Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Mini Review Volume 7 Issue 2

Nanopiezoactuator for astrophysics equipment

Afonin SM

National Research University of Electronic Technology, Russia

Correspondence: Afonin Sergey Mikhailovich, National Research University of Electronic Technology, MIET, 124498, Moscow, Russia

Received: May 15, 2023 | Published: June 16, 2023

Citation: Afonin SM. Nanopiezoactuator for astrophysics equipment. Phys Astron Int J. 2023;7(2):153-155. DOI: 10.15406/paij.2023.07.00302

Download PDF

Abstract

For astrophysics equipment and composite telescope the parameters and the characteristics of the nanopiezoactuator are obtained. The functions of the nanopiezoactuator are determined. The mechanical characteristic of the nanopiezoactuator is received.

Keywords: Nanopiezoactuator, Deformation, Characteristic, Astrophysics equipment

Introduction

The nanopiezoactuator is used for astrophysics equipment and composite telescope.1-9 The transformation of the electric to mechanical energy is clearly for nanopiezoactuator.3-28 The nanopiezoactuator is coming for adaptive optics, interferometry, nanotechnology.14-43

Characteristics

For electroelastic actuator the equations of the nanopiezoactuator4-56 are received.

( D )=( d )( T )+( ε T )( E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGebaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacaWGKbaacaGLOaGa ayzkaaWaaeWaaeaacaWGubaacaGLOaGaayzkaaGaey4kaSYaaeWaae aacqaH1oqzdaahaaWcbeqaaiaadsfaaaaakiaawIcacaGLPaaadaqa daqaaiaadweaaiaawIcacaGLPaaaaaa@4598@

( S )=( s E )( T )+ ( d ) t ( E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGtbaacaGLOaGaayzkaaGaeyypa0ZaaeWaaeaacaWGZbWaaWbaaSqa beaacaWGfbaaaaGccaGLOaGaayzkaaWaaeWaaeaacaWGubaacaGLOa GaayzkaaGaey4kaSYaaeWaaeaacaWGKbaacaGLOaGaayzkaaWaaWba aSqabeaacaWG0baaaOWaaeWaaeaacaWGfbaacaGLOaGaayzkaaaaaa@4619@

here ( T ),( E ),( D ),( S ),( d ),( ε T ),( s E ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGubaacaGLOaGaayzkaaGaaiilamaabmaabaGaamyraaGaayjkaiaa wMcaaiaacYcadaqadaqaaiaadseaaiaawIcacaGLPaaacaGGSaWaae WaaeaacaWGtbaacaGLOaGaayzkaaGaaiilamaabmaabaGaamizaaGa ayjkaiaawMcaaiaacYcadaqadaqaaiabew7aLnaaCaaaleqabaGaam ivaaaaaOGaayjkaiaawMcaaiaacYcadaqadaqaaiaadohadaahaaWc beqaaiaadweaaaaakiaawIcacaGLPaaaaaa@4DB3@ , t are matrixes of mechanical field intensity, electric field strength, electric induction, relative deformation, electroelastic coefficient, dielectric constant, elastic compliance, and transposed index.

Relative deformation S i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaWGPbaabeaaaaa@37E9@ of the nanopiezoactuator1-49 is determined.

S i = d mi E m + s ij E T j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaWGPbaabeaakiabg2da9iaadsgadaWgaaWcbaGaamyBaiaa dMgaaOqabaGaamyraSWaaSbaaeaacaWGTbaabeaakiabgUcaRiaado halmaaDaaabaGaamyAaiaadQgaaeaacaWGfbaaaOGaamivamaaBaaa leaacaWGQbaakeqaaaaa@44A0@

where d mi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaWGTbGaamyAaaGcbeaaaaa@38F6@  is the piezocoefficient.

Differential equation of the nanopiezoactuator3-56 is received.

d 2 Ξ( x,s ) d x 2 γ 2 Ξ( x,s )=0 γ=s/ c E +α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaa qaaiaadsgadaahaaWcbeqaaiaaikdaaaGccqqHEoawdaqadaqaaiaa dIhacaGGSaGaam4CaaGaayjkaiaawMcaaaqaaiaadsgacaWG4bWaaW baaSqabeaacaaIYaaaaaaakiabgkHiTiabeo7aNnaaCaaaleqabaGa aGOmaaaakiabf65aynaabmaabaGaamiEaiaacYcacaWGZbaacaGLOa GaayzkaaGaeyypa0JaaGimaaqaaiabeo7aNjabg2da9maalyaabaGa am4CaaqaaiaadogadaahaaWcbeqaaiaadweaaaaaaOGaey4kaSIaeq ySdegaaaa@5393@

where Ξ( x,s ),s,x,γ,α, c E MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aae WaaeaacaWG4bGaaiilaiaadohaaiaawIcacaGLPaaacaGGSaGaam4C aiaacYcacaWG4bGaaiilaiabeo7aNjaacYcacqaHXoqycaGGSaGaam 4yamaaCaaaleqabaGaamyraaaaaaa@4632@  are the Laplace transform of the deformation, the operator, the coordinate, the coefficients of propagation and attenuation, the speed at E=const MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2 da9iaabogacaqGVbGaaeOBaiaabohacaqG0baaaa@3C7D@ .

At x=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaaicdaaaa@38B4@  and Ξ 1 ( s )=Ξ( 0,s )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaS baaSqaaiaaigdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGa eyypa0JaeuONdG1aaeWaaeaacaaIWaGaaiilaiaadohaaiaawIcaca GLPaaacqGH9aqpcaaIWaaaaa@4322@  the decision is obtained.

Ξ( x,s )= Ξ 2 ( s )sh( xγ )/ sh( hγ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aae WaaeaacaWG4bGaaiilaiaadohaaiaawIcacaGLPaaacqGH9aqpdaWc gaqaaiabf65aynaaBaaaleaacaaIYaaakeqaamaabmaabaGaam4Caa GaayjkaiaawMcaaiaaysW7caqGZbGaaeiAamaabmaabaGaamiEaiab eo7aNbGaayjkaiaawMcaaaqaaiaabohacaqGObWaaeWaaeaacaWGOb Gaeq4SdCgacaGLOaGaayzkaaaaaaaa@4F55@

At elastic-inertial load at x=h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2 da9iaadIgaaaa@38E7@ and Ξ 2 ( s )=Ξ( h,s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGa eyypa0JaeuONdG1aaeWaaeaacaWGObGaaiilaiaadohaaiaawIcaca GLPaaaaaa@4196@  the displacement of the nanopiezoactuator is calculated.

d Ξ 2 ( s ) dx = d 31 E 3 ( s ) s 11 E M s 2 Ξ 2 ( s ) S 0 s 11 E C e Ξ 2 ( s ) S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaeuONdG1cdaWgaaqaaiaaikdaaeqaaOWaaeWaaeaacaWGZbaa caGLOaGaayzkaaaabaGaamizaiaadIhaaaGaeyypa0JaamizamaaBa aaleaacaaIZaGaaGymaaqabaGccaWGfbWaaSbaaSqaaiaaiodaaOqa baWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyOeI0YaaSaaaeaaca WGZbWcdaqhaaqaaiaaigdacaaIXaaabaGaamyraaaakiaad2eacaaM b8Uaam4CaSWaaWbaaeqabaGaaGOmaaaakiabf65ayTWaaSbaaeaaca aIYaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaaqaaiaadofa lmaaBaaabaGaaGimaaqabaaaaOGaeyOeI0YaaSaaaeaacaWGZbWcda qhaaqaaiaaigdacaaIXaaabaGaamyraaaakiaadoealmaaBaaabaGa amyzaaqabaGccqqHEoawlmaaBaaabaGaaGOmaaqabaGcdaqadaqaai aadohaaiaawIcacaGLPaaaaeaacaWGtbWcdaWgaaqaaiaaicdaaeqa aaaaaaa@6223@

hence equation of the nanopiezoactuator has the form.

Ξ 2 ( s )γ th( hγ ) + Ξ 2 ( s ) s 11 E M s 2 S 0 + Ξ 2 ( s ) s 11 E C l S 0 = d 31 E 3 ( s ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq qHEoawdaWgaaWcbaGaaGOmaaGcbeaadaqadaqaaiaadohaaiaawIca caGLPaaacqaHZoWzaeaacaqG0bGaaeiAamaabmaabaGaamiAaiabeo 7aNbGaayjkaiaawMcaaaaacqGHRaWkdaWcaaqaaiabf65aynaaBaaa leaacaaIYaaakeqaamaabmaabaGaam4CaaGaayjkaiaawMcaaiaado halmaaDaaabaGaaGymaiaaigdaaeaacaWGfbaaaOGaamytaiaaygW7 caWGZbWcdaahaaqabeaacaaIYaaaaaGcbaGaam4uaSWaaSbaaeaaca aIWaaabeaaaaGccqGHRaWkdaWcaaqaaiabf65ayTWaaSbaaeaacaaI YaaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiaadohalmaaDa aabaGaaGymaiaaigdaaeaacaWGfbaaaOGaam4qamaaBaaaleaacaWG SbaabeaaaeaakiaadofalmaaBaaameaacaaIWaaabeaaaaGccqGH9a qpcaWGKbWcdaWgaaqaaiaaiodacaaIXaaabeaakiaadweadaWgaaWc baGaaG4maaGcbeaadaqadaqaaiaadohaaiaawIcacaGLPaaaaaa@6701@

The function of the nanopiezoactuator by E is written in the form.

W E ( s )= Ξ 2 ( s ) E 3 ( s ) = d 31 h M s 2 / C 11 E +hγcth( hγ )+ C l / C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaSWaaS baaeaacaWGfbaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiab g2da9maalaaabaGaeuONdG1cdaWgaaqaaiaaikdaaeqaaOWaaeWaae aacaWGZbaacaGLOaGaayzkaaaabaGaamyramaaBaaaleaacaaIZaaa keqaamaabmaabaGaam4CaaGaayjkaiaawMcaaaaacqGH9aqpdaWcaa qaaiaadsgalmaaBaaabaGaaG4maiaaigdaaeqaaOGaamiAaaqaamaa lyaabaGaamytaiaadohadaahaaqabSqaaiaaikdaaaaakeaacaWGdb WcdaqhaaqaaiaaigdacaaIXaaabaGaamyraaaaaaGccqGHRaWkcaWG ObGaeq4SdCMaae4yaiaabshacaqGObWaaeWaaeaacaWGObGaeq4SdC gacaGLOaGaayzkaaGaey4kaSYaaSGbaeaacaWGdbWcdaWgaaqaaiaa dYgaaeqaaaGcbaGaam4qaSWaa0baaeaacaaIXaGaaGymaaqaaiaadw eaaaaaaaaaaaa@5FC2@

where Ξ 2 ( s ), Ξ 3 ( s ), C l ,C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuONdG1aaS baaSqaaiaaikdaaeqaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGa aiilaiabf65aynaaBaaaleaacaaIZaaabeaakmaabmaabaGaam4Caa GaayjkaiaawMcaaiaacYcacaWGdbWaaSbaaSqaaiaadYgaaeqaaOGa aiilaiaadoealmaaDeaabaGaaGymaiaaigdaaeaacaWGfbaaaaaa@471B@  are the transforms of displacement and electric field intensity, the stiffness of load and nanopiezoactuator. The function of the nanopiezoactuator by U is received in the form.

W U ( s )= Ξ 2 ( s ) U( s ) = d 31 h/δ M s 2 / C 11 E +hγcth( hγ )+ C l / C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaWGvbaabeaakmaabmaabaGaam4CaaGaayjkaiaawMcaaiab g2da9maalaaabaGaeuONdG1cdaWgaaqaaiaaikdaaeqaaOWaaeWaae aacaWGZbaacaGLOaGaayzkaaaabaGaamyvamaabmaabaGaam4CaaGa ayjkaiaawMcaaaaacqGH9aqpdaWcaaqaamaalyaabaGaamizamaaBa aaleaacaaIZaGaaGymaaGcbeaacaWGObaabaGaeqiTdqgaaaqaaiaa ysW7daWcgaqaaiaad2eacaWGZbWcdaahaaqabeaacaaIYaaaaaGcba Gaam4qaSWaa0baaeaacaaIXaGaaGymaaqaaiaadweaaaaaaOGaey4k aSIaamiAaiabeo7aNjaabogacaqG0bGaaeiAamaabmaabaGaamiAai abeo7aNbGaayjkaiaawMcaaiabgUcaRmaalyaabaGaam4qaSWaaSba aeaacaWGSbaabeaaaOqaaiaadoealmaaDaaabaGaaGymaiaaigdaae aacaWGfbaaaaaaaaaaaa@6237@

For the nanopiezoactuator its reverse and direct coefficients are calculated.

k r = k d = d mi S 0 δ s ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGYbaabeaakiabg2da9iaadUgadaWgaaWcbaGaamizaaqa baGccqGH9aqpdaWcaaqaaiaadsgalmaaBaaabaGaamyBaiaadMgaae qaaOGaam4uamaaBaaaleaacaaIWaaakeqaaaqaaiabes7aKjaadoha daWgaaWcbaGaamyAaiaadQgaaeqaaaaaaaa@45AC@

For elastic-inertial load at mass of load with the load mass much greater than the mass of actuator M 2 >>m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaaBa aaleaacaaIYaaabeaakiabg6da+iabg6da+iaad2gaaaa@3ABD@  the scheme of the nanopiezoactuator with one fixed face on Figure 1 is calculated.

The expression by U of the nanopiezoactuator for Figure 1 is calculated.

Figure 1 Scheme of nanopiezoactuator.

W( s )= Ξ 2 ( s )/ U( s ) = k r / N( s ) N( s )= a 0 s 3 + a 1 s 2 + a 2 s+ a 3 a 0 =R C 0 M 2 , a 1 = M 2 +R C 0 k v a 2 = k v +R C 0 C + ij R C 0 C + e R k r k d , a 3 =C + e C ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGxb WaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyypa0ZaaSGbaeaacqqH EoawdaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadohaaiaawIcaca GLPaaaaeaacaWGvbWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaiab g2da9maalyaabaGaam4AamaaBaaaleaacaWGYbaabeaaaOqaaiaad6 eadaqadaqaaiaadohaaiaawIcacaGLPaaaaaaabaGaamOtamaabmaa baGaam4CaaGaayjkaiaawMcaaiabg2da9iaadggadaWgaaWcbaGaaG imaaqabaGccaWGZbWcdaahaaqabeaacaaIZaaaaOGaey4kaSIaamyy amaaBaaaleaacaaIXaaabeaakiaadohalmaaCaaabeqaaiaaikdaaa Gaey4kaSIccaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaam4CaiabgUca RiaadggadaWgaaWcbaGaaG4maaqabaaakeaacaWGHbWaaSbaaSqaai aaicdaaeqaaOGaeyypa0JaamOuaiaadoealmaaBaaabaGaaGimaaqa baGccaWGnbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadggadaWgaa WcbaGaaGymaaqabaGccqGH9aqpcaWGnbWaaSbaaSqaaiaaikdaaeqa aOGaey4kaSIaamOuaiaadoeadaWgaaWcbaGaaGimaaqabaGccaWGRb WaaSbaaSqaaiaadAhaaeqaaaGcbaGaamyyamaaBaaaleaacaaIYaaa beaakiabg2da9iaadUgadaWgaaWcbaGaamODaaqabaGccqGHRaWkca WGsbGaam4qamaaBaaaleaacaaIWaaabeaakiaadoealmaaBeaabaGa amyAaiaadQgaaeqaaOGaey4kaSIaamOuaiaadoeadaWgaaWcbaGaaG imaaqabaGccaWGdbWcdaWgbaqaaiaadwgaaeqaaOGaey4kaSIaamOu aiaadUgadaWgaaWcbaGaamOCaaqabaGccaWGRbWaaSbaaSqaaiaads gaaeqaaOGaaiilaiaadggadaWgaaWcbaGaaG4maaqabaGccqGH9aqp caWGdbWcdaWgbaqaaiaadwgaaeqaaOGaey4kaSIaam4qaSWaaSraae aacaWGPbGaamOAaaqabaaaaaa@8E4E@

here k v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWG2baabeaaaaa@380E@  - the coefficient of damping.

For the transverse nanopiezoactuator for R=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiabg2 da9iaaicdaaaa@388E@  the expression by U is determined.

W( s )= Ξ 2 ( s ) U( s ) = k 31 U T t 2 s 2 +2 T t ξ t s+1 k 31 U = d 31 ( h/δ )/ ( 1+ C l / C 11 E ) T t = M/ ( C l + C 11 E ) , ω t =1/ T t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGxb WaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaeyypa0ZaaSaaaeaacqqH EoawdaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiaadohaaiaawIcaca GLPaaaaeaacaWGvbWaaeWaaeaacaWGZbaacaGLOaGaayzkaaaaaiab g2da9maalaaabaGaam4AamaaDaaaleaacaaIZaGaaGymaaqaaiaadw faaaaakeaacaaMe8UaamivaSWaa0baaeaacaWG0baabaGaaGOmaaaa kiaadohalmaaCaaabeqaaiaaikdaaaGccqGHRaWkcaaIYaGaamivaS WaaSbaaeaacaWG0baabeaakiabe67a4TWaaSbaaeaacaWG0baabeaa kiaadohacqGHRaWkcaaIXaaaaaqaaiaadUgadaqhaaWcbaGaaG4mai aaigdaaeaacaWGvbaaaOGaeyypa0ZaaSGbaeaacaWGKbWcdaWgaaqa aiaaiodacaaIXaaabeaakmaabmaabaWaaSGbaeaacaWGObaabaGaeq iTdqgaaaGaayjkaiaawMcaaaqaamaabmaabaGaaGymaiabgUcaRmaa lyaabaGaam4qamaaBaaaleaacaWGSbaabeaaaOqaaiaadoeadaqhaa WcbaGaaGymaiaaigdaaeaacaWGfbaaaaaaaOGaayjkaiaawMcaaaaa aeaacaWGubWaaSbaaSqaaiaadshaaeqaaOGaeyypa0ZaaOaaaeaada Wcgaqaaiaad2eaaeaadaqadaqaaiaadoeadaWgaaWcbaGaamiBaaqa baGccqGHRaWkcaWGdbWaa0baaSqaaiaaigdacaaIXaaabaGaamyraa aaaOGaayjkaiaawMcaaaaaaSqabaGccaGGSaGaeqyYdC3cdaWgaaqa aiaadshaaeqaaOGaeyypa0ZaaSGbaeaacaaIXaaabaGaamivamaaBa aaleaacaWG0baabeaaaaaaaaa@7DB9@

At M = 1 kg, C l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaSWaaS baaeaacaWGSbaabeaaaaa@37DC@  = 0.2×107 N/m, C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaSWaa0 baaeaacaaIXaGaaGymaaqaaiaadweaaaaaaa@392C@  = 2×107 N/m the parameters of the transverse nanopiezoactuator are evaluated T t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivaSWaaS baaeaacaWG0baabeaaaaa@37F5@  = 0.21×10-3 s, ω t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyYdC3cda Wgaaqaaiaadshaaeqaaaaa@38E9@  = 4.7×103 s-1 at error 10%.

Mechanical characteristic of the nanopiezoactuator is determined.

Δl=Δ l max ( 1F/ F max ) Δ l max = d mi l E m F max = d mi S 0 E m / s ij E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqqHuo arcaWGSbGaeyypa0JaeuiLdqKaamiBaSWaaSbaaeaacaqGTbGaaeyy aiaabIhaaeqaaOWaaeWaaeaacaaIXaGaeyOeI0YaaSGbaeaacaWGgb aabaGaamOramaaBaaaleaacaqGTbGaaeyyaiaabIhaaeqaaaaaaOGa ayjkaiaawMcaaaqaaiabfs5aejaadYgalmaaBaaabaGaaeyBaiaabg gacaqG4baabeaakiabg2da9iaadsgalmaaBaaabaGaamyBaiaadMga aeqaaOGaamiBaiaadweadaWgaaWcbaGaamyBaaGcbeaaaeaacaWGgb WaaSbaaSqaaiaab2gacaqGHbGaaeiEaaqabaGccqGH9aqpdaWcgaqa aiaadsgalmaaBaaabaGaamyBaiaadMgaaeqaaOGaam4uaSWaaSbaae aacaaIWaaabeaakiaadweadaWgaaWcbaGaamyBaaGcbeaaaeaacaWG ZbWcdaqhaaqaaiaadMgacaWGQbaabaGaamyraaaaaaaaaaa@624F@

where the maximums Δ l max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iBaSWaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaaaa@3B49@ and F max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaqGTbGaaeyyaiaabIhaaeqaaaaa@39BD@ of the displacement and the force of the nanopiezoactuator are determined.

The relative longitudinal deformation8-18 is determined.

S 3 = d 33 E 3 + s 33 E T 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaaIZaaabeaakiabg2da9iaadsgadaWgaaWcbaGaaG4maiaa iodaaOqabaGaamyraSWaaSbaaeaacaaIZaaabeaakiabgUcaRiaado halmaaDaaabaGaaG4maiaaiodaaeaacaWGfbaaaOGaamivamaaBaaa leaacaaIZaaakeqaaaaa@433F@

where d 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIZaGaaG4maaGcbeaaaaa@3890@  is the longitudinal piezocoefficient.

The mechanical characteristic of the longitudinal nanopiezoactuator has the form.

Δδ=Δ δ max ( 1F/ F max ) Δ δ max = d 33 δ E 3 = d 33 U F max = d 33 S 0 E 3 / s 33 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqqHuo arcqaH0oazcqGH9aqpcqqHuoarcqaH0oazlmaaBaaabaGaaeyBaiaa bggacaqG4baabeaakmaabmaabaGaaGymaiabgkHiTmaalyaabaGaam OraaqaaiaadAeadaWgaaWcbaGaaeyBaiaabggacaqG4baabeaaaaaa kiaawIcacaGLPaaaaeaacqqHuoarcqaH0oazlmaaBaaabaGaaeyBai aabggacaqG4baabeaakiabg2da9iaadsgalmaaBaaabaGaaG4maiaa iodaaeqaaOGaeqiTdqMaamyramaaBaaaleaacaaIZaaakeqaaiabg2 da9iaadsgalmaaBaaabaGaaG4maiaaiodaaeqaaOGaamyvaaqaaiaa dAeadaWgaaWcbaGaaeyBaiaabggacaqG4baabeaakiabg2da9maaly aabaGaamizaSWaaSbaaeaacaaIZaGaaG4maaqabaGccaWGtbWcdaWg aaqaaiaaicdaaeqaaOGaamyramaaBaaaleaacaaIZaaakeqaaaqaai aadohalmaaDaaabaGaaG4maiaaiodaaeaacaWGfbaaaaaaaaaa@67FF@

At E 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraSWaaS baaeaacaaIZaaabeaaaaa@37AA@  = 0.6∙105 V/m, S 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaSWaaS baaeaacaaIWaaabeaaaaa@37B5@  = 1.5∙10-4 m2, δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqgaaa@379C@  = 2.5∙10-3 m, d 33 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaS baaeaacaaIZaGaaG4maaqabaaaaa@3886@  = 4∙10-10 m/V, s 33 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CaSWaa0 baaeaacaaIZaGaaG4maaqaaiaadweaaaaaaa@3960@  = 15∙10-12 m2/N for the longitudinal nanopiezoactuator from PZT its parameters received Δ δ max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaeq iTdq2cdaWgaaqaaiaab2gacaqGHbGaaeiEaaqabaaaaa@3BFD@  = 60 nm, F max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaqGTbGaaeyyaiaabIhaaeqaaaaa@39BD@  = 240 N on Figure 2 with error 10%.

Figure 2 Mechanical characteristic.

The maximums of the displacement Δ h max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iAaSWaaSbaaeaacaqGTbGaaeyyaiaabIhaaeqaaaaa@3B45@  and force F max MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa aaleaacaqGTbGaaeyyaiaabIhaaeqaaaaa@39BD@  for the transverse nanopiezoactuator are received in the form.

Δ h max = d 31 h E 3 = d 31 ( h/δ )U F max = d 31 S 0 E 3 / s 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqqHuo arcaWGObWcdaWgaaqaaiaab2gacaqGHbGaaeiEaaqabaGccqGH9aqp caWGKbWcdaWgaaqaaiaaiodacaaIXaaabeaakiaadIgacaWGfbWaaS baaSqaaiaaiodaaOqabaGaeyypa0JaamizaSWaaSbaaeaacaaIZaGa aGymaaqabaGcdaqadaqaamaalyaabaGaamiAaaqaaiabes7aKbaaaS GaayjkaiaawMcaaOGaamyvaaqaaiaadAeadaWgaaWcbaGaaeyBaiaa bggacaqG4baabeaakiabg2da9maalyaabaGaamizaSWaaSbaaeaaca aIZaGaaGymaaqabaGccaWGtbWcdaWgaaqaaiaaicdaaeqaaOGaamyr amaaBaaaleaacaaIZaaakeqaaaqaaiaadohalmaaDaaabaGaaGymai aaigdaaeaacaWGfbaaaaaaaaaa@58C7@

where d 31 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizamaaBa aaleaacaaIZaGaaGymaaGcbeaaaaa@388E@  is the transverse piezocoefficient.

The static transverse displacement at elastic load is determined.

Δh= d 31 ( h/δ )U 1+ C l / C 11 E = k 31 U U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaam iAaiabg2da9maalaaabaGaamizaSWaaSbaaeaacaaIZaGaaGymaaqa baGcdaqadaqaamaalyaabaGaamiAaaqaaiabes7aKbaaaSGaayjkai aawMcaaOGaamyvaaqaaiaaigdacqGHRaWkdaWcgaqaaiaadoeadaWg aaWcbaGaamiBaaqabaaakeaacaWGdbWaa0baaSqaaiaaigdacaaIXa aabaGaamyraaaaaaaaaOGaeyypa0Jaam4AamaaDaaaleaacaaIZaGa aGymaaqaaiaadwfaaaGccaWGvbaaaa@4D51@

At d 31 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamizaSWaaS baaeaacaaIZaGaaGymaaqabaaaaa@3884@  = 2∙10-10 m/V, h/δ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGObaabaGaeqiTdqgaaaaa@389F@  = 21, C l / C 11 E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSGbaeaaca WGdbWaaSbaaSqaaiaadYgaaeqaaaGcbaGaam4qamaaDaaaleaacaaI XaGaaGymaaqaaiaadweaaaaaaaaa@3B31@  = 0.1 the parameter k 31 U MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaDa aaleaacaaIZaGaaGymaaqaaiaadwfaaaaaaa@3966@  = 3.8 nm/V is evaluated at error 10%.

Conclusion

The deformation of the nanopiezoactuator is determined for astrophysics. The characteristics of the nanopiezoactuator are evaluated for composite telescope. The characteristics for the nanopiezoactuator are calculated.

Acknowledgments

None.

Conflicts of interest

None.

References

  1. Uchino K. Piezoelectric actuator and ultrasonic motors. Elect Mat Sci Technol. 1977;1:350.
  2. Afonin SM. Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Doklady Math. 2006;74(3):943–948.
  3. Liu Y, Zhang S, Yan P, et al. Finite element modeling and test of piezo disk with local ring electrodes for micro displacement. Micromachines. 2022;13(6):951.
  4. Afonin SM. Generalized parametric structural model of a compound elecromagnetoelastic transduser. Doklady Physics. 2005;50(2):77–82.
  5. Afonin SM. Structural parametric model of a piezoelectric nanodisplacement transducer. Doklady Physics. 2008;53(3):137–143.
  6. Afonin SM. Solution of the wave equation for the control of an elecromagnetoelastic transduser. Doklady Math. 2006;73(2):307–313.
  7. Cady WG. Piezoelectricity: An introduction to the theory and applications of electromechancial phenomena in crystals. McGraw–Hill Book Company, New York, London. 1946;806.
  8. Mason W. Physical Acoustics: Principles and Methods. Methods and Devices. Academic Press, New York. 1964;1:515.
  9. Yang Y, Tang L. Equivalent circuit modeling of piezoelectric energy harvesters. J Intelligent Mat Sys Struc. 2019;20(18):2223–2235.
  10. Zwillinger D. Handbook of differential equations. Academic Press, Boston. 1989;673.
  11. Afonin SM. A generalized structural–parametric model of an elecromagnetoelastic converter for nano– and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano– and micrometric movement control systems. J Comput Sys Sci Int. 2006;45(6):1006–1013.
  12. Afonin SM. Generalized structural–parametric model of an electromagnetoelastic converter for control systems of nano–and micrometric movements: IV. Investigation and calculation of characteristics of step–piezodrive of nano–and micrometric movements. J Comput Sys Sci Int. 2006;45(6):1006–1013.
  13. Afonin SM. Decision wave equation and block diagram of electromagnetoelastic actuator nano– and microdisplacement for communications systems. Int J Info Comm Sci. 2016;1(2):22–29.
  14. Afonin SM. Structural–parametric model and transfer functions of electroelastic actuator for nano– and microdisplacement. Chap 9 in Piezoelectrics and nanomaterials: fundamentals, developments and applications. Ed. Parinov IA. Nova Science, New York. 2015;225–242.
  15. Afonin SM. A structural–parametric model of electroelastic actuator for nano– and microdisplacement of mechatronic system. Chapter 8 in Advances in Nanotechnology. Bartul Z, Trenor J, Nova Science, New York, 2017;19:259–284.
  16. Shevtsov SN, Soloviev AN, Parinov IA, et al. Piezoelectric actuators and generators for energy harvesting. Res Develop. 2018;182.
  17. Afonin SM. Electromagnetoelastic nano– and microactuators for mechatronic systems. Russian Eng Res. 2018;38(12):938–944.
  18. Afonin SM. Nano– and micro–scale piezomotors. Russian Eng Res. 2021;32(7–8):519–522.
  19. Afonin SM. Elastic compliances and mechanical and adjusting characteristics of composite piezoelectric transducers. Mechanics of Solids. 2007;42(1):43–49.
  20. Afonin SM. Stability of strain control systems of nano–and microdisplacement piezotransducers. Mechanics of Solids. 2014;49(2):196–207.
  21. Afonin SM. Structural–parametric model electromagnetoelastic actuator nanodisplacement for mechatronics. Int J Phys. 2017;5(1): 9–15.
  22. Afonin SM. Structural–parametric model multilayer electromagnetoelastic actuator for nanomechatronics. Int J Phys. 2019;7(2):50–57.
  23. Afonin SM. Calculation deformation of an engine for nano biomedical research. Int J Biomed Res. 2021;1(5):1–4.
  24. Afonin SM. Precision engine for nanobiomedical research. Biomed Res Clin Rev. 2021;3(4):1–5.
  25. Afonin SM. Solution wave equation and parametric structural schematic diagrams of electromagnetoelastic actuators nano– and microdisplacement. Int J Math Analysis Appl. 2016;3(4):31–38.
  26. Afonin SM. Structural–parametric model of electromagnetoelastic actuator for nanomechanics. Actuators. 2018;7(1):6.
  27. Afonin SM. Structural–parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators. 2019;8(3):52.
  28. Afonin SM. Structural–parametric models and transfer functions of electromagnetoelastic actuators nano– and microdisplacement for mechatronic systems. Int J Theor Appl Math. 2016;2(2):52–59.
  29. Afonin SM. Design static and dynamic characteristics of a piezoelectric nanomicrotransducers. Mechanics of Solids. 2010;45(1):123–132.
  30. Afonin SM. Electromagnetoelastic Actuator for Nanomechanics. Global J Res Eng: A Mech Mech Eng. 2018;18(2):19–23.
  31. Afonin SM. Multilayer electromagnetoelastic actuator for robotics systems of nanotechnology. Proceedings of the 2018 IEEE Conference EIConRus 2018;1698–1701.
  32. Afonin SM. A block diagram of electromagnetoelastic actuator nanodisplacement for communications systems. Transac Net Commun. 2018;6(3):1–9.
  33. Afonin SM. Decision matrix equation and block diagram of multilayer electromagnetoelastic actuator micro and nanodisplacement for communications systems. Transac Net Commun. 2019;7(3):11–21.
  34. Afonin SM. Condition absolute stability control system of electromagnetoelastic actuator for communication equipment. Transac Net Commun. 2020;8(1):8–15.
  35. Afonin SM. A Block diagram of electromagnetoelastic actuator for control systems in nanoscience and nanotechnology. Transac Machine Learn Artificial Intelligence. 2020;8(4):23–33.
  36. Afonin SM. Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Appl Sys Innovat. 2020;3(4):53.
  37. Afonin SM. Coded сontrol of a sectional electroelastic engine for nanomechatronics systems. Appl Sys Innovat. 2020;4(3):47.
  38. Afonin SM. Structural–parametric model actuator of adaptive optics for composite telescope and astrophysics equipment. Phys Astron Int J. 2020;4(1):18–21.
  39. Afonin SM. An actuator nano and micro displacements for composite telescope in astronomy and physics research. Phys Astron Int J. 2020;4(4):165–167.
  40. Afonin SM. Calculation of the deformation of an electromagnetoelastic actuator for composite telescope and astrophysics equipment. Phys Astron Int J. 2021;5(2):55–58.
  41. Afonin SM. Structural scheme actuator for nano research. COJ Rev Res. 2020;2(5):1–3.
  42. Afonin SM. Structural–parametric model electroelastic actuator nano– and microdisplacement of mechatronics systems for nanotechnology and ecology research. MOJ Ecol Environ Sci. 2018;3(5):306‒309.
  43. Afonin SM. Electromagnetoelastic actuator for large telescopes. Aeron Aero Open Access J. 2018;2(5):270–272.
  44. Afonin SM. Condition absolute stability of control system with electro elastic actuator for nano bioengineering and microsurgery. Surg Case Stud Open Access J. 2019;3(3):307–309.
  45. Afonin SM. Piezo actuators for nanomedicine research. MOJ Appl Bio Biomech. 2019;3(2):56–57.
  46. Afonin SM. Frequency criterion absolute stability of electromagnetoelastic system for nano and micro displacement in biomechanics. MOJ Appl Bio Biomech. 2019;3(6):137–140.
  47. Afonin SM. A structural–parametric model of a multilayer electroelastic actuator for mechatronics and nanotechnology. Chap 7 in Advances in Nanotechnology. Eds. Bartul Z, Trenor J, Nova Science, New York. 2019;22:169–186.
  48. Afonin SM. Electroelastic digital–to–analog converter actuator nano and microdisplacement for nanotechnology. Chap 6 in Advances in Nanotechnology. Eds. Bartul Z, Trenor J, Nova Science, New York. 2020;24:205–218.
  49. Afonin SM (2021) Characteristics of an electroelastic actuator nano– and microdisplacement for nanotechnology. Chap 8 in Advances in Nanotechnology. Eds. Bartul Z, Trenor J, Nova Science, New York. 2021;25:251–266.
  50. Afonin SM. Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russ Eng Res. 2021;41(4):285–288.
  51. Afonin SM. Structural scheme of electroelastic actuator for nanomechatronics, Chapter 40 in Advanced Materials. Proceedings of the International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2019. Eds: Parinov IA, Chang SH, Long BT. 2019;487–502.
  52. Afonin SM. Absolute stability of control system for deformation of electromagnetoelastic actuator under random impacts in nanoresearch. Chapter 3 in Physics and Mechanics of New Materials and Their Applications. 2021;519–531.
  53. Afonin SM. Electroelastic actuator of nanomechatronics systems for nanoscience. Chap 2 in Recent Progress in Chemical Science Research. Volume 6. Ed. Min HS, B P International, India, UK. London. 2023;15–27.
  54. Afonin SM. Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. Chapter 34 in Physics and Mechanics of New Materials and Their Applications. 2023;20:419–428.
  55. Bhushan B. Springer Handbook of Nanotechnology. New York: Springer. 2004;1222.
  56. Nalwa HS. Encyclopedia of Nanoscience and Nanotechnology. Los Angeles: Am Sci Publish. 2004.
Creative Commons Attribution License

©2023 Afonin. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.