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Introduction
 In,1 Ibragimov presents the following equation 

	                   ( 1) 2 ( 1)3 ,x x xy x y y x y− −= − − 	                               (1)

 with its respective solution 

	       2
1 1 22( ) , , .Cy x C whereC C areconstants

x
−±= 	                (2)

 This solution is obtained using the integrating factor method. 
In,2 Muriel and Romero, calculate the Symmetries associated to 
integrating factors of (1). In,3 Polyanin and Zaitsev present a solution 
of (1) of the form 

	  4
2 1 1 2( ) ( | | ), , .y x C exp C x whereC C areconstants= 	             (3)

 The purpose of this work is:  to calculate the Lie symmetry 

group,  to present the optimal algebra (optimal system) for (1),  
making use of all elements of the optimal algebra, to propose invariant 
solutions for (1), then  to construct the Lagrangian with which we 

could determine the variational symmetries using Noether’s theorem, 

and thus to present conservation laws associated, and  also using 
Ibragimov’s method build some non-trivial conservation laws, and 
finally  to classify the Lie algebra associated to (1), corresponding 
to the symmetry group. we note that equation (1) can be considered as 
a modification of the generalization of the Emden–Fowler Equation. 

Continuous group of Lie symmetries

In this section we study the Lie symmetry group for (1). The main 
result of this section can be presented as follows: 

Proposition 1  The Lie symmetry group for the equation (1) is 
generated by the following vector fields: 

	    3 2 3 3 2
1 2 3 4, , ( ) ,x x xy y x y

x x x y x
∂ ∂ ∂ ∂ ∂

Π = Π = Π = + − Π =
∂ ∂ ∂ ∂ ∂

         (4)

	                                  

     5 y
y
∂

Π =
∂

 Proof. A general form of the one-parameter Lie group admitted 
by (1) is given by 

	 2( , ) ( )x x x y Oξ→ +∈ + ∈  and  2( , ) ( )y y x y Oη→ +∈ + ∈

where  is the group parameter. The vector field associated 
with the group of transformations shown above can be written as 

( , ) ( , )
'

x y x y
x y

ξ η∂ ∂
Γ = +

∂ ∂
, where ,ξ η are differentiable functions 

in . Applying its second prolongation 

	                   (2)
[ ] [ ] ,x xx

x xxy y
η η∂ ∂

Γ = Γ + +
∂ ∂

	            (5)

 to eq.(1), we must find the infinitesimals ,ξ η satisfying the 
symmetry condition 

2 2 2
[ ] [ ]( 3 ) ( ) (2 3 ) 0,x x x x xxx y y y y y xξ η η η− − −1 −1− + − + + + =        (6)

 associated with (1). Here [ ] [ ],x xxη η are the coefficients in (2)Γ given 
by: 

	 2
[ ] [ ] ( [ ]) ( ) .x x x x x y x x y xD D y y yη η ξ η η ξ ξ= − = + − −

	             [ ] [ ][ ] [ ] ,( )xx x xxx xD yDη η ξ= −

	  2 3(2 ) ( 2 )x x x y x x x y y x y x y xy y yyη η ξ η ξ ξ= + − + − −

	                    ( 2 ) 3 .y x xx y x xxy y yη ξ ξ+ − − 	                          (7)

 Being xD is the total derivative operator:

...x x x y xx yxD y y= ∂ + ∂ + ∂ + . Replacing (7) into (6) and using (1) we 

obtain: 
( 1) 3 ( 1) ( 2) 1 2(5 ) ( 2 6 )y y y x y x y y y xy y y y x y yξ ξ η η ξ ξ η− − − −− + − − + +

	
2 1 1 1( 3 2 3 2 ) ( 3 ) 0.x x x y x xx x x x xx y x y xξ η ξ η ξ η η− − − −+ − + + + − + + =

 From (8), canceling the coefficients of the monomials variables in 

derivatives 3 2, ,x xy y1 and xy we obtain the determining equations for the 
symmetry group of (1), with , 0.x y ≠ That is:  

	                         5 0y yyyξ ξ− = 	                         (8a)

	 2 2 22 6 0,y xy y yyxy x xy y xyη η ξ ξ η− − + + = 	         (8b)
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	 2 2 23 2 3 2 0.x x x y x xxy x xy x y x yξ η ξ η ξ− + + + − = 	             (8c)

	                               3 0.xx xxη η+ = 	                            (8d)

  Solving the system of equations (8a)-(8d) forξ andη we get 

	                   3 2 3 2
1 2 3 4 ,c x c x c xy c x yξ = + + +

	                            3
3 5 .c y c yη = − +

 Thus, the infinitesimal generators of the group of symmetries 
of (1) are the operators 1Π − 5Π described in the statement of the 
Proposition 1; thus having the proposed result. 

Optimal algebra

Taking into account,1,4-6 we present in this section the optimal 
algebra associated to the symmetry group of (1), that shows a systematic 
way to classify the invariant solutions. To obtain the optimal algebra, 
we should first calculate the corresponding commutator table, which 
can be obtained from the operator 

1[ , ] ( ( ) ( )) ,n i i
i ixβ β β β β αα α α α ξ ξ=

∂
Π Π = Π Π −Π Π = Σ Π −Π

∂
        (9)

 where ,2,i =1 with , ,...5α β =1 and ,i i
α βξ ξ are the corresponding 

coefficients of the infinitesimal operators ,α βΠ Π  After applying the 
operator (12) to the symmetry group of (1), we obtain the operators 
that are shown in the following table  !  

Table 1 Commutators table associated to the symmetry group of (1)

   
1Π  2Π   3Π  4Π  5Π

 1Π  0  22Π   0 42Π  0

 2Π 22− Π 0 42− Π 0 0

3Π  0 42Π   0 0 32− Π  

 4Π 42− Π 0  0 0 42− Π  

 5Π  0 0  32Π 42Π 0
Now, the next thing is to calculate the adjoint action representation 

of the symmetries of (1) and to do that, we use Table 1 and the operator. 

	 0( ( )) ( ( ))
!

n
n

nAd exp H ad G
n
λλ ∞

=Π = Σ Π for the symmetries 

Π and G

 Making use of this operator, we can construct the Table 2, which 
shows the adjoint representation for each .iΠ !  

 Table 2 Adjoint representation of the symmetry group of (1)

   adj[ , ]
 1Π  2Π  3Π  4Π  5Π

1Π  1Π  2
2e λ− Π  3Π  2

4e λ− Π   5Π  

 2Π  22λ1Π + Π 2Π  3 42λΠ + Π  4Π  5Π

 3Π  1Π 42λ2Π − Π  3Π  4Π  5 32λΠ + Π

 4Π  42λ1Π + Π 2Π  3Π  4Π  5 42λΠ + Π

 5Π  1Π   2Π 2
3e λ− Π  2

4e λ− Π   5Π

 Proposition 2  The optimal algebra associated to the equation (1) 
is given by the vector fields 

	4 2 2 3 3 3 3 2 2 3 3 5 4 6 4 2 7 4, , , , , , ,a a a a a b a b b1 1 1 1Π Π Π Π + Π Π +Π Π + Π Π + Π Π + Π

	3 3 5 2 2 5 5 4 5 2 2 3 3 4 4, , , 2 , ,b a a b a a b1 1 1 1Π + Π Π +Π Π +Π − Π + Π +Π Π + Π + Π

	 4
8 2 9 4 2 2 3 2 4 5

2
, .ab b a b

a1Π + Π + Π Π + Π + Π +Π

 Proof. To calculate the optimal algebra system, we start with the 
generators of symmetries (4) and a generic nonzero vector. Let 

	       2 2 3 3 4 4 5 5.G a a a a a1 1= Π + Π + Π + Π + Π 	            (13)

 The objective is to simplify as many coefficients ia as possible, 
through maps adjoint to G , using Table (2).  

    1.  Assuming 5a =1 in (10) we have that 

2 2 3 3 4 4 5.G a a a a1 1= Π + Π + Π + Π +Π Applying the adjoint operator 

to ,G1Π  and 5( , )GΠ we don‘t have any reducción, on the other hand 
applying the adjoint operator to 2( , )GΠ we get 

2 2 2 3 3 4 3 4 5(exp( )) ( 2 ) ( 2 )G Ad G a a a a a aλ λ λ1 1 1 1 1 1 1= Π = Π + + Π + Π + + Π +Π 	          (11)

  Case 0a1 ≠ . Using 2 ,
2
a
a

λ1
1

−
=  with 0a1 ≠ , in (11),  

is eliminated, therefore 3 3 4 5G a a b1 1 1 1= Π + Π + Π +Π , where
3

4
ab a
a1
1

= + . Now, applying the adjoint operator to 3( , )G1Π , we get   

2 2 3 3 2 3 4 5(exp( )) ( 2 ) .G Ad G a a bλ λ1 1 1 1= Π = Π + + Π + Π +Π

Using 3
2 2

aλ −
= , is eliminated 3Π , then 2 4 5G a b1 1 1= Π + Π +Π

. Applying the adjoint operator to 4 2( , )GΠ , we get     

3 3 4 2 3 4 5(exp )) ( 2 ( 2)) .G Ad G a b aλ λ1 1 1 1= Π = Π + + + Π +Π
         (12)

 Case 2 0a1 + ≠ . Using 3 ,
2( 2)a

λ
1

1
=

+
with 2 0a1 + ≠ , in 

(12), 4Π is eliminated, therefore 3 5.G a1 1= Π +Π  Then, we have the 

first element of the optimal system. 

	 3 5,G a1 1= Π +Π with 0a1 ≠  and 2 0.a1 + ≠ 	            (13)

 This is how the first reduction of the generic element (10) ends.

 Case 2 0a1 + ≠ . We get 3 4 52 .G b1 1= − Π + Π +Π Then, 
we have other element of the optimal system. 

	                      3 4 52 .G b1 1= − Π + Π +Π 	                           (14)

 This is how other reduction of the generic element (13) ends.

 Case 0a1 = . We get 2 2 3 3 4 3 5( 2a ) .G a a a λ1 1= Π + Π + + + Π

 Case 3 0a ≠ . Using 4

32
a
a

λ1
−

= , with 3 0a ≠ , is eliminated

4Π , then 2 2 3 3 5G a a1 = Π + Π +Π . Applying the adjoint operator to

3( , )G1Π , we get 

4 4 3 2 2 3 3 4 4 5(exp )) ( 2 ) 2 .G Ad G a aλ λ λ1= Π = Π + + Π − Π +Π    (15)

Using 3
4 2

aλ −
= , is eliminated 3Π , then 4 2 2 3 4 5.G a a= Π + Π +Π  

Now applying the adjoint operator to 4 4( , )GΠ , we have 

   5 5 4 4 2 2 3 5 4 5(exp )) ( 2 ) .G Ad G a aλ λ= Π = Π + + Π +Π 	          (16)

Using 3
5 2

aλ −
= , is eliminated 4Π , then we have other element of 

the optimal system. 
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	                              5 2 2 5.G a= Π +Π 	                          (17)

 This is how other reduction of the generic element (10) ends.

 Case 3 0a = . We get 2 2 4 4 5.G a a1 = Π + Π +Π  Now 

applying the adjoint operator to 3( , )G1Π , we have 

	
6 6 3 2 2 6 3 4 2 6 4 5(exp )) 2 ( 2 ) .G Ad G a a aλ λ λ1= Π = Π + Π + − Π +Π   (18)

 Case 2 0a ≠ . Using 4
6

22
a
a

λ = , with 2 0a ≠ , is 

eliminated 4Π , then 4
6 2 2 3 5

2
.aG a

a
= Π + Π +Π  Now applying the 

adjoint operator to 4 4( , )GΠ , we get 

   

4
7 7 4 6 2 2 3 7 4 5

2
(exp( )) 2 .aG Ad G a

a
λ λ= Π = Π + Π + Π +Π            (19)

 It’s clear that we don’t have any reduction, then using 2
7 2

bλ = , 
then we have other element of the optimal system. 

	               4
7 2 2 3 2 4 5

2
.aG a b

a
= Π + Π + Π +Π 	            (20)

 This is how other reduction of the generic element (10) ends.

 Case 2 0a = . We get 6 6 3 4 4 52 .G aλ= Π + Π +Π It 

is clear that we don’t have any reduction, then using 3
6 2

bλ = , we 

have 6 3 3 4 4 5.G b a= Π + Π +Π  Now applying the adjoint operator to

4 6( , )GΠ , we have 

8 8 4 6 3 3 4 8 4 5(exp( )) ( 2 ) .G Ad G b aλ λ= Π = Π + + Π +Π 	            (21)

 Using 4
8 2

aλ −
= , is eliminated 4Π , then we have other element of 

the optimal system. 

	                                 8 3 3 5.G b= Π +Π 	                            (22)

 This is how other reduction of the generic element (10) ends.

    2.  Assuming 5 0a = and 4a =1 in (10), we have that 

2 2 3 3 4.G a a a1 1= Π + Π + Π +Π  Applying the adjoint operator to 

( , )G1Π and 5( , )GΠ we don’t have any reduction, on the other hand 

applying the adjoint operator to 2( , )GΠ we get 

9 9 2 2 9 2 3 3 3 9 4(exp( )) ( 2 ) ( 2 ) .G Ad G a a a a aλ λ λ1 1 1= Π = Π + + Π + Π + 1+ Π   (23)

 Case 0a1 ≠ . Using 2
9 2

a
a

λ
1

−
= , with 0a1 ≠ , in (26),  is 

eliminated, therefore 9 3 3 4 4G a a b1 1= Π + Π + Π , where 3 2
3 .a ab

a1
=1−  

Now, applying the adjoint operator to 3 9( , )GΠ , we don’t have any 

reduction, after applying the adjoint operator to 4 9( , )GΠ , we get

0 0 4 9 3 3 3 0 4(exp( )) ( 2 ) .G Ad G a a b aλ λ1 1 1 1 1 1= Π = Π + Π + + Π  How

0a1 ≠ , we can use 3
0 2

b
a

λ1
1

−
= , is eliminated 4Π , thus we have other 

element of the optimal system. 

	                                  3 3.G a a10 1 1= Π + Π 	          (24)

 This is how other reduction of the generic element (10) ends.

 Case 0a1 = .We get 9 2 2 3 3 3 9 4( 2 ) .G a a a λ= Π + Π + 1+ Π

 Case 3 0a ≠ . Using 9
32a

λ −1
= , with 3 0a ≠

, 4Π is eliminated, therefore 9 2 2 3 3.G a a= Π + Π  Now, 

applying the adjoint operator to 3 9( , )GΠ , we get 

3 9 2 2 3 3 4(exp( )) 2 .G Ad G a a aλ λ11 11 1 11= Π = Π + Π − Π

 Case 2 0a ≠ . It’s clear that we don’t have any reduction, 

using 
22

b
a

λ 4
11

−
= , with 2 0a ≠ , we get 2 2 3 3 4 4.G a a b11 = Π + Π + Π

Now, applying the adjoint operator to 4( , )G11Π , we don’t have any 
reduction, thus we have other element of the optimal system. 

	                      2 2 3 3 4 4.G a a b11 = Π + Π + Π 	           (25)

 This is how other reduction of the generic element (10) ends.

 Case 2 0a = . We get 3 3.G a11 = Π  Now, applying the 

adjoint operator to 4( , )G11Π , we don’t have any reduction, thus we 
have other element of the optimal system. 

	                              3 3.G a11 = Π 	                           (26)

 This is how other reduction of the generic element (10) ends.

 Case 3 0a = We get 9 2 2 4.G a= Π +Π  Now, 

applying the adjoint operator to 3 9( , )GΠ , we have                    

3 9 2 2 2 4(exp( )) ( 2 ) .G Ad G a aλ λ12 12 12= Π = Π + 1− Π

 Case 2 0a ≠ . Using
22a

λ12
1

= , with 2 0a ≠ , is 

eliminated 4Π , then 2 2.G a12 = Π Now, applying the adjoint operator 

to 4( , )G12Π ,we don’t have any reduction, thus we have other element 
of the optimal system. 

	                                   2 2.G a12 = Π 	                           (27)

 This is how other reduction of the generic element (10) ends.

 Case 2 0a = . We get 4G12 = Π . Now, applying the 

adjoint operator to 4( , )G12Π , we don’t have any reduction, thus we 
have other element of the optimal system. 

	                                   4.G12 = Π 	                           (28)

 This is how other reduction of the generic element (10) ends.

    3.  Assuming 5 4 0a a= = and 3a =1 in (10), we have that 

2 2 3.G a a1 1= Π + Π +Π . Applying the adjoint operator to ( , )G1Π and

5( , )GΠ we don’t have any reduction, on the other hand applying the 
adjoint operator to 2( , )GΠ we get 

	
2 2 2 3 4(exp( )) ( 2 ) 2 .G Ad G a a aλ λ λ13 13 1 1 1 13 13= Π = Π + + Π +Π + Π   (29)

 Case 0a1 ≠ . Using 2

2
a
a

λ13
1

−
= , with 0a1 ≠ , in (29), 2Π

is eliminated, therefore 3 3 4,G a b13 1 1= Π +Π + Π where 2
3 .ab

a1
=

Now, applying the adjoint operator to 3( , )G13Π , we don’t have any 
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reduction, after applying the adjoint operator to 4 9( , )GΠ , we get 

4 3 3 4(exp( )) (b 2 ) .G Ad G a aλ λ14 14 13 1 1 1 13= Π = Π +Π + + Π A s 0a1 ≠ , 

we can use 3

2
b
a

λ13
1

−
= , is eliminated 4Π , then we have other element 

of the optimal system. 

	                                  3.G a14 1 1= Π +Π 	                            (30)

 This is how other reduction of the generic element (10) ends.

 Case 0a1 = . We get 2 2 3 42 ,G a λ13 13= Π +Π + Π

using 5

2
bλ13 = , then 2 2 3 5 4.G a b13 = Π +Π + Π Now, 

applying the adjoint operator to 3( , )G13Π , we get    

3 2 2 3 5 2 4(exp )) ( 2 ) .G Ad G a b aλ λ14 14 13 14= Π = Π +Π + − Π

 Case 0a2 ≠ . Using 5

22
b
a

λ14 = , with 0a2 ≠ , is eliminated

4Π , then 2 2 3.G a14 = Π +Π  Now applying the adjoint operator to 

4( , )G14Π we don’t have any reduction, then we have other element 
of the optimal system. 

	                                     2 2 3.G a14 = Π +Π 	            (31)

 This is how other reduction of the generic element (13) ends.

 Case 0a2 = . We get 3 5 4.G b14 = Π + Π Now applying the 

adjoint operator to 4( , )G14Π we don’t have any reduction, then we 

have other element of the optimal system. 

	                                     3 5 4.G b14 = Π + Π 	            (32)

 This is how other reduction of the generic element (10) ends.

    4.  Assuming 3 4 3 0a a a= = = and 2a =1 in (10), we have that

2.G a1 1= Π +Π  Applying the adjoint operator to ( , )G1Π and 5( , )GΠ

we don’t have any reduction, on the other hand applying the adjoint 
operator towe get 

	 2 2(exp( )) ( 2 )G Ad G a aλ λ15 15 1 1 1 15= Π = Π + 1+ Π .	          (33)

 Case 0a1 ≠ . Using
2a

λ15
1

−1
= , with 0a1 ≠ , is eliminated 2Π

, then .G a15 1 1= Π . Now applying the adjoint operator to 3( , )G15Π we 
don’t have any reduction, on the other hand applying the adjoint operator 

to 4( , )G15Π we get 4 4(exp( )) 2 .G Ad G a aλ λ16 16 15 1 1 1 16= Π = Π + Π It is 

clear that we don’t have any reduction, then using 6

2
b
a

λ16
1

= , with

0a1 ≠ , we have other element of the optimal system. 

	                        6 4.G a b16 1 1= Π + Π 	                          (34)

 This is how other reduction of the generic element (10) ends.

 Case 0a1 = . We get 2G15 = Π . Now applying the adjoint 

operator to 3( , )G15Π we get 3 4(exp( )) 2 .G Ad Gλ λ17 17 15 2 17= Π = Π − Π  

It is clear that we don’t have any reduction, then using 7

2
bλ17
−

= , then

2 7 4.G b17 = Π + Π Now applying the adjoint operator to 4( , )G17Π , we 

don’t have any reduction, after we have other element of the optimal 
system. 

	                              2 7 4.G b17 = Π + Π 	                          (35)

 This is how other reduction of the generic element (10) ends.

    5.  Assuming 5 4 3 2 0a a a a= = = = and a1 =1 in (10), we have 

that .G 1= Π Applying the adjoint operator to ( , )G1Π , 3( , )GΠ and 

5( , )GΠ we don’t have any reduction, on the other hand applying the 
adjoint operator to 2( , )GΠ we get 

	        2 2(exp( )) 2 .G Ad Gλ λ18 18 1 18= Π = Π − Π 	         (36)

 It’s clear that we don’t have any reduction, then using 8

2
bλ18 =

, we get 8 2G b18 1= Π + Π . Now applying the adjoint operator to

4( , )G18Π , we have 

	                           8 2 22 .G b λ19 1 19= Π + Π + Π 	          (37)

It’s clear that we don’t have any reduction, then using 9

2
bλ19 = , we 

have other element of the optimal system. 

	                          8 2 8 4.G b b19 1= Π + Π + Π 	          (38)

 This is how other reduction of the generic element (10) ends. 

 4  Invariant solutions by the generators of the optimal 
algebra

 In this section, we characterize the invariant solutions taking into 
account all operators that generate the optimal algebra presented in 
Proposition 2. For this purpose, we use the method of invariant curve 
condition5 (presented in section 4.3), which is given by the following 
equation 

	                       (x, y, y ) y 0x xQ η ξ= = = .	           (39)

 Using the element  from Proposition 2, under the condition (42), 

we obtain that 4 4y 0xQ η ξ= − =  which implies 3 2(0) y ( ) 0x x y− = . 

After, we get ( )y x c= , where c is a constant, which is an invariant 

solution for (1), using an analogous procedure with all of the elements 
of the optimal algebra (Proposition 2), we obtain both implicit and 

explicit invariant solutions that are shown in the Table 3, with  being 
a constant.

Variational symmetries and conserved quantities

 In this section, we present the variational symmetries of (1) and 
we are going to use them to define conservation laws via Noether’s 
theorem.7 First of all, we are going to determine the Lagrangian using 
the Jacobi Last Multiplier method, presented by Nucci in,8 and for this 
reason, we are urged to calculate the inverse of the determinant ∆ , 

	               ( )
, ,y

( ) 3 2
2, 2,y 2

0
0 3

xxx x xx

x x

x x

yx y x y y
x y

x x y

1
1 1 1

1

∆ = Π Π Π = −
Π Π Π −

,

where , ,y 2,, ,x x1 1Π Π Π , and 2,yΠ are the components of the 

symmetries 2,1Π Π shown in the Proposition 4 and ( ) ( )
2,1 1

1Π Π as 

its first prolongations. Then we get 32 xx y∆ = which implies that
3

2 x

xM
y

−1
= =
∆

. Now, from,8 we know that M can also be written as

https://doi.org/10.15406/paij.2023.07.00280
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yxyxM L= which means that
3

2yxyx
x

xL
y

−

= , then integrating twice with 

respect to xy we obtain the Lagrangian 
3 3

2( , , ) ( ) ( , ) ( , ),
2 2x x x x x

x xL x y y y In y y y f x y f x y
− −

1= − + +
      (40)

 where  are arbitrary functions. From the preceding expression 
we can consider 2 0f f1 = =  It is possible to find more Lagrangians 
for (1) by considering other vector fields given in the Proposition 4. 
We then calculate 

[ ] [ ]( , ) ( , ) ( , ) ( , ) ( , ) ,x x y yx xxx y L x y L x y L x y L D f x yξ ξ η η+ + + =

using (40) and (7). Thus we get 

	
4 4 3 33 3( ) ( )

2 2 2 2x x x x x x
x x x xy In yx y y In y yξ ξ
− − − −   −

+ + −      
   

	
3

2
y( ( ) )) ( ) 0.

2x x x y x x x x y
xy y In y f y fη η ξ ξ
− 

+ + − − − − =  
 

 From the preceding expression, rearranging and associating terms 
with respect to 2, , ( ), ( )x x x x xy y In y y In y1 and ( ),xIn y we obtain the 
following determinant equations  

	                               0,y x xfξ η= = = 	                             (41a)

	                                 3 0,yxξ η− + = 	                          (41b)

	                           43 2 0.x yx x fξ ξ− − = 	                            (41c)

  Solving the preceding system for ,ξ η and f we obtain the 
infinitesimal generators of Noether’s symmetries 

	 2 ,aη = 0,ξ = and 4( )f y a= .	                             (42)

 with 2a and 4a arbitrary constants. Then, the Noether symmetry 
group or variational symmetries is 

	                                      ,V
y1
∂

=
∂

	                            (43)

 According to,9 in order to obtain the conserved quantities or 
conservation laws, we should solve 

	                      (X )L ,x yI y Y XL fx= − − +

so, using (43), (47) and (48). Therefore, the conserved quantities 
are given by 

	                         
3

4
( ) ,

2
xx In yI a

−

1 = − + 	                           (44)

 Nonlinear self-adjointness

 In this section we present the main definitions in the N. Ibragimov’s 
approach to nonlinear self-adjointness of differential equations 
adopted to our specific case. For further details the interested reader 
is directed to.6,10,11

Consider second order differential equation 

	                              ( ) 2 (s)( , , , ..., 0,x y y y y1 =F 	            (45)

 With independent variables x and a dependent variable y , where 

( ) (2) (s), ,...y y y1 denote the collection of ,2,..., s th1 − order derivatives 

of y

Definition 1 Let F be a differential function and ( )v v x= -the 
new dependent variable, known as the adjoint variable or nonlocal 

variable.11 The formal Lagrangian for 0F = is the differential 
function defined by 

	                                       : .v=L F 	                            (46)

  Definition 2 Let F be a differential function and for the differential 

equation (45), denoted by [ ] 0,y =F we define the adjoint differential 
function to F by 

	                            * :
y

δ
δ

=
L

F 	                                        (47)

 and the adjoint differential equation by 

	                          *[ , ] 0,y v =F 	                                        (48)

 where the Euler operator 

	  ,

1

( ) ...
...

m
m xi xi m

ix x m
D D

y y y xi i

δ
δ

∞
=1

2

∂ ∂
= + Σ −1
∂ ∂

	        (49)

 and xiD is the total derivative operator with respect to ix defined by 

	

2 2
... ... ... ...x x x y x x y x x x xi yi i i i j x i i i ixj nx ii

D y y y x n1
1

= ∂ + ∂ + ∂ + + ∂

Definition 3 The differential equation (45) is said to be nonlinearly 
selfadjoint if there exists a substitution 

	                                 ( , ) 0v x yφ= ≠ 	                           (50)

 such that 

	                                   ( , )* v x yφ λ= =F F 	                           (51)

 for some undetermined coefficient ( , ,...)x yλ λ= . If ( )v yφ= in 

(50) and (51), the equation (45) is called quasi self-adjoint. If ,v y=
we say that the equation (45) is strictly self-adjoint. 

 Now we shall obtain the adjoint equation to the eq. (1). For this 
purpose we write (1) in the form (45), where 

	                2
,: 3 0.xx x xy y y x y−1 −1= + + =F 	             (52)

 Then the corresponding formal Lagrangian (46) is given by 

	               2( 3 ) 0xx x xv y y y x y−1 −1+ + =L := 	             (53)

 and the Euler operator (49) assumes the following form: 

	                 2 .x x
x xx

D D
y y y y

δ
δ

∂ ∂ ∂
= − +
∂ ∂ ∂

L L L L 	             (54)

 We calculate explicitly the Euler operator (54) applied toL
determined by (58). In this way we obtain the adjoint equation (48) 
to (1): 

	
2 2 2* ( 3 2 ) ( 2 3 ) 0x xx x x xxv y y x y y v y y x v− − −1 −1 −1= + − + − − + =F      (55)

 The main result in this section can be stated as follows. 

Proposition 3  The equation (1) is nonlinearly self-adjoint, with 
the substitution given by 

	                         3
2( , ) ( ),x y y k x k xφ 1= + 	                          (56)

 where 2,k k1 are arbitrary constants. 

 Proof. Substituting in (55), and then in (52), ( , )v x yφ= and its 
respective derivatives, and comparing the corresponding coefficients 
we get five equations:  
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	                                ,yφ λ− = 	                                           (57a)

	                             1 0,yy φ φ−− + = 	                                (57b)

	                           1 0,x xy yφ φ−− + = 	                             (57c)

	                        2 13 3 0,x x xx xφ φ φ− −− + =
	                         (57d)

	                        2 1 0.y y yy y yφ φ φ− −− + = 	                           (57e)

  We observe that (57c) and (57e) are obtaned from (57b) by 

differentiation with respect to x and y  Therefore we have to study 

only Eqs. (57b) and (57d). Solving forφ in (57b) we obtain 

	                          ( , ) ( ) ,x y c x yφ 1= 	                              (58)

 where ( )c x1 is arbitrary function. Using (58) into (57d) we 

get 2 ( )3 3 0x xxc cx xc c− −
1 1 1

1− + = , thus solving for ( )c x1 we have

3
2( )c x k x k x1 1= + , then, substituting in (58) the statement in the 

theorem is obtained. 

7  Conservation laws

 In this section we shall establish some conservation laws for the 
equation (1) using the conservation theorem of N. Ibragimov in.12 
Since the Eq. (1) is of second order, the formal Lagrangian contains 
derivatives up to order two. Thus, the general formula in12 for the 
component of the conserved vector is reduced to 

	
,x j j

x x
y y yx xx xx

C W D D W
    ∂ ∂ ∂  = −   +    ∂ ∂ ∂       

L L L 	              (59)

 where 

	                             j j j
xW yη ξ= −

,...,5j =1 the formal Lagrangian (53) 

	                    2( 3 )xx x xv y y y x y−1 −1= + +L :

 and  are the infinitesimals of a Lie point symmetry admitted 
by Eq. (1), given in (4). Using (1), (4) and (56) into (59) we obtain the 
following conservation vectors for each symmetry stated in (4). 

	                       2( ) ( ),x
x x x xC v xy y y v xy−1

1 = − +

 	                    3 1 2 2 3
2 ( 3 ) ( ),x

x x x xC v x y y x y v x y−= − − +

 	 2 2 1 3 3 2
3 ( 6 3 3 ) ( ),x

x x x xC v y y xyy x y v y xy y−= − − − − +          (60)

 	               3 2 2 2 3 2
4 ( 3 3 )) ( ),x

x x x xC v x yy x y y v x y y= − − +

 	                       ( 1)
5 (3 3 ) ( ),x

x xC v y x y v y−= + −

 where 3
1 2( )v y k x k x= + and 2

1 2( 3 )xv y k k x= + .

Classification of Lie algebra

 Generically a Finite dimensional Lie algebra in a field of 

characteristic  is classify by the Levi’s theorem, which claims 
that any finite dimensional Lie algebra can be write as a semidirect 
product of a semisimple Lie algebra and a Solvable Lie algebra, the 
solvable Lie algebra is the Radical of that Algebra. In other words, 
there exist two important classes of Lie algebras, The solvable and the 
semisimple. In each classes mention above there are some particular 
classes that have other classification, for example in the solvable one, 
we have the nilpotent Lie algebra.

According the Lie group symmetry of generators given in the table 
. We have a five dimensional Lie algebra. First of all, we remember 

some basic criteria to classify a Lie algebra, In the case of Solvable 
and semisimple Lie algebra. We will denote (.,.)K the Cartan-Killing 
form. The next propositions can be found in.3 

Proposition 4  (Cartan’s theorem) A Lie algebra is semisimple if 
and only if its Killing form is nondegenerate. 

 Proposition 5  A Lie subalgebra  is solvable if and only if

( , ) 0K X Y = for all [ ]X ∈ g,g and Y ∈g . Other way to write that is 

( [ ]) 0.K =g, g,g  

We also need the next statements to make the classification. 

Definition 4 Let g be a finite-dimensional Lie algebra over an 

arbitrary field k .Choose a basis ,je ,i n1≤ ≤ , in g  where dimn = g

and set [ , ] .k
i j ij ke e C e=  Then the coefficients k

ijC are called structure 
constants. 

 Proposition 6  Let 1g and 2g be two Lie algebras of dimension n . 
Suppose each has a basis with respect to which the structure constant 
are the same. Then 1g and 2g are isomorphic. 

Let g the Lie algebra related to the symmetry group of infinitesimal 
generators of the equation (1) as stated by the table of the commutators, 
it is enough to consider the next relations:

[ ]2 2, 2 ,1Π Π = Π [ ]4 4, 2 ,1Π Π = Π [ ]2 3 4, 2 ,Π Π = − Π

[ ]3 5 3, 2 ,Π Π = − Π [ ]3 5 4, 2 .Π Π = − Π Using that we calculate Cartan-

Killing form K as follows. 

              	            

80004
00000

,00000
00000
40008

K

 
 
 
 =
 
 
  

which the determinant vanishes, and thus by Cartan criterion it 
is not semisimple, (see Proposition 4). Since a nilpotent Lie álgera 
has a Cartan-Killing form that is identically zero, we conclude, using 
the counter-reciprocal of the last claim, that the Lie algebra  is not 
nilpotent. We verify that the Lie algebra is solvable using the Cartan 
criteria to solvability, (Proposition 5), and then we have a solvable 
nonnilpotent Lie algebra. The Nilradical of the Lie algebra  is 

generated by 2 3 4, , ,Π Π Π that is, we have a Solvable Lie algebra with 
three dimensional Nilradical. Let m the dimension of the Nilradical
M of a Solvable Lie agebra, In this case, in fith dimensional Lie 

algebra we have 3 5.m≤ ≤ Mubarakzyanov in13 classified the 
-dimensional solvable nonlilpotent Lie algebras, in particular the 
solvable nonnilpotent Lie algebra with three dimensional Nilradical, 
this Nilradical is isomorphic to 3h the Heisenberg Lie algebra. Tnen, 
by the Proposition 6, and consequently we establish a isomorphism of 

Lie algebras with  and the Lie algebra 5,34g . In summery we have the 
next proposition. 

Proposition 7  The -dimensional Lie algebra  related to the 
symmetry group of the equation (1) is a solvable nonnilpotent Lie 
algebra with three dimensional Nilridical. Besides that Lie algebra 

is isomorphich with 5,34g  in the Mubarakzyanov’s classification. 
Conclusion

 Using the Lie symmetry group (see Proposition 1), we calculated 
the optimal algebra (see Proposition 2). Making use of these operators, 
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it was possible to characterize all invariant solutions as it was shown 
in Table 3.

It has been shown the variational symmetries for (1), as it was 
shown in (43) with its corresponding conservation laws (44) and all 
this was using Noether’s theorem, but non-trivial conservation laws 
were also calculated using the Ibragimov’s method as it was shown 
in (60) using the nonlinearly self-adjoint of the equation (1) as 
announced in the Proposition 3. 

The Lie algebra associated to the equation (1) is a solvable 
nonnilpotent Lie algebra with three dimensional Nilridical. Besides 
that Lie algebra is isomorphich with 5,34g in the Mubarakzyanov’s 
classification (see Proposition 7). Therefore, the goal initially proposed 
was achieved. For future works, An line of work would be to use the 

Lie symmetry group to calculate the -symmetries of (1), and, thus, 
explore more conservation laws for (1) and the equivalence group 
theory could be also considered to obtain preliminary classifications 
associated to a complete classification of (1). 
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