Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Mini Review Volume 7 Issue 2

Nanopiezoactuator for astrophysics equipment

Afonin SM

National Research University of Electronic Technology, Russia

Correspondence: Afonin Sergey Mikhailovich, National Research University of Electronic Technology, MIET, 124498, Moscow, Russia

Received: May 15, 2023 | Published: June 16, 2023

Citation: Afonin SM. Nanopiezoactuator for astrophysics equipment. Phys Astron Int J. 2023;7(2):153-155. DOI: 10.15406/paij.2023.07.00302

Download PDF

Abstract

For astrophysics equipment and composite telescope the parameters and the characteristics of the nanopiezoactuator are obtained. The functions of the nanopiezoactuator are determined. The mechanical characteristic of the nanopiezoactuator is received.

Keywords: Nanopiezoactuator, Deformation, Characteristic, Astrophysics equipment

Introduction

The nanopiezoactuator is used for astrophysics equipment and composite telescope.1-9 The transformation of the electric to mechanical energy is clearly for nanopiezoactuator.3-28 The nanopiezoactuator is coming for adaptive optics, interferometry, nanotechnology.14-43

Characteristics

For electroelastic actuator the equations of the nanopiezoactuator4-56 are received.

(D)=(d)(T)+(εT)(E)

(S)=(sE)(T)+(d)t(E)

here (T),(E),(D),(S),(d),(εT),(sE) , t are matrixes of mechanical field intensity, electric field strength, electric induction, relative deformation, electroelastic coefficient, dielectric constant, elastic compliance, and transposed index.

Relative deformation Si of the nanopiezoactuator1-49 is determined.

Si=dmiEm+sEijTj

where dmi  is the piezocoefficient.

Differential equation of the nanopiezoactuator3-56 is received.

d2Ξ(x,s)dx2γ2Ξ(x,s)=0γ=s/cE+α

where Ξ(x,s),s,x,γ,α,cE  are the Laplace transform of the deformation, the operator, the coordinate, the coefficients of propagation and attenuation, the speed at E=const .

At x=0  and Ξ1(s)=Ξ(0,s)=0  the decision is obtained.

Ξ(x,s)=Ξ2(s)sh(xγ)/sh(hγ)

At elastic-inertial load at x=h and Ξ2(s)=Ξ(h,s)  the displacement of the nanopiezoactuator is calculated.

dΞ2(s)dx=d31E3(s)sE11Ms2Ξ2(s)S0sE11CeΞ2(s)S0

hence equation of the nanopiezoactuator has the form.

Ξ2(s)γth(hγ)+Ξ2(s)sE11Ms2S0+Ξ2(s)sE11ClS0=d31E3(s)

The function of the nanopiezoactuator by E is written in the form.

WE(s)=Ξ2(s)E3(s)=d31hMs2/CE11+hγcth(hγ)+Cl/CE11

where Ξ2(s),Ξ3(s),Cl,CE11  are the transforms of displacement and electric field intensity, the stiffness of load and nanopiezoactuator. The function of the nanopiezoactuator by U is received in the form.

WU(s)=Ξ2(s)U(s)=d31h/δMs2/CE11+hγcth(hγ)+Cl/CE11

For the nanopiezoactuator its reverse and direct coefficients are calculated.

kr=kd=dmiS0δsij

For elastic-inertial load at mass of load with the load mass much greater than the mass of actuator M2>>m  the scheme of the nanopiezoactuator with one fixed face on Figure 1 is calculated.

The expression by U of the nanopiezoactuator for Figure 1 is calculated.

Figure 1 Scheme of nanopiezoactuator.

W(s)=Ξ2(s)/U(s)=kr/N(s)N(s)=a0s3+a1s2+a2s+a3a0=RC0M2,a1=M2+RC0kva2=kv+RC0C+ijRC0C+eRkrkd,a3=C+eCij

here kv  - the coefficient of damping.

For the transverse nanopiezoactuator for R=0  the expression by U is determined.

W(s)=Ξ2(s)U(s)=kU31T2ts2+2Ttξts+1kU31=d31(h/δ)/(1+Cl/CE11)Tt=M/(Cl+CE11),ωt=1/Tt

At M = 1 kg, Cl  = 0.2×107 N/m, CE11  = 2×107 N/m the parameters of the transverse nanopiezoactuator are evaluated Tt  = 0.21×10-3 s, ωt  = 4.7×103 s-1 at error 10%.

Mechanical characteristic of the nanopiezoactuator is determined.

Δl=Δlmax(1F/Fmax)Δlmax=dmilEmFmax=dmiS0Em/sEij

where the maximums Δlmax and Fmax of the displacement and the force of the nanopiezoactuator are determined.

The relative longitudinal deformation8-18 is determined.

S3=d33E3+sE33T3

where d33  is the longitudinal piezocoefficient.

The mechanical characteristic of the longitudinal nanopiezoactuator has the form.

Δδ=Δδmax(1F/Fmax)Δδmax=d33δE3=d33UFmax=d33S0E3/sE33

At E3  = 0.6∙105 V/m, S0  = 1.5∙10-4 m2, δ  = 2.5∙10-3 m, d33  = 4∙10-10 m/V, sE33  = 15∙10-12 m2/N for the longitudinal nanopiezoactuator from PZT its parameters received Δδmax  = 60 nm, Fmax  = 240 N on Figure 2 with error 10%.

Figure 2 Mechanical characteristic.

The maximums of the displacement Δhmax  and force Fmax  for the transverse nanopiezoactuator are received in the form.

Δhmax=d31hE3=d31(h/δ)UFmax=d31S0E3/sE11

where d31  is the transverse piezocoefficient.

The static transverse displacement at elastic load is determined.

Δh=d31(h/δ)U1+Cl/CE11=kU31U

At d31  = 2∙10-10 m/V, h/δ  = 21, Cl/CE11  = 0.1 the parameter kU31  = 3.8 nm/V is evaluated at error 10%.

Conclusion

The deformation of the nanopiezoactuator is determined for astrophysics. The characteristics of the nanopiezoactuator are evaluated for composite telescope. The characteristics for the nanopiezoactuator are calculated.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Uchino K. Piezoelectric actuator and ultrasonic motors. Elect Mat Sci Technol. 1977;1:350.
  2. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Math. 2006;74(3):943–948.
  3. Liu Y, Zhang S, Yan P, et al. Finite element modeling and test of piezo disk with local ring electrodes for micro displacement. Micromachines. 2022;13(6):951.
  4. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 2005;50(2):77–82.
  5. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  6. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Math. 2006;73(2):307–313.
  7. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. McGraw–Hill Book Company, New York, London. 1946;806.
  8. Mason W. Physical Acoustics: Principles and Methods. Methods and Devices. Academic Press, New York. 1964;1:515.
  9. Yang Y, Tang L. Equivalent circuit modeling of piezoelectric energy harvesters. J Intelligent Mat Sys Struc. 2019;20(18):2223–2235.
  10. Zwillinger D. Handbook of differential equations. Academic Press, Boston. 1989;673.
  11. Afonin SM. A generalized structural–parametric model of an elecromagnetoelastic converter for nano– and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano– and micrometric movement control systems. J Comput Sys Sci Int. 2006;45(6):1006–1013.
  12. Afonin SM. Generalized structural–parametric model of an electromagnetoelastic converter for control systems of nano–and micrometric movements: IV. Investigation and calculation of characteristics of step–piezodrive of nano–and micrometric movements. J Comput Sys Sci Int. 2006;45(6):1006–1013.
  13. Afonin SM. Decision wave equation and block diagram of electromagnetoelastic actuator nano– and microdisplacement for communications systems. Int J Info Comm Sci. 2016;1(2):22–29.
  14. Afonin SM. Structural–parametric model and transfer functions of electroelastic actuator for nano– and microdisplacement. Chap 9 in Piezoelectrics and nanomaterials: fundamentals, developments and applications. Ed. Parinov IA. Nova Science, New York. 2015;225–242.
  15. Afonin SM. A structural–parametric model of electroelastic actuator for nano– and microdisplacement of mechatronic system. Chapter 8 in Advances in Nanotechnology. Bartul Z, Trenor J, Nova Science, New York, 2017;19:259–284.
  16. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric actuators and generators for energy harvesting. Res Develop. 2018;182.
  17. Afonin SM. Electromagnetoelastic nano– and microactuators for mechatronic systems. Russian Eng Res. 2018;38(12):938–944.
  18. Afonin SM. Nano– and micro–scale piezomotors. Russian Eng Res. 2021;32(7–8):519–522.
  19. Afonin SM. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mechanics of Solids. 2007;42(1):43–49.
  20. Afonin SM. Stability of strain control systems of nano–and microdisplacement piezotransducers. Mechanics of Solids. 2014;49(2):196–207.
  21. Afonin SM. Structural–parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. Int J Phys. 2017;5(1): 9–15.
  22. Afonin SM. Structural–parametric model multilayer electromagnetoelastic actuator for nanomechatronics. Int J Phys. 2019;7(2):50–57.
  23. Afonin SM. Calculation deformation of an engine for nano biomedical research. Int J Biomed Res. 2021;1(5):1–4.
  24. Afonin SM. Precision engine for nanobiomedical research. Biomed Res Clin Rev. 2021;3(4):1–5.
  25. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano– and microdisplacement. Int J Math Analysis Appl. 2016;3(4):31–38.
  26. Afonin SM. Structural–parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):6.
  27. Afonin SM. Structural–parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):52.
  28. Afonin SM. Structural–parametric models and transfer functions of electromagnetoelastic actuators nano– and microdisplacement for mechatronic systems. Int J Theor Appl Math. 2016;2(2):52–59.
  29. Afonin SM. Design static and dynamic characteristics of a piezoelectric nanomicrotransducers. Mechanics of Solids. 2010;45(1):123–132.
  30. Afonin SM. Electromagnetoelastic Actuator for Nanomechanics. Global J Res Eng: A Mech Mech Eng. 2018;18(2):19–23.
  31. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. Proceedings of the 2018 IEEE Conference EIConRus 2018;1698–1701.
  32. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transac Net Commun. 2018;6(3):1–9.
  33. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems. Transac Net Commun. 2019;7(3):11–21.
  34. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Transac Net Commun. 2020;8(1):8–15.
  35. Afonin SM. A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Transac Machine Learn Artificial Intelligence. 2020;8(4):23–33.
  36. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Appl Sys Innovat. 2020;3(4):53.
  37. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Appl Sys Innovat. 2020;4(3):47.
  38. Afonin SM. Structural–parametric model actuator of adaptive optics for composite telescope and astrophysics equipment. Phys Astron Int J. 2020;4(1):18–21.
  39. Afonin SM. An actuator nano and micro displacements for composite telescope in astronomy and physics research. Phys Astron Int J. 2020;4(4):165–167.
  40. Afonin SM. Calculation of the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment. Phys Astron Int J. 2021;5(2):55–58.
  41. Afonin SM. Structural scheme actuator for nano research. COJ Rev Res. 2020;2(5):1–3.
  42. Afonin SM. Structural–parametric model electroelastic actuator nano– and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Ecol Environ Sci. 2018;3(5):306‒309.
  43. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeron Aero Open Access J. 2018;2(5):270–272.
  44. Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surg Case Stud Open Access J. 2019;3(3):307–309.
  45. Afonin SM. Piezo actuators for nanomedicine research. MOJ Appl Bio Biomech. 2019;3(2):56–57.
  46. Afonin SM. Frequency criterion absolute stability of electromagnetoelastic system for nano and micro displacement in biomechanics. MOJ Appl Bio Biomech. 2019;3(6):137–140.
  47. Afonin SM. A structural–parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology. Chap 7 in Advances in Nanotechnology. Eds. Bartul Z, Trenor J, Nova Science, New York. 2019;22:169–186.
  48. Afonin SM. Electroelastic digital–to–analog converter actuator nano and microdisplacement for nanotechnology. Chap 6 in Advances in Nanotechnology. Eds. Bartul Z, Trenor J, Nova Science, New York. 2020;24:205–218.
  49. Afonin SM (2021) Characteristics of an electroelastic actuator nano– and microdisplacement for nanotechnology. Chap 8 in Advances in Nanotechnology. Eds. Bartul Z, Trenor J, Nova Science, New York. 2021;25:251–266.
  50. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russ Eng Res. 2021;41(4):285–288.
  51. Afonin SM. Structural scheme of electroelastic actuator for nanomechatronics, Chapter 40 in Advanced Materials. Proceedings of the International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2019. Eds: Parinov IA, Chang SH, Long BT. 2019;487–502.
  52. Afonin SM. Absolute stability of control system for deformation of electromagnetoelastic actuator under random impacts in nanoresearch. Chapter 3 in Physics and Mechanics of New Materials and Their Applications. 2021;519–531.
  53. Afonin SM. Electroelastic actuator of nanomechatronics systems for nanoscience. Chap 2 in Recent Progress in Chemical Science Research. Volume 6. Ed. Min HS, B P International, India, UK. London. 2023;15–27.
  54. Afonin SM. Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. Chapter 34 in Physics and Mechanics of New Materials and Their Applications. 2023;20:419–428.
  55. Bhushan B. Springer Handbook of Nanotechnology. New York: Springer. 2004;1222.
  56. Nalwa HS. Encyclopedia of Nanoscience and Nanotechnology. Los Angeles: Am Sci Publish. 2004.
Creative Commons Attribution License

©2023 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.