Submit manuscript...
eISSN: 2576-4543

Physics & Astronomy International Journal

Review Article Volume 7 Issue 1

Lie algebra classification, conservation laws and invariant solutions for modification of the generalization of the Emden-Fowler equation

G Loaiza,1 Y Acevedo,1 OML Duque,1 Danilo A García Hernández2

1Universidad EAFIT, Colombia
2IMECC-UNICAMP, Brasil

Correspondence: Yeisson Alexis Acevedo Agudelo, Universidad EAFIT, Colombia, Tel (57 4) 4489500

Received: January 10, 2023 | Published: February 14, 2023

Citation: Loaiza G, Acevedo Y, Duque OML, et al. Lie algebra classification, conservation laws and invariant solutions for modification of the generalization of the Emden–Fowler equation. Phys Astron Int J. 2023;7(1):26-32 DOI: 10.15406/paij.2023.07.00280

Download PDF

Abstract

We obtain the optimal system’s generating operators associated to a modification of the generalization of the Emden–Fowler Equation. Using those operators we characterize all invariant solutions associated to a generalized. Moreover, we present the variational symmetries and the corresponding conservation laws, using Noether’s theorem and Ibragimov’s method. Finally, we classify the Lie algebra associated to the given equation.

Keywords: Invariant solutions, Lie symmetry group, Optimal system, Lie algebra classification, Variational symmetries, Conservation laws, Ibragimov’s method, Noether’s theorem.

Introduction

In,1 Ibragimov presents the following equation

y x x= y (1) y x 2 3 x (1) y x , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMhapaWaaSbaaSqaa8qacaWG4baapaqabaGcpeGaamiEaiabg2da 9iabgkHiTiaadMhapaWaaWbaaSqabeaapeGaaiikaiabgkHiTiaaig dacaGGPaaaaOGaamyEa8aadaqhaaWcbaWdbiaadIhaa8aabaWdbiaa ikdaaaGccqGHsislcaaIZaGaamiEa8aadaahaaWcbeqaa8qacaGGOa GaeyOeI0IaaGymaiaacMcaaaGccaWG5bWdamaaBaaaleaapeGaamiE aaWdaeqaaOWdbiaacYcaaaa@4DE3@   (1)

 with its respective solution

y(x)=± C 1 C 2 x 2 ,where C 1 , C 2 areconstants. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMhacaGGOaGaamiEaiaacMcacqGH9aqppaGaeyySae7aaOaaaeaa peGaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGHsislda WcaaqaaiaadoeapaWaaSbaaSqaa8qacaaIYaaapaqabaaak8qabaGa amiEa8aadaahaaWcbeqaa8qacaaIYaaaaaaaa8aabeaak8qacaGGSa Gaam4DaiaadIgacaWGLbGaamOCaiaadwgacaWGdbWdamaaBaaaleaa peGaaGymaaWdaeqaaOWdbiaacYcacaWGdbWdamaaBaaaleaapeGaaG OmaaWdaeqaaOWdbiaadggacaWGYbGaamyzaiaadogacaWGVbGaamOB aiaadohacaWG0bGaamyyaiaad6gacaWG0bGaam4Caiaac6caaaa@5B7D@   (2)

 This solution is obtained using the integrating factor method. In,2 Muriel and Romero, calculate the λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH7oaBcqGHsislaaa@38B8@ Symmetries associated to integrating factors of (1). In,3 Polyanin and Zaitsev present a solution of (1) of the form

y(x)= C 2 exp( C 1 |x | 4 ),where C 1 , C 2 areconstants. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMhacaGGOaGaamiEaiaacMcacqGH9aqpcaWGdbWdamaaBaaaleaa peGaaGOmaaWdaeqaaOWdbiaadwgacaWG4bGaamiCaiaacIcacaWGdb WdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYhacaWG4bGaaiiF a8aadaahaaWcbeqaa8qacaaI0aaaaOGaaiykaiaacYcacaWG3bGaam iAaiaadwgacaWGYbGaamyzaiaadoeapaWaaSbaaSqaa8qacaaIXaaa paqabaGcpeGaaiilaiaadoeapaWaaSbaaSqaa8qacaaIYaaapaqaba GcpeGaamyyaiaadkhacaWGLbGaam4yaiaad+gacaWGUbGaam4Caiaa dshacaWGHbGaamOBaiaadshacaWGZbGaaiOlaaaa@5E7B@   (3)

 The purpose of this work is: i) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGPbGaaiykaaaa@37B2@  to calculate the Lie symmetry group, ii) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGPbGaamyAaiaacMcaaaa@38A0@  to present the optimal algebra (optimal system) for (1), iii) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGPbGaamyAaiaadMgacaGGPaaaaa@398E@  making use of all elements of the optimal algebra, to propose invariant solutions for (1), then iv) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGPbGaamODaiaacMcaaaa@38AD@  to construct the Lagrangian with which we could determine the variational symmetries using Noether s theorem, and thus to present conservation laws associated, and iv) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGPbGaamODaiaacMcaaaa@38AD@  also using Ibragimov s method build some non-trivial conservation laws, and finally v) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG2bGaaiykaaaa@37BF@  to classify the Lie algebra associated to (1), corresponding to the symmetry group. we note that equation (1) can be considered as a modification of the generalization of the Emden–Fowler Equation.

Continuous group of Lie symmetries

In this section we study the Lie symmetry group for (1). The main result of this section can be presented as follows:

Proposition 1  The Lie symmetry group for the equation (1) is generated by the following vector fields:

Π 1 =x x , Π 2 = x 3 x , Π 3 =x y 2 x +( y 3 ) y , Π 4 = x 3 y 2 x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aq9aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacqGH9aqpcaWG 4bWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baaaiaacYcacqqHGo aupaWaaSbaaSqaa8qacaaIYaaapaqabaGcpeGaeyypa0JaamiEa8aa daahaaWcbeqaa8qacaaIZaaaaOWaaSaaaeaacqGHciITaeaacqGHci ITcaWG4baaaiaacYcacqqHGoaupaWaaSbaaSqaa8qacaaIZaaapaqa baGcpeGaeyypa0JaamiEaiaadMhapaWaaWbaaSqabeaapeGaaGOmaa aakmaalaaabaGaeyOaIylabaGaeyOaIyRaamiEaaaacqGHRaWkcaGG OaGaeyOeI0IaamyEa8aadaahaaWcbeqaa8qacaaIZaaaaOGaaiykam aalaaabaGaeyOaIylabaGaeyOaIyRaamyEaaaacaGGSaGaeuiOda1d amaaBaaaleaapeGaaGinaaWdaeqaaOWdbiabg2da9iaadIhapaWaaW baaSqabeaapeGaaG4maaaakiaadMhapaWaaWbaaSqabeaapeGaaGOm aaaakmaalaaabaGaeyOaIylabaGaeyOaIyRaamiEaaaaaaa@6B79@   (4)

Π 5 =y y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aq9aadaWgaaWcbaWdbiaaiwdaa8aabeaak8qacqGH9aqpcaWG 5bWaaSaaaeaacqGHciITaeaacqGHciITcaWG5baaaaaa@4075@  

Proof. A general form of the one-parameter Lie group admitted by (1) is given by

xx+ξ(x,y)+O( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhacqGHsgIRcaWG4bGaey4kaSIaeyicI4SaeqOVdGNaaiikaiaa dIhacaGGSaGaamyEaiaacMcacqGHRaWkcaWGpbGaaiikaiabgIGio= aadaahaaWcbeqaa8qacaaIYaaaaOGaaiykaaaa@499F@   and MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadggacaWGUbGaamizaaaa@3AA8@   yy+η(x,y)+O( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMhacqGHsgIRcaWG5bGaey4kaSIaeyicI4Saeq4TdGMaaiikaiaa dIhacaGGSaGaamyEaiaacMcacqGHRaWkcaWGpbGaaiikaiabgIGio= aadaahaaWcbeqaa8qacaaIYaaaaOGaaiykaaaa@498A@

where ϵ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf gDOfdaryqr1ngBPrginfgDObYtUvgaiuGaqaaaaaaaaaWdbiab=v=a Ydaa@4212@  is the group parameter. The vector field associated with the group of transformations shown above can be written as Γ=ξ(x,y) x +η(x,y) y' MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHtoWrcqGH9a qpcqaH+oaEcaGGOaGaamiEaiaacYcacaWG5bGaaiykamaalaaabaGa eyOaIylabaGaeyOaIyRaamiEaaaacqGHRaWkcqaH3oaAcaGGOaGaam iEaiaacYcacaWG5bGaaiykamaalaaabaGaeyOaIylabaGaeyOaIyRa amyEaiaacEcaaaaaaa@4EEB@ , where ξ,η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abe67a4jaacYcacqaH3oaAaaa@3C05@ are differentiable functions in 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abl2riHoaaCaaaleqabaGaaGOmaaaaaaa@3A3F@ . Applying its second prolongation

Γ ( 2) =Γ+ η [x] y x + η [xx] y xx , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfo5ah9aadaahaaWcbeqaa8qacaGGOaaaaOWaaWbaaSqabeaacaaI YaGaaiykaaaakiabg2da9iabfo5ahjabgUcaRiabeE7aO9aadaWgaa WcbaWdbiaacUfacaWG4bGaaiyxaaWdaeqaaOWdbmaalaaabaGaeyOa IylabaGaeyOaIyRaamyEa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaa GcpeGaey4kaSIaeq4TdG2damaaBaaaleaapeGaai4waiaadIhacaWG 4bGaaiyxaaWdaeqaaOWdbmaalaaabaGaeyOaIylabaGaeyOaIyRaam yEa8aadaWgaaWcbaWdbiaadIhacaWG4baapaqabaaaaOWdbiaacYca aaa@571C@   (5)

 to eq.(1), we must find the infinitesimals ξ,η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abe67a4jaacYcacqaH3oaAaaa@3C05@ satisfying the symmetry condition

ξ(3 x 2 y x )+η( y x 2 y 2 )+ η [x] (2 y 1 y x +3 x 1 )+ η [xx] =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abe67a4jaacIcacqGHsislcaaIZaGaamiEamaaCaaaleqabaGaeyOe I0IaaGOmaaaakiaadMhadaWgaaWcbaGaamiEaaqabaGccaGGPaGaey 4kaSIaeq4TdGMaaiikaiabgkHiTiaadMhadaqhaaWcbaGaamiEaaqa aiaaikdaaaGccaWG5bWaaWbaaSqabeaacqGHsislcaaIYaaaaOGaai ykaiabgUcaRiabeE7aOnaaBaaaleaacaGGBbGaamiEaiaac2faaeqa aOGaaiikaiaaikdacaWG5bWaaWbaaSqabeaacqGHsisliiaacqWFXa qmaaGccaWG5bWaaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaG4maiaa dIhadaahaaWcbeqaaiabgkHiTiab=fdaXaaakiaacMcacqGHRaWkcq aH3oaAdaWgaaWcbaGaai4waiaadIhacaWG4bGaaiyxaaqabaGccqGH 9aqpcaaIWaGaaiilaaaa@66C9@   (6)

 associated with (1). Here η [x] , η [xx] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeE7aOnaaBaaaleaacaGGBbGaamiEaiaac2faaeqaaOGaaiilaiab eE7aOnaaBaaaleaacaGGBbGaamiEaiaadIhacaGGDbaabeaaaaa@42C7@ are the coefficients in Γ (2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfo5ahnaaCaaaleqabaGaaiikaiaaikdacaGGPaaaaaaa@3B90@ given by:

η [x] = D x [η]( D x [ξ]) y x = η x +( η y ξ x ) y x ξ y y x 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeE7aO9aadaWgaaWcbaWdbiaacUfacaWG4bGaaiyxaaWdaeqaaOWd biabg2da9iaadseapaWaaSbaaSqaa8qacaWG4baapaqabaGcpeGaai 4waiabeE7aOjaac2facqGHsislcaGGOaGaamira8aadaWgaaWcbaWd biaadIhaa8aabeaak8qacaGGBbGaeqOVdGNaaiyxaiaacMcacaWG5b WdamaaBaaaleaapeGaamiEaaWdaeqaaOWdbiabg2da9iabeE7aO9aa daWgaaWcbaWdbiaadIhaa8aabeaak8qacqGHRaWkcaGGOaGaeq4TdG 2damaaBaaaleaapeGaamyEaaWdaeqaaOWdbiabgkHiTiabe67a49aa daWgaaWcbaWdbiaadIhaa8aabeaak8qacaGGPaGaamyEa8aadaWgaa WcbaWdbiaadIhaa8aabeaak8qacqGHsislcqaH+oaEpaWaaSbaaSqa a8qacaWG5baapaqabaGcpeGaamyEa8aadaqhaaWcbaWdbiaadIhaa8 aabaWdbiaaikdaaaGccaGGUaaaaa@65ED@   

η [xx] = D x [ η [x] ]( D x [ξ]) y xx , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeE7aO9aadaWgaaWcbaWdbiaacUfacaWG4bGaamiEaiaac2faa8aa beaakiabg2da9iaadseadaWgaaWcbaGaamiEaaqabaGccaGGBbWdbi abeE7aO9aadaWgaaWcbaWdbiaacUfacaWG4bGaaiyxaaWdaeqaaOGa aiyxaiabgkHiT8qacaGGOaGaamira8aadaWgaaWcbaWdbiaadIhaa8 aabeaak8qacaGGBbGaeqOVdGNaaiyxaiaacMcacaWG5bWdamaaBaaa leaapeGaamiEaiaadIhaa8aabeaakiaacYcaaaa@536E@   

= η x x +(2 η x y ξ x x ) y x +( η y y 2 ξ x y ) y x 2 ξ y y y x 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abg2da9iabeE7aO9aadaWgaaWcbaWdbiaadIhaa8aabeaak8qadaWg aaWcbaGaamiEaaqabaGccqGHRaWkcaGGOaGaaGOmaiabeE7aO9aada WgaaWcbaWdbiaadIhaa8aabeaak8qadaWgaaWcbaGaamyEaaqabaGc cqGHsislcqaH+oaEpaWaaSbaaSqaa8qacaWG4baapaqabaGcpeWaaS baaSqaaiaadIhaaeqaaOGaaiykaiaadMhapaWaaSbaaSqaa8qacaWG 4baapaqabaGcpeGaey4kaSIaaiikaiabeE7aO9aadaWgaaWcbaWdbi aadMhaa8aabeaak8qadaWgaaWcbaGaamyEaaqabaGccqGHsislcaaI YaGaeqOVdG3damaaBaaaleaapeGaamiEaaWdaeqaaOWdbmaaBaaale aacaWG5baabeaakiaacMcacaWG5bWdamaaDaaaleaapeGaamiEaaWd aeaapeGaaGOmaaaakiabgkHiTiabe67a49aadaWgaaWcbaWdbiaadM haa8aabeaak8qacaWG5bGaamyEa8aadaqhaaWcbaWdbiaadIhaa8aa baWdbiaaiodaaaaaaa@6454@   

+( η y 2 ξ x ) y xx 3 ξ y y x y xx . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHRaWkcaGGOa aeaaaaaaaaa8qacqaH3oaApaWaaSbaaSqaa8qacaWG5baapaqabaGc cqGHsislcaaIYaWdbiabe67a49aadaWgaaWcbaWdbiaadIhaa8aabe aakiaacMcapeGaamyEa8aadaWgaaWcbaWdbiaadIhacaWG4baapaqa baGccqGHsislcaaIZaWdbiabe67a49aadaWgaaWcbaWdbiaadMhaa8 aabeaak8qacaWG5bWdamaaBaaaleaapeGaamiEaaWdaeqaaOWdbiaa dMhapaWaaSbaaSqaa8qacaWG4bGaamiEaaWdaeqaaOGaaiOlaaaa@50E4@   (7)

Being D x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadseapaWaaSbaaSqaa8qacaWG4baapaqabaaaaa@3A06@ is the total derivative operator: D x = x + y x y + y xx yx +... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaSbaaS qaaiaadIhaaeqaaOGaeyypa0JaeyOaIy7aaSbaaSqaaiaadIhaaeqa aOGaey4kaSIaamyEamaaBaaaleaacaWG4baabeaakiabgkGi2oaaBa aaleaacaWG5baabeaakiabgUcaRiaadMhadaWgaaWcbaGaamiEaiaa dIhaaeqaaOGaeyOaIy7aaSbaaSqaaiaadMhacaWG4baabeaakiabgU caRiaac6cacaGGUaGaaiOlaaaa@4DAD@ . Replacing (7) into (6) and using (1) we obtain:

(5 y (1) ξ y ξ y y ) y x 3 +( y (1) η y η y (2) 2 ξ x y +6 x 1 ξ y + η y y) y x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacIcacaaI1aGaamyEa8aadaahaaWcbeqaa8qacaGGOaGaeyOeI0Ia aGymaiaacMcaaaGccqaH+oaEpaWaaSbaaSqaa8qacaWG5baapaqaba GcpeGaeyOeI0IaeqOVdG3damaaBaaaleaapeGaamyEaaWdaeqaaOWd bmaaBaaaleaacaWG5baabeaakiaacMcacaWG5bWdamaaDaaaleaape GaamiEaaWdaeaapeGaaG4maaaakiabgUcaRiaacIcacaWG5bWdamaa CaaaleqabaWdbiaacIcacqGHsislcaaIXaGaaiykaaaakiabeE7aO9 aadaWgaaWcbaWdbiaadMhaa8aabeaak8qacqGHsislcqaH3oaAcaWG 5bWdamaaCaaaleqabaWdbiaacIcacqGHsislcaaIYaGaaiykaaaaki abgkHiTiaaikdacqaH+oaEpaWaaSbaaSqaa8qacaWG4baapaqabaGc peWaaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaaGOnaiaadIhapaWaaW baaSqabeaapeGaeyOeI0IaaGymaaaakiabe67a49aadaWgaaWcbaWd biaadMhaa8aabeaak8qacqGHRaWkcqaH3oaApaWaaSbaaSqaa8qaca WG5baapaqabaGcpeGaamyEaiaacMcacaWG5bWdamaaDaaaleaapeGa amiEaaWdaeaapeGaaGOmaaaaaaa@70AB@   

+(3 x 2 ξ+2 y 1 η x +3 x 1 ξ x +2 η x y ξ x xx ) y x +( η x + x 3 x 1 η x )=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgUcaRiaacIcacqGHsislcaaIZaGaamiEa8aadaahaaWcbeqaa8qa cqGHsislcaaIYaaaaOGaeqOVdGNaey4kaSIaaGOmaiaadMhapaWaaW baaSqabeaapeGaeyOeI0IaaGymaaaakiabeE7aO9aadaWgaaWcbaWd biaadIhaa8aabeaak8qacqGHRaWkcaaIZaGaamiEa8aadaahaaWcbe qaa8qacqGHsislcaaIXaaaaOGaeqOVdG3damaaBaaaleaapeGaamiE aaWdaeqaaOWdbiabgUcaRiaaikdacqaH3oaApaWaaSbaaSqaa8qaca WG4baapaqabaGcpeWaaSbaaSqaaiaadMhaaeqaaOGaeyOeI0IaeqOV dG3damaaBaaaleaapeGaamiEaaWdaeqaaOWdbmaaBaaaleaacaWG4b GaamiEaaqabaGccaGGPaGaamyEa8aadaWgaaWcbaWdbiaadIhaa8aa beaak8qacqGHRaWkcaGGOaGaeq4TdG2damaaBaaaleaapeGaamiEaa WdaeqaaOWdbmaaBeaaleaacaWG4baabeaakiabgUcaRiaaiodacaWG 4bWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGccqaH3oaApaWaaS baaSqaa8qacaWG4baapaqabaGcpeGaaiykaiabg2da9iaaicdacaGG Uaaaaa@6F73@   

 From (8), canceling the coefficients of the monomials variables in derivatives 1, y x 3 , y x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiaaqaaaaaaaaa Wdbiab=fdaXiaacYcacaWG5bWdamaaDaaaleaapeGaamiEaaWdaeaa caaIZaaaaOGaaiila8qacaWG5bWdamaaDaaaleaapeGaamiEaaWdae aacaaIYaaaaaaa@4076@ and y x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMhadaWgaaWcbaGaamiEaaqabaaaaa@3A0D@ we obtain the determining equations for the symmetry group of (1), with x,y0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhacaGGSaGaamyEaiabgcMi5kaaicdacaGGUaaaaa@3DC4@ That is: 

5 ξ y y ξ yy =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaI1aaeaaaaaa aaa8qacqaH+oaEpaWaaSbaaSqaa8qacaWG5baapaqabaGccqGHsisl caWG5bWdbiabe67a49aadaWgaaWcbaWdbiaadMhacaWG5baapaqaba GccqGH9aqpcaaIWaaaaa@43A8@   (8a)

xy η y xη2x y 2 ξ xy +6 y 2 ξ y +x y 2 η yy =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhacaWG5bGaeq4TdG2aaSbaaSqaaiaadMhaaeqaaOGaeyOeI0Ia amiEaiabeE7aOjabgkHiTiaaikdacaWG4bGaamyEamaaCaaaleqaba GaaGOmaaaakiabe67a4naaBaaaleaacaWG4bGaamyEaaqabaGccqGH RaWkcaaI2aGaamyEamaaCaaaleqabaGaaGOmaaaakiabe67a4naaBa aaleaacaWG5baabeaakiabgUcaRiaadIhacaWG5bWaaWbaaSqabeaa caaIYaaaaOGaeq4TdG2aaSbaaSqaaiaadMhacaWG5baabeaakiabg2 da9iaaicdacaGGSaaaaa@598A@   (8b)

3yξ+2 x 2 η x +3xy ξ x +2 x 2 y η x y x 2 y ξ x xx =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkHiTiaaiodacaWG5bGaeqOVdGNaey4kaSIaaGOmaiaadIhapaWa aWbaaSqabeaapeGaaGOmaaaakiabeE7aO9aadaWgaaWcbaWdbiaadI haa8aabeaak8qacqGHRaWkcaaIZaGaamiEaiaadMhacqaH+oaEpaWa aSbaaSqaa8qacaWG4baapaqabaGcpeGaey4kaSIaaGOmaiaadIhapa WaaWbaaSqabeaapeGaaGOmaaaakiaadMhacqaH3oaApaWaaSbaaSqa a8qacaWG4baapaqabaGcpeWaaSbaaSqaaiaadMhaaeqaaOGaeyOeI0 IaamiEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaamyEaiabe67a49aa daWgaaWcbaWdbiaadIhaa8aabeaak8qadaWgaaWcbaGaamiEaiaadI haaeqaaOGaeyypa0JaaGimaiaac6caaaa@5EB5@   (8c)

x η xx +3 η x =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4bGaeq4TdG 2aaSbaaSqaaiaadIhacaWG4baabeaakiabgUcaRiaaiodacqaH3oaA daWgaaWcbaGaamiEaaqabaGccqGH9aqpcaaIWaGaaiOlaaaa@438F@   (8d)

  Solving the system of equations (8a)-(8d) for ξ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abe67a4baa@39A9@ and η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH3oaAaaa@3972@ we get

ξ= c 1 x+ c 2 x 3 + c 3 x y 2 + c 4 x 3 y 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abe67a4jabg2da9iaadogapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaamiEaiabgUcaRiaadogapaWaaSbaaSqaa8qacaaIYaaapaqaba GcpeGaamiEa8aadaahaaWcbeqaa8qacaaIZaaaaOGaey4kaSIaam4y a8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacaWG4bGaamyEa8aada ahaaWcbeqaa8qacaaIYaaaaOGaey4kaSIaam4ya8aadaWgaaWcbaWd biaaisdaa8aabeaak8qacaWG4bWdamaaCaaaleqabaWdbiaaiodaaa GccaWG5bWdamaaCaaaleqabaWdbiaaikdaaaGccaGGSaaaaa@50A1@   

η= c 3 y 3 + c 5 y. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abeE7aOjabg2da9iabgkHiTiaadogadaWgaaWcbaGaaG4maaqabaGc caWG5bWaaWbaaSqabeaacaaIZaaaaOGaey4kaSIaam4yamaaBaaale aacaaI1aaabeaakiaadMhacaGGUaaaaa@43C1@   

 Thus, the infinitesimal generators of the group of symmetries of (1) are the operators Π 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWFXaqmaeqaaOGaeyOeI0caaa@3B78@ Π 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaI1aaabeaaaaa@3A4F@ described in the statement of the Proposition 1; thus having the proposed result.

Optimal algebra

Taking into account,1,4-6 we present in this section the optimal algebra associated to the symmetry group of (1), that shows a systematic way to classify the invariant solutions. To obtain the optimal algebra, we should first calculate the corresponding commutator table, which can be obtained from the operator

[ Π α , Π β ]= Π α Π β Π β Π α = Σ i=1 n ( Π α ( ξ β i ) Π β ( ξ α i )) x i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacUfacqqHGoaupaWaaSbaaSqaa8qacqaHXoqya8aabeaak8qacaGG SaGaeuiOda1damaaBaaaleaacqaHYoGyaeqaaOWdbiaac2facqGH9a qpcqqHGoaupaWaaSbaaSqaa8qacqaHXoqya8aabeaak8qacqqHGoau paWaaSbaaSqaaiabek7aIbqabaGcpeGaeyOeI0IaeuiOda1damaaBa aaleaacqaHYoGyaeqaaOWdbiabfc6aq9aadaWgaaWcbaWdbiabeg7a HbWdaeqaaOWdbiabg2da9iabfo6at9aadaqhaaWcbaWdbiaadMgacq GH9aqpcaaIXaaapaqaa8qacaWGUbaaaOGaaiikaiabfc6aq9aadaWg aaWcbaWdbiabeg7aHbWdaeqaaOWdbiaacIcacqaH+oaEpaWaa0baaS qaaiabek7aIbqaa8qacaWGPbaaaOGaaiykaiabgkHiTiabfc6aq9aa daWgaaWcbaGaeqOSdigabeaak8qacaGGOaGaeqOVdG3damaaDaaale aacqaHXoqyaeaapeGaamyAaaaakiaacMcacaGGPaWaaSaaaeaacqGH ciITaeaacqGHciITcaWG4bWdamaaCaaaleqabaWdbiaadMgaaaaaaO WdaiaacYcaaaa@7320@   (9)

where i=1,2, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaeyypa0 dccaGae8xmaeJaaiilaiaaikdacaGGSaaaaa@3CC7@ with α,β=1,...5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqycaGGSa GaeqOSdiMaeyypa0dccaGae8xmaeJaaiilaiaac6cacaGGUaGaaiOl aiaaiwdaaaa@4132@ and ξ α i , ξ β i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abe67a49aadaqhaaWcbaGaeqySdegabaWdbiaadMgaaaGccaGGSaGa eqOVdG3damaaDaaaleaacqaHYoGyaeaapeGaamyAaaaaaaa@41DA@ are the corresponding coefficients of the infinitesimal operators Π α , Π β MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaeqySdegabeaakiaacYcacqqHGoaudaWgaaWcbaGaeqOSdiga beaaaaa@3F14@  After applying the operator (12) to the symmetry group of (1), we obtain the operators that are shown in the following table

  

Π 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaaccaGae8xmaedabeaaaaa@3A61@  

Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGOmaaqabaaaaa@3A2C@   

Π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaG4maaqabaaaaa@3A2D@  

Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGinaaqabaaaaa@3A2E@  

Π 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGynaaqabaaaaa@3A2F@  

Π 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaaccaGae8xmaedabeaaaaa@3A61@  

0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@   

2 Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIYaGaeuiOda 1aaSbaaSqaaiaaikdaaeqaaaaa@3AE8@  

0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@  

2 Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIYaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaaaa@3AEA@  

0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@  

Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGOmaaqabaaaaa@3A2C@  

2 Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHsislcaaIYa GaeuiOda1aaSbaaSqaaiaaikdaaeqaaaaa@3BD5@   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@   2 Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHsislcaaIYa GaeuiOda1aaSbaaSqaaiaaikdaaeqaaaaa@3BD5@   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@  
Π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaG4maaqabaaaaa@3A2D@  

0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@  

2 Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIYaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaaaa@3AEA@  

0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@  

0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@  

2 Π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHsislcaaIYa GaeuiOda1aaSbaaSqaaiaaiodaaeqaaaaa@3BD6@  

Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGinaaqabaaaaa@3A2E@  

2 Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHsislcaaIYa GaeuiOda1aaSbaaSqaaiaaisdaaeqaaaaa@3BD7@   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@  

0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@  

0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@  

2 Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHsislcaaIYa GaeuiOda1aaSbaaSqaaiaaisdaaeqaaaaa@3BD7@  

Π 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGynaaqabaaaaa@3A2F@  

0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@  

0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@  

2 Π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIYaGaeuiOda 1aaSbaaSqaaiaaiodaaeqaaaaa@3AE9@  

2 Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIYaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaaaa@3AEA@   0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIWaaaaa@3880@  

Table 1 Commutators table associated to the symmetry group of (1).

Now, the next thing is to calculate the adjoint action representation of the symmetries of (1) and to do that, we use Table 1 and the operator.

Ad(exp(λΠ))H= Σ n=0 λ n! n (ad(Π)) n G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadgeacaWGKbGaaiikaiaadwgacaWG4bGaamiCaiaacIcacqaH7oaB cqqHGoaucaGGPaGaaiykaiaadIeacqGH9aqpcqqHJoWupaWaa0baaS qaa8qacaWGUbGaeyypa0JaaGimaaWdaeaapeGaeyOhIukaaOWaaSaa aeaacqaH7oaBaeaacaWGUbGaaiyiaaaapaWaaWbaaSqabeaapeGaam OBaaaakiaacIcacaWGHbGaamizaiaacIcacqqHGoaucaGGPaGaaiyk a8aadaahaaWcbeqaa8qacaWGUbaaaOGaam4raaaa@56FE@   for the symmetries Π MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqbaa@3964@ and G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadEeaaaa@38B2@

 Making use of this operator, we can construct the Table 2, which shows the adjoint representation for each Π i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaWGPbaabeaakiaac6caaaa@3B3A@ !

   adj[ , ]

Π 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWFXaqmaeqaaaaa@3A81@   

Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaIYaaabeaaaaa@3A4C@  

Π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaIZaaabeaaaaa@3A4D@  

Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaI0aaabeaaaaa@3A4E@  

Π 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWF1aqnaeqaaaaa@3A89@  

Π 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWFXaqmaeqaaaaa@3A81@  

Π 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWFXaqmaeqaaaaa@3A81@  

e 2λ Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadwgacqGHsisldaahaaWcbeqaaiaaikdacqaH7oaBaaGccqqHGoau daWgaaWcbaGaaGOmaaqabaaaaa@3ECA@  

Π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaIZaaabeaaaaa@3A4D@  

e 2λ Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadwgacqGHsisldaahaaWcbeqaaiaaikdacqaH7oaBaaGccqqHGoau daWgaaWcbaGaaGinaaqabaaaaa@3ECC@    

Π 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWF1aqnaeqaaaaa@3A89@    

Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaIYaaabeaaaaa@3A4C@  

Π 1 +2λ Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWFXaqmaeqaaOGaey4kaSIaaGOmaiab eU7aSjabfc6aqnaaBaaaleaacaaIYaaabeaaaaa@4043@  

Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaIYaaabeaaaaa@3A4C@  

Π 3 +2λ Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaIZaaabeaakiabgUcaRiaaikdacqaH7oaB cqqHGoaudaWgaaWcbaGaaGinaaqabaaaaa@4011@  

Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaI0aaabeaaaaa@3A4E@  

Π 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWF1aqnaeqaaaaa@3A89@  

Π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaIZaaabeaaaaa@3A4D@  

Π 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWFXaqmaeqaaaaa@3A81@  

Π 2 2λ Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWFYaGmaeqaaOGaeyOeI0IaaGOmaiab eU7aSjabfc6aqnaaBaaaleaacaaI0aaabeaaaaa@4052@  

Π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaIZaaabeaaaaa@3A4D@  

Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaI0aaabeaaaaa@3A4E@  

Π 5 +2λ Π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaI1aaabeaakiabgUcaRiaaikdacqaH7oaB cqqHGoaudaWgaaWcbaGaaG4maaqabaaaaa@4012@  

Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaI0aaabeaaaaa@3A4E@  

Π 1 +2λ Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWFXaqmaeqaaOGaey4kaSIaaGOmaiab eU7aSjabfc6aqnaaBaaaleaacaaI0aaabeaaaaa@4045@  

Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaIYaaabeaaaaa@3A4C@  

Π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaIZaaabeaaaaa@3A4D@  

Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaI0aaabeaaaaa@3A4E@  

Π 5 +2λ Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaI1aaabeaakiabgUcaRiaaikdacqaH7oaB cqqHGoaudaWgaaWcbaGaaGinaaqabaaaaa@4013@  

Π 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWF1aqnaeqaaaaa@3A89@  

Π 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWFXaqmaeqaaaaa@3A81@    

Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaacaaIYaaabeaaaaa@3A4C@  

e 2λ Π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadwgacqGHsisldaahaaWcbeqaaiaaikdacqaH7oaBaaGccqqHGoau daWgaaWcbaGaaG4maaqabaaaaa@3ECB@  

e 2λ Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadwgacqGHsisldaahaaWcbeqaaiaaikdacqaH7oaBaaGccqqHGoau daWgaaWcbaGaaGinaaqabaaaaa@3ECC@    

Π 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abfc6aqnaaBaaaleaaiiaacqWF1aqnaeqaaaaa@3A89@  

Table 2 Adjoint representation of the symmetry group of (1).

Proposition 2  The optimal algebra associated to the equation (1) is given by the vector fields

Π 4 , a 2 Π 2 , a 3 Π 3 , a 1 Π 1 + a 3 Π 3 , a 2 Π 2 + Π 3 Π 3 + b 5 Π 4 , a 1 Π 1 + b 6 Π 4 , Π 2 + b 7 Π 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGinaaqabaGccaGGSaGaamyyamaaBaaaleaacaaIYaaabeaa kiabfc6aqnaaBaaaleaacaaIYaaabeaakiaacYcacaWGHbWaaSbaaS qaaiaaiodaaeqaaOGaeuiOda1aaSbaaSqaaiaaiodaaeqaaOGaaiil aiaadggadaWgaaWcbaaccaGae8xmaedabeaakiabfc6aqnaaBaaale aacqWFXaqmaeqaaOGaey4kaSIaamyyamaaBaaaleaacaaIZaaabeaa kiabfc6aqnaaBaaaleaacaaIZaaabeaakiaacYcacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4k aSIaeuiOda1aaSbaaSqaaiaaiodaaeqaaOGaeuiOda1aaSbaaSqaai aaiodaaeqaaOGaey4kaSIaamOyamaaBaaaleaacaaI1aaabeaakiab fc6aqnaaBaaaleaacaaI0aaabeaakiaacYcacaWGHbWaaSbaaSqaai ab=fdaXaqabaGccqqHGoaudaWgaaWcbaGae8xmaedabeaakiabgUca RiaadkgadaWgaaWcbaGaaGOnaaqabaGccqqHGoaudaWgaaWcbaGaaG inaaqabaGccaGGSaGaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4k aSIaamOyamaaBaaaleaacaaI3aaabeaakiabfc6aqnaaBaaaleaaca aI0aaabeaakiaacYcaaaa@721B@   

b 3 Π 3 + Π 5 , a 2 Π 2 + Π 5 , a 1 Π 1 + Π 5 ,2 Π 1 + b 1 Π 4 + Π 5 , a 2 Π 2 + a 3 Π 3 + b 4 Π 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaiaaiodaaeqaaOGaeuiOda1aaSbaaSqaaiaaiodaaeqaaOGaey4k aSIaeuiOda1aaSbaaSqaaiaaiwdaaeqaaOGaaiilaiaadggadaWgaa WcbaGaaGOmaaqabaGccqqHGoaudaWgaaWcbaGaaGOmaaqabaGccqGH RaWkcqqHGoaudaWgaaWcbaGaaGynaaqabaGccaGGSaGaamyyamaaBa aaleaaiiaacqWFXaqmaeqaaOGaeuiOda1aaSbaaSqaaiab=fdaXaqa baGccqGHRaWkcqqHGoaudaWgaaWcbaGaaGynaaqabaGccaGGSaGaey OeI0IaaGOmaiabfc6aqnaaBaaaleaacqWFXaqmaeqaaOGaey4kaSIa amOyamaaBaaaleaacqWFXaqmaeqaaOGaeuiOda1aaSbaaSqaaiaais daaeqaaOGaey4kaSIaeuiOda1aaSbaaSqaaiaaiwdaaeqaaOGaaiil aiaadggadaWgaaWcbaGaaGOmaaqabaGccqqHGoaudaWgaaWcbaGaaG OmaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaeuiO da1aaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamOyamaaBaaaleaaca aI0aaabeaakiabfc6aqnaaBaaaleaacaaI0aaabeaakiaacYcaaaa@6E04@   

Π 1 + b 8 Π 2 + b 9 Π 4 , a 2 Π 2 + a 4 a 2 Π 3 + b 2 Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaaccaGae8xmaedabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGio aaqabaGccqqHGoaudaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGIb WaaSbaaSqaaiaaiMdaaeqaaOGaeuiOda1aaSbaaSqaaiaaisdaaeqa aOGaaiilaiaadggadaWgaaWcbaGaaGOmaaqabaGccqqHGoaudaWgaa WcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaaiaadggadaWgaaWcbaGa aGinaaqabaaakeaacaWGHbWaaSbaaSqaaiaaikdaaeqaaaaakiabfc 6aqnaaBaaaleaacaaIZaaabeaakiabgUcaRiaadkgadaWgaaWcbaGa aGOmaaqabaGccqqHGoaudaWgaaWcbaGaaGinaaqabaGccqGHRaWkcq qHGoaudaWgaaWcbaGaaGynaaqabaGccaGGUaaaaa@5A11@   

Proof. To calculate the optimal algebra system, we start with the generators of symmetries (4) and a generic nonzero vector. Let

G= a 1 Π 1 + a 2 Π 2 + a 3 Π 3 + a 4 Π 4 + a 5 Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaeyypa0 JaamyyamaaBaaaleaaiiaacqWFXaqmaeqaaOGaeuiOda1aaSbaaSqa aiab=fdaXaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaO GaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyyamaaBaaa leaacaaIZaaabeaakiabfc6aqnaaBaaaleaacaaIZaaabeaakiabgU caRiaadggadaWgaaWcbaGaaGinaaqabaGccqqHGoaudaWgaaWcbaGa aGinaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaiwdaaeqaaOGaeu iOda1aaSbaaSqaaiaaiwdaaeqaaOGaaiOlaaaa@53A6@   (13)

 The objective is to simplify as many coefficients a i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaadMgaaeqaaaaa@39C6@ as possible, through maps adjoint to G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbaaaa@3892@ , using Table (2). 

  1. Assuming a 5 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiwdaaeqaaOGaeyypa0dccaGae8xmaedaaa@3B98@ in (10) we have that G= a 1 Π 1 + a 2 Π 2 + a 3 Π 3 + a 4 Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaeyypa0 JaamyyamaaBaaaleaaiiaacqWFXaqmaeqaaOGaeuiOda1aaSbaaSqa aiab=fdaXaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaO GaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyyamaaBaaa leaacaaIZaaabeaakiabfc6aqnaaBaaaleaacaaIZaaabeaakiabgU caRiaadggadaWgaaWcbaGaaGinaaqabaGccqqHGoaudaWgaaWcbaGa aGinaaqabaGccqGHRaWkcqqHGoaudaWgaaWcbaGaaGynaaqabaGcca GGUaaaaa@51CB@ Applying the adjoint operator to Π 1 ,G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaaccaGae8xmaedabeaakiaacYcacaWGhbaaaa@3BE7@  and ( Π 5 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiwdaaeqaaOGaaiilaiaadEeacaGGPaaaaa@3D0E@ we don‘t have any reducción, on the other hand applying the adjoint operator to ( Π 2 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadEeacaGGPaaaaa@3D0B@ we get

G 1 =Ad(exp( λ 1 Π 2 ))G= a 1 Π 1 +( a 2 +2 a 1 λ 1 ) Π 2 + a 3 Π 3 +( a 4 +2 a 3 λ 1 ) Π 4 + Π 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpcaWGbbGaamizaiaacIcaciGG LbGaaiiEaiaacchacaGGOaGaeq4UdW2aaSbaaSqaaiab=fdaXaqaba GccqqHGoaudaWgaaWcbaGaaGOmaaqabaGccaGGPaGaaiykaiaadEea cqGH9aqpcaWGHbWaaSbaaSqaaiab=fdaXaqabaGccqqHGoaudaWgaa WcbaGae8xmaedabeaakiabgUcaRiaacIcacaWGHbWaaSbaaSqaaiaa ikdaaeqaaOGaey4kaSIaaGOmaiaadggadaWgaaWcbaGae8xmaedabe aakiabeU7aSnaaBaaaleaacqWFXaqmaeqaaOGaaiykaiabfc6aqnaa BaaaleaacaaIYaaabeaakiabgUcaRiaadggadaWgaaWcbaGaaG4maa qabaGccqqHGoaudaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaGGOaGa amyyamaaBaaaleaacaaI0aaabeaakiabgUcaRiaaikdacaWGHbWaaS baaSqaaiaaiodaaeqaaOGaeq4UdW2aaSbaaSqaaiab=fdaXaqabaGc caGGPaGaeuiOda1aaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaeuiOda 1aaSbaaSqaaiaaiwdaaeqaaaaa@6FE7@   .(11)

1.1) Case a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHGjsUcaaIWaaaaa@3C54@ . Using λ 1 = a 2 2 a 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaedabeaakiabg2da9maalaaabaGaeyOeI0Iaamyy amaaBaaaleaacaaIYaaabeaaaOqaaiaaikdacaWGHbWaaSbaaSqaai ab=fdaXaqabaaaaOGaaiilaaaa@41EB@  with a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHGjsUcaaIWaaaaa@3C54@ , in (11), Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGGoWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaa@3853@  is eliminated, therefore G 1 = a 1 Π 1 + a 3 Π 3 + b 1 Π 4 + Π 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiab=fda XaqabaGccqqHGoaudaWgaaWcbaGae8xmaedabeaakiabgUcaRiaadg gadaWgaaWcbaGaaG4maaqabaGccqqHGoaudaWgaaWcbaGaaG4maaqa baGccqGHRaWkcaWGIbWaaSbaaSqaaiab=fdaXaqabaGccqqHGoauda WgaaWcbaGaaGinaaqabaGccqGHRaWkcqqHGoaudaWgaaWcbaGaaGyn aaqabaaaaa@4D2C@ , where b 1 = a 4 + a 3 a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaaisda aeqaaOGaey4kaSYaaSaaaeaacaWGHbWaaSbaaSqaaiaaiodaaeqaaa GcbaGaamyyamaaBaaaleaacqWFXaqmaeqaaaaaaaa@4178@ . Now, applying the adjoint operator to ( Π 3 , G 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaedabeaakiaacMcaaaa@3E33@ , we get G 2 =Ad(exp( λ 2 Π 3 )) G 1 = a 1 Π 1 +( a 3 +2 λ 2 ) Π 3 + b 1 Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaikdaaeqaaOGaeyypa0JaamyqaiaadsgacaGGOaGaciyzaiaa cIhacaGGWbGaaiikaiabeU7aSnaaBaaaleaacaaIYaaabeaakiabfc 6aqnaaBaaaleaacaaIZaaabeaakiaacMcacaGGPaGaam4ramaaBaaa leaaiiaacqWFXaqmaeqaaOGaeyypa0JaamyyamaaBaaaleaacqWFXa qmaeqaaOGaeuiOda1aaSbaaSqaaiab=fdaXaqabaGccqGHRaWkcaGG OaGaamyyamaaBaaaleaacaaIZaaabeaakiabgUcaRiaaikdacqaH7o aBdaWgaaWcbaGaaGOmaaqabaGccaGGPaGaeuiOda1aaSbaaSqaaiaa iodaaeqaaOGaey4kaSIaamOyamaaBaaaleaacqWFXaqmaeqaaOGaeu iOda1aaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaeuiOda1aaSbaaSqa aiaaiwdaaeqaaOGaaiOlaaaa@629C@

Using λ 2 = a 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaGaaGOmaaqabaGccqGH9aqpdaWcaaqaaiabgkHiTiaadggadaWg aaWcbaGaaG4maaqabaaakeaacaaIYaaaaaaa@3F04@ , is eliminated Π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaG4maaqabaaaaa@3A2D@ , then G 2 = a 1 Π 1 + b 1 Π 4 + Π 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaikdaaeqaaOGaeyypa0JaamyyamaaBaaaleaaiiaacqWFXaqm aeqaaOGaeuiOda1aaSbaaSqaaiab=fdaXaqabaGccqGHRaWkcaWGIb WaaSbaaSqaaiab=fdaXaqabaGccqqHGoaudaWgaaWcbaGaaGinaaqa baGccqGHRaWkcqqHGoaudaWgaaWcbaGaaGynaaqabaaaaa@47D5@ . Applying the adjoint operator to ( Π 4 , G 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaGaaGOm aaqabaGccaGGPaaaaa@3DFF@ , we get

G 3 =Ad(exp λ 3 Π 4 )) G 2 = a 1 Π 1 +( b 1 +2 λ 3 ( a 1 +2)) Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaamyqaiaadsgacaGGOaGaciyzaiaa cIhacaGGWbGaeq4UdW2aaSbaaSqaaiaaiodaaeqaaOGaeuiOda1aaS baaSqaaiaaisdaaeqaaOGaaiykaiaacMcacaWGhbWaaSbaaSqaaiaa ikdaaeqaaOGaeyypa0JaamyyamaaBaaaleaaiiaacqWFXaqmaeqaaO GaeuiOda1aaSbaaSqaaiab=fdaXaqabaGccqGHRaWkcaGGOaGaamOy amaaBaaaleaacqWFXaqmaeqaaOGaey4kaSIaaGOmaiabeU7aSnaaBa aaleaacaaIZaaabeaakiaacIcacaWGHbWaaSbaaSqaaiab=fdaXaqa baGccqGHRaWkcaaIYaGaaiykaiaacMcacqqHGoaudaWgaaWcbaGaaG inaaqabaGccqGHRaWkcqqHGoaudaWgaaWcbaGaaGynaaqabaGccaGG Uaaaaa@6197@   (12)

1.1.A) Case a 1 +20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHRaWkcaaIYaGaeyiyIKRaaGimaaaa @3DF2@ . Using λ 3 = 1 2( a 1 +2) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaGaaG4maaqabaGccqGH9aqpdaWcaaqaaGGaaiab=fdaXaqaaiaa ikdacaGGOaGaamyyamaaBaaaleaacqWFXaqmaeqaaOGaey4kaSIaaG OmaiaacMcaaaGaaiilaaaa@42DA@ with a 1 +20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHRaWkcaaIYaGaeyiyIKRaaGimaaaa @3DF2@ , in (12), Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGinaaqabaaaaa@3A2E@ is eliminated, therefore G 3 = a 1 Π 1 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaamyyamaaBaaaleaaiiaacqWFXaqm aeqaaOGaeuiOda1aaSbaaSqaaiab=fdaXaqabaGccqGHRaWkcqqHGo audaWgaaWcbaGaaGynaaqabaGccaGGUaaaaa@433A@  Then, we have the first element of the optimal system.

G 3 = a 1 Π 1 + Π 5 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaamyyamaaBaaaleaaiiaacqWFXaqm aeqaaOGaeuiOda1aaSbaaSqaaiab=fdaXaqabaGccqGHRaWkcqqHGo audaWgaaWcbaGaaGynaaqabaGccaGGSaaaaa@4338@    with a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHGjsUcaaIWaaaaa@3C54@  and a 1 +20. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHRaWkcaaIYaGaeyiyIKRaaGimaiaa c6caaaa@3EA4@ (13)

 This is how the first reduction of the generic element (10) ends.

1.1.B) Case a 1 +20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHRaWkcaaIYaGaeyiyIKRaaGimaaaa @3DF2@ . We get G 3 =2 Π 1 + b 1 Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGOmaiabfc6aqnaaBaaa leaaiiaacqWFXaqmaeqaaOGaey4kaSIaamOyamaaBaaaleaacqWFXa qmaeqaaOGaeuiOda1aaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaeuiO da1aaSbaaSqaaiaaiwdaaeqaaOGaaiOlaaaa@4838@ Then, we have other element of the optimal system.

G 3 =2 Π 1 + b 1 Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaeyOeI0IaaGOmaiabfc6aqnaaBaaa leaaiiaacqWFXaqmaeqaaOGaey4kaSIaamOyamaaBaaaleaacqWFXa qmaeqaaOGaeuiOda1aaSbaaSqaaiaaisdaaeqaaOGaey4kaSIaeuiO da1aaSbaaSqaaiaaiwdaaeqaaOGaaiOlaaaa@4838@   (14)

This is how other reduction of the generic element (13) ends.

1.2)Case a 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpcaaIWaaaaa@3B93@ . We get G 1 = a 2 Π 2 + a 3 Π 3 +( a 4 +2 a 3 λ 1 )+ Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaaikda aeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyyam aaBaaaleaacaaIZaaabeaakiabfc6aqnaaBaaaleaacaaIZaaabeaa kiabgUcaRiaacIcacaWGHbWaaSbaaSqaaiaaisdaaeqaaOGaey4kaS IaaGOmaiaacggadaWgaaWcbaGaaG4maaqabaGccqaH7oaBdaWgaaWc baGae8xmaedabeaakiaacMcacqGHRaWkcqqHGoaudaWgaaWcbaGaaG ynaaqabaGccaGGUaaaaa@5296@

1.2.A) Case a 3 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiodaaeqaaOGaeyiyIKRaaGimaaaa@3C20@ . Using λ 1 = a 4 2 a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaedabeaakiabg2da9maalaaabaGaeyOeI0Iaamyy amaaBaaaleaacaaI0aaabeaaaOqaaiaaikdacaWGHbWaaSbaaSqaai aaiodaaeqaaaaaaaa@4109@ , with a 3 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiodaaeqaaOGaeyiyIKRaaGimaaaa@3C20@ , is eliminated Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGinaaqabaaaaa@3A2E@ , then G 1 = a 2 Π 2 + a 3 Π 3 + Π 5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaaikda aeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyyam aaBaaaleaacaaIZaaabeaakiabfc6aqnaaBaaaleaacaaIZaaabeaa kiabgUcaRiabfc6aqnaaBaaaleaacaaI1aaabeaaaaa@477E@ . Applying the adjoint operator to ( Π 3 , G 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaedabeaakiaacMcaaaa@3E33@ , we get

G 4 =Ad(exp λ 4 Π 3 )) G 1 = a 2 Π 2 +( a 3 +2λ) Π 3 2 λ 4 Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaisdaaeqaaOGaeyypa0JaamyqaiaadsgacaGGOaGaciyzaiaa cIhacaGGWbGaeq4UdW2aaSbaaSqaaiaaisdaaeqaaOGaeuiOda1aaS baaSqaaiaaiodaaeqaaOGaaiykaiaacMcacaWGhbWaaSbaaSqaaGGa aiab=fdaXaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaaikdaaeqaaO GaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaiikaiaadgga daWgaaWcbaGaaG4maaqabaGccqGHRaWkcaaIYaGaeq4UdWMaaiykai abfc6aqnaaBaaaleaacaaIZaaabeaakiabgkHiTiaaikdacqaH7oaB daWgaaWcbaGaaGinaaqabaGccqqHGoaudaWgaaWcbaGaaGinaaqaba GccqGHRaWkcqqHGoaudaWgaaWcbaGaaGynaaqabaGccaGGUaaaaa@6217@   (15)

Using λ 4 = a 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaGaaGinaaqabaGccqGH9aqpdaWcaaqaaiabgkHiTiaadggadaWg aaWcbaGaaG4maaqabaaakeaacaaIYaaaaaaa@3F06@ , is eliminated Π 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaG4maaqabaaaaa@3A2D@ , then G 4 = a 2 Π 2 + a 3 Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaisdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaIYaaabeaa kiabfc6aqnaaBaaaleaacaaIYaaabeaakiabgUcaRiaadggadaWgaa WcbaGaaG4maaqabaGccqqHGoaudaWgaaWcbaGaaGinaaqabaGccqGH RaWkcqqHGoaudaWgaaWcbaGaaGynaaqabaGccaGGUaaaaa@4808@  Now applying the adjoint operator to ( Π 4 , G 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaGaaGin aaqabaGccaGGPaaaaa@3E01@ , we have

G 5 =Ad(exp λ 5 Π 4 )) G 4 = a 2 Π 2 +( a 3 +2 λ 5 ) Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiwdaaeqaaOGaeyypa0JaamyqaiaadsgacaGGOaGaciyzaiaa cIhacaGGWbGaeq4UdW2aaSbaaSqaaiaaiwdaaeqaaOGaeuiOda1aaS baaSqaaiaaisdaaeqaaOGaaiykaiaacMcacaWGhbWaaSbaaSqaaiaa isdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaIYaaabeaakiabfc 6aqnaaBaaaleaacaaIYaaabeaakiabgUcaRiaacIcacaWGHbWaaSba aSqaaiaaiodaaeqaaOGaey4kaSIaaGOmaiabeU7aSnaaBaaaleaaca aI1aaabeaakiaacMcacqqHGoaudaWgaaWcbaGaaGinaaqabaGccqGH RaWkcqqHGoaudaWgaaWcbaGaaGynaaqabaGccaGGUaaaaa@5C1A@   (16)

Using λ 5 = a 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaGaaGynaaqabaGccqGH9aqpdaWcaaqaaiabgkHiTiaadggadaWg aaWcbaGaaG4maaqabaaakeaacaaIYaaaaaaa@3F07@ , is eliminated Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGinaaqabaaaaa@3A2E@ , then we have other element of the optimal system.

G 5 = a 2 Π 2 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiwdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaIYaaabeaa kiabfc6aqnaaBaaaleaacaaIYaaabeaakiabgUcaRiabfc6aqnaaBa aaleaacaaI1aaabeaakiaac6caaaa@42DC@   (17)

 This is how other reduction of the generic element (10) ends.

1.2.B) Case a 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaaGimaaaa@3B5F@ . We get G 1 = a 2 Π 2 + a 4 Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaaikda aeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyyam aaBaaaleaacaaI0aaabeaakiabfc6aqnaaBaaaleaacaaI0aaabeaa kiabgUcaRiabfc6aqnaaBaaaleaacaaI1aaabeaakiaac6caaaa@483C@  Now applying the adjoint operator to ( Π 3 , G 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaedabeaakiaacMcaaaa@3E33@ , we have

G 6 =Ad(exp λ 6 Π 3 )) G 1 = a 2 Π 2 +2 λ 6 Π 3 +( a 4 2 a 2 λ 6 ) Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiAdaaeqaaOGaeyypa0JaamyqaiaadsgacaGGOaGaciyzaiaa cIhacaGGWbGaeq4UdW2aaSbaaSqaaiaaiAdaaeqaaOGaeuiOda1aaS baaSqaaiaaiodaaeqaaOGaaiykaiaacMcacaWGhbWaaSbaaSqaaGGa aiab=fdaXaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaaikdaaeqaaO GaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGOmaiabeU7a SnaaBaaaleaacaaI2aaabeaakiabfc6aqnaaBaaaleaacaaIZaaabe aakiabgUcaRiaacIcacaWGHbWaaSbaaSqaaiaaisdaaeqaaOGaeyOe I0IaaGOmaiaadggadaWgaaWcbaGaaGOmaaqabaGccqaH7oaBdaWgaa WcbaGaaGOnaaqabaGccaGGPaGaeuiOda1aaSbaaSqaaiaaisdaaeqa aOGaey4kaSIaeuiOda1aaSbaaSqaaiaaiwdaaeqaaOGaaiOlaaaa@64EC@   (18)

1.2.B.1) Case a 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeyiyIKRaaGimaaaa@3C1F@ . Using λ 6 = a 4 2 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaGaaGOnaaqabaGccqGH9aqpdaWcaaqaaiaadggadaWgaaWcbaGa aGinaaqabaaakeaacaaIYaGaamyyamaaBaaaleaacaaIYaaabeaaaa aaaa@3FEA@ , with a 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeyiyIKRaaGimaaaa@3C1F@ , is eliminated Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGinaaqabaaaaa@3A2E@ , then G 6 = a 2 Π 2 + a 4 a 2 Π 3 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiAdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaIYaaabeaa kiabfc6aqnaaBaaaleaacaaIYaaabeaakiabgUcaRmaalaaabaGaam yyamaaBaaaleaacaaI0aaabeaaaOqaaiaadggadaWgaaWcbaGaaGOm aaqabaaaaOGaeuiOda1aaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaeu iOda1aaSbaaSqaaiaaiwdaaeqaaOGaaiOlaaaa@49F2@  Now applying the adjoint operator to ( Π 4 , G 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaGaaGin aaqabaGccaGGPaaaaa@3E01@ , we get

G 7 =Ad(exp( λ 7 Π 4 )) G 6 = a 2 Π 2 + a 4 a 2 Π 3 +2 λ 7 Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiEdaaeqaaOGaeyypa0JaamyqaiaadsgacaGGOaGaciyzaiaa cIhacaGGWbGaaiikaiabeU7aSnaaBaaaleaacaaI3aaabeaakiabfc 6aqnaaBaaaleaacaaI0aaabeaakiaacMcacaGGPaGaam4ramaaBaaa leaacaaI2aaabeaakiabg2da9iaadggadaWgaaWcbaGaaGOmaaqaba GccqqHGoaudaWgaaWcbaGaaGOmaaqabaGccqGHRaWkdaWcaaqaaiaa dggadaWgaaWcbaGaaGinaaqabaaakeaacaWGHbWaaSbaaSqaaiaaik daaeqaaaaakiabfc6aqnaaBaaaleaacaaIZaaabeaakiabgUcaRiaa ikdacqaH7oaBdaWgaaWcbaGaaG4naaqabaGccqqHGoaudaWgaaWcba GaaGinaaqabaGccqGHRaWkcqqHGoaudaWgaaWcbaGaaGynaaqabaGc caGGUaaaaa@5FCF@   (19)

 It’s clear that we don’t have any reduction, then using λ 7 = b 2 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaGaaG4naaqabaGccqGH9aqpdaWcaaqaaiaadkgadaWgaaWcbaGa aGOmaaqabaaakeaacaaIYaaaaaaa@3E1C@ , then we have other element of the optimal system.

G 7 = a 2 Π 2 + a 4 a 2 Π 3 + b 2 Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiEdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaIYaaabeaa kiabfc6aqnaaBaaaleaacaaIYaaabeaakiabgUcaRmaalaaabaGaam yyamaaBaaaleaacaaI0aaabeaaaOqaaiaadggadaWgaaWcbaGaaGOm aaqabaaaaOGaeuiOda1aaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaam OyamaaBaaaleaacaaIYaaabeaakiabfc6aqnaaBaaaleaacaaI0aaa beaakiabgUcaRiabfc6aqnaaBaaaleaacaaI1aaabeaakiaac6caaa a@4F20@   (20)

 This is how other reduction of the generic element (10) ends.

1.2.B.2) Case a 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeyypa0JaaGimaaaa@3B5E@ . We get G 6 =2 λ 6 Π 3 + a 4 Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiAdaaeqaaOGaeyypa0JaaGOmaiabeU7aSnaaBaaaleaacaaI 2aaabeaakiabfc6aqnaaBaaaleaacaaIZaaabeaakiabgUcaRiaadg gadaWgaaWcbaGaaGinaaqabaGccqqHGoaudaWgaaWcbaGaaGinaaqa baGccqGHRaWkcqqHGoaudaWgaaWcbaGaaGynaaqabaGccaGGUaaaaa@499A@ It is clear that we don’t have any reduction, then using λ 6 = b 3 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaGaaGOnaaqabaGccqGH9aqpdaWcaaqaaiaadkgadaWgaaWcbaGa aG4maaqabaaakeaacaaIYaaaaaaa@3E1C@ , we have G 6 = b 3 Π 3 + a 4 Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiAdaaeqaaOGaeyypa0JaamOyamaaBaaaleaacaaIZaaabeaa kiabfc6aqnaaBaaaleaacaaIZaaabeaakiabgUcaRiaadggadaWgaa WcbaGaaGinaaqabaGccqqHGoaudaWgaaWcbaGaaGinaaqabaGccqGH RaWkcqqHGoaudaWgaaWcbaGaaGynaaqabaGccaGGUaaaaa@480E@  Now applying the adjoint operator to ( Π 4 , G 6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaGaaGOn aaqabaGccaGGPaaaaa@3E03@ , we have

G 8 =Ad(exp( λ 8 Π 4 )) G 6 = b 3 Π 3 +( a 4 +2 λ 8 ) Π 4 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiIdaaeqaaOGaeyypa0JaamyqaiaadsgacaGGOaGaciyzaiaa cIhacaGGWbGaaiikaiabeU7aSnaaBaaaleaacaaI4aaabeaakiabfc 6aqnaaBaaaleaacaaI0aaabeaakiaacMcacaGGPaGaam4ramaaBaaa leaacaaI2aaabeaakiabg2da9iaadkgadaWgaaWcbaGaaG4maaqaba GccqqHGoaudaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaGGOaGaamyy amaaBaaaleaacaaI0aaabeaakiabgUcaRiaaikdacqaH7oaBdaWgaa WcbaGaaGioaaqabaGccaGGPaGaeuiOda1aaSbaaSqaaiaaisdaaeqa aOGaey4kaSIaeuiOda1aaSbaaSqaaiaaiwdaaeqaaOGaaiOlaaaa@5CD5@   (21)

 Using λ 8 = a 4 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaGaaGioaaqabaGccqGH9aqpdaWcaaqaaiabgkHiTiaadggadaWg aaWcbaGaaGinaaqabaaakeaacaaIYaaaaaaa@3F0B@ , is eliminated Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGinaaqabaaaaa@3A2E@ , then we have other element of the optimal system.

G 8 = b 3 Π 3 + Π 5 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiIdaaeqaaOGaeyypa0JaamOyamaaBaaaleaacaaIZaaabeaa kiabfc6aqnaaBaaaleaacaaIZaaabeaakiabgUcaRiabfc6aqnaaBa aaleaacaaI1aaabeaakiaac6caaaa@42E2@   (22)

 This is how other reduction of the generic element (10) ends.

 

  1. Assuming a 5 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiwdaaeqaaOGaeyypa0JaaGimaaaa@3B61@ and a 4 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaisdaaeqaaOGaeyypa0dccaGae8xmaedaaa@3B97@ in (10), we have that G= a 1 Π 1 + a 2 Π 2 + a 3 Π 3 + Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaeyypa0 JaamyyamaaBaaaleaaiiaacqWFXaqmaeqaaOGaeuiOda1aaSbaaSqa aiab=fdaXaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaO GaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaamyyamaaBaaa leaacaaIZaaabeaakiabfc6aqnaaBaaaleaacaaIZaaabeaakiabgU caRiabfc6aqnaaBaaaleaacaaI0aaabeaakiaac6caaaa@4C9C@  Applying the adjoint operator to ( Π 1 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaGGaaiab=fdaXaqabaGccaGGSaGaam4raiaacMcaaaa@3D40@ and ( Π 5 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiwdaaeqaaOGaaiilaiaadEeacaGGPaaaaa@3D0E@ we don’t have any reduction, on the other hand applying the adjoint operator to ( Π 2 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadEeacaGGPaaaaa@3D0B@ we get

G 9 =Ad(exp( λ 9 Π 2 ))G= a 1 Π 1 +( a 2 +2 a 1 λ 9 ) Π 2 + a 3 Π 3 +(1+2 a 3 λ 9 ) Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiMdaaeqaaOGaeyypa0JaamyqaiaadsgacaGGOaGaciyzaiaa cIhacaGGWbGaaiikaiabeU7aSnaaBaaaleaacaaI5aaabeaakiabfc 6aqnaaBaaaleaacaaIYaaabeaakiaacMcacaGGPaGaam4raiabg2da 9iaadggadaWgaaWcbaaccaGae8xmaedabeaakiabfc6aqnaaBaaale aacqWFXaqmaeqaaOGaey4kaSIaaiikaiaadggadaWgaaWcbaGaaGOm aaqabaGccqGHRaWkcaaIYaGaamyyamaaBaaaleaacqWFXaqmaeqaaO Gaeq4UdW2aaSbaaSqaaiaaiMdaaeqaaOGaaiykaiabfc6aqnaaBaaa leaacaaIYaaabeaakiabgUcaRiaadggadaWgaaWcbaGaaG4maaqaba GccqqHGoaudaWgaaWcbaGaaG4maaqabaGccqGHRaWkcaGGOaGae8xm aeJaey4kaSIaaGOmaiaadggadaWgaaWcbaGaaG4maaqabaGccqaH7o aBdaWgaaWcbaGaaGyoaaqabaGccaGGPaGaeuiOda1aaSbaaSqaaiaa isdaaeqaaOGaaiOlaaaa@6BCB@   (23)

2.1) Case a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHGjsUcaaIWaaaaa@3C54@ . Using λ 9 = a 2 2 a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaGaaGyoaaqabaGccqGH9aqpdaWcaaqaaiabgkHiTiaadggadaWg aaWcbaGaaGOmaaqabaaakeaacaaIYaGaamyyamaaBaaaleaaiiaacq WFXaqmaeqaaaaaaaa@410D@ , with a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHGjsUcaaIWaaaaa@3C54@ , in (26), Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGGoWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaa@3853@  is eliminated, therefore G 9 = a 1 Π 1 + a 3 Π 3 + b 4 Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiMdaaeqaaOGaeyypa0JaamyyamaaBaaaleaaiiaacqWFXaqm aeqaaOGaeuiOda1aaSbaaSqaaiab=fdaXaqabaGccqGHRaWkcaWGHb WaaSbaaSqaaiaaiodaaeqaaOGaeuiOda1aaSbaaSqaaiaaiodaaeqa aOGaey4kaSIaamOyamaaBaaaleaacaaI0aaabeaakiabfc6aqnaaBa aaleaacaaI0aaabeaaaaa@498A@ , where b 3 =1 a 3 a 2 a 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0dccaGae8xmaeJaeyOeI0YaaSaaaeaa caWGHbWaaSbaaSqaaiaaiodaaeqaaOGaamyyamaaBaaaleaacaaIYa aabeaaaOqaaiaadggadaWgaaWcbaGae8xmaedabeaaaaGccaGGUaaa aa@42FA@  Now, applying the adjoint operator to ( Π 3 , G 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadEeadaWgaaWcbaGaaGyo aaqabaGccaGGPaaaaa@3E05@ , we don’t have any reduction, after applying the adjoint operator to ( Π 4 , G 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaGaaGyo aaqabaGccaGGPaaaaa@3E06@ , we get G 10 =Ad(exp( λ 10 Π 4 )) G 9 = a 1 Π 1 + a 3 Π 3 +( b 3 +2 a 1 λ 10 ) Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiaaicdaaeqaaOGaeyypa0JaamyqaiaadsgacaGG OaGaciyzaiaacIhacaGGWbGaaiikaiabeU7aSnaaBaaaleaacqWFXa qmcaaIWaaabeaakiabfc6aqnaaBaaaleaacaaI0aaabeaakiaacMca caGGPaGaam4ramaaBaaaleaacaaI5aaabeaakiabg2da9iaadggada WgaaWcbaGae8xmaedabeaakiabfc6aqnaaBaaaleaacqWFXaqmaeqa aOGaey4kaSIaamyyamaaBaaaleaacaaIZaaabeaakiabfc6aqnaaBa aaleaacaaIZaaabeaakiabgUcaRiaacIcacaWGIbWaaSbaaSqaaiaa iodaaeqaaOGaey4kaSIaaGOmaiaadggadaWgaaWcbaGae8xmaedabe aakiabeU7aSnaaBaaaleaacqWFXaqmcaaIWaaabeaakiaacMcacqqH GoaudaWgaaWcbaGaaGinaaqabaGccaGGUaaaaa@63AC@  How a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHGjsUcaaIWaaaaa@3C54@ , we can use λ 10 = b 3 2 a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaeJaaGimaaqabaGccqGH9aqpdaWcaaqaaiabgkHi TiaadkgadaWgaaWcbaGaaG4maaqabaaakeaacaaIYaGaamyyamaaBa aaleaacqWFXaqmaeqaaaaaaaa@41ED@ , is eliminated Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGinaaqabaaaaa@3A2E@ , thus we have other element of the optimal system.

G 10 = a 1 Π 1 + a 3 Π 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=bdaWaqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiab=fdaXaqabaGccqqHGoaudaWgaaWcbaGae8xmaedabeaakiabgU caRiaadggadaWgaaWcbaGaaG4maaqabaGccqqHGoaudaWgaaWcbaGa aG4maaqabaGccaGGUaaaaa@4620@   (24)

 This is how other reduction of the generic element (10) ends.

2.2) Case a 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpcaaIWaaaaa@3B93@ .We get G 9 = a 2 Π 2 + a 3 Π 3 +(1+2 a 3 λ 9 ) Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiMdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaIYaaabeaa kiabfc6aqnaaBaaaleaacaaIYaaabeaakiabgUcaRiaadggadaWgaa WcbaGaaG4maaqabaGccqqHGoaudaWgaaWcbaGaaG4maaqabaGccqGH RaWkcaGGOaaccaGae8xmaeJaey4kaSIaaGOmaiaadggadaWgaaWcba GaaG4maaqabaGccqaH7oaBdaWgaaWcbaGaaGyoaaqabaGccaGGPaGa euiOda1aaSbaaSqaaiaaisdaaeqaaOGaaiOlaaaa@5079@

2.2.A) Case a 3 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiodaaeqaaOGaeyiyIKRaaGimaaaa@3C20@ . Using λ 9 = 1 2 a 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaGaaGyoaaqabaGccqGH9aqpdaWcaaqaaiabgkHiTGGaaiab=fda XaqaaiaaikdacaWGHbWaaSbaaSqaaiaaiodaaeqaaaaaaaa@3FF2@ , with a 3 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiodaaeqaaOGaeyiyIKRaaGimaaaa@3C20@ , Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGinaaqabaaaaa@3A2E@ is eliminated, therefore G 9 = a 2 Π 2 + a 3 Π 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiMdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaIYaaabeaa kiabfc6aqnaaBaaaleaacaaIYaaabeaakiabgUcaRiaadggadaWgaa WcbaGaaG4maaqabaGccqqHGoaudaWgaaWcbaGaaG4maaqabaGccaGG Uaaaaa@44B7@  Now, applying the adjoint operator to ( Π 3 , G 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadEeadaWgaaWcbaGaaGyo aaqabaGccaGGPaaaaa@3E05@ , we get G 11 =Ad(exp( λ 11 Π 3 )) G 9 = a 2 Π 2 + a 3 Π 3 2 a 1 λ 11 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=fdaXaqabaGccqGH9aqpcaWGbbGaamizaiaa cIcaciGGLbGaaiiEaiaacchacaGGOaGaeq4UdW2aaSbaaSqaaiab=f daXiab=fdaXaqabaGccqqHGoaudaWgaaWcbaGaaG4maaqabaGccaGG PaGaaiykaiaadEeadaWgaaWcbaGaaGyoaaqabaGccqGH9aqpcaWGHb WaaSbaaSqaaiaaikdaaeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqa aOGaey4kaSIaamyyamaaBaaaleaacaaIZaaabeaakiabfc6aqnaaBa aaleaacaaIZaaabeaakiabgkHiTiaaikdacaWGHbWaaSbaaSqaaiab =fdaXaqabaGccqaH7oaBdaWgaaWcbaGae8xmaeJae8xmaedabeaaki abfc6aqnaaBaaaleaacaaI0aaabeaakiaac6caaaa@5FD2@

2.2.A.1) Case a 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeyiyIKRaaGimaaaa@3C1F@ . It’s clear that we don’t have any reduction, using λ 11 = b 4 2 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaeJae8xmaedabeaakiabg2da9maalaaabaGaeyOe I0IaamOyamaaBaaaleaacqWF0aanaeqaaaGcbaGaaGOmaiaadggada WgaaWcbaGaaGOmaaqabaaaaaaa@421F@ , with a 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeyiyIKRaaGimaaaa@3C1F@ , we get G 11 = a 2 Π 2 + a 3 Π 3 + b 4 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=fdaXaqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiaaikdaaeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaS IaamyyamaaBaaaleaacaaIZaaabeaakiabfc6aqnaaBaaaleaacaaI ZaaabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGinaaqabaGccqqHGo audaWgaaWcbaGaaGinaaqabaGccaGGUaaaaa@4AFB@ Now, applying the adjoint operator to ( Π 4 , G 11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaeJae8xmaedabeaakiaacMcaaaa@3F1B@ , we don’t have any reduction, thus we have other element of the optimal system.

G 11 = a 2 Π 2 + a 3 Π 3 + b 4 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=fdaXaqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiaaikdaaeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaS IaamyyamaaBaaaleaacaaIZaaabeaakiabfc6aqnaaBaaaleaacaaI ZaaabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGinaaqabaGccqqHGo audaWgaaWcbaGaaGinaaqabaGccaGGUaaaaa@4AFB@   (25)

 This is how other reduction of the generic element (10) ends.

2.2.A.2) Case a 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeyypa0JaaGimaaaa@3B5E@ . We get G 11 = a 3 Π 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=fdaXaqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiaaiodaaeqaaOGaeuiOda1aaSbaaSqaaiaaiodaaeqaaOGaaiOlaa aa@40A2@  Now, applying the adjoint operator to ( Π 4 , G 11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaeJae8xmaedabeaakiaacMcaaaa@3F1B@ , we don’t have any reduction, thus we have other element of the optimal system.

G 11 = a 3 Π 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=fdaXaqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiaaiodaaeqaaOGaeuiOda1aaSbaaSqaaiaaiodaaeqaaOGaaiOlaa aa@40A2@   (26)

 This is how other reduction of the generic element (10) ends.

2.2.B) Case a 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaaGimaaaa@3B5F@ We get G 9 = a 2 Π 2 + Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaiaaiMdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaIYaaabeaa kiabfc6aqnaaBaaaleaacaaIYaaabeaakiabgUcaRiabfc6aqnaaBa aaleaacaaI0aaabeaakiaac6caaaa@42DF@  Now, applying the adjoint operator to ( Π 3 , G 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadEeadaWgaaWcbaGaaGyo aaqabaGccaGGPaaaaa@3E05@ , we have G 12 =Ad(exp( λ 12 Π 3 )) G 9 = a 2 Π 2 +(12 a 2 λ 12 ) Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=jdaYaqabaGccqGH9aqpcaWGbbGaamizaiaa cIcaciGGLbGaaiiEaiaacchacaGGOaGaeq4UdW2aaSbaaSqaaiab=f daXiab=jdaYaqabaGccqqHGoaudaWgaaWcbaGaaG4maaqabaGccaGG PaGaaiykaiaadEeadaWgaaWcbaGaaGyoaaqabaGccqGH9aqpcaWGHb WaaSbaaSqaaiaaikdaaeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqa aOGaey4kaSIaaiikaiab=fdaXiab=jHiTiaaikdacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeq4UdW2aaSbaaSqaaiab=fdaXiab=jdaYaqa baGccaGGPaGaeuiOda1aaSbaaSqaaiaaisdaaeqaaOGaaiOlaaaa@5D9C@

2.2.B.1) Case a 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeyiyIKRaaGimaaaa@3C1F@ . Using λ 12 = 1 2 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaeJae8Nmaidabeaakiabg2da9maalaaabaGae8xm aedabaGaaGOmaiaadggadaWgaaWcbaGaaGOmaaqabaaaaaaa@4011@ , with a 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeyiyIKRaaGimaaaa@3C1F@ , is eliminated Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGinaaqabaaaaa@3A2E@ , then G 12 = a 2 Π 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=jdaYaqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiaaikdaaeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaaiOlaa aa@40A2@ Now, applying the adjoint operator to ( Π 4 , G 12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaeJae8NmaidabeaakiaacMcaaaa@3F1D@ ,we don’t have any reduction, thus we have other element of the optimal system.

G 12 = a 2 Π 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=jdaYaqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiaaikdaaeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaaiOlaa aa@40A2@   (27)

 This is how other reduction of the generic element (10) ends.

2.2.B.2) Case a 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeyypa0JaaGimaaaa@3B5E@ . We get G 12 = Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=jdaYaqabaGccqGH9aqpcqqHGoaudaWgaaWc baGaaGinaaqabaaaaa@3E10@ . Now, applying the adjoint operator to ( Π 4 , G 12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaeJae8NmaidabeaakiaacMcaaaa@3F1D@ , we don’t have any reduction, thus we have other element of the optimal system.

G 12 = Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=jdaYaqabaGccqGH9aqpcqqHGoaudaWgaaWc baGaaGinaaqabaGccaGGUaaaaa@3ECC@   (28)

 This is how other reduction of the generic element (10) ends.

  1. Assuming a 5 = a 4 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiwdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaI0aaabeaa kiabg2da9iaaicdaaaa@3E41@ and a 3 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0dccaGae8xmaedaaa@3B96@ in (10), we have that G= a 1 Π 1 + a 2 Π 2 + Π 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaeyypa0 JaamyyamaaBaaaleaaiiaacqWFXaqmaeqaaOGaeuiOda1aaSbaaSqa aiab=fdaXaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaO GaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeuiOda1aaSba aSqaaiaaiodaaeqaaOGaaiOlaaaa@476F@ . Applying the adjoint operator to ( Π 1 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaGGaaiab=fdaXaqabaGccaGGSaGaam4raiaacMcaaaa@3D40@ and ( Π 5 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiwdaaeqaaOGaaiilaiaadEeacaGGPaaaaa@3D0E@ we don’t have any reduction, on the other hand applying the adjoint operator to ( Π 2 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadEeacaGGPaaaaa@3D0B@ we get

G 13 =Ad(exp( λ 13 Π 2 ))G= a 1 Π 1 +( a 2 +2 a 1 λ 13 ) Π 2 + Π 3 +2 λ 13 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=ndaZaqabaGccqGH9aqpcaWGbbGaamizaiaa cIcaciGGLbGaaiiEaiaacchacaGGOaGaeq4UdW2aaSbaaSqaaiab=f daXiab=ndaZaqabaGccqqHGoaudaWgaaWcbaGaaGOmaaqabaGccaGG PaGaaiykaiaadEeacqGH9aqpcaWGHbWaaSbaaSqaaiab=fdaXaqaba GccqqHGoaudaWgaaWcbaGae8xmaedabeaakiabgUcaRiaacIcacaWG HbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaGOmaiaadggadaWgaa WcbaGae8xmaedabeaakiabeU7aSnaaBaaaleaacqWFXaqmcqWFZaWm aeqaaOGaaiykaiabfc6aqnaaBaaaleaacaaIYaaabeaakiabgUcaRi abfc6aqnaaBaaaleaacaaIZaaabeaakiabgUcaRiaaikdacqaH7oaB daWgaaWcbaGae8xmaeJae83mamdabeaakiabfc6aqnaaBaaaleaaca aI0aaabeaakiaac6caaaa@6933@   (29)

3.1) Case a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHGjsUcaaIWaaaaa@3C54@ . Using λ 13 = a 2 2 a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaeJae83mamdabeaakiabg2da9maalaaabaGaeyOe I0IaamyyamaaBaaaleaacaaIYaaabeaaaOqaaiaaikdacaWGHbWaaS baaSqaaiab=fdaXaqabaaaaaaa@421C@ , with a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHGjsUcaaIWaaaaa@3C54@ , in (29), Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGOmaaqabaaaaa@3A2C@ is eliminated, therefore G 13 = a 1 Π 1 + Π 3 + b 3 Π 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=ndaZaqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiab=fdaXaqabaGccqqHGoaudaWgaaWcbaGae8xmaedabeaakiabgU caRiabfc6aqnaaBaaaleaacaaIZaaabeaakiabgUcaRiaadkgadaWg aaWcbaGaaG4maaqabaGccqqHGoaudaWgaaWcbaGaaGinaaqabaGcca GGSaaaaa@4979@ where b 3 = a 2 a 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGIbWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0ZaaSaaaeaacaWGHbWaaSbaaSqaaiaa ikdaaeqaaaGcbaGaamyyamaaBaaaleaaiiaacqWFXaqmaeqaaaaaki aac6caaaa@3F4D@ Now, applying the adjoint operator to ( Π 3 , G 13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaeJae83mamdabeaakiaacMcaaaa@3F1E@ , we don’t have any reduction, after applying the adjoint operator to ( Π 4 , G 9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaGaaGyo aaqabaGccaGGPaaaaa@3E06@ , we get G 14 =Ad(exp( λ 14 Π 4 )) G 13 = a 1 Π 1 + Π 3 +( b 3 +2 a 1 λ 13 ) Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=rda0aqabaGccqGH9aqpcaWGbbGaamizaiaa cIcaciGGLbGaaiiEaiaacchacaGGOaGaeq4UdW2aaSbaaSqaaiab=f daXiab=rda0aqabaGccqqHGoaudaWgaaWcbaGaaGinaaqabaGccaGG PaGaaiykaiaadEeadaWgaaWcbaGae8xmaeJae83mamdabeaakiabg2 da9iaadggadaWgaaWcbaGae8xmaedabeaakiabfc6aqnaaBaaaleaa cqWFXaqmaeqaaOGaey4kaSIaeuiOda1aaSbaaSqaaiaaiodaaeqaaO Gaey4kaSIaaiikaiaackgadaWgaaWcbaGaaG4maaqabaGccqGHRaWk caaIYaGaamyyamaaBaaaleaacqWFXaqmaeqaaOGaeq4UdW2aaSbaaS qaaiab=fdaXiab=ndaZaqabaGccaGGPaGaeuiOda1aaSbaaSqaaiaa isdaaeqaaOGaaiOlaaaa@6378@ As a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHGjsUcaaIWaaaaa@3C54@ , we can use λ 13 = b 3 2 a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaeJae83mamdabeaakiabg2da9maalaaabaGaeyOe I0IaamOyamaaBaaaleaacaaIZaaabeaaaOqaaiaaikdacaWGHbWaaS baaSqaaiab=fdaXaqabaaaaaaa@421E@ , is eliminated Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGinaaqabaaaaa@3A2E@ , then we have other element of the optimal system.

G 14 = a 1 Π 1 + Π 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=rda0aqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiab=fdaXaqabaGccqqHGoaudaWgaaWcbaGae8xmaedabeaakiabgU caRiabfc6aqnaaBaaaleaacaaIZaaabeaakiaac6caaaa@444F@   (30)

 This is how other reduction of the generic element (10) ends.

3.2) Case a 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpcaaIWaaaaa@3B93@ . We get G 13 = a 2 Π 2 + Π 3 +2 λ 13 Π 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=ndaZaqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiaaikdaaeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaS IaeuiOda1aaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaaGOmaiabeU7a SnaaBaaaleaacqWFXaqmcqWFZaWmaeqaaOGaeuiOda1aaSbaaSqaai aaisdaaeqaaOGaaiilaaaa@4BC1@ using λ 13 = b 5 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaeJae83mamdabeaakiabg2da9maalaaabaGaamOy amaaBaaaleaacaaI1aaabeaaaOqaaiaaikdaaaaaaa@3F3A@ , then G 13 = a 2 Π 2 + Π 3 + b 5 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=ndaZaqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiaaikdaaeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaS IaeuiOda1aaSbaaSqaaiaaiodaaeqaaOGaey4kaSIaamOyamaaBaaa leaacaaI1aaabeaakiabfc6aqnaaBaaaleaacaaI0aaabeaakiaac6 caaaa@4927@ Now, applying the adjoint operator to ( Π 3 , G 13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaeJae83mamdabeaakiaacMcaaaa@3F1E@ , we get G 14 =Ad(exp λ 14 Π 3 )) G 13 = a 2 Π 2 + Π 3 +( b 5 2 a 2 λ 14 ) Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=rda0aqabaGccqGH9aqpcaWGbbGaamizaiaa cIcaciGGLbGaaiiEaiaacchacqaH7oaBdaWgaaWcbaGae8xmaeJae8 hnaqdabeaakiabfc6aqnaaBaaaleaacaaIZaaabeaakiaacMcacaGG PaGaam4ramaaBaaaleaacqWFXaqmcqWFZaWmaeqaaOGaeyypa0Jaam yyamaaBaaaleaacaaIYaaabeaakiabfc6aqnaaBaaaleaacaaIYaaa beaakiabgUcaRiabfc6aqnaaBaaaleaacaaIZaaabeaakiabgUcaRi aacIcacaWGIbWaaSbaaSqaaiaaiwdaaeqaaOGaeyOeI0IaaGOmaiaa dggadaWgaaWcbaGaaGOmaaqabaGccqaH7oaBdaWgaaWcbaGae8xmae Jae8hnaqdabeaakiaacMcacqqHGoaudaWgaaWcbaGaaGinaaqabaGc caGGUaaaaa@625A@

3.2.A) Case a 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=jdaYaqabaGccqGHGjsUcaaIWaaaaa@3C56@ . Using λ 14 = b 5 2 a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaeJae8hnaqdabeaakiabg2da9maalaaabaGaamOy amaaBaaaleaacaaI1aaabeaaaOqaaiaaikdacaWGHbWaaSbaaSqaai aaikdaaeqaaaaaaaa@410A@ , with a 2 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=jdaYaqabaGccqGHGjsUcaaIWaaaaa@3C56@ , is eliminated Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGinaaqabaaaaa@3A2E@ , then G 14 = a 2 Π 2 + Π 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=rda0aqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiaaikdaaeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaS IaeuiOda1aaSbaaSqaaiaaiodaaeqaaOGaaiOlaaaa@43F9@  Now applying the adjoint operator to ( Π 4 , G 14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaeJae8hnaqdabeaakiaacMcaaaa@3F21@ we don’t have any reduction, then we have other element of the optimal system.

G 14 = a 2 Π 2 + Π 3 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=rda0aqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiaaikdaaeqaaOGaeuiOda1aaSbaaSqaaiaaikdaaeqaaOGaey4kaS IaeuiOda1aaSbaaSqaaiaaiodaaeqaaOGaaiOlaaaa@43F9@   (31)

 This is how other reduction of the generic element (13) ends.

3.2.B) Case a 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=jdaYaqabaGccqGH9aqpcaaIWaaaaa@3B95@ . We get G 14 = Π 3 + b 5 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=rda0aqabaGccqGH9aqpcqqHGoaudaWgaaWc baGaaG4maaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaiwdaaeqaaO GaeuiOda1aaSbaaSqaaiaaisdaaeqaaOGaaiOlaaaa@43FF@ Now applying the adjoint operator to ( Π 4 , G 14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaeJae8hnaqdabeaakiaacMcaaaa@3F21@ we don’t have any reduction, then we have other element of the optimal system.

G 14 = Π 3 + b 5 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=rda0aqabaGccqGH9aqpcqqHGoaudaWgaaWc baGaaG4maaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaiwdaaeqaaO GaeuiOda1aaSbaaSqaaiaaisdaaeqaaOGaaiOlaaaa@43FF@   (32)

 This is how other reduction of the generic element (10) ends.

  1. Assuming a 3 = a 4 = a 3 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiodaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaI0aaabeaa kiabg2da9iaadggadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaaIWa aaaa@411E@ and a 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaOGaeyypa0dccaGae8xmaedaaa@3B95@ in (10), we have that G= a 1 Π 1 + Π 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaeyypa0 JaamyyamaaBaaaleaaiiaacqWFXaqmaeqaaOGaeuiOda1aaSbaaSqa aiab=fdaXaqabaGccqGHRaWkcqqHGoaudaWgaaWcbaGaaGOmaaqaba GccaGGUaaaaa@4244@  Applying the adjoint operator to ( Π 1 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaGGaaiab=fdaXaqabaGccaGGSaGaam4raiaacMcaaaa@3D40@ and ( Π 5 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiwdaaeqaaOGaaiilaiaadEeacaGGPaaaaa@3D0E@ we don’t have any reduction, on the other hand applying the adjoint operator towe get

G 15 =Ad(exp( λ 15 Π 2 ))G= a 1 Π 1 +(1+2 a 1 λ 15 ) Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=vda1aqabaGccqGH9aqpcaWGbbGaamizaiaa cIcaciGGLbGaaiiEaiaacchacaGGOaGaeq4UdW2aaSbaaSqaaiab=f daXiab=vda1aqabaGccqqHGoaudaWgaaWcbaGaaGOmaaqabaGccaGG PaGaaiykaiaadEeacqGH9aqpcaWGHbWaaSbaaSqaaiab=fdaXaqaba GccqqHGoaudaWgaaWcbaGae8xmaedabeaakiabgUcaRiaacIcacqWF XaqmcqGHRaWkcaaIYaGaamyyamaaBaaaleaacqWFXaqmaeqaaOGaeq 4UdW2aaSbaaSqaaiab=fdaXiab=vda1aqabaGccaGGPaGaeuiOda1a aSbaaSqaaiaaikdaaeqaaaaa@5C73@   (33)

4.1) Case a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHGjsUcaaIWaaaaa@3C54@ . Using λ 15 = 1 2 a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaeJae8xnaudabeaakiabg2da9maalaaabaGaeyOe I0Iae8xmaedabaGaaGOmaiaadggadaWgaaWcbaGae8xmaedabeaaaa aaaa@412F@ , with a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHGjsUcaaIWaaaaa@3C54@ , is eliminated Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGOmaaqabaaaaa@3A2C@ , then G 15 = a 1 Π 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=vda1aqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiab=fdaXaqabaGccqqHGoaudaWgaaWcbaGae8xmaedabeaakiaac6 caaaa@40FE@ . Now applying the adjoint operator to ( Π 3 , G 15 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaeJae8xnaudabeaakiaacMcaaaa@3F22@ we don’t have any reduction, on the other hand applying the adjoint operator to ( Π 4 , G 15 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaeJae8xnaudabeaakiaacMcaaaa@3F23@ we get G 16 =Ad(exp( λ 16 Π 4 )) G 15 = a 1 Π 1 +2 a 1 λ 16 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=zda2aqabaGccqGH9aqpcaWGbbGaamizaiaa cIcaciGGLbGaaiiEaiaacchacaGGOaGaeq4UdW2aaSbaaSqaaiab=f daXiab=zda2aqabaGccqqHGoaudaWgaaWcbaGaaGinaaqabaGccaGG PaGaaiykaiaadEeadaWgaaWcbaGae8xmaeJae8xnaudabeaakiabg2 da9iaadggadaWgaaWcbaGae8xmaedabeaakiabfc6aqnaaBaaaleaa cqWFXaqmaeqaaOGaey4kaSIaaGOmaiaadggadaWgaaWcbaGae8xmae dabeaakiabeU7aSnaaBaaaleaacqWFXaqmcqWF2aGnaeqaaOGaeuiO da1aaSbaaSqaaiaaisdaaeqaaOGaaiOlaaaa@5C23@ It is clear that we don’t have any reduction, then using λ 16 = b 6 2 a 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaeJae8Nnaydabeaakiabg2da9maalaaabaGaamOy amaaBaaaleaacaaI2aaabeaaaOqaaiaaikdacaWGHbWaaSbaaSqaai ab=fdaXaqabaaaaaaa@413A@ , with a 1 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGHGjsUcaaIWaaaaa@3C54@ , we have other element of the optimal system.

G 16 = a 1 Π 1 + b 6 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=zda2aqabaGccqGH9aqpcaWGHbWaaSbaaSqa aiab=fdaXaqabaGccqqHGoaudaWgaaWcbaGae8xmaedabeaakiabgU caRiaadkgadaWgaaWcbaGaaGOnaaqabaGccqqHGoaudaWgaaWcbaGa aGinaaqabaGccaGGUaaaaa@4631@   (34)

 This is how other reduction of the generic element (10) ends.

4.2) Case a 1 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpcaaIWaaaaa@3B93@ . We get G 15 = Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=vda1aqabaGccqGH9aqpcqqHGoaudaWgaaWc baGaaGOmaaqabaaaaa@3E14@ . Now applying the adjoint operator to ( Π 3 , G 15 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaeJae8xnaudabeaakiaacMcaaaa@3F22@ we get G 17 =Ad(exp( λ 17 Π 3 )) G 15 = Π 2 2 λ 17 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=Dda3aqabaGccqGH9aqpcaWGbbGaamizaiaa cIcaciGGLbGaaiiEaiaacchacaGGOaGaeq4UdW2aaSbaaSqaaiab=f daXiab=Dda3aqabaGccqqHGoaudaWgaaWcbaGaaG4maaqabaGccaGG PaGaaiykaiaadEeadaWgaaWcbaGae8xmaeJae8xnaudabeaakiabg2 da9iabfc6aqnaaBaaaleaacqWFYaGmaeqaaOGaeyOeI0IaaGOmaiab eU7aSnaaBaaaleaacqWFXaqmcqWF3aWnaeqaaOGaeuiOda1aaSbaaS qaaiaaisdaaeqaaOGaaiOlaaaa@582F@  It is clear that we don’t have any reduction, then using λ 17 = b 7 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaeJae83naCdabeaakiabg2da9maalaaabaGaeyOe I0IaamOyamaaBaaaleaacaaI3aaabeaaaOqaaiaaikdaaaaaaa@4031@ , then G 17 = Π 2 + b 7 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=Dda3aqabaGccqGH9aqpcqqHGoaudaWgaaWc baGaaGOmaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqaaO GaeuiOda1aaSbaaSqaaiaaisdaaeqaaOGaaiOlaaaa@4406@ Now applying the adjoint operator to ( Π 4 , G 17 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaeJae83naCdabeaakiaacMcaaaa@3F27@ , we don’t have any reduction, after we have other element of the optimal system.

G 17 = Π 2 + b 7 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=Dda3aqabaGccqGH9aqpcqqHGoaudaWgaaWc baGaaGOmaaqabaGccqGHRaWkcaWGIbWaaSbaaSqaaiaaiEdaaeqaaO GaeuiOda1aaSbaaSqaaiaaisdaaeqaaOGaaiOlaaaa@4406@   (35)

 This is how other reduction of the generic element (10) ends.

  1. Assuming a 5 = a 4 = a 3 = a 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaiwdaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaaI0aaabeaa kiabg2da9iaadggadaWgaaWcbaGaaG4maaqabaGccqGH9aqpcaWGHb WaaSbaaSqaaiaaikdaaeqaaOGaeyypa0JaaGimaaaa@43FE@ and a 1 =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpcqWFXaqmaaa@3BC0@ in (10), we have that G= Π 1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbGaeyypa0 JaeuiOda1aaSbaaSqaaGGaaiab=fdaXaqabaGccaGGUaaaaa@3CEF@ Applying the adjoint operator to ( Π 1 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaGGaaiab=fdaXaqabaGccaGGSaGaam4raiaacMcaaaa@3D40@ , ( Π 3 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiodaaeqaaOGaaiilaiaadEeacaGGPaaaaa@3D0C@ and ( Π 5 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaiwdaaeqaaOGaaiilaiaadEeacaGGPaaaaa@3D0E@ we don’t have any reduction, on the other hand applying the adjoint operator to ( Π 2 ,G) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaikdaaeqaaOGaaiilaiaadEeacaGGPaaaaa@3D0B@ we get

G 18 =Ad(exp( λ 18 Π 2 ))G= Π 1 2 λ 18 Π 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=Hda4aqabaGccqGH9aqpcaWGbbGaamizaiaa cIcaciGGLbGaaiiEaiaacchacaGGOaGaeq4UdW2aaSbaaSqaaiab=f daXiab=Hda4aqabaGccqqHGoaudaWgaaWcbaGaaGOmaaqabaGccaGG PaGaaiykaiaadEeacqGH9aqpcqqHGoaudaWgaaWcbaGae8xmaedabe aakiabgkHiTiaaikdacqaH7oaBdaWgaaWcbaGae8xmaeJae8hoaGda beaakiabfc6aqnaaBaaaleaacaaIYaaabeaakiaac6caaaa@5624@   (36)

It’s clear that we don’t have any reduction, then using λ 18 = b 8 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaeJae8hoaGdabeaakiabg2da9maalaaabaGaamOy amaaBaaaleaacaaI4aaabeaaaOqaaiaaikdaaaaaaa@3F47@ , we get G 18 = Π 1 + b 8 Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=Hda4aqabaGccqGH9aqpcqqHGoaudaWgaaWc baGae8xmaedabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqaba GccqqHGoaudaWgaaWcbaGaaGOmaaqabaaaaa@4376@ . Now applying the adjoint operator to ( Π 4 , G 18 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaeuiOda 1aaSbaaSqaaiaaisdaaeqaaOGaaiilaiaadEeadaWgaaWcbaaccaGa e8xmaeJae8hoaGdabeaakiaacMcaaaa@3F29@ , we have

G 19 = Π 1 + b 8 Π 2 +2 λ 19 Π 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=Lda5aqabaGccqGH9aqpcqqHGoaudaWgaaWc baGae8xmaedabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqaba GccqqHGoaudaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaaIYaGaeq4U dW2aaSbaaSqaaiab=fdaXiab=Lda5aqabaGccqqHGoaudaWgaaWcba GaaGOmaaqabaGccaGGUaaaaa@4C0A@   (37)

It’s clear that we don’t have any reduction, then using λ 19 = b 9 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBdaWgaa WcbaaccaGae8xmaeJae8xoaKdabeaakiabg2da9maalaaabaGaamOy amaaBaaaleaacaaI5aaabeaaaOqaaiaaikdaaaaaaa@3F4A@ , we have other element of the optimal system.

G 19 = Π 1 + b 8 Π 2 + b 8 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGhbWaaSbaaS qaaGGaaiab=fdaXiab=Lda5aqabaGccqGH9aqpcqqHGoaudaWgaaWc baGae8xmaedabeaakiabgUcaRiaadkgadaWgaaWcbaGaaGioaaqaba GccqqHGoaudaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcaWGIbWaaSba aSqaaiaaiIdaaeqaaOGaeuiOda1aaSbaaSqaaiaaisdaaeqaaOGaai Olaaaa@4967@   (38)

 This is how other reduction of the generic element (10) ends.

4  Invariant solutions by the generators of the optimal algebra

 In this section, we characterize the invariant solutions taking into account all operators that generate the optimal algebra presented in Proposition 2. For this purpose, we use the method of invariant curve condition5 (presented in section 4.3), which is given by the following equation

Q(x,y, y x )=η= y x ξ=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGrbGaaiikai aacIhacaGGSaGaaiyEaiaacYcacaGG5bWaaSbaaSqaaiaadIhaaeqa aOGaaiykaiabg2da9iabeE7aOjabg2da9iaacMhadaWgaaWcbaGaam iEaaqabaGccqaH+oaEcqGH9aqpcaaIWaaaaa@48E9@   (39)

 Using the element Π 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGGoWdamaaBaaaleaapeGaaGinaaWdaeqaaaaa@3855@  from Proposition 2, under the condition (42), we obtain that Q= η 4 y x ξ 4 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGrbGaeyypa0 Jaeq4TdG2aaSbaaSqaaiaaisdaaeqaaOGaeyOeI0IaaiyEamaaBaaa leaacaWG4baabeaakiabe67a4naaBaaaleaacaaI0aaabeaakiabg2 da9iaaicdaaaa@43D6@  which implies (0) y x ( x 3 y 2 )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaGGOaGaaGimai aacMcacqGHsislcaGG5bWaaSbaaSqaaiaadIhaaeqaaOGaaiikaiaa dIhadaahaaWcbeqaaiaaiodaaaGccaWG5bWaaWbaaSqabeaacaaIYa aaaOGaaiykaiabg2da9iaaicdaaaa@43F1@ . After, we get y(x)=c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bGaaiikai aadIhacaGGPaGaeyypa0Jaam4yaaaa@3D08@ , where c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbaaaa@38AE@ is a constant, which is an invariant solution for (1), using an analogous procedure with all of the elements of the optimal algebra (Proposition 2), we obtain both implicit and explicit invariant solutions that are shown in the Table 3, with c MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbaaaa@38AE@  being a constant.

Variational symmetries and conserved quantities

 In this section, we present the variational symmetries of (1) and we are going to use them to define conservation laws via Noether’s theorem.7 First of all, we are going to determine the Lagrangian using the Jacobi Last Multiplier method, presented by Nucci in,8 and for this reason, we are urged to calculate the inverse of the determinant ,

Δ=| x Π 1,x Π 2,x y x Π 1,y Π 2,y y xx Π 1 (1) Π 2 (1) |=| x x x 3 y x 0 0 y xx y x 3 x 2 y x | MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHuoarcqGH9a qpdaabdaqaauaabeqadeaaaeaacaWG4baabaGaeuiOda1aaSbaaSqa aGGaaiab=fdaXiaacYcacaWG4baabeaaaOqaaiabfc6aqnaaBaaale aacaaIYaGaaiilaiaadIhaaeqaaaaakuaabeqadeaaaeaacaWG5bWa aSbaaSqaaiaadIhaaeqaaaGcbaGaeuiOda1aaSbaaSqaaiab=fdaXi aacYcacaGG5baabeaaaOqaaiabfc6aqnaaBaaaleaacaaIYaGaaiil aiaacMhaaeqaaaaakuaabeqadeaaaeaacaWG5bWaaSbaaSqaaiaadI hacaWG4baabeaaaOqaaiabfc6aqnaaDaaaleaacqWFXaqmaeaacaGG OaGae8xmaeJaaiykaaaaaOqaaiabfc6aqnaaDaaaleaacaaIYaaaba Gaaiikaiab=fdaXiaacMcaaaaaaaGccaGLhWUaayjcSdGaeyypa0Za aqWaaeaafaqabeWabaaabaGaamiEaaqaaiaadIhaaeaacaWG4bWaaW baaSqabeaacaaIZaaaaaaakuaabeqadeaaaeaacaWG5bWaaSbaaSqa aiaadIhaaeqaaaGcbaGaaGimaaqaaiaaicdaaaqbaeqabmqaaaqaai aadMhadaWgaaWcbaGaamiEaiaadIhaaeqaaaGcbaGaeyOeI0IaamyE amaaBaaaleaacaWG4baabeaaaOqaaiabgkHiTiaaiodacaWG4bWaaW baaSqabeaacaaIYaaaaOGaamyEamaaBaaaleaacaWG4baabeaaaaaa kiaawEa7caGLiWoaaaa@763B@   ,

where Π 1,x , Π 1,y , Π 2,x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaaccaGae8xmaeJaaiilaiaadIhaaeqaaOGaaiilaiabfc6aqnaa BaaaleaacqWFXaqmcaGGSaGaaiyEaaqabaGccaGGSaGaeuiOda1aaS baaSqaaiaaikdacaGGSaGaamiEaaqabaaaaa@45D3@ , and Π 2,y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGOmaiaacYcacaGG5baabeaaaaa@3BD9@ are the components of the symmetries Π 1 , Π 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaaccaGae8xmaedabeaakiaacYcacqqHGoaudaWgaaWcbaGaaGOm aaqabaaaaa@3D81@ shown in the Proposition 4 and Π 1 (1) , Π 2 (1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaqhaa WcbaaccaGae8xmaedabaGaaiikaiab=fdaXiaacMcaaaGccaGGSaGa euiOda1aa0baaSqaaiaaikdaaeaacaGGOaGae8xmaeJaaiykaaaaaa a@4203@ as its first prolongations. Then we get Δ=2 x 3 y x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHuoarcqGH9a qpcaaIYaGaamiEamaaCaaaleqabaGaaG4maaaakiaadMhadaWgaaWc baGaamiEaaqabaaaaa@3F07@ which implies that M= 1 Δ = x 3 2 y x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaeyypa0 ZaaSaaaeaaiiaacqWFXaqmaeaacqGHuoaraaGaeyypa0ZaaSaaaeaa caWG4bWaaWbaaSqabeaacqGHsislcaaIZaaaaaGcbaGaaGOmaiaadM hadaWgaaWcbaGaamiEaaqabaaaaaaa@42DD@ . Now, from,8 we know that M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@3898@ can also be written as M= L yxyx MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbGaeyypa0 JaamitamaaBaaaleaacaWG5bGaamiEaiaadMhacaWG4baabeaaaaa@3E91@ which means that L yxyx = x 3 2 y x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbWaaSbaaS qaaiaadMhacaWG4bGaamyEaiaadIhaaeqaaOGaeyypa0ZaaSaaaeaa caWG4bWaaWbaaSqabeaacqGHsislcaaIZaaaaaGcbaGaaGOmaiaadM hadaWgaaWcbaGaamiEaaqabaaaaaaa@439A@ , then integrating twice with respect to y x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaSbaaS qaaiaadIhaaeqaaaaa@39ED@ we obtain the Lagrangian

L(x,y, y x )= x 3 2 y x In( y x ) x 3 2 y x + y x f 1 (x,y)+ f 2 (x,y), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbGaaiikai aadIhacaGGSaGaamyEaiaacYcacaWG5bWaaSbaaSqaaiaadIhaaeqa aOGaaiykaiabg2da9maalaaabaGaamiEamaaCaaaleqabaGaeyOeI0 IaaG4maaaaaOqaaiaaikdaaaGaamyEamaaBaaaleaacaWG4baabeaa kiaadMeacaWGUbGaaiikaiaadMhadaWgaaWcbaGaamiEaaqabaGcca GGPaGaeyOeI0YaaSaaaeaacaWG4bWaaWbaaSqabeaacqGHsislcaaI ZaaaaaGcbaGaaGOmaaaacaWG5bWaaSbaaSqaaiaadIhaaeqaaOGaey 4kaSIaamyEamaaBaaaleaacaWG4baabeaakiaadAgadaWgaaWcbaac caGae8xmaedabeaakiaacIcacaWG4bGaaiilaiaadMhacaGGPaGaey 4kaSIaamOzamaaBaaaleaacaaIYaaabeaakiaacIcacaWG4bGaaiil aiaadMhacaGGPaGaaiilaaaa@630C@   (40)

where f 1 , f 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGMbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiaacYcacaWG MbWdamaaBaaaleaapeGaaGOmaaWdaeqaaaaa@3AE2@  are arbitrary functions. From the preceding expression we can consider f 1 = f 2 =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpcaWGMbWaaSbaaSqaaiaaikda aeqaaOGaeyypa0JaaGimaaaa@3E7B@  It is possible to find more Lagrangians for (1) by considering other vector fields given in the Proposition 4. We then calculate

ξ(x,y) L x +ξ (x,y) x L+η(x,y) L y + η [ x ] (x,y) L yx = D x [ f(x,y) ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH+oaEcaGGOa GaamiEaiaacYcacaWG5bGaaiykaiaadYeadaWgaaWcbaGaamiEaaqa baGccqGHRaWkcqaH+oaEdaWgbaWcbaGaamiEaaqabaGccaGGOaGaam iEaiaacYcacaWG5bGaaiykaiaadYeacqGHRaWkcqaH3oaAcaGGOaGa amiEaiaacYcacaWG5bGaaiykaiaadYeadaWgaaWcbaGaamyEaaqaba GccqGHRaWkcqaH3oaAdaWgaaWcbaWaamWaaeaacaWG4baacaGLBbGa ayzxaaaabeaakiaacIcacaWG4bGaaiilaiaadMhacaGGPaGaamitam aaBaaaleaacaWG5bGaamiEaaqabaGccqGH9aqpcaWGebWaaSbaaSqa aiaadIhaaeqaaOWaamWaaeaacaWGMbGaaiikaiaadIhacaGGSaGaam yEaiaacMcaaiaawUfacaGLDbaacaGGSaaaaa@6822@   

using (40) and (7). Thus we get

ξ( 3 x 4 2 y x In(yx)+ 3 x 4 2 y x )+ ξ x ( x 3 2 y x In( y x ) x 3 2 y x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH+oaEdaqada qaamaalaaabaGaeyOeI0IaaG4maiaadIhadaahaaWcbeqaaiabgkHi TiaaisdaaaaakeaacaaIYaaaaiaadMhadaWgaaWcbaGaamiEaaqaba GccaWGjbGaamOBaiaacIcacaWG5bGaamiEaiaacMcacqGHRaWkdaWc aaqaaiaaiodacaWG4bWaaWbaaSqabeaacqGHsislcaaI0aaaaaGcba GaaGOmaaaacaWG5bWaaSbaaSqaaiaadIhaaeqaaaGccaGLOaGaayzk aaGaey4kaSIaeqOVdG3aaSbaaSqaaiaadIhaaeqaaOWaaeWaaeaada WcaaqaaiaadIhadaahaaWcbeqaaiabgkHiTiaaiodaaaaakeaacaaI YaaaaiaadMhadaWgaaWcbaGaamiEaaqabaGccaWGjbGaamOBaiaacI cacaWG5bWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiabgkHiTmaalaaa baGaamiEamaaCaaaleqabaGaeyOeI0IaaG4maaaaaOqaaiaaikdaaa GaamyEamaaBaaaleaacaWG4baabeaaaOGaayjkaiaawMcaaaaa@6677@   

+( η x +( η y ξ x ) y x ξ y y x 2 ))( x 3 2 In( y x ) ) f x y x f y =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHRaWkcaGGOa Gaeq4TdG2aaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaaiikaiabeE7a OnaaBaaaleaacaGG5baabeaakiabgkHiTiabe67a4naaBaaaleaaca WG4baabeaakiaacMcacaWG5bWaaSbaaSqaaiaadIhaaeqaaOGaeyOe I0IaeqOVdG3aaSbaaSqaaiaadMhaaeqaaOGaamyEamaaDaaaleaaca WG4baabaGaaGOmaaaakiaacMcacaGGPaWaaeWaaeaadaWcaaqaaiaa dIhadaahaaWcbeqaaiabgkHiTiaaiodaaaaakeaacaaIYaaaaiaadM eacaWGUbGaaiikaiaadMhadaWgaaWcbaGaamiEaaqabaGccaGGPaaa caGLOaGaayzkaaGaeyOeI0IaamOzamaaBaaaleaacaWG4baabeaaki abgkHiTiaadMhadaWgaaWcbaGaamiEaaqabaGccaWGMbWaaSbaaSqa aiaadMhaaeqaaOGaeyypa0JaaGimaiaac6caaaa@64C5@   

 From the preceding expression, rearranging and associating terms with respect to 1, y x , y x In( y x ), y x 2 In( y x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiaacqWFXaqmca GGSaGaamyEamaaBaaaleaacaWG4baabeaakiaacYcacaWG5bWaaSba aSqaaiaadIhaaeqaaOGaamysaiaad6gacaGGOaGaamyEamaaBaaale aacaWG4baabeaakiaacMcacaGGSaGaamyEamaaDaaaleaacaWG4baa baGaaGOmaaaakiaadMeacaWGUbGaaiikaiaadMhadaWgaaWcbaGaam iEaaqabaGccaGGPaaaaa@4CAD@ and In( y x ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbGaamOBai aacIcacaWG5bWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiaacYcaaaa@3DC1@ we obtain the following determinant equations 

ξ y = η x = f x =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH+oaEdaWgaa WcbaGaamyEaaqabaGccqGH9aqpcqaH3oaAdaWgaaWcbaGaamiEaaqa baGccqGH9aqpcaWGMbWaaSbaaSqaaiaadIhaaeqaaOGaeyypa0JaaG imaiaacYcaaaa@4436@   (41a)

3ξ+x η y =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHsislcaaIZa GaeqOVdGNaey4kaSIaamiEaiabeE7aOnaaBaaaleaacaWG5baabeaa kiabg2da9iaaicdacaGGSaaaaa@4262@   (41b)

3ξx ξ x 2 x 4 f y =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIZaGaeqOVdG NaeyOeI0IaamiEaiabe67a4naaBaaaleaacaWG4baabeaakiabgkHi TiaaikdacaWG4bWaaWbaaSqabeaacaaI0aaaaOGaamOzamaaBaaale aacaWG5baabeaakiabg2da9iaaicdacaGGUaaaaa@4752@   (41c)

  Solving the preceding system for ξ,η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH+oaEcaGGSa Gaeq4TdGgaaa@3BE5@ and f MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbaaaa@38B1@ we obtain the infinitesimal generators of Noether’s symmetries

η= a 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH3oaAcqGH9a qpcaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaaaa@3D00@    ξ=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH+oaEcqGH9a qpcaaIWaGaaiilaaaa@3BF9@ and f(y)= a 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGMbGaaiikai aadMhacaGGPaGaeyypa0JaamyyamaaBaaaleaacaaI0aaabeaaaaa@3DDE@ .  (42)

with a 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaikdaaeqaaaaa@3994@ and a 4 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGHbWaaSbaaS qaaiaaisdaaeqaaaaa@3996@ arbitrary constants. Then, the Noether symmetry group or variational symmetries is

V 1 = y , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpdaWcaaqaaiabgkGi2cqaaiab gkGi2kaadMhaaaGaaiilaaaa@3F58@   (43)

 According to,9 in order to obtain the conserved quantities or conservation laws, we should solve

I=(X y x Y) L y x XL+f, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbGaeyypa0 JaaiikaiaacIfacaWG5bWaaSbaaSqaaiaadIhaaeqaaOGaeyOeI0Ia amywaiaacMcacaGGmbWaaSbaaSqaaiaadMhadaWgaaadbaGaamiEaa qabaaaleqaaOGaeyOeI0IaamiwaiaadYeacqGHRaWkcaWGMbGaaiil aaaa@481C@   

so, using (43), (47) and (48). Therefore, the conserved quantities are given by

I 1 = x 3 In( y x ) 2 + a 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaSbaaS qaaGGaaiab=fdaXaqabaGccqGH9aqpcqGHsisldaWcaaqaaiaadIha daahaaWcbeqaaiabgkHiTiaaiodaaaGccaWGjbGaamOBaiaacIcaca WG5bWaaSbaaSqaaiaadIhaaeqaaOGaaiykaaqaaiaaikdaaaGaey4k aSIaamyyamaaBaaaleaacaaI0aaabeaakiaacYcaaaa@480F@   (44)

Nonlinear self-adjointness

 In this section we present the main definitions in the N. Ibragimov’s approach to nonlinear self-adjointness of differential equations adopted to our specific case. For further details the interested reader is directed to.6,10,11

Consider second order differential equation

F(x,y, y (1) , y 2 ..., y (s) =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWBKaaiikaiaadIha caGGSaGaamyEaiaacYcacaWG5bWaaSbaaSqaaiaacIcaiiaacqGFXa qmcaGGPaaabeaakiaacYcacaWG5bWaaSbaaSqaaiaaikdaaeqaaOGa aiOlaiaac6cacaGGUaGaaiilaiaadMhadaWgaaWcbaGaaiikaiaaco hacaGGPaaabeaakiabg2da9iaaicdacaGGSaaaaa@5725@   (45)

 With independent variables x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG4baaaa@38C3@ and a dependent variable y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@38C4@ , where y (1) , y (2) ,... y (s) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5bWaaSbaaS qaaiaacIcaiiaacqWFXaqmcaGGPaaabeaakiaacYcacaWG5bWaaSba aSqaaiaacIcacaaIYaGaaiykaaqabaGccaGGSaGaaiOlaiaac6caca GGUaGaamyEamaaBaaaleaacaGGOaGaai4CaiaacMcaaeqaaaaa@457D@ denote the collection of 1,2,...,sth MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiaacqWFXaqmca GGSaGaaGOmaiaacYcacaGGUaGaaiOlaiaac6cacaGGSaGaam4Caiab gkHiTiaadshacaWGObaaaa@4164@ order derivatives of y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG5baaaa@38C4@

 

Definition 1 Let F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWBeaaa@4447@ be a differential function and v=v(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaeyypa0 JaamODaiaacIcacaWG4bGaaiykaaaa@3D18@ -the new dependent variable, known as the adjoint variable or nonlocal variable.11 The formal Lagrangian for F=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWBKae8xpa0JaaGim aaaa@4600@ is the differential function defined by

L:=vF. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae83cWZKaaiOoaiabg2da 9iaadAhacqWFfaVrcaGGUaaaaa@4984@   (46)

Definition 2 Let F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWBeaaa@4447@ be a differential function and for the differential equation (45), denoted by F[y]=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWBKaai4waiaadMha caGGDbGaeyypa0JaaGimaiaacYcaaaa@4975@ we define the adjoint differential function to F MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWBeaaa@4447@ by

F*:= δL δy MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWBKaaiOkaiaacQda cqGH9aqpdaWcaaqaaiabes7aKjab=Ta8mbqaaiabes7aKjaadMhaaa aaaa@4CDD@   (47)

 and the adjoint differential equation by

F*[y,v]=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWBKaaiOkaiaacUfa caWG5bGaaiilaiaadAhacaGGDbGaeyypa0JaaGimaiaacYcaaaa@4BCE@   (48)

 where the Euler operator

δ δy = y + Σ m=1 (1) m D xi ... D xi,m y x i 1 x i 2 ... x i m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabes 7aKbqaaiabes7aKjaadMhaaaGaeyypa0ZaaSaaaeaacqGHciITaeaa cqGHciITcaWG5baaaiabgUcaRiabfo6atnaaDaaaleaacaWGTbGaey ypa0dccaGae8xmaedabaGaeyOhIukaaOGaaiikaiabgkHiTiab=fda XiaacMcadaahaaWcbeqaaiaad2gaaaGccaWGebWaaSbaaSqaaiaadI hacaWGPbaabeaakiaac6cacaGGUaGaaiOlaiaadseadaWgaaWcbaGa amiEaiaadMgacaGGSaGaamyBaaqabaGcdaWcaaqaaiabgkGi2cqaai abgkGi2kaadMhadaWgaaWcbaGaamiEamaaBaaameaacaWGPbaabeaa lmaaBaaajuaGbaWaaSbaaeaacaGIXaaabeaaaWqabaaaleqaaOWaaS baaSqaaiaadIhadaWgaaadbaGaamyAaaqabaWcdaWgaaadbaWaaSba aKqbagaacqWFYaGmaWqabaaabeaaaSqabaGccaGGUaGaaiOlaiaac6 cacaWG4bWaaSbaaSqaaiaadMgaaeqaaOWaaSbaaSqaamaaBaaajuaG baGaamyBaaadbeaaaSqabaaaaaaa@67FE@   (49)

 and is the total derivative operator with respect to defined by

D x i = x i + y x i y + y x i x j y x j +...+ y x i x i 1 x i 2 ... x i n y x i 1 x i 2 ... x i n ... MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGebWaaSbaaS qaaiaadIhajuaGdaWgaaqaaiaadMgaaeqaaaWcbeaakiabg2da9iab gkGi2oaaBaaaleaacaWG4bWaaSbaaKqbagaacaWGPbaameqaaaWcbe aakiabgUcaRiaadMhadaWgaaWcbaGaamiEaKqbaoaaBaaabaGaamyA aaqabaaaleqaaOGaeyOaIy7aaSbaaSqaaiaadMhaaeqaaOGaey4kaS IaamyEamaaBaaaleaacaWG4bqcfa4aaSbaaeaacaWGPbaabeaaaSqa baGcdaWgaaWcbaGaamiEamaaBaaajuaGbaGaamOAaaadbeaaaSqaba GccqGHciITdaWgaaWcbaGaamyEaaqabaGcdaWgaaWcbaWaaSbaaKqb agaacaWG4baameqaaSWaaSbaaKqbagaadaWgaaqaaiaadQgaaeqaaa adbeaaaSqabaGccqGHRaWkcaGGUaGaaiOlaiaac6cacqGHRaWkcaWG 5bWaaSbaaSqaaiaadIhajuaGdaWgaaqaaiaadMgaaeqaaaWcbeaakm aaBaaaleaacaWG4bqcfa4aaSbaaeaacaWGPbWaaSbaaeaaiiaacqWF XaqmaeqaaaqabaaaleqaaOWaaSbaaSqaaiaadIhajuaGdaWgaaqaai aadMgadaWgaaqaaiaaikdaaeqaaaqabaaaleqaaOGaaiOlaiaac6ca caGGUaGaamiEamaaBaaaleaacaWGPbWaaSbaaWqaaiaad6gaaeqaaa WcbeaakiabgkGi2oaaBaaaleaacaWG5bWaaSbaaWqaaKqbaoaaBaaa baGaamiEaaqabaaddaWgaaqaaKqbaoaaBaaabaGaamyAaaqabaWaaS baaeaadaWgaaqaaiab=fdaXaqabaaabeaaaWqabaaabeaalmaaBaaa meaajuaGcaWG4baddaWgaaqaaKqbakaadMgammaaBaaajuaGbaGaaG OmaaadbeaaaeqaaaqabaaaleqaaOGaaiOlaiaac6cacaGGUaWaaSba aSqaaiaadIhadaWgaaqcfayaaiaadMgadaWgaaqaaiaad6gaaeqaaa adbeaaaSqabaGccaGGUaGaaiOlaiaac6caaaa@7F6B@  

Definition 3 The differential equation (45) is said to be nonlinearly selfadjoint if there exists a substitution

v=ϕ(x,y)0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaeyypa0 Jaeqy1dyMaaiikaiaadIhacaGGSaGaamyEaiaacMcacqGHGjsUcaaI Waaaaa@4214@   (50)

 such that

F ˜ *| v=ϕ(x,y) =λF MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGaf8xbWBKbaGaacaGGQaWa aqqaaeaadaWgaaWcbaGaamODaiabg2da9iabew9aMjaacIcacaWG4b GaaiilaiaadMhacaGGPaaabeaaaOGaay5bSdGaeyypa0Jaeq4UdWMa e8xbWBeaaa@5315@   (51)

 for some undetermined coefficient λ=λ(x,y,...) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBcqGH9a qpcqaH7oaBcaGGOaGaamiEaiaacYcacaWG5bGaaiilaiaac6cacaGG UaGaaiOlaiaacMcaaaa@42FE@ . If v=ϕ(y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaeyypa0 Jaeqy1dyMaaiikaiaadMhacaGGPaaaaa@3DE6@ in (50) and (51), the equation (45) is called quasi self-adjoint. If v=y, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaeyypa0 JaamyEaiaacYcaaaa@3B75@ we say that the equation (45) is strictly self-adjoint.

 Now we shall obtain the adjoint equation to the eq. (1). For this purpose we write (1) in the form (45), where

F:= y xx + y 1 y x 2 +3 x 1 y x, =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWBKaaiOoaiabg2da 9iaadMhadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaey4kaSIaamyEam aaCaaaleqabaGaeyOeI0cccaGae4xmaedaaOGaamyEamaaDaaaleaa caWG4baabaGaaGOmaaaakiabgUcaRiaaiodacaWG4bWaaWbaaSqabe aacqGHsislcqGFXaqmaaGccaWG5bWaaSbaaSqaaiaadIhacaGGSaaa beaakiabg2da9iaaicdacaGGUaaaaa@5A14@   (52)

 Then the corresponding formal Lagrangian (46) is given by

L:=v( y xx + y 1 y x 2 +3 x 1 y x )=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae83cWZKae8NoaOJae8xp a0JaamODaiaacIcacaWG5bWaaSbaaSqaaiaadIhacaWG4baabeaaki abgUcaRiaadMhadaahaaWcbeqaaiabgkHiTaaakmaaCaaaleqabaac caGae4xmaedaaOGaamyEamaaDaaaleaacaWG4baabaGaaGOmaaaaki abgUcaRiaaiodacaWG4bWaaWbaaSqabeaacqGHsislcqGFXaqmaaGc caWG5bWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiabg2da9iaaicdaaa a@5B7D@   (53)

 and the Euler operator (49) assumes the following form:

δL δy = L y D x L y x + D x 2 L y xx . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaaiabes 7aKnrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWF laptaeaacqaH0oazcaWG5baaaiabg2da9maalaaabaGaeyOaIyRae8 3cWZeabaGaeyOaIyRaamyEaaaacqGHsislcaWGebWaaSbaaSqaaiaa dIhaaeqaaOWaaSaaaeaacqGHciITcqWFlaptaeaacqGHciITcaWG5b WaaSbaaSqaaiaadIhaaeqaaaaakiabgUcaRiaadseadaqhaaWcbaGa amiEaaqaaiaaikdaaaGcdaWcaaqaaiabgkGi2kab=Ta8mbqaaiabgk Gi2kaadMhadaWgaaWcbaGaamiEaiaadIhaaeqaaaaakiaac6caaaa@653C@   (54)

 We calculate explicitly the Euler operator (54) applied to determined by (58). In this way we obtain the adjoint equation (48) to (1):

F*=v( y x 2 y 2 +3 x 2 2 y xx y 1 )+ v x (2 y x y 1 3 x 1 )+ v xx =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8xbWBKaaiOkaiabg2da 9iaadAhacaGGOaGaamyEamaaDaaaleaacaWG4baabaGaaGOmaaaaki aadMhadaahaaWcbeqaaiabgkHiTiaaikdaaaGccqGHRaWkcaaIZaGa amiEamaaCaaaleqabaGaeyOeI0IaaGOmaaaakiabgkHiTiaaikdaca WG5bWaaSbaaSqaaiaadIhacaWG4baabeaakiaadMhadaahaaWcbeqa aiabgkHiTGGaaiab+fdaXaaakiaacMcacqGHRaWkcaWG2bWaaSbaaS qaaiaadIhaaeqaaOGaaiikaiabgkHiTiaaikdacaWG5bWaaSbaaSqa aiaadIhaaeqaaOGaamyEamaaCaaaleqabaGaeyOeI0Iae4xmaedaaO GaeyOeI0IaaG4maiaadIhadaahaaWcbeqaaiabgkHiTiab+fdaXaaa kiaacMcacqGHRaWkcaWG2bWaaSbaaSqaaiaadIhacaWG4baabeaaki abg2da9iaaicdaaaa@7049@   (55)

 The main result in this section can be stated as follows.

Proposition 3  The equation (1) is nonlinearly self-adjoint, with the substitution given by

ϕ(x,y)=y( k 1 x+ k 2 x 3 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcaGGOa GaamiEaiaacYcacaWG5bGaaiykaiabg2da9iaadMhacaGGOaGaam4A amaaBaaaleaaiiaacqWFXaqmaeqaaOGaamiEaiabgUcaRiaadUgada WgaaWcbaGaaGOmaaqabaGccaWG4bWaaWbaaSqabeaacaaIZaaaaOGa aiykaiaacYcaaaa@4968@   (56)

 where k 1 , k 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGRbWaaSbaaS qaaGGaaiab=fdaXaqabaGccaGGSaGaam4AamaaBaaaleaacaaIYaaa beaaaaa@3C65@ are arbitrary constants.

Proof. Substituting in (55), and then in (52), v=ϕ(x,y) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bGaeyypa0 Jaeqy1dyMaaiikaiaadIhacaGGSaGaamyEaiaacMcaaaa@3F93@ and its respective derivatives, and comparing the corresponding coefficients we get five equations: 

ϕ y =λ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHsislcqaHvp GzdaWgaaWcbaGaamyEaaqabaGccqGH9aqpcqaH7oaBcaGGSaaaaa@3F19@   (57a)

y 1 ϕ+ ϕ y =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkHiTiaadMhapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiab ew9aMjabgUcaRiabew9aM9aadaWgaaWcbaWdbiaadMhaa8aabeaak8 qacqGH9aqpcaaIWaGaaiilaaaa@4423@   (57b)

y 1 ϕ x + ϕ x y=0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi abgkHiTiaadMhapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiab ew9aM9aadaWgaaWcbaWdbiaadIhaa8aabeaak8qacqGHRaWkcqaHvp GzpaWaaSbaaSqaa8qacaWG4baapaqabaGcpeGaamyEaiabg2da9iaa icdacaGGSaaaaa@4691@   (57c)

3 x 2 ϕ3 x 1 ϕ x + ϕ x x =0, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaiodacaWG4bWdamaaCaaaleqabaWdbiabgkHiTiaaikdaaaGccqaH vpGzcqGHsislcaaIZaGaamiEa8aadaahaaWcbeqaa8qacqGHsislca aIXaaaaOGaeqy1dy2damaaBaaaleaapeGaamiEaaWdaeqaaOWdbiab gUcaRiabew9aM9aadaWgaaWcbaWdbiaadIhaa8aabeaak8qadaWgaa WcbaGaamiEaaqabaGccqGH9aqpcaaIWaGaaiilaaaa@4D03@   (57d)

y 2 ϕ y 1 ϕ y +y ϕ y y =0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMhapaWaaWbaaSqabeaapeGaeyOeI0IaaGOmaaaakiabew9aMjab gkHiTiaadMhapaWaaWbaaSqabeaapeGaeyOeI0IaaGymaaaakiabew 9aM9aadaWgaaWcbaWdbiaadMhaa8aabeaak8qacqGHRaWkcaWG5bGa eqy1dy2damaaBaaaleaapeGaamyEaaWdaeqaaOWdbmaaBaaaleaaca WG5baabeaakiabg2da9iaaicdacaGGUaaaaa@4C8E@   (57e)

  We observe that (57c) and (57e) are obtaned from (57b) by differentiation with respect to x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadIhaaaa@38E3@ and y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadMhaaaa@38E4@  Therefore we have to study only Eqs. (57b) and (57d). Solving for in (57b) we obtain

ϕ(x,y)= c 1 (x)y, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHvpGzcaGGOa GaamiEaiaacYcacaWG5bGaaiykaiabg2da9iaadogadaWgaaWcbaac caGae8xmaedabeaakiaacIcacaWG4bGaaiykaiaadMhacaGGSaaaaa@44AB@   (58)

 where c 1 (x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaSbaaS qaaGGaaiab=fdaXaqabaGccaGGOaGaamiEaiaacMcaaaa@3C2B@ is arbitrary function. Using (58) into (57d) we get 3 x 2 c 1 (c)3 x 1 c 1 x + c 1 xx =0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aaiodacaWG4bWaaWbaaSqabeaacqGHsislcaaIYaaaaOWdaiaadoga daWgaaWcbaaccaGae8xmaedabeaakiaacIcacaWGJbGaaiykaiabgk HiT8qacaaIZaGaamiEamaaCaaaleqabaGaeyOeI0Iae8xmaedaaOWd aiaadogadaWgaaWcbaGae8xmaedabeaakmaaBaaaleaacaWG4baabe aakiabgUcaRiaadogadaWgaaWcbaGae8xmaedabeaakmaaBaaaleaa caWG4bGaamiEaaqabaGccqGH9aqpcaaIWaaaaa@4EBF@ , thus solving for c 1 (x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaSbaaS qaaGGaaiab=fdaXaqabaGccaGGOaGaamiEaiaacMcaaaa@3C2B@ we have c 1 (x)= k 1 x+ k 2 x 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGJbWaaSbaaS qaaGGaaiab=fdaXaqabaGccaGGOaGaamiEaiaacMcacqGH9aqpcaWG RbWaaSbaaSqaaiab=fdaXaqabaGccaWG4bGaey4kaSIaam4AamaaBa aaleaacaaIYaaabeaakiaadIhadaahaaWcbeqaaiaaiodaaaaaaa@44E6@ , then, substituting in (58) the statement in the theorem is obtained.

7  Conservation laws

 In this section we shall establish some conservation laws for the equation (1) using the conservation theorem of N. Ibragimov in.12 Since the Eq. (1) is of second order, the formal Lagrangian contains derivatives up to order two. Thus, the general formula in12 for the component of the conserved vector is reduced to

C x = W j [ L y x D x ( L y xx ) ]+ D x [ W j ][ L y xx ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaaWbaaS qabeaacaWG4baaaOGaeyypa0Jaam4vamaaCaaaleqabaGaamOAaaaa kmaadmaabaWaaSaaaeaacqGHciITtuuDJXwAKzKCHTgD1jharyqr1n gBPrgigjxyRrxDYbacfaGae83cWZeabaGaeyOaIy7aaSbaaSqaaiaa dMhaaeqaaOWaaSbaaSqaamaaBaaajuaGbaGaamiEaaadbeaaaSqaba aaaOGaeyOeI0IaamiramaaBaaaleaacaWG4baabeaakmaabmaabaWa aSaaaeaacqGHciITcqWFlaptaeaacqGHciITdaWgaaWcbaGaamyEaa qabaGcdaWgaaWcbaWaaSbaaKqbagaacaWG4bGaamiEaaadbeaaaSqa baaaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaGaey4kaSIaamiram aaBaaaleaacaWG4baabeaakmaadmaabaGaam4vamaaCaaaleqabaGa amOAaaaaaOGaay5waiaaw2faamaadmaabaWaaSaaaeaacqGHciITcq WFlaptaeaacqGHciITdaWgaaWcbaGaamyEaaqabaGcdaWgaaWcbaWa aSbaaKqbagaacaWG4bGaamiEaaadbeaaaSqabaaaaaGccaGLBbGaay zxaaGaaiilaaaa@70DC@   (59)

 where

W j = η j ξ j y x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGxbWaaWbaaS qabeaacaWGQbaaaOGaeyypa0Jaeq4TdG2aaWbaaSqabeaacaWGQbaa aOGaeyOeI0IaeqOVdG3aaWbaaSqabeaacaWGQbaaaOGaamyEamaaBa aaleaacaWG4baabeaaaaa@439D@   

j=1,...,5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGQbGaeyypa0 dccaGae8xmaeJaaiilaiaac6cacaGGUaGaaiOlaiaacYcacaaI1aaa aa@3EE1@ the formal Lagrangian (53)

L:=v(y + xx y 1 y x 2 +3 x 1 y x ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae83cWZKae8NoaOJaeyyp a0JaamODaiaacIcacaWG5bWaaSraaSqaaiaadIhacaWG4baabeaaki abgUcaRiaadMhadaahaaWcbeqaaiabgkHiTaaakmaaCaaaleqabaac caGae4xmaedaaOGaamyEamaaDaaaleaacaWG4baabaGaaGOmaaaaki abgUcaRiaaiodacaWG4bWaaWbaaSqabeaacqGHsislaaGcdaahaaWc beqaaiab+fdaXaaakiaadMhadaWgaaWcbaGaamiEaaqabaGccaGGPa aaaa@59FC@   

 and η j , ξ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaH3oaApaWaaWbaaSqabeaapeGaamOAaaaakiaacYcacqaH+oaE paWaaWbaaSqabeaapeGaamOAaaaaaaa@3CB6@  are the infinitesimals of a Lie point symmetry admitted by Eq. (1), given in (4). Using (1), (4) and (56) into (59) we obtain the following conservation vectors for each symmetry stated in (4).

C 1 x =v(x y 1 y x 2 y x )+ v x (x y x ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGdbWaa0baaS qaaGGaaiab=fdaXaqaaiaadIhaaaGccqGH9aqpcaWG2bGaaiikaiaa dIhacaWG5bWaaWbaaSqabeaacqGHsislaaGcdaahaaWcbeqaaiab=f daXaaakiaadMhadaqhaaWcbaGaamiEaaqaaiaaikdaaaGccqGHsisl caWG5bWaaSbaaSqaaiaadIhaaeqaaOGaaiykaiabgUcaRiaadAhada WgaaWcbaGaamiEaaqabaGccaGGOaGaamiEaiaadMhadaWgaaWcbaGa amiEaaqabaGccaGGPaGaaiilaaaa@509D@   

C 2 x =v( x 3 y 1 y x 2 3 x 2 y x )+ v x ( x 3 y x ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadoeapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaWG4baaaOGaeyyp a0JaamODaiaacIcacqGHsislcaWG4bWdamaaCaaaleqabaWdbiaaio daaaGccaWG5bWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaGccaWG 5bWdamaaDaaaleaapeGaamiEaaWdaeaapeGaaGOmaaaakiabgkHiTi aaiodacaWG4bWdamaaCaaaleqabaWdbiaaikdaaaGccaWG5bWdamaa BaaaleaapeGaamiEaaWdaeqaaOWdbiaacMcacqGHRaWkcaWG2bWdam aaBaaaleaapeGaamiEaaWdaeqaaOWdbiaacIcacaWG4bWdamaaCaaa leqabaWdbiaaiodaaaGccaWG5bWdamaaBaaaleaapeGaamiEaaWdae qaaOWdbiaacMcacaGGSaaaaa@5759@   

C 3 x =v(6 y 2 y x 3xy y x 2 3 x 1 y 3 ) v x ( y 3 +x y 2 y x ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadoeapaWaa0baaSqaa8qacaaIZaaapaqaa8qacaWG4baaaOGaeyyp a0JaamODaiaacIcacqGHsislcaaI2aGaamyEa8aadaahaaWcbeqaa8 qacaaIYaaaaOGaamyEa8aadaWgaaWcbaWdbiaadIhaa8aabeaak8qa cqGHsislcaaIZaGaamiEaiaadMhacaWG5bWdamaaDaaaleaapeGaam iEaaWdaeaapeGaaGOmaaaakiabgkHiTiaaiodacaWG4bWdamaaCaaa leqabaWdbiabgkHiTiaaigdaaaGccaWG5bWdamaaCaaaleqabaWdbi aaiodaaaGccaGGPaGaeyOeI0IaamODa8aadaWgaaWcbaWdbiaadIha a8aabeaak8qacaGGOaGaamyEa8aadaahaaWcbeqaa8qacaaIZaaaaO Gaey4kaSIaamiEaiaadMhapaWaaWbaaSqabeaapeGaaGOmaaaakiaa dMhapaWaaSbaaSqaa8qacaWG4baapaqabaGcpeGaaiykaiaacYcaaa a@5FBB@   (60)

C 4 x =v(3 x 3 y y x 2 3 x 2 y x y 2 ))+ v x ( x 3 y 2 y x ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadoeapaWaa0baaSqaa8qacaaI0aaapaqaa8qacaWG4baaaOGaeyyp a0JaamODaiaacIcacqGHsislcaaIZaGaamiEa8aadaahaaWcbeqaa8 qacaaIZaaaaOGaamyEaiaadMhapaWaa0baaSqaa8qacaWG4baapaqa a8qacaaIYaaaaOGaeyOeI0IaaG4maiaadIhapaWaaWbaaSqabeaape GaaGOmaaaakiaadMhapaWaaSbaaSqaa8qacaWG4baapaqabaGcpeGa amyEa8aadaahaaWcbeqaa8qacaaIYaaaaOGaaiykaiaacMcacqGHRa WkcaWG2bWdamaaBaaaleaapeGaamiEaaWdaeqaaOWdbiaacIcacaWG 4bWdamaaCaaaleqabaWdbiaaiodaaaGccaWG5bWdamaaCaaaleqaba WdbiaaikdaaaGccaWG5bWdamaaBaaaleaapeGaamiEaaWdaeqaaOWd biaacMcacaGGSaaaaa@5AE7@   

C 5 x =v(3 y x +3 x (1) y) v x (y), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadoeapaWaa0baaSqaa8qacaaI1aaapaqaa8qacaWG4baaaOGaeyyp a0JaamODaiaacIcacaaIZaGaamyEa8aadaWgaaWcbaWdbiaadIhaa8 aabeaak8qacqGHRaWkcaaIZaGaamiEa8aadaahaaWcbeqaa8qacaGG OaGaeyOeI0IaaGymaiaacMcaaaGccaWG5bGaaiykaiabgkHiTiaadA hapaWaaSbaaSqaa8qacaWG4baapaqabaGcpeGaaiikaiaadMhacaGG PaGaaiilaaaa@4EB6@   

 where v=y( k 1 x+ k 2 x 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAhacqGH9aqpcaWG5bGaaiikaiaadUgapaWaaSbaaSqaa8qacaaI XaaapaqabaGcpeGaamiEaiabgUcaRiaadUgapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaamiEa8aadaahaaWcbeqaa8qacaaIZaaaaOGa aiykaaaa@446C@ and v x =y( k 1 +3 k 2 x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadAhapaWaaSbaaSqaa8qacaWG4baapaqabaGcpeGaeyypa0JaamyE aiaacIcacaWGRbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgU caRiaaiodacaWGRbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiaa dIhapaWaaWbaaSqabeaapeGaaGOmaaaakiaacMcaaaa@459C@ .

Classification of Lie algebra

 Generically a Finite dimensional Lie algebra in a field of characteristic  is classify by the Levi’s theorem, which claims that any finite dimensional Lie algebra can be write as a semidirect product of a semisimple Lie algebra and a Solvable Lie algebra, the solvable Lie algebra is the Radical of that Algebra. In other words, there exist two important classes of Lie algebras, The solvable and the semisimple. In each classes mention above there are some particular classes that have other classification, for example in the solvable one, we have the nilpotent Lie algebra.

According the Lie group symmetry of generators given in the table . We have a five dimensional Lie algebra. First of all, we remember some basic criteria to classify a Lie algebra, In the case of Solvable and semisimple Lie algebra. We will denote K(.,.) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaaiikai aac6cacaGGSaGaaiOlaiaacMcaaaa@3C03@ the Cartan-Killing form. The next propositions can be found in.3

Proposition 4  (Cartan’s theorem) A Lie algebra is semisimple if and only if its Killing form is nondegenerate.

Proposition 5  A Lie subalgebra g  is solvable if and only if K(X,Y)=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaaiikai aadIfacaGGSaGaamywaiaacMcacqGH9aqpcaaIWaaaaa@3E1A@ for all X[g,g] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGybGaeyicI4 Saai4wamrr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaa cqWFGa=zcqWFSaalcqWFGa=zcaGGDbaaaa@4B7D@ and Yg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGzbGaeyicI4 8efv3ySLgzgjxyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab=bc8 Nbaa@46E5@ . Other way to write that is K(g,[g,g])=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaaiikam rr1ngBPrMrYf2A0vNCaeHbfv3ySLgzGyKCHTgD1jhaiuaacqWFGa=z cqWFSaalcaGGBbGae8hiWFMae8hlaWIae8hiWFMaaiyxaiaacMcacq GH9aqpcaaIWaGaaiOlaaaa@5090@  

We also need the next statements to make the classification.

Definition 4 Let g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hiWFgaaa@4483@ be a finite-dimensional Lie algebra over an arbitrary field k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadUgaaaa@38D6@ .Choose a basis e j , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadwgadaWgaaWcbaGaamOAaaqabaGccaGGSaaaaa@3AA5@ 1in, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaiiaaqaaaaaaaaa Wdbiab=fdaXiabgsMiJkaadMgacqGHKjYOcaWGUbGaaiilaaaa@3ED2@ , in g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hiWFgaaa@4483@  where n=dimg MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6gacqGH9aqpciGGKbGaaiyAaiaac2gatuuDJXwAKzKCHTgD1jha ryqr1ngBPrgigjxyRrxDYbacfaWdaiab=bc8Nbaa@4973@ and set [ e i , e j ]= C ij k e k . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aacUfacaWGLbWaaSbaaSqaaiaadMgaaeqaaOGaaiilaiaadwgadaWg aaWcbaGaamOAaaqabaGccaGGDbGaeyypa0Jaam4qamaaDaaaleaaca WGPbGaamOAaaqaaiaadUgaaaGccaWGLbWaaSbaaSqaaiaadUgaaeqa aOGaaiOlaaaa@4607@  Then the coefficients C ij k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aadoeadaqhaaWcbaGaamyAaiaadQgaaeaacaWGRbaaaaaa@3BA8@ are called structure constants.

Proposition 6  Let g 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hiWF2aaSbaaSqaaGGa aiab+fdaXaqabaaaaa@459F@ and g 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hiWF2aaSbaaSqaaiaa ikdaaeqaaaaa@456B@ be two Lie algebras of dimension n MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaaWdbi aad6gaaaa@38D9@ . Suppose each has a basis with respect to which the structure constant are the same. Then g 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hiWF2aaSbaaSqaaGGa aiab+fdaXaqabaaaaa@459F@ and g 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hiWF2aaSbaaSqaaiaa ikdaaeqaaaaa@456B@ are isomorphic.

Let g MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hiWFgaaa@4483@ the Lie algebra related to the symmetry group of infinitesimal generators of the equation (1) as stated by the table of the commutators, it is enough to consider the next relations:

[ Π 1 , Π 2 ]=2 Π 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfc 6aqnaaBaaaleaaiiaacqWFXaqmaeqaaOGaaiilaiabfc6aqnaaBaaa leaacaaIYaaabeaaaOGaay5waiaaw2faaiabg2da9iaaikdacqqHGo audaWgaaWcbaGaaGOmaaqabaGccaGGSaaaaa@445F@ [ Π 1 , Π 4 ]=2 Π 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfc 6aqnaaBaaaleaaiiaacqWFXaqmaeqaaOGaaiilaiabfc6aqnaaBaaa leaacaaI0aaabeaaaOGaay5waiaaw2faaiabg2da9iaaikdacqqHGo audaWgaaWcbaGaaGinaaqabaGccaGGSaaaaa@4463@ [ Π 2 , Π 3 ]=2 Π 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfc 6aqnaaBaaaleaacaaIYaaabeaakiaacYcacqqHGoaudaWgaaWcbaGa aG4maaqabaaakiaawUfacaGLDbaacqGH9aqpcqGHsislcaaIYaGaeu iOda1aaSbaaSqaaiaaisdaaeqaaOGaaiilaaaa@451A@ [ Π 3 , Π 5 ]=2 Π 3 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfc 6aqnaaBaaaleaacaaIZaaabeaakiaacYcacqqHGoaudaWgaaWcbaGa aGynaaqabaaakiaawUfacaGLDbaacqGH9aqpcqGHsislcaaIYaGaeu iOda1aaSbaaSqaaiaaiodaaeqaaOGaaiilaaaa@451C@ [ Π 3 , Π 5 ]=2 Π 4 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWadaqaaiabfc 6aqnaaBaaaleaacaaIZaaabeaakiaacYcacqqHGoaudaWgaaWcbaGa aGynaaqabaaakiaawUfacaGLDbaacqGH9aqpcqGHsislcaaIYaGaeu iOda1aaSbaaSqaaiaaisdaaeqaaOGaaiOlaaaa@451F@ Using that we calculate Cartan-Killing form K MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbaaaa@3896@ as follows.

K=[ 8 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 8 ], MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGlbGaeyypa0 ZaamWaaeaafaqabeGabaaabaqbaeqabmqaaaqaauaabeqaceaaaeaa caaI4aaabaGaaGimaaaaaeaacaaIWaaabaGaaGimaaaaaeaacaaI0a aaauaabeqaceaaaeaafaqabeWabaaabaqbaeqabiqaaaqaaiaaicda aeaacaaIWaaaaaqaaiaaicdaaeaacaaIWaaaaaqaaiaaicdaaaqbae qabiqaaaqaauaabeqadeaaaeaafaqabeGabaaabaGaaGimaaqaaiaa icdaaaaabaGaaGimaaqaaiaaicdaaaaabaGaaGimaaaafaqabeGaba aabaqbaeqabmqaaaqaauaabeqaceaaaeaacaaIWaaabaGaaGimaaaa aeaacaaIWaaabaGaaGimaaaaaeaacaaIWaaaauaabeqaceaaaeaafa qabeWabaaabaqbaeqabiqaaaqaaiaaisdaaeaacaaIWaaaaaqaaiaa icdaaeaacaaIWaaaaaqaaiaaiIdaaaaacaGLBbGaayzxaaGaaiilaa aa@4F4D@   

which the determinant vanishes, and thus by Cartan criterion it is not semisimple, (see Proposition 4). Since a nilpotent Lie álgera has a Cartan-Killing form that is identically zero, we conclude, using the counter-reciprocal of the last claim, that the Lie algebra g is not nilpotent. We verify that the Lie algebra is solvable using the Cartan criteria to solvability, (Proposition 5), and then we have a solvable nonnilpotent Lie algebra. The Nilradical of the Lie algebra g is generated by Π 2 , Π 3 , Π 4 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHGoaudaWgaa WcbaGaaGOmaaqabaGccaGGSaGaeuiOda1aaSbaaSqaaiaaiodaaeqa aOGaaiilaiabfc6aqnaaBaaaleaacaaI0aaabeaakiaacYcaaaa@4129@ that is, we have a Solvable Lie algebra with three dimensional Nilradical. Let m MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbaaaa@38B8@ the dimension of the Nilradical M MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGnbaaaa@3898@ of a Solvable Lie agebra, In this case, in fith dimensional Lie algebra we have 3m5. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIZaGaeyizIm QaamyBaiabgsMiJkaaiwdacaGGUaaaaa@3E50@ Mubarakzyanov in13 classified the 5-dimensional solvable nonlilpotent Lie algebras, in particular the solvable nonnilpotent Lie algebra with three dimensional Nilradical, this Nilradical is isomorphic to the Heisenberg Lie algebra. Tnen, by the Proposition 6, and consequently we establish a isomorphism of Lie algebras with  and the Lie algebra g 5,34 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hiWF2aaSbaaSqaaiaa iwdacaGGSaGaaG4maiaaisdaaeqaaaaa@4799@ . In summery we have the next proposition.

Proposition 7  The 5-dimensional Lie algebra g  related to the symmetry group of the equation (1) is a solvable nonnilpotent Lie algebra with g three dimensional Nilridical. Besides that Lie algebra is isomorphich with g_5,34  in the Mubarakzyanov’s classification.

Conclusion

Using the Lie symmetry group (see Proposition 1), we calculated the optimal algebra (see Proposition 2). Making use of these operators, it was possible to characterize all invariant solutions as it was shown in Table 3.

It has been shown the variational symmetries for (1), as it was shown in (43) with its corresponding conservation laws (44) and all this was using Noether’s theorem, but non-trivial conservation laws were also calculated using the Ibragimov’s method as it was shown in (60) using the nonlinearly self-adjoint of the equation (1) as announced in the Proposition 3.

The Lie algebra associated to the equation (1) is a solvable nonnilpotent Lie algebra with three dimensional Nilridical. Besides that Lie algebra is isomorphich with g 5,34 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqkY=wkYJH8sqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9 Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAKzKCHT gD1jharyqr1ngBPrgigjxyRrxDYbacfaGae8hiWF2aaSbaaSqaaiaa iwdacaGGSaGaaG4maiaaisdaaeqaaaaa@4799@ in the Mubarakzyanov’s classification (see Proposition 7). Therefore, the goal initially proposed was achieved. For future works, An line of work would be to use the Lie symmetry group to calculate the λ-symmetries of (1), and, thus, explore more conservation laws for (1) and the equivalence group theory could be also considered to obtain preliminary classifications associated to a complete classification of (1).

Acknowledgments

Loaiza and Y.Acevedo are grateful to EAFIT University, Colombia, for the financial support in the project "Study and applications of diffusion processes of importance in health and computation" with code 11740052022.

Declaration interests

The authors declare that they have no conflict of interest.

References

  1. NH Ibragimov. First integrals, integrating factors and λ-symmetries of second-order differential equations. J Math Anal Appl. 2006;318:742–757.
  2. C Muriel, JL Romero. Integrating factors and λ–symmetries. Journal of Nonlinear Mathematical Physics. 2008;15(sup3):300–309.
  3. D Polyanin, VF Zaitsev. Exact solutions for ordinary differential equations. Chapman and Hall/CRC, 2002.
  4. Z. Hussain. Optimal system of subalgebras and invariant solutions for the Black-Scholes equation. Blekinge Institute of Technology. 2009.
  5. PE Hydon, DG Crighton. Symmetry methods for differential equations: A beginner’s guide. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2000.
  6. NH Ibragimov. A new conservation theorem. Journal of Mathematical Analysis and Applications. 2007;333(1):311–328.
  7. E Noether. Invariante variationsprobleme. Königlich Gesellschaft der Wissenschaften Göttingen Nachrichten Mathematik-Physik Klasse. 1918;2:235–267.
  8. MC Nuccci, PGL Leach. An old method of jacobi to find lagrangians. Journal of Nonlinear Mathematical Physics. 2009;16(4):431–441.
  9. M Gelfand, SV Fomin. Calculus of variations. Dover Publications, USA, 2000.
  10. ML Gandarias. Weak self-adjoint differential equations. Journal of Physics A: Mathematical and Theoretical. 2011;44(262001).
  11. NH Ibragimov. Nonlinear self-adjointness in constructing conservation laws. Archives of ALGA. 2011;7(8):1–90.
  12. PJ Olver. Applications of Lie Groups to Differential Equations. Springer-Verlag, 1986.
  13. G Zewdie. Lie simmetries of junction conditions for radianting stars. University of KwaZulu-Natal, 2011.
Creative Commons Attribution License

©2023 Loaiza, et al. This is an open access article distributed under the terms of the, which permits unrestricted use, distribution, and build upon your work non-commercially.