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Abstract

We obtain the optimal system’s generating operators associated to a modification of the
generalization of the Emden—Fowler Equation. Using those operators we characterize
all invariant solutions associated to a generalized. Moreover, we present the variational
symmetries and the corresponding conservation laws, using Noether’s theorem and
Ibragimov’s method. Finally, we classify the Lie algebra associated to the given equation.
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Introduction
In,' Ibragimov presents the following equation

yex==y Ny =3y, (1)

with its respective solution

C
y(x)==%,|C — —;,whereC1 ,C,areconstants. 2)
X

This solution is obtained using the integrating factor method.
In,2 Muriel and Romero, calculate the ** — Symmetries associated to
integrating factors of (1). In,? Polyanin and Zaitsev present a solution
of (1) of the form

y(x)=Cyexp(C, | x |4),whereCl,CZareconstants. 3)

The purpose of this work is: i} to calculate the Lie symmetry
group, ii} to present the optimal algebra (optimal system) for (1), fif )
making use of all elements of the optimal algebra, to propose invariant
solutions for (1), then 17} to construct the Lagrangian with which we
could determine the variational symmetries using Noether’s theorem,

and thus to present conservation laws associated, and {17} also using
Ibragimov’s method build some non-trivial conservation laws, and

finally 17} to classify the Lie algebra associated to (1), corresponding
to the symmetry group. we note that equation (1) can be considered as
a modification of the generalization of the Emden—Fowler Equation.

Continuous group of Lie symmetries

In this section we study the Lie symmetry group for (1). The main
result of this section can be presented as follows:

Proposition 1 The Lie symmetry group for the equation (1) is
generated by the following vector fields:

o 30 , 0 3, 0 35,0 4)
I, = x—,T1, = X’ —,T1, =y —+ (—*)—,T1, = X’y —
1 xax 2 xax 3 xyc’)x (J’)ay 4 x}’ax
0
s =y—
oy

Proof. A general form of the one-parameter Lie group admitted
by (1) is given by

x—>x+e§(x,y)+0(ez) and y—>y+er7(x,y)+0(ez)

where £ is the group parameter. The vector field associated
with the group of transformations shown above can be written as

=&, y)ai +71(x, y)% , where &,i7 are differentiable functions
X

in R2. Applying its second prolongation

o 8
I =T+ oy g, )

to eq.(1), we must find the infinitesimals &,7 satisfying the
symmetry condition

EB3x 7y ) 4=y ) g2y v, 435 ) 41 =0, (6)

associated with (1). Here 7,77, are the coefficients in r'® given
by:

My = D= (DD, =+ (1, =60y =77
M) = Dl = (DL ED Y e
=Mt (any - §xx)yx + (nyy - Zéxy)yi - §yyy)3c

07, = 26070 =36 Ve M
Being D, is the total

derivative operator:

D,=0,+y,0,+y,0, +...Replacing (7) into (6) and using (1) we

obtain:

Sy e, =&, )yl + (T, =y 28, +6x7'E )7

HEB3E 42y 4307+ 2y — £ + (0, #337,) =0,
From (8), canceling the coefficients of the monomials variables in
derivatives 1,7,y and y, we obtain the determining equations for the

symmetry group of (1), with x, y # 0. That is:

Xy, —xn =207, +6y°E, +xy’n,, =0,

(8a)
(8b)

IIIIII Submit Manuscript | http://medcraveonline.com

Phys Astron Int J. 2023;7(1):26—-32.

26

permits unrestricted use, distribution, and build upon your work non-commercially.

©2023 Loaiza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which
BY NC


https://crossmark.crossref.org/dialog/?doi=10.15406/paij.2023.07.00280&domain=pdf

Lie algebra classification, conservation laws and invariant solutions for modification of the generalization

of the Emden—Fowler equation

3yE+2x°n, +3xpé, + 227y, — X pé =0 (8¢)

xn, +3n,=0. (8d)
Solving the system of equations (8a)-(8d) for & and 77 we get
E=cx+ ey + oy +exty?,
n=-cy +esy.

Thus, the infinitesimal generators of the group of symmetries
of (1) are the operators IT; — T described in the statement of the
Proposition 1; thus having the proposed result.

Optimal algebra

Taking into account,"*¢ we present in this section the optimal
algebra associated to the symmetry group of (1), that shows a systematic
way to classify the invariant solutions. To obtain the optimal algebra,
we should first calculate the corresponding commutator table, which
can be obtained from the operator

. ;)
(M, I, ] =TI, —TI,I1, = X2, (T, (£5) — T 4(£;))

_ 9
pw )
wherei =1,2, wither, # =1,...5 and 5;,52 are the corresponding

coefficients of the infinitesimal operators I1,,,I1; * After applying the

operator (12) to the symmetry group of (1), we obtain the operators
that are shown in the following table !

Table I Commutators table associated to the symmetry group of (1)

I, I, 11, m, I,
I, 0 a1, 0 a1,

n, -om, O or1, 0 0

T, 0 a1, 0 0 211,
n, o, O 0 0 o1,
I, 0 0 a1, 20, 0

Now, the next thing is to calculate the adjoint action representation

of the symmetries of (1) and to do that, we use Table 1 and the operator.
n

Ad (exp(AT))H =2f:0i' (ad(I1))" G for the symmetries
n!
IMand G

Making use of this operator, we can construct the Table 2, which
shows the adjoint representation for eachII,.!

Table 2 Adjoint representation of the symmetry group of (1)

adi[. ]

11, I, I, 1, I,

I, I, e-11, I e-2 11, Is

M, TII,+2AT, I, I, +24I1, TI, I,

A I, - 2AM0, TI, I, T + 2411,
M, II,+2AT, TI, I, I, T + 2411,
M. I, 1, e, e, 11

Proposition 2 The optimal algebra associated to the equation (1)
is given by the vector fields

I,,a,I1,, a515, a 11, + a5I15, a, 11, + I1,105 + byl ,, a, 11, + b 11,11, + b,I1,,

b1, + 115, a1, + 15,011, + 115,211, + 11, + 15, a,I1, + as115 + b,I1,,

Copyright:
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I, + BT, + byIT,,a,1T, + 2411, + b,IT, +TI,.
)
Proof. To calculate the optimal algebra system, we start with the

generators of symmetries (4) and a generic nonzero vector. Let
G =all, + a,I1, + a;I1; + a,I1, + asI1s.

(13)

The objective is to simplify as many coefficients ¢, as possible,
through maps adjoint to G , using Table (2).

1. Assumingas =1in  (10) we have that
G = all, + a,I1, + a;I1; + a,J1, +I15. Applying the adjoint operator
to IT;,G and (Il5,G) we don‘t have any reduccion, on the other hand

applying the adjoint operator to (I1,,G) we get

(1)

1.1} Casea, #0. Using/ll:;—az, witha, =0, in (11), I,
gl

G, = Ad (exp(A4I1,))G = aI1, + (ay + 2a,A)T1, + a;TT5 + (ay + 2a; 411, + 11

is  eliminated, therefore G, = g/I1, + a;I1; + bI1, +I15, where

b =a, +8 Now, applying the adjoint operator to (I1;,G,) , we get
4

G, = Ad(exp(L115))G, = a)I1, + (a3 + 24,)I1; + b1, +115.

Using 4, = _7“3 , is climinated [Ty, then G, = a,T1, + b1, +11,
Applying the adjoint operator to(Tl,,G,), we get
(12)

G, = Ad(exp AT1,))G, = a,T1, + (b, + 225 (a, + 2)IT, + 1.

1.1.4) Caseq, +2#0. Using 4, = ,witha, +2#0,in

1
24 +2)
(12), I, is eliminated, therefore G; = a,I1; +I15. Then, we have the
first element of the optimal system.

Gy = a1, +115, with a; 20 and a; +2#0. (13)

This is how the first reduction of the generic element (10) ends.

1.1.B) Caseq,+2#0. We get G, =211, +hI1, +I1,. Then,
we have other element of the optimal system.
Gy =211, + b1, +11s. (14)

This is how other reduction of the generic element (13) ends.

1.2} Caseq, =0.We get G, =a,I1, +a,l1; +(a, +2a, 4) +11;.

_ %

1.2.4) Casea; #0 . Using 4, = 2 with a; # 0, is eliminated

a3
I1,, then G, = a,I1, + a5I1; +I15 . Applying the adjoint operator to
(I1;,Gy) , we get
G, = Ad(exp L,I1,))G, = a,I1, + (ay + 2A)I1; = 24,11, +T15. (15)
Using 4 :7703, is eliminated I1;, then G, = a,I1, + a;I1, +11;.
Now applying the adjoint operator to (I1,,G,) , we have

Gy = Ad(exp AT1,))G, = a,T1, + (a5 + 2451, +11. (16)

. —-a; . ..
Using A5 = 73 , is eliminated I'1, , then we have other element of

the optimal system.
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Gs = a,I1, +115. 17)
This is how other reduction of the generic element (10) ends.
1L.2Z.B) Casea;=0. We getG,=a,l,+a,Il, +I1.

Now

applying the adjoint operator to (I15,G;) , we have

Gy = Ad(exp A41,))G, = a)T1, + 24,01, + (a, — 2a,2)T1, +T15. (18)

Using A = 2“—4 S
a

1.2.B.1)

Casea, #0. witha, #0, is

eliminated I1,, then G, = a,I1, + a—“H3 +II;. Now applying the
&

adjoint operator to (I1,,G,) , we get

G, = Ad(exp(A,11,))G, = aIT, + 2411, + 24,11, + 1.
)

(19)

. . b
It’s clear that we don’t have any reduction, then using 4, = -2,
then we have other element of the optimal system. 2

G, =aT1, + 2411, + b,IT, +11.
a;

(20

This is how other reduction of the generic element (10) ends.

1.2.B.2) Casea,=0. We getGy=24I1;+ a1, +I1;. It

. . . b

is clear that we don’t have any reduction, then using 4, :53, we
have G¢ = b;I1; + a,I1, +T15. Now applying the adjoint operator to
(I1,,G) , we have

Gy = Ad(exp(AT1,))G = b1, + (a, + 22T, + 1. @1

. -a, . .. .
Using 4 = 74 , is eliminated Il , then we have other element of

the optimal system.
Gy = byl +I1s. 22)
This is how other reduction of the generic element (10) ends.
2. Assumingas; =0anda, =1in (10), we have that
G=all, +a,I1, + a;I1; +I1,. Applying the adjoint operator to
(I1,,G) and (I15,G) we don’t have any reduction, on the other hand
applying the adjoint operator to (I1,,G) we get
Gy = Ad (exp(Ao11,))G = aT1, + (a, +2a,4)1, + a;T1; + (1+ 2a;40)M1,. (23)
2.1) Case q,#0. Using 4 :;—Zf, withaq %0, in (26), II, is
eliminated, therefore G, = ¢|I1; + a,I1; + b,I1, , where b; =1 _ &%
Now, applying the adjoint operator to (IT;,G,) , we don’t haveaelmy
reduction, after applying the adjoint operator to (I1,,Gy), we get

Gy = Ad(exp(AoI1,))Gy = a1, + a;11; + (by + 24,4311, How

-by . ..
a,#0, we can use A, = 2—3, is eliminated I, , thus we have other
4

element of the optimal system.

Gy = a/T1, + a1, (24)

Copyright:
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This is how other reduction of the generic element (10) ends.

2.2 Case a, =0 .We get G, = a,I1, + a3I1; + (1+ 2a;44)11,.

2.2.4)  cCase ay#0. Usingﬂg:_—l,
2a,

Gy = a,l1, + a,115.

witha; #0

LI, 18 eliminated, therefore Now,

applying  the adjoint  operator to(Il;,Gy), we  get

Gy, = Ad(exp(4113))Gy = ayI1, + @311 = 2004 T,

2.2.4.1) case a, # 0 .It’s clear that we don’thave any reduction,

using 4, =—=*, with a, 20, we get G, = a,I1, + a;IT, +b,I1,.
Now, applyil%gzthe adjoint operator to (I1,,G;,), we don’t have any

reduction, thus we have other element of the optimal system.
Gy, = a,I1, + a; 115 + b,I1,. (25)

This is how other reduction of the generic element (10) ends.

2.2.4.2) Casea, =0. We get G;; =a,;I1l;. Now, applying the

adjoint operator to (IT,,G,;), we don’t have any reduction, thus we

have other element of the optimal system.
G = all5. (26)

This is how other reduction of the generic element (10) ends.

2.2.8) Case a; =0 We get Gy = a,I1, +11,.
(I5,Gy),  we

Giy = Ad(exp(4,113))Gy = ayI1, + (1= 2a, 41,

Now,

applying the adjoint operator to have

2.2.B.1) Casea,#0. Usingl, =L,
2a,

eliminated I, , then G, = a,I1,. Now, applying the adjoint operator

witha, 20, is

to (I1,,Gy,) ,we don’t have any reduction, thus we have other element
of the optimal system.

G, = a,l1,. 27
This is how other reduction of the generic element (10) ends.
2.2.B.2) Casea, =0. We getG), =I1,. Now, applying the

adjoint operator to (IT,,G;,) , we don’t have any reduction, thus we
have other element of the optimal system.

G, =11,. (28)
This is how other reduction of the generic element (10) ends.
3. Assumingas =a,=0anda; =1in (10), we have that
G = a1, + a,I1, +1I15. . Applying the adjoint operator to (I1,,G) and
(I15,G) we don’t have any reduction, on the other hand applying the
adjoint operator to (IT,,G) we get

G,y = Ad(exp(A11,))G = aT1, +(a, +2a,4;)T1, + 1, +22,511,. (29)

3.1) Case g, #0. Using /113:;—%, witha, #0, in (29),11,
q
b =2,

is eliminated, therefore G; = a,I1; +I1; + b,I1,, where

1
Now, applying the adjoint operator to (IT;,G5) , we don’t have any
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reduction, after applying the adjoint operator to (I1,,G,), we get

G,y = Ad(exp(4J1,)) G5 = aI1, + 115 + (by+ 2a,4,5)I1,. As a; 20,

-by . ..
we can use A, :2—3 , is eliminated IT, , then we have other element
a4

of the optimal system.
Gy = a1, +11,. (30)
This is how other reduction of the generic element (10) ends.
3.2} Caseq=0. We
using Ay =5
applying  the adj%int

Gy = Ad(exp 4,113))Gy3 = @yl +T1; + (bs = 24,1,

get G5 = a,I1, + 115 + 24511,

then G5 = a,I1, +I1; + bI1,. Now,
operator to  (II;,G3), we get

3.2.4)Casea, 0. Using 4, = zb—s , witha, # 0, is eliminated
)
I1,, then G4 = a,I1, +I1;. Now applying the adjoint operator to

(I1,,G,,) we don’t have any reduction, then we have other element
of the optimal system.

Gy = a1, +115. 31)
This is how other reduction of the generic element (13) ends.

3.2.B) Case a, =0.We get G, =I1; + bI1,. Now applying the

adjoint operator to (T1,,G,,) we don’t have any reduction, then we
have other element of the optimal system.
Gy, =11 + b1,. (32)
This is how other reduction of the generic element (10) ends.
4. Assuming a; =a, =a;=0and a, =1in (10), we have that
G = a1, +I1,. Applying the adjoint operator to (I1,,G) and (I15,G)

we don’t have any reduction, on the other hand applying the adjoint
operator towe get

G5 = Ad(exp(A5T1,))G = /T, + (1 + 24,4511, . (33)

4.1) Casea, #0. Using 45 = % ,witha, # 0, is eliminated I'T,

1
, then G;5 = ¢/I1,. . Now applying the adjoint operator to (I;,G,5) we

don’thaveany reduction, onthe otherhand applying the adjoint operator

to (I1,,G;5) we get Gy = Ad (exp(4¢I1,))Gs = 11 +2a,4,,I1,. 1t is

clear that we don’t have any reduction, then using 4, = 2])—6 , with
a

1
a, # 0, we have other element of the optimal system.

Gi6 = aI1; + bI1,. 34)
This is how other reduction of the generic element (10) ends.
4.2 Caseq = 0. We getG;; =I1, . Now applying the adjoint

operator to (I1;, G5) we get G; = Ad (exp(4,,115))Gs =11, — 24,,11,.

It is clear that we don’t have any reduction, then using 4, = 77 , then

G,; =11, + b;I1,. Now applying the adjoint operator to (T1,,G,;) , we

don’t have any reduction, after we have other element of the optimal
system.

Copyright:
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Gy, =11, + bI1,. (35)
This is how other reduction of the generic element (10) ends.
5. Assuming as=a, =a; =a, =0anda, =1in (10), we have
that G =I1,. Applying the adjoint operator to (I1;,G), (I1;,G) and

(I15,G) we don’t have any reduction, on the other hand applying the
adjoint operator to (I1,,G) we get

Gig = Ad (exp(4I1,))G =TT, = 24,11, (36)
It’s clear that we don’t have any reduction, then using 4,4 :%8
, we getGg =II, +hll,. Now applying the adjoint operator to

(I1,,Gg) , we have

Gy =TI, + bIT, +24,,I1,. (37)
It’s clear that we don’t have any reduction, then using 4,5 = U} , we
have other element of the optimal system. 2
Gy =TI, + bIT, + bI1,. (38)

This is how other reduction of the generic element (10) ends.

4 Invariant solutions by the generators of the optimal
algebra

In this section, we characterize the invariant solutions taking into
account all operators that generate the optimal algebra presented in
Proposition 2. For this purpose, we use the method of invariant curve
condition® (presented in section 4.3), which is given by the following
equation

Oy, y,)=n=y,6=0. (39

Using the element [T, from Proposition 2, under the condition (42),
we obtain that 0 =7, —y, & =0+ which implies (0) -y (x*y*)=0.
After, we get y(x) =c, where c is a constant, which is an invariant

solution for (1), using an analogous procedure with all of the elements
of the optimal algebra (Proposition 2), we obtain both implicit and

explicit invariant solutions that are shown in the Table 3, with £ being
a constant.

Variational symmetries and conserved quantities

In this section, we present the variational symmetries of (1) and
we are going to use them to define conservation laws via Noether’s
theorem.” First of all, we are going to determine the Lagrangian using
the Jacobi Last Multiplier method, presented by Nucci in,* and for this
reason, we are urged to calculate the inverse of the determinant A ,

X )y Vi X Ve Vu
A= Hl,x Hl,y H{]) =|x 0 —Vx ’
L1, 19 |2 0-3x%y,

where IT, ,IT) ,IT,,, andIl, are the components of the
symmetries IT),IT, shown in the Proposition 4 andIT{",IT{ as

its first prolongations. Then we get A =2x’y which implies that

-3
X .
= . Now, from,*® we know that M can also be written as

M=—="—
2y,

1
A
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X . . . .
=——, then integrating twice with
2y,

respect to y, we obtain the Lagrangian

M =L ___which means that L

yxyx yxyx

-3 -3
X

40
LG22 =S p () =2y i)+ o), “0)

where f], f& arearbitrary functions. From the preceding expression
we can consider f; = f, =0 - It is possible to find more Lagrangians
for (1) by considering other vector fields given in the Proposition 4.
We then calculate

f(an/)Lx + gx(xhy)l’ + n(xsy)Ly + U[x](an/)Lyx = Dx [f(xa y)]a
using (40) and (7). Thus we get

3x7* 3x74 X7 X7
I + vy 1 .
9{ L n(yx) 5 ny 5{ 5 n(y,) 5

-3
X
0,4+ (1, = E)y —£,07 ))(zln(yx)J —fe =y, =0.
From the preceding expression, rearranging and associating terms

with respect tol,y., v In(y.),y*In(y,) and In(y,), we obtain the
following determinant equations

&=n.=1=0, (41a)
-3&+xn, =0, (41b)
3¢ -xg, —2x'f, =0. (41c)

Solving the preceding system for &,77 and f we obtain the
infinitesimal generators of Noether’s symmetries

n=ay, £=0,and f(y)=a,.
with a, and a, arbitrary constants. Then, the Noether symmetry
group or variational symmetries is
h=o
oy
According to,’ in order to obtain the conserved quantities or
conservation laws, we should solve

(42)

(43)

I=(Xy,~Y)L, —XL+f,

s0, using (43), (47) and (48). Therefore, the conserved quantities
are given by
-3
_X "Iy, |
2
Nonlinear self-adjointness

I, = ay,, (44)

In this section we present the main definitions in the N. Ibragimov’s
approach to nonlinear self-adjointness of differential equations
adopted to our specific case. For further details the interested reader
is directed to.51%!!

Consider second order differential equation
%(x’y’y(])ayZ“'ry(s) :O’ (45)
With independent variables x and a dependent variable y , where
Yy Yy denote the collection of 1,2,...,s —th order derivatives
of y*

Definition 1 Let§ be a differential function andv =v(x)-the
new dependent variable, known as the adjoint variable or nonlocal

Copyright:
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variable.! The formal Lagrangian for§ =0is the differential
function defined by

£:=13. (46)
Definition 2 Let § be a differential function and for the differential

equation (45), denoted by F[y]= 0, we define the adjoint differential
function to § by

oL
§* = é‘iy 47
and the adjoint differential equation by
§*[y.v1=0, (48)
where the Euler operator
o2 +2,_(-)"D,...D,,, o (49)

Sy oy

X
X[ X 2 Im

and D, is the total derivative operator with respect to x; defined by
D)(l:axl-}_yxlay-’»yxl a

) toit Vo o X, O
Y Vi xig i xiy Yy i

Definition 3 The differential equation (45) is said to be nonlinearly
selfadjoint if there exists a substitution

v=9(x,y) %0 (50)
such that

§*|cpien =48 G
for some undetermined coefficient 4 = A(x,y,...) . Ifv=¢(y)in

(50) and (51), the equation (45) is called quasi self-adjoint. Ifv =y,
we say that the equation (45) is strictly self-adjoint.

Now we shall obtain the adjoint equation to the eq. (1). For this
purpose we write (1) in the form (45), where

F =y +y i+, =0, (52)
Then the corresponding formal Lagrangian (46) is given by
L=v(y, +y i +3x7y,)=0 (53)
and the Euler operator (49) assumes the following form:
oL ot %Jerﬁ. (54)

Sy oy, v
We calculate explicitly the Euler operator (54) applied to £

determined by (58). In this way we obtain the adjoint equation (48)
to (1):

F*=vOy 7 4307 =2y D) v (2,7 =30 D) 4y, =0 (55)
The main result in this section can be stated as follows.

Proposition 3 The equation (1) is nonlinearly self-adjoint, with
the substitution given by

$(x,y) = y(kyx + kyx*),

where k,, k, are arbitrary constants.

(56)

Proof. Substituting in (55), and then in (52),v =¢(x,y) and its
respective derivatives, and comparing the corresponding coefficients
we get five equations:

Citation: Loaiza G,Acevedo Y, Duque OML, et al. Lie algebra classification, conservation laws and invariant solutions for modification of the generalization of
the Emden—Fowler equation. Phys Astron Int J. 2023;7(1):26-32. DOI: 10.15406/paij.2023.07.00280


https://doi.org/10.15406/paij.2023.07.00280

Lie algebra classification, conservation laws and invariant solutions for modification of the generalization

of the Emden—Fowler equation

-4, =4, (57a)
_y-1¢+¢y =0, (57b)
-y ¢ +4,y=0, (57¢)
3P -3x""p. + .. =0, (57d)
y72p-y"9,+vp,, =0. (7¢)

We observe that (57c¢) and (57¢) are obtaned from (57b) by
differentiation with respect to x and y * Therefore we have to study
only Egs. (57b) and (57d). Solving for ¢ in (57b) we obtain

P(x, ) = ¢ (x)y, (5%)
where ¢;(x) is arbitrary function. Using (58) into (57d) we

get3x2¢,(¢)=3x7'¢,, + ¢, =0, thus solving for ¢ (x)we have

cl(x):k1x+k2x3, then, substituting in (58) the statement in the

theorem is obtained.
7 Conservation laws

In this section we shall establish some conservation laws for the
equation (1) using the conservation theorem of N. Ibragimov in.'
Since the Eq. (1) is of second order, the formal Lagrangian contains
derivatives up to order two. Thus, the general formula in'* for the
component of the conserved vector is reduced to

Cr = [?—Dx [;Eﬂ +D, [W’]{;E},

Yx Yxx Yxx

(59

where
wi=n/-&y,
j =1,...,5 the formal Lagrangian (53)
S=v(y oty y 357y

and 17+ €7 are the infinitesimals of a Lie point symmetry admitted
by Eq. (1), given in (4). Using (1), (4) and (56) into (59) we obtain the
following conservation vectors for each symmetry stated in (4).

Cl =v(xy™yi = y) + v, (xp,),
Gy =v(=x’y 'y} =37y +v,(xp,),

C5 =v(=6y7y, —3xyys —=3x ) —v.(’ +x%y,),  (60)

Gy =v(=32yy! =3y ) + 0, (X y ),
G5 =v@3y, +33 ) = v, (),
where v y(k,x+k2x3) and v, = vk +3k2x2) .
Classification of Lie algebra
Generically a Finite dimensional Lie algebra in a field of

characteristic O is classify by the Levi’s theorem, which claims
that any finite dimensional Lie algebra can be write as a semidirect
product of a semisimple Lie algebra and a Solvable Lie algebra, the
solvable Lie algebra is the Radical of that Algebra. In other words,
there exist two important classes of Lie algebras, The solvable and the
semisimple. In each classes mention above there are some particular
classes that have other classification, for example in the solvable one,
we have the nilpotent Lie algebra.

_ According the Lie group symmetry of generators given in the table
. We have a five dimensional Lie algebra. First of all, we remember

Copyright:
©2023 Loaiza etal. 31

some basic criteria to classify a Lie algebra, In the case of Solvable
and semisimple Lie algebra. We will denote K(_,.) the Cartan-Killing
form. The next propositions can be found in.?

Proposition 4 (Cartan's theorem) A Lie algebra is semisimple if
and only if its Killing form is nondegenerate.

Proposition 5 A Lie subalgebra % is solvable if and only if
K(X,Y)=0for all X e[g,glandY e g. Other way to write that is
K(g,[g,0]) =0.

We also need the next statements to make the classification.
Definition 4 Let g be a finite-dimensional Lie algebra over an
arbitrary field k .Choose a basise;, 1<i<n,, ing wheren=dimg

and set[e;,e;]= C,;fek. Then the coefficients Cif- are called structure
constants.

Proposition 6 Let g, and g, be two Lie algebras of dimension n .
Suppose each has a basis with respect to which the structure constant
are the same. Then g, and g, are isomorphic.

Let g the Lie algebra related to the symmetry group of infinitesimal
generators of the equation (1) as stated by the table of the commutators,
it is enough to consider the next relations:

[I1,,11,] = 211, [1,,11,] = 211, [[1,,11,] = -2,

[I15,105 ] = =213, [I1;,115] =—2I1,. Using that we calculate Cartan-

Killing form K as follows.
80004
00000
K=[00000 |,
00000
40008

which the determinant vanishes, and thus by Cartan criterion it
is not semisimple, (see Proposition 4). Since a nilpotent Lie algera
has a Cartan-Killing form that is identically zero, we conclude, using
the counter-reciprocal of the last claim, that the Lie algebra g is not
nilpotent. We verify that the Lie algebra is solvable using the Cartan
criteria to solvability, (Proposition 5), and then we have a solvable
nonnilpotent Lie algebra. The Nilradical of the Lie algebra g is

generated by IT,,I15,I1,, that is, we have a Solvable Lie algebra with

three dimensional Nilradical. Let 72 the dimension of the Nilradical
M of a Solvable Lie agebra, In this case, in fith dimensional Lie

algebra we have 3<m<S5.Mubarakzyanov in" classified the 2
-dimensional solvable nonlilpotent Lie algebras, in particular the
solvable nonnilpotent Lie algebra with three dimensional Nilradical,
this Nilradical is isomorphic to fj; the Heisenberg Lie algebra. Tnen,
by the Proposition 6, and consequently we establish a isomorphism of

Lie algebras with 1 and the Lie algebra gs 34 . In summery we have the
next proposition.

Proposition 7 The 5S-dimensional Lie algebra % related to the
symmetry group of the equation (1) is a solvable nonnilpotent Lie
algebra with three dimensional Nilridical. Besides that Lie algebra
is isomorphich with 9534 in the Mubarakzyanov’s classification.

Conclusion

Using the Lie symmetry group (see Proposition 1), we calculated
the optimal algebra (see Proposition 2). Making use of these operators,
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it was possible to characterize all invariant solutions as it was shown
in Table 3.

It has been shown the variational symmetries for (1), as it was
shown in (43) with its corresponding conservation laws (44) and all
this was using Noether’s theorem, but non-trivial conservation laws
were also calculated using the Ibragimov’s method as it was shown
in (60) using the nonlinearly self-adjoint of the equation (1) as
announced in the Proposition 3.

The Lie algebra associated to the equation (1) is a solvable
nonnilpotent Lie algebra with three dimensional Nilridical. Besides
that Lie algebra is isomorphich with gs34in the Mubarakzyanov’s

classification (see Proposition 7). Therefore, the goal initially proposed
was achieved. For future works, An line of work would be to use the

Lie symmetry group to calculate the A-symmetries of (1), and, thus,
explore more conservation laws for (1) and the equivalence group
theory could be also considered to obtain preliminary classifications
associated to a complete classification of (1).
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