaaG4maaaa@3B94@  must be make recourse to the flavor quark electro-weak sector and to the Baryons excitations. All of this surely “sconisciuta terra".9

So let us use scalar deep infrared Q.C.D(SU()) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacaaIUa Gaam4qaiaai6cacaWGebGaaGikaiaadofacaWGvbGaaGikaiabg6Hi LkaaiMcacaaIPaaaaa@41E3@  (where the Yang-Mills quantum average is granted to be factorized on the product of gauge invariant observables).

In this case, we have written the following loop wave string like wave equations eq(7-b) for formal Euclidean Yang-Mills theory under the hypothesis of a non-zero Yang-Mills strenght condensate.1012 Namely (Appendix 1)

Φ N c [ X μ (σ),0σ2π]= 1 N c [T r SU( N c ) { expi 0 2π A μ (X(σ))d X μ (σ) }] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabfA6agnaaBa aaleaacaWGobWaaSbaaeaacaWGJbaabeaaaeqaaOGaaG4waiaadIfa daWgaaWcbaGaeqiVd0gabeaakiaaiIcacqaHdpWCcaaIPaGaaGilai aayIW7caaIWaGaeyizImQaeq4WdmNaeyizImQaaGOmaiabec8aWjaa i2facaaI9aWaaSaaaeaacaaIXaaabaGaamOtamaaBaaaleaacaWGJb aabeaaaaGccaaIBbGaaeivaiaadkhadaWgaaWcbaGaam4uaiaadwfa caaIOaGaamOtamaaBaaabaGaam4yaaqabaGaaGykaaqabaGccaaI7b Wefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFzecu daqadaqaaiGacwgacaGG4bGaaiiCaiaadMgadaWdXaqabSqaaiaaic daaeaacaaIYaGaeqiWdahaniabgUIiYdGccaWGbbWaaSbaaSqaaiab eY7aTbqabaGccaaIOaGaamiwaiaaiIcacqaHdpWCcaaIPaGaaGykai aadsgacaWGybWaaWbaaSqabeaacqaH8oqBaaGccaaIOaGaeq4WdmNa aGykaaGaayjkaiaawMcaaiaai2hacaaIDbaaaa@80C3@         (7-a)

0 2π d σ ¯ δ 2 δ X μ ( σ ¯ )δ X μ ( σ ¯ ) T r SU() ( F 2 )| X ˙ μ ( σ ¯ )| 2 Φ [ X μ ( σ ¯ )] =( g ) 2 { 0 2π dσ 0 2π d σ ¯ δ (D) ( X μ ( σ ¯ ) X μ (σ))×( X ˙ μ (σ) X ˙ μ ( σ ¯ )) Φ [ X μ ( σ ˜ );0 σ ˜ σ ¯ ] Φ [ X μ ( σ ˜ ); σ ¯ σ ˜ 2π]} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaWaa8qmae qaleaacaaIWaaabaGaaGOmaiabec8aWbqdcqGHRiI8aOGaamizaiqb eo8aZzaaraWaamWaaeaadaqadaqaamaalaaabaGaeqiTdq2aaWbaaS qabeaacaaIYaaaaaGcbaGaeqiTdqMaamiwamaaBaaaleaacqaH8oqB aeqaaOGaaGikaiqbeo8aZzaaraGaaGykaiabes7aKjaadIfadaahaa WcbeqaaiabeY7aTbaakiaaiIcacuaHdpWCgaqeaiaaiMcaaaaacaGL OaGaayzkaaGaeyOeI0IaeyykJeUaaeivaiaadkhadaWgaaWcbaGaam 4uaiaadwfacaaIOaGaeyOhIuQaaGykaaqabaGccaaIOaGaamOramaa CaaaleqabaGaaGOmaaaakiaaiMcacqGHQms8caaI8bGabmiwayaaca WaaSbaaSqaaiabeY7aTbqabaGccaaIOaGafq4WdmNbaebacaaIPaGa aGiFamaaCaaaleqabaGaaGOmaaaaaOGaay5waiaaw2faaiabfA6agn aaBaaaleaacqGHEisPaeqaaOGaaG4waiaadIfadaWgaaWcbaGaeqiV d0gabeaakiaaiIcacuaHdpWCgaqeaiaaiMcacaaIDbaabaGaaGypai aaiIcacaWGNbWaaWbaaSqabeaacqGHEisPaaGccaaIPaWaaWbaaSqa beaacaaIYaaaaOGaaG4EamaapedabeWcbaGaaGimaaqaaiaaikdacq aHapaCa0Gaey4kIipakiaadsgacqaHdpWCdaWdXaqabSqaaiaaicda aeaacaaIYaGaeqiWdahaniabgUIiYdGccaWGKbGafq4WdmNbaebaca aMi8UaeqiTdq2aaWbaaSqabeaacaaIOaGaamiraiaaiMcaaaGccaaI OaGaamiwamaaBaaaleaacqaH8oqBaeqaaOGaaGikaiqbeo8aZzaara GaaGykaiabgkHiTiaadIfadaWgaaWcbaGaeqiVd0gabeaakiaaiIca cqaHdpWCcaaIPaGaaGykaiabgEna0kaaiIcaceWGybGbaiaadaWgaa WcbaGaeqiVd0gabeaakiaaiIcacqaHdpWCcaaIPaGabmiwayaacaWa aSbaaSqaaiabeY7aTbqabaGccaaIOaGafq4WdmNbaebacaaIPaGaaG ykaaqaaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaeuOPdy0aaSba aSqaaiabg6HiLcqabaGccaaIBbGaamiwamaaBaaaleaacqaH8oqBae qaaOGaaGikaiqbeo8aZzaaiaGaaGykaiaaiUdacaaIWaGaeyizImQa fq4WdmNbaGaacqGHKjYOcuaHdpWCgaqeaiaai2facqqHMoGrdaWgaa WcbaGaeyOhIukabeaakiaaiUfacaWGybWaaSbaaSqaaiabeY7aTbqa baGccaaIOaGafq4WdmNbaGaacaaIPaGaaG4oaiqbeo8aZzaaraGaey izImQafq4WdmNbaGaacqGHKjYOcaaIYaGaeqiWdaNaaGyxaiaai2ha aaaa@E3EF@

1computer

The “free" string path integral

In order to search solutions for the non linear “quadratic" loop space wave equation eq(7-b), one must give a correct meaning for the Wiener-Feynman sum under surfaces (bosonic Brownian surfaces), in place of the well known bosonic sum over Wiener-Feynman paths.

One fashionable proposal is due to AM Polyakov,8 altought it has been revealed to be clearly wrong (Appendix 2).

It is based on the Brink-Howe action, but added with a non-vanishing cosmological term

G(C)= d μ cov [ g ab (ξ) X μ (σ,t) ξ = C μ (σ) d cov [ X μ (ξ)] exp{ 1 π α D 1 2 g g ab a X μ b X μ (ξ) d 2 ξ μ 0 2 D ( g )(ξ) d 2 ξ} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4rai aaiIcacaWGdbGaaGykaiaai2dadaWdbaqabSqabeqaniabgUIiYdGc caWGKbWaa0baaSqaaiabeY7aTbqaaiaabogacaWGVbGaamODaaaaki aaiUfacaWGNbWaaSbaaSqaaiaadggacaWGIbaabeaakiaaiIcacqaH +oaEcaaIPaWaa8qeaeqaleaacqGHciITcaWGybWaaWbaaeqabaGaeq iVd0gaamaayaaabaGaaGikaiabeo8aZjaaiYcacaWG0bGaaGykaaqa aiabe67a4bGaayjo+dGaaGypaiaadoeadaahaaqabeaacqaH8oqBaa GaaGikaiabeo8aZjaaiMcaaeqaniabgUIiYdGccaWGKbWaaWbaaSqa beaacaqGJbGaam4BaiaadAhaaaGccaaIBbGaamiwamaaBaaaleaacq aH8oqBaeqaaOGaaGikaiabe67a4jaaiMcacaaIDbaabaGaciyzaiaa cIhacaGGWbGaaG4EaiabgkHiTmaalaaabaGaaGymaaqaaiabec8aWj qbeg7aHzaafaaaamaapebabeWcbaWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiuaacqWFdcpraeqaniabgUIiYdGcdaqadaqaam aalaaabaGaaGymaaqaaiaaikdaaaGaaGjcVpaakaaabaGaam4zaaWc beaakiaayIW7caWGNbWaaWbaaSqabeaacaWGHbGaamOyaaaakiaayI W7cqGHciITdaWgaaWcbaGaamyyaaqabaGccaWGybWaaWbaaSqabeaa cqaH8oqBaaGccaaMi8UaeyOaIy7aaSbaaSqaaiaadkgaaeqaaOGaam iwamaaBaaaleaacqaH8oqBaeqaaaGccaGLOaGaayzkaaGaaGikaiab e67a4jaaiMcacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaeqOVdGNaey OeI0IaeqiVd02aa0baaSqaaiaaicdaaeaacaaIYaaaaOWaa8qeaeqa leaacqWFdcpraeqaniabgUIiYdGccaaIOaWaaOaaaeaacaWGNbaale qaaOGaaGykaiaaiIcacqaH+oaEcaaIPaGaamizamaaCaaaleqabaGa aGOmaaaakiabe67a4jaai2haaaaa@B416@              (8)

However in order for the classical solutions of eq(8) reproduces the Nambu-Goto area functional it is going to constraint the cosmological term to vanish (unless at the extrinsic space-time dimension D=2, a two restrictive dimensionality for the space time quantum dynamics).

The full correct meaning of eq(8) was however written in full in reference.12

G( C xx )= d μ cov [ g ab (ξ)] X μ (σ,ζ)= C xx μ (σ) d cov [ X μ (ξ)] exp 1 2 D ( g g ab a X μ b X μ ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaam4rai aaiIcacaWGdbWaaSbaaSqaaiaadIhacaWG4baabeaakiaaiMcacaaI 9aWaa8qaaeqaleqabeqdcqGHRiI8aOGaamizamaaDaaaleaacqaH8o qBaeaacaqGJbGaam4BaiaadAhaaaGccaaIBbGaam4zamaaBaaaleaa caWGHbGaamOyaaqabaGccaaIOaGaeqOVdGNaaGykaiaai2fadaWdra qabSqaaiabgkGi2kaadIfadaahaaqabeaacqaH8oqBaaGaaGikaiab eo8aZjaaiYcacqaH2oGEcaaIPaGaaGypaiaadoeadaqhaaqaaiaadI hacaWG4baabaGaeqiVd0gaaiaaiIcacqaHdpWCcaaIPaaabeqdcqGH RiI8aOGaamizamaaCaaaleqabaGaae4yaiaad+gacaWG2baaaOGaaG 4waiaadIfadaahaaWcbeqaaiabeY7aTbaakiaaiIcacqaH+oaEcaaI PaGaaGyxaaqaaiGacwgacaGG4bGaaiiCamaacmaabaGaeyOeI0YaaS aaaeaacaaIXaaabaGaaGOmaaaadaWdraqabSqaamrr1ngBPrwtHrhA YaqeguuDJXwAKbstHrhAGq1DVbacfaGae83GWteabeqdcqGHRiI8aO GaaGikamaakaaabaGaam4zaaWcbeaakiaayIW7caWGNbWaaWbaaSqa beaacaWGHbGaamOyaaaakiaayIW7cqGHciITdaWgaaWcbaGaamyyaa qabaGccaWGybWaaWbaaSqabeaacqaH8oqBaaGccaaMi8UaeyOaIy7a aSbaaSqaaiaadkgaaeqaaOGaamiwamaaBaaaleaacqaH8oqBaeqaaO GaaGykaaGaay5Eaiaaw2haaaaaaa@97D6@

exp 1 2π α D ( g )(ξ) d 2 ξ δ cov (F) g ab (ξ)( a X μ b X μ )(ξ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaciyzai aacIhacaGGWbWaaiWaaeaacqGHsisldaqadaqaamaalaaabaGaaGym aaqaaiaaikdacqaHapaCcuaHXoqygaqbaaaaaiaawIcacaGLPaaada WdraqabSqaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbac faGae83GWteabeqdcqGHRiI8aOGaaGikamaakaaabaGaam4zaaWcbe aakiaaiMcacaaIOaGaeqOVdGNaaGykaiaadsgadaahaaWcbeqaaiaa ikdaaaGccqaH+oaEaiaawUhacaGL9baaaeaacqaH0oazdaqhaaWcba Gaae4yaiaad+gacaWG2baabaGaaGikaiaadAeacaaIPaaaaOWaaeWa aeaacaWGNbWaaSbaaSqaaiaadggacaWGIbaabeaakiaaiIcacqaH+o aEcaaIPaGaeyOeI0IaaGikaiabgkGi2oaaBaaaleaacaWGHbaabeaa kiaadIfadaahaaWcbeqaaiabeY7aTbaakiaayIW7cqGHciITdaWgaa WcbaGaamOyaaqabaGccaWGybWaaSbaaSqaaiabeY7aTbqabaGccaaI PaGaaGikaiabe67a4jaaiMcaaiaawIcacaGLPaaaaaaa@7BEC@              (9)

It results that on the surface conformal gauge and for D=26 (or by introducing N neutral fermions such that N+D=26), one obtains the expected gauge fixed propagator as a theory of free fields on the string domain parameter (otherwise the theory is non-renormalible, so ill-defined – see also Appendix 2).

G(Cxx]=XμξCxxμDF(Xμ(ξ)]×δ(F)(+)exp12πα'D((+Xμ)(Xμ))(ξ+,ξ)d2ξ (10)

At this point it is argued that the following two-dimensional path integral,1,11,13 with a neutral set of N=22 fermions solve the Q.C.D(SU()) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacaaIUa Gaam4qaiaai6cacaWGebGaaGikaiaadofacaWGvbGaaGikaiabg6Hi LkaaiMcacaaIPaaaaa@41E3@  loop wave equationeq(7-b) (with 0| F 2 |0 SU() = 1 π α =1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgMYiHlabgc daWiabgYha8jaadAeadaahaaWcbeqaaiaaikdaaaGccqGH8baFcqGH WaamcqGHQms8daWgaaWcbaGaam4uaiaadwfacaaIOaGaeyOhIuQaaG ykaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacqaHapaCcuaHXoqy gaqbaaaacqGH9aqpcqGHXaqmaaa@4E2B@ and ξ=(σ,τ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabe67a4jaai2 dacaaIOaGaeq4WdmNaaGilaiabes8a0jaaiMcaaaa@404C@ ).

Φ SU() C μ (σ),0σt = 0 dA X μ (ξ)= C μ D F [ X μ (ξ)] exp 1 2 0 A dτ 0 t dσ ( X μ ) 2 (σ,τ) (D ψ i D ψ ¯ i )(ξ) exp + 0 A dτ 0 t dσ( h(X) ψ ¯ i h ψ i )(σ,τ) exp[ λ 0 2 0 A dτ 0 A d τ 0 t dσ 0 t d σ ( h(X) ψ ¯ i ψ i )(σ,τ) ( h(X) ψ ¯ i ψ i )( σ , τ ) μν (X(ξ) δ (D) (X(ξ)X( ξ )) μν (X( ξ ))]} MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOabaeqabaGaeuOPdy 0aaSbaaSqaaiaadofacaWGvbGaaGikaiabg6HiLkaaiMcaaeqaaOWa amWaaeaacaWGdbWaaSbaaSqaaiabeY7aTbqabaGccaaIOaGaeq4Wdm NaaGykaiaaiYcacaaMi8UaaGimaiabgsMiJkabeo8aZjabgsMiJkaa dshaaiaawUfacaGLDbaacaaI9aWaa8qmaeqaleaacaaIWaaabaGaey OhIukaniabgUIiYdGccaWGKbGaamyqamaaceaabaWaa8qeaeqaleaa cqGHciITcaWGybWaaWbaaeqabaGaeqiVd0gaaiaaiIcacqaH+oaEca aIPaGaaGypaiaadoeadaahaaqabeaacqaH8oqBaaaabeqdcqGHRiI8 aOGaamiramaaCaaaleqabaGaamOraaaakiaaiUfacaWGybWaaWbaaS qabeaacqaH8oqBaaGccaaIOaGaeqOVdGNaaGykaiaai2faaiaawUha aaqaaiGacwgacaGG4bGaaiiCamaadmaabaGaeyOeI0YaaSaaaeaaca aIXaaabaGaaGOmaaaadaWdXaqabSqaaiaaicdaaeaacaWGbbaaniab gUIiYdGccaWGKbGaeqiXdq3aa8qmaeqaleaacaaIWaaabaGaamiDaa qdcqGHRiI8aOGaamizaiabeo8aZjaaiIcacqGHciITcaWGybWaaWba aSqabeaacqaH8oqBaaGccaaIPaWaaWbaaSqabeaacaaIYaaaaOGaaG ikaiabeo8aZjaaiYcacqaHepaDcaaIPaaacaGLBbGaayzxaaWaa8qa aeqaleqabeqdcqGHRiI8aOGaaGikaiaadseacqaHipqEdaahaaWcbe qaaiaadMgaaaGccaaMi8UaamiramaanaaabaGaeqiYdKhaamaaCaaa leqabaGaamyAaaaakiaaiMcacaaIOaGaeqOVdGNaaGykaaqaaiGacw gacaGG4bGaaiiCamaadmaabaGaey4kaSYaa8qmaeqaleaacaaIWaaa baGaamyqaaqdcqGHRiI8aOGaamizaiabes8a0naapedabeWcbaGaaG imaaqaaiaadshaa0Gaey4kIipakiaadsgacqaHdpWCcaaIOaWaaOaa aeaacaWGObGaaGikaiaadIfacaaIPaaaleqaaOGaaGjcVpaanaaaba GaeqiYdKhaamaaCaaaleqabaGaamyAaaaakiabgkGi2oaaBaaaleaa caWGObaabeaakiaayIW7cqaHipqEdaahaaWcbeqaaiaadMgaaaGcca aIPaGaaGikaiabeo8aZjaaiYcacqaHepaDcaaIPaaacaGLBbGaayzx aaaabaGaciyzaiaacIhacaGGWbGaaG4waiabgkHiTiabeU7aSnaaDa aaleaacaaIWaaabaGaaGOmaaaakmaapedabeWcbaGaaGimaaqaaiaa dgeaa0Gaey4kIipakiaadsgacqaHepaDdaWdXaqabSqaaiaaicdaae aacaWGbbaaniabgUIiYdGccaWGKbGafqiXdqNbauaadaWdXaqabSqa aiaaicdaaeaacaWG0baaniabgUIiYdGccaWGKbGaeq4Wdm3aa8qmae qaleaacaaIWaaabaGaamiDaaqdcqGHRiI8aOGaamizaiqbeo8aZzaa faGaaGikamaakaaabaGaamiAaiaaiIcacaWGybGaaGykaaWcbeaaki aayIW7daqdaaqaaiabeI8a5baadaahaaWcbeqaaiaadMgaaaGccaaM i8UaeqiYdK3aaSbaaSqaaiaadMgaaeqaaOGaaGykaiaaiIcacqaHdp WCcaaISaGaeqiXdqNaaGykaaqaaiaaiIcadaGcaaqaaiaadIgacaaI OaGaamiwaiaaiMcaaSqabaGccaaMi8+aa0aaaeaacqaHipqEaaWaaW baaSqabeaacaWGPbaaaOGaaGjcVlabeI8a5naaBaaaleaacaWGPbaa beaakiaaiMcacaaIOaGafq4WdmNbauaacaaISaGafqiXdqNbauaaca aIPaWefv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab =frijnaaCaaaleqabaGaeqiVd0MaeqyVd4gaaOGaaGikaiaadIfaca aIOaGaeqOVdGNaaGykaiabes7aKnaaCaaaleqabaGaaGikaiaadsea caaIPaaaaOGaaGikaiaadIfacaaIOaGaeqOVdGNaaGykaiabgkHiTi aadIfacaaIOaGafqOVdGNbauaacaaIPaGaaGykaiab=frijnaaBaaa leaacqaH8oqBcqaH9oGBaeqaaOGaaGikaiaadIfacaaIOaGafqOVdG NbauaacaaIPaGaaGykaiaai2facaaI9baaaaa@3DE4@       (11)        

Here μν (X(ξ)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFressdaahaaWcbeqa aiabeY7aTjabe27aUbaakiaaiIcacaWGybGaaGikaiabe67a4jaaiM cacaaIPaaaaa@4CEF@  is the normalized surface area tensor.2

μν (X(ξ))= ( ε ab a X μ b X ν )(ξ) 2 h(X(ξ)) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFressdaahaaWcbeqa aiabeY7aTjabe27aUbaakiaaiIcacaWGybGaaGikaiabe67a4jaaiM cacaaIPaGaaGypamaalaaabaGaaGikaiabew7aLnaaCaaaleqabaGa amyyaiaadkgaaaGccqGHciITdaWgaaWcbaGaamyyaaqabaGccaWGyb WaaWbaaSqabeaacqaH8oqBaaGccqGHciITdaWgaaWcbaGaamOyaaqa baGccaWGybWaaWbaaSqabeaacqaH9oGBaaGccaaIPaGaaGikaiabe6 7a4jaaiMcaaeaadaGcaaqaaiaaikdaaSqabaGccaaMi8+aaOaaaeaa caWGObGaaGikaiaadIfacaaIOaGaeqOVdGNaaGykaiaaiMcaaSqaba aaaaaa@697D@              (12-a)

μν (X(ξ)) μν (X(ξ))=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFressdaahaaWcbeqa aiabeY7aTjabe27aUbaakiaaiIcacaWGybGaaGikaiabe67a4jaaiM cacaaIPaGae8xeHK0aaSbaaSqaaiabeY7aTjabe27aUbqabaGccaaI OaGaamiwaiaaiIcacqaH+oaEcqGHPaqkcqGHPaqkcqGH9aqpcqGHXa qmaaa@5947@  (12-b)

At this point one could consider eq(11) as an interacting string path integral on the surface conformal gauge as done in eq(10).

Note that at this point it is somewhat irrelevant to consider the two-dimensional path integral as a path integral related to a random surface theory, even if this geometrical interpretation holds true on lattice, and necessary for theory’s unitarization afterwards Q.C.D is thus analitically solved through interpreting eq(11) as a string path integral extended to all surface genus (somewhat related the Mandelstam light-cone string path integral on euclidean space-time).

At this point of ours comments, we remark that eq(11) should be evaluated explicitly in terms of the loop boundary Cxxand the loop parameter σ and the string proper-time A.11 After this step, one expects that this “stringy" Wilson Loop is now well-defined and should replace the ill defined one given by eq(7-a) and averaged over the (ill defined) quantum euclidean Yang-Mills path integral. Namely

det D ( A μ + J μ ) det D (0) SU() =exp 0 dt t d ν x C xx μ (σ)] D F [ C xx μ (σ)] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaamaabaWaaS aaaeaaciGGKbGaaiyzaiaacshadaajcaqaaiaadseaaaGaaGikaiaa dgeadaWgaaWcbaGaeqiVd0gabeaakiabgUcaRiaadQeadaWgaaWcba GaeqiVd0gabeaakiaaiMcaaeaaciGGKbGaaiyzaiaacshadaajcaqa aiaadseaaaGaaGikaiaaicdacaaIPaaaaaGaayzkJiaawQYiamaaBa aaleaacaWGtbGaamyvaiaaiIcacqGHEisPcaaIPaaabeaakiaai2da ciGGLbGaaiiEaiaacchadaGabaqaaiabgkHiTmaapedabeWcbaGaaG imaaqaaiabg6HiLcqdcqGHRiI8aOWaaSaaaeaacaWGKbGaamiDaaqa aiaadshaaaWaa8qaaeqaleqabeqdcqGHRiI8aOGaamizamaaCaaale qabaGaeqyVd4gaaOGaamiEamaaceaabaWaa8qeaeqaleaacaWGdbWa a0baaeaacaWG4bGaamiEaaqaaiabeY7aTbaacaaIOaGaeq4WdmNaaG ykaiaai2faaeqaniabgUIiYdGccaWGebWaaWbaaSqabeaacaWGgbaa aOGaaG4waiaadoeadaqhaaWcbaGaamiEaiaadIhaaeaacqaH8oqBaa GccaaIOaGaeq4WdmNaaGykaiaai2faaiaawUhaaaGaay5Eaaaaaa@7A20@

π μ (0)= π μ (t) D F [ π μ (σ)]exp i 0 t π μ (σ) X ˙ μ (σ)dσ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapebabeWcba GaeqiWda3aaWbaaeqabaGaeqiVd0gaaiaaiIcacaaIWaGaaGykaiaa i2dacqaHapaCdaahaaqabeaacqaH8oqBaaGaaGikaiaadshacaaIPa aabeqdcqGHRiI8aOGaamiramaaCaaaleqabaGaamOraaaakiaaiUfa cqaHapaCdaahaaWcbeqaaiabeY7aTbaakiaaiIcacqaHdpWCcaaIPa GaaGyxaiGacwgacaGG4bGaaiiCamaabmaabaGaamyAamaapedabeWc baGaaGimaaqaaiaadshaa0Gaey4kIipakiabec8aWnaaCaaaleqaba GaeqiVd0gaaOGaaGikaiabeo8aZjaaiMcaceWGybGbaiaadaWgaaWc baGaeqiVd0gabeaakiaaiIcacqaHdpWCcaaIPaGaamizaiabeo8aZb GaayjkaiaawMcaaaaa@69BC@

T r Dirac Dirac {exp i 0 t ( γ μ π μ )(σ)dσ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaabsfacaWGYb WaaSbaaSqaaiaabseacaWGPbGaamOCaiaadggacaWGJbaabeaakmaa dmaabaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiuaacq WFzecudaWgaaWcbaGaaeiraiaadMgacaWGYbGaamyyaiaadogaaeqa aOGaaG4EaiGacwgacaGG4bGaaiiCamaabmaabaGaeyOeI0IaamyAam aapedabeWcbaGaaGimaaqaaiaadshaa0Gaey4kIipakiaaiIcacqaH ZoWzdaahaaWcbeqaaiabeY7aTbaakiabec8aWnaaBaaaleaacqaH8o qBaeqaaOGaaGykaiaaiIcacqaHdpWCcaaIPaGaamizaiabeo8aZjaa iMcaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaaa@6A45@

exp i 0 t J μ (X(σ))d X μ (σ) × Φ SU() [ C xx μ (σ),0σt] MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaciaabaGaci yzaiaacIhacaGGWbWaaeWaaeaacqGHsislcaWGPbWaa8qmaeqaleaa caaIWaaabaGaamiDaaqdcqGHRiI8aOGaamOsamaaBaaaleaacqaH8o qBaeqaaOGaaGikaiaadIfacaaIOaGaeq4WdmNaaGykaiaaiMcacaWG KbGaamiwamaaCaaaleqabaGaeqiVd0gaaOGaaGikaiabeo8aZjaaiM caaiaawIcacaGLPaaacqGHxdaTcqqHMoGrdaWgaaWcbaGaam4uaiaa dwfacaaIOaGaeyOhIuQaaGykaaqabaGccaaIBbGaam4qamaaDaaale aacaWG4bGaamiEaaqaaiabeY7aTbaakiaaiIcacqaHdpWCcqGHPaqk cqGHSaalcaaMi8UaeyimaaJaeyizImQaeq4WdmNaeyizImQaamiDai aai2faaiaaw2haaaaa@6E06@  (13)

We have thus that eq(13) should be the correct (string) definition of Q.C.D(SU()) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacaaIUa Gaam4qaiaai6cacaWGebGaaGikaiaadofacaWGvbGaaGikaiabg6Hi LkaaiMcacaaIPaaaaa@41E3@  or possible Q.C.D(SU( N c )) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacaaIUa Gaam4qaiaai6cacaWGebGaaGikaiaadofacaWGvbGaaGikaiaad6ea daWgaaWcbaGaam4yaaqabaGccaaIPaGaaGykaaaa@4263@  when the surface sum is defined for all possible topological genera and adjusted to the eletroweak sector of Nuclear Forces.11 It is thus suggested by eq(13) that correlation functions of the quarks color singlet bilinear in the ill defined Lagrangean quantum field Q.C.D are well defined by the (on shell) string vertexs averages scattering amplitudes associated to eq(11), producing as a result, the meson S-matrix and the determination of it physical spectrum (the meson mass spectrum through the Regge dual model predictions. The most relevant basic problem on extending successfully quantum mechanics for Elementary Particle Physics).

So one must use the possible well-defined Q.C.D string theory in place of the quantum field ill defined Q.C.D Lagrangean. Both coinciding only at lattice as well-defined mathematical Quantum Euclidean theories.

In this context of Q.C.D(SU()) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacaaIUa Gaam4qaiaai6cacaWGebGaaGikaiaadofacaWGvbGaaGikaiabg6Hi LkaaiMcacaaIPaaaaa@41E3@  meson spectrum, one should point out that the numerical condition of vanishing of the conformal anomaly in the free string propagator eq(9) or in the proposed Q.C.D(SU()) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacaaIUa Gaam4qaiaai6cacaWGebGaaGikaiaadofacaWGvbGaaGikaiabg6Hi LkaaiMcacaaIPaaaaa@41E3@ eq(11), 26=D, or 26=D+N respectively is replaced by taking the string two-dimension parameter Planck’s constant ()(2)  to vanishes, which means that ( + X μ X μ )(ξ) h ab classical ( X μ (ξ))= (d σ 2 )+ (dτ) 2 τ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaiIcacqGHci ITdaWgaaWcbaGaey4kaScabeaakiaadIfadaahaaWcbeqaaiabeY7a TbaakiaayIW7cqGHciITdaWgaaWcbaGaeyOeI0cabeaakiaadIfada WgaaWcbaGaeqiVd0gabeaakiaaiMcacaaIOaGaeqOVdGNaaGykaebb fv3ySLgzGueE0jxyaGqbaiab=XJi6iaadIgadaqhaaWcbaGaamyyai aadkgaaeaacaqGJbGaamiBaiaadggacaWGZbGaam4CaiaadMgacaWG JbGaamyyaiaadYgaaaGccaaIOaGaamiwamaaCaaaleqabaGaeqiVd0 gaaOGaaGikaiabe67a4jaaiMcacaaIPaGaaGypamaalaaabaGaaGik aiaadsgacqaHdpWCdaahaaWcbeqaaiaaikdaaaGccaaIPaGaey4kaS IaaGikaiaadsgacqaHepaDcaaIPaWaaWbaaSqabeaacaaIYaaaaaGc baGaeqiXdq3aaWbaaSqabeaacaaIYaaaaaaaaaa@6FA3@ .15

Work on the space-time supersymmetric version of equation(11) will appear elsewhere (Appendix 3,4).1619

2Firstly one must imposes the “Pauli-Fermi" conditions on the possible Q.C.D string surface μν (X(σ,τ)) μν (X( σ ,τ))=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamrr1ngBPrMrYf 2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFressdaahaaWcbeqa aiabeY7aTjabe27aUbaakiaaiIcacaWGybGaaGikaiabeo8aZjaaiY cacqaHepaDcaaIPaGaaGykaiab=frijnaaBaaaleaacqaH8oqBcqaH 9oGBaeqaaOGaaGikaiaadIfacaaIOaGafq4WdmNbauaacaaISaGaeq iXdqNaeyykaKIaeyykaKIaeyypa0Jaeyimaadaaa@5E47@  for σσ'. For trivial self intersection points (σ,τ)=(σ',τ') one has formally the result δ(D)(Xμ(ξ)Xμ(ξ'))=δ(2)(ξξ')δε(D2)(0)2DhD(Xξ)) . So one can expect that for D=4, the self avoiding term (responsible for the Q.C.D(SU()) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wjYlH8qqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaadgfacaaIUa Gaam4qaiaai6cacaWGebGaaGikaiaadofacaWGvbGaaGikaiabg6Hi LkaaiMcacaaIPaaaaa@41E3@  string be a full interacting string theory) reduces to a U(11) Gross-Neveu 2D model on the string surface.

Acknowledgments

We are thankfull to CNPq for a Senior Pos Doctoral Fellowship.

Conflict of interest

Authors declare there is no conflict of interest.

References

  1. Luiz CL Botelho. String wave equations in Polyakov’s path integral framework. Journal of Mathematical Physics. 1989;30(9):2160.
  2. AA Migdal. QCD=Fermi string theory. Nucl Phys B. 1981;189(2):253−294.
  3. AM Polyakov. Confining strings. Nucl Phys B. 1997;486(1−2):23−33.
  4. Luiz CL Botelho. A simple renormalization scheme in random surface theory. Modern Phys Letters B. 1999;13(6−7):203−207.
  5. AI Karanikas, CN Ktorides. Surface self-intersections and instantons. Phys Lett B. 1990;235(1−2):90−96.
  6. Luiz CL Botelho. A fermionic loop wave equation for quantum chromodynamics at Nc = +∞. Phys Letters B. 1986;169(4):428−431.
  7. SG Rajeev. Quantum electrodynamics as a supersymmetric theory of Loops. Annals of Physics. 1987;173:249−276.
  8. AM Polyakov. Gauge Field and Strings. Switzerland: Harwood Academic; 1987. p. 301.
  9. Luiz CL Botelho. A note on Feynman–Kac path integral representations for scalar wave motions. Random Operators and Stochastic Equations. 2013;21(3):271.
  10. Luiz CL Botelho. Studies on Polyakov and Nambu–Goto random surface path integrals on QCD(SU(∞)) : Interquark potential and phenomenological scattering amplitudes. International Journal of Modern Physics A. 2013;32:1750030.
  11. Luiz CL Botelho. QCD(SU(∞)) as a model of infinite-dimensional constant gauge field configurations. International Journal of Modern Physics A. 2017;(6−7):1750031.
  12. Luiz CL Botelho. Covariant path integral for Nambu-Goto string theory. Phys Rev D. 1975;49:1975.
  13. Luiz CL Botelho. Critical String Wave Equations and the QCD(U(Nc )) String. (Some Comments). International Journal of Theoretical Physics. 2009;48:2715.
  14. Luiz CL Botelho. Methods of Bosonic and Fermionic Path Integrals Representations - Continuous Random Geometry in Quantum Field Theory. UK: Nova Science Publishers; 2009. p. 336.
  15. Luiz CL Botelho. Lecture Notes in Topics in Path Integrals and String Representations. Singapore: World Scientific Publishing; 2017. p. 244.
  16. Lars V Ahlfors. Complex Analysis. 3rd edn. New York: McGraw-Hill International Editions; 1979. p. 347.
  17. SG Mikhlin. Integral Equations. UK: Pergamon Press; 1957.
Creative Commons Attribution License

©2019 Botelho. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.